Require Import List Vbase Varith Vlistbase Vlist.
Require Import Permutation Classical.
Set Implicit Arguments.
Notation sval := (@proj1_sig _ _).
Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
Definition disjoint A (l1 l2 : list A) :=
∀ a (IN1: In a l1) (IN2: In a l2), False.
Lemma nodup_one A (x: A) : NoDup (x :: nil).
Proof. vauto. Qed.
Hint Resolve NoDup_nil nodup_one.
Lemma nodup_map:
∀ (A B: Type) (f: A → B) (l: list A),
NoDup l →
(∀ x y, In x l → In y l → x ≠ y → f x ≠ f y) →
NoDup (map f l).
Proof.
induction 1; ins; vauto.
constructor; eauto.
intro; rewrite In_map in *; desf.
edestruct H1; try eapply H2; eauto.
intro; desf.
Qed.
Lemma nodup_append_commut:
∀ (A: Type) (a b: list A),
NoDup (a ++ b) → NoDup (b ++ a).
Proof.
intro A.
assert (∀ (x: A) (b: list A) (a: list A),
NoDup (a ++ b) → ~(In x a) → ~(In x b) →
NoDup (a ++ x :: b)).
induction a; simpl; intros.
constructor; auto.
inversion H. constructor. red; intro.
elim (in_app_or _ _ _ H6); intro.
elim H4. apply in_or_app. tauto.
elim H7; intro. subst a. elim H0. left. auto.
elim H4. apply in_or_app. tauto.
auto.
induction a; simpl; intros.
rewrite <- app_nil_end. auto.
inversion H0. apply H. auto.
red; intro; elim H3. apply in_or_app. tauto.
red; intro; elim H3. apply in_or_app. tauto.
Qed.
Lemma nodup_cons A (x: A) l:
NoDup (x :: l) ↔ ¬ In x l ∧ NoDup l.
Proof. split; inversion 1; vauto. Qed.
Lemma nodup_app:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) ↔
NoDup l1 ∧ NoDup l2 ∧ disjoint l1 l2.
Proof.
induction l1; ins.
by split; ins; desf; vauto.
rewrite !nodup_cons, IHl1, In_app; unfold disjoint.
ins; intuition (subst; eauto).
Qed.
Lemma nodup_append:
∀ (A: Type) (l1 l2: list A),
NoDup l1 → NoDup l2 → disjoint l1 l2 →
NoDup (l1 ++ l2).
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_right:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l2.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_left:
∀ (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) → NoDup l1.
Proof.
generalize nodup_app; firstorder.
Qed.
Definition mupd (A: eqType) B (h : A → B) y z :=
fun x ⇒ if x == y then z else h x.
Arguments mupd [A B] h y z x.
Lemma mupds (A: eqType) B (f: A → B) x y : mupd f x y x = y.
Proof. by unfold mupd; desf; desf. Qed.
Lemma mupdo (A: eqType) B (f: A → B) x y z : x ≠ z → mupd f x y z = f z.
Proof. by unfold mupd; desf; desf. Qed.
Lemma In_perm A l l' (P: perm_eq (T:=A) l l') x : In x l ↔ In x l'.
Proof.
by split; ins; apply/inP; instantiate;
[rewrite <- (perm_eq_mem P)|rewrite (perm_eq_mem P)]; apply/inP.
Qed.
Lemma nodup_perm A l l' (P: perm_eq (T:=A) l l') : NoDup l ↔ NoDup l'.
Proof.
by split; ins; apply/uniqP; instantiate;
[rewrite <- (perm_eq_uniq P)|rewrite (perm_eq_uniq P)]; apply/uniqP.
Qed.
Lemma In_mem_eq (A: eqType) (l l': list A) (P: l =i l') x : In x l ↔ In x l'.
Proof.
by split; ins; apply/inP; instantiate; [rewrite <- P | rewrite P]; apply/inP.
Qed.
Lemma NoDup_filter A (l: list A) (ND: NoDup l) f : NoDup (filter f l).
Proof.
induction l; ins; inv ND; desf; eauto using NoDup.
econstructor; eauto; rewrite In_filter; tauto.
Qed.
Hint Resolve NoDup_filter.
Lemma NoDup_eq_one A (x : A) l :
NoDup l → In x l → (∀ y (IN: In y l), y = x) → l = x :: nil.
Proof.
destruct l; ins; f_equal; eauto.
inv H; desf; clear H H5; induction l; ins; desf; case H4; eauto using eq_sym.
rewrite IHl in H0; ins; desf; eauto.
Qed.
Lemma map_perm :
∀ A B (f: A → B) l l', Permutation l l' → Permutation (map f l) (map f l').
Proof.
induction 1; eauto using Permutation.
Qed.
Lemma perm_from_subset :
∀ A (l : list A) l',
NoDup l' →
(∀ x, In x l' → In x l) →
∃ l'', Permutation l (l' ++ l'').
Proof.
induction l; ins; vauto.
by destruct l'; ins; vauto; exfalso; eauto.
destruct (classic (In a l')).
eapply In_split in H1; desf; rewrite ?nodup_app, ?nodup_cons in *; desf.
destruct (IHl (l1 ++ l2)); ins.
by rewrite ?nodup_app, ?nodup_cons in *; desf; repeat split; ins; red; eauto using In_cons.
by specialize (H0 x); rewrite In_app in *; ins; desf;
destruct (classic (a = x)); subst; try tauto; exfalso; eauto using In_eq.
eexists; rewrite appA in *; ins.
by eapply Permutation_trans, Permutation_middle; eauto.
destruct (IHl l'); eauto; ins.
by destruct (H0 x); auto; ins; subst.
by eexists (a :: _); eapply Permutation_trans, Permutation_middle; eauto.
Qed.
Lemma Permutation_NoDup A ( l l' : list A) :
Permutation l l' → NoDup l → NoDup l'.
Proof.
induction 1; eauto; rewrite !nodup_cons in *; ins; desf; intuition.
eby symmetry in H; eapply H0; eapply Permutation_in.
Qed.
Lemma NoDup_mapD A B (f : A→ B) l :
NoDup (map f l) → NoDup l.
Proof.
induction l; ins; rewrite !nodup_cons, In_map in *; desf; eauto 8.
Qed.
Lemma olast_inv A l x :
olast (T:=A) l = Some x → ∃ prefix, l = prefix ++ x :: nil.
Proof.
destruct l; ins; desf; induction[a] l; ins; [by ∃ nil|].
by specialize (IHl a); desf; ∃ (a0 :: prefix); ins; f_equal.
Qed.
Lemma In_flatten A (x:A) l :
In x (flatten l) ↔ ∃ y, In x y ∧ In y l.
Proof.
induction l; ins. by split; ins; desf.
rewrite flatten_cons, In_app, IHl; clear; split; ins; desf; eauto.
Qed.
This page has been generated by coqdoc Imprint | Data protection