Library prosa.implementation.facts.extrapolated_arrival_curve
From mathcomp Require Export ssreflect ssrbool eqtype ssrnat div seq path fintype bigop.
Require Export prosa.behavior.time.
Require Export prosa.util.all.
Require Export prosa.implementation.definitions.extrapolated_arrival_curve.
Require Export prosa.behavior.time.
Require Export prosa.util.all.
Require Export prosa.implementation.definitions.extrapolated_arrival_curve.
In this file, we prove basic properties of the arrival-curve
prefix and the extrapolated_arrival_curve function.
We start with basic facts about the relations ltn_steps and leq_steps.
We show that the relation ltn_steps is transitive.
Lemma ltn_steps_is_transitive :
transitive ltn_steps.
Proof.
move⇒ a b c /andP [FSTab SNDab] /andP [FSTbc SNDbc].
by apply /andP; split; lia.
Qed.
transitive ltn_steps.
Proof.
move⇒ a b c /andP [FSTab SNDab] /andP [FSTbc SNDbc].
by apply /andP; split; lia.
Qed.
Next, we show that the relation leq_steps is reflexive...
Lemma leq_steps_is_reflexive :
reflexive leq_steps.
Proof.
move⇒ [l r].
rewrite /leq_steps.
by apply /andP; split.
Qed.
reflexive leq_steps.
Proof.
move⇒ [l r].
rewrite /leq_steps.
by apply /andP; split.
Qed.
... and transitive.
Lemma leq_steps_is_transitive :
transitive leq_steps.
Proof.
move⇒ a b c /andP [FSTab SNDab] /andP [FSTbc SNDbc].
by apply /andP; split; lia.
Qed.
End BasicFacts.
transitive leq_steps.
Proof.
move⇒ a b c /andP [FSTab SNDab] /andP [FSTbc SNDbc].
by apply /andP; split; lia.
Qed.
End BasicFacts.
In the following section, we prove a few properties of
arrival-curve prefixes assuming that there are no infinite
arrivals and that the list of steps is sorted according to the
leq_steps relation.
Consider an arbitrary leq-sorted arrival-curve prefix without
infinite arrivals.
Variable ac_prefix : ArrivalCurvePrefix.
Hypothesis H_sorted_leq : sorted_leq_steps ac_prefix.
Hypothesis H_no_inf_arrivals : no_inf_arrivals ac_prefix.
Hypothesis H_sorted_leq : sorted_leq_steps ac_prefix.
Hypothesis H_no_inf_arrivals : no_inf_arrivals ac_prefix.
We prove that value_at is monotone with respect to the relation ≤.
Lemma value_at_monotone :
monotone leq (value_at ac_prefix).
Proof.
intros t1 t2 LE; clear H_no_inf_arrivals.
unfold sorted_leq_steps, value_at, step_at, steps_of in ×.
destruct ac_prefix as [h steps]; simpl.
have GenLem:
∀ t__d1 v__d1 t__d2 v__d2,
v__d1 ≤ v__d2 →
all (leq_steps (t__d1, v__d1)) steps →
all (leq_steps (t__d2, v__d2)) steps →
snd (last (t__d1, v__d1) [seq step <- steps | fst step ≤ t1]) ≤ snd (last (t__d2, v__d2) [seq step <- steps | fst step ≤ t2]).
{ induction steps as [ | [t__c v__c] steps]; first by done.
simpl; intros *; move ⇒ LEv /andP [LTN1 /allP ALL1] /andP [LTN2 /allP ALL2].
move: (H_sorted_leq); rewrite //= (@path_sorted_inE _ predT leq_steps); first last.
{ by apply/allP. }
{ by intros ? ? ? _ _ _; apply leq_steps_is_transitive. }
move ⇒ /andP [ALL SORT].
destruct (leqP (fst (t__c, v__c)) t1) as [R1 | R1], (leqP (fst (t__c, v__c)) t2) as [R2 | R2]; simpl in ×.
{ rewrite R1 R2 //=; apply IHsteps; try done. }
{ by lia. }
{ rewrite ltnNge -eqbF_neg in R1; move: R1 ⇒ /eqP ->; rewrite R2 //=; apply IHsteps; try done.
- by move: LTN1; rewrite /leq_steps ⇒ /andP //= [_ LEc].
- by apply/allP.
}
{ rewrite ltnNge -eqbF_neg in R1; move: R1 ⇒ /eqP →.
rewrite ltnNge -eqbF_neg in R2; move: R2 ⇒ /eqP →.
apply IHsteps; try done.
- by apply/allP.
- by apply/allP.
}
}
apply GenLem; first by done.
all: by apply/allP; intros x _; rewrite /leq_steps //=.
Qed.
monotone leq (value_at ac_prefix).
Proof.
intros t1 t2 LE; clear H_no_inf_arrivals.
unfold sorted_leq_steps, value_at, step_at, steps_of in ×.
destruct ac_prefix as [h steps]; simpl.
have GenLem:
∀ t__d1 v__d1 t__d2 v__d2,
v__d1 ≤ v__d2 →
all (leq_steps (t__d1, v__d1)) steps →
all (leq_steps (t__d2, v__d2)) steps →
snd (last (t__d1, v__d1) [seq step <- steps | fst step ≤ t1]) ≤ snd (last (t__d2, v__d2) [seq step <- steps | fst step ≤ t2]).
{ induction steps as [ | [t__c v__c] steps]; first by done.
simpl; intros *; move ⇒ LEv /andP [LTN1 /allP ALL1] /andP [LTN2 /allP ALL2].
move: (H_sorted_leq); rewrite //= (@path_sorted_inE _ predT leq_steps); first last.
{ by apply/allP. }
{ by intros ? ? ? _ _ _; apply leq_steps_is_transitive. }
move ⇒ /andP [ALL SORT].
destruct (leqP (fst (t__c, v__c)) t1) as [R1 | R1], (leqP (fst (t__c, v__c)) t2) as [R2 | R2]; simpl in ×.
{ rewrite R1 R2 //=; apply IHsteps; try done. }
{ by lia. }
{ rewrite ltnNge -eqbF_neg in R1; move: R1 ⇒ /eqP ->; rewrite R2 //=; apply IHsteps; try done.
- by move: LTN1; rewrite /leq_steps ⇒ /andP //= [_ LEc].
- by apply/allP.
}
{ rewrite ltnNge -eqbF_neg in R1; move: R1 ⇒ /eqP →.
rewrite ltnNge -eqbF_neg in R2; move: R2 ⇒ /eqP →.
apply IHsteps; try done.
- by apply/allP.
- by apply/allP.
}
}
apply GenLem; first by done.
all: by apply/allP; intros x _; rewrite /leq_steps //=.
Qed.
Next, we prove a correctness claim stating that if value_at
makes a step at time instant t + ε (that is, value_at t <
value_at (t + ε)), then steps_of ac_prefix contains a step
(t + ε, v) for some v.
Lemma value_at_change_is_in_steps_of :
∀ t,
value_at ac_prefix t < value_at ac_prefix (t + ε) →
∃ v, (t + ε, v) \in steps_of ac_prefix.
Proof.
intros ? LT.
unfold value_at, step_at in LT.
destruct ac_prefix as [h2 steps]; simpl in LT.
rewrite [in X in _ < X](sorted_split _ _ fst t) in LT.
{ rewrite [in X in _ ++ X](eq_filter (a2 := fun x ⇒ fst x == t + ε)) in LT; last first.
{ by intros [a b]; simpl; rewrite -addn1 /ε eqn_leq. }
{ destruct ([seq x <- steps | fst x == t + ε]) eqn:LST.
{ rewrite LST in LT.
rewrite [in X in X ++ _](eq_filter (a2 := fun x ⇒ fst x ≤ t)) in LT; last first.
{ clear; intros [a b]; simpl.
destruct (leqP a t).
- by rewrite Bool.andb_true_r; apply/eqP; lia.
- by rewrite Bool.andb_false_r.
}
{ by rewrite cats0 ltnn in LT. }
}
{ destruct p as [t__c v__c]; ∃ v__c.
rewrite /steps_of //=; symmetry in LST.
apply mem_head_impl in LST.
by move: LST; rewrite mem_filter //= ⇒ /andP [/eqP → IN].
}
}
}
{ move: (H_sorted_leq); clear H_sorted_leq; rewrite /sorted_leq_steps //= ⇒ SORT; clear H_no_inf_arrivals.
induction steps; [by done | simpl in *].
move: SORT; rewrite path_sortedE; auto using leq_steps_is_transitive; move ⇒ /andP [LE SORT].
apply IHsteps in SORT.
rewrite path_sortedE; last by intros ? ? ? LE1 LE2; lia.
apply/andP; split; last by done.
apply/allP; intros [x y] IN.
by move: LE ⇒ /allP LE; specialize (LE _ IN); move: LE ⇒ /andP [LT _].
}
Qed.
End ArrivalCurvePrefixSortedLeq.
(* In the next section, we make the stronger assumption that
arrival-curve prefixes are sorted according to the ltn_steps
relation. *)
Section ArrivalCurvePrefixSortedLtn.
∀ t,
value_at ac_prefix t < value_at ac_prefix (t + ε) →
∃ v, (t + ε, v) \in steps_of ac_prefix.
Proof.
intros ? LT.
unfold value_at, step_at in LT.
destruct ac_prefix as [h2 steps]; simpl in LT.
rewrite [in X in _ < X](sorted_split _ _ fst t) in LT.
{ rewrite [in X in _ ++ X](eq_filter (a2 := fun x ⇒ fst x == t + ε)) in LT; last first.
{ by intros [a b]; simpl; rewrite -addn1 /ε eqn_leq. }
{ destruct ([seq x <- steps | fst x == t + ε]) eqn:LST.
{ rewrite LST in LT.
rewrite [in X in X ++ _](eq_filter (a2 := fun x ⇒ fst x ≤ t)) in LT; last first.
{ clear; intros [a b]; simpl.
destruct (leqP a t).
- by rewrite Bool.andb_true_r; apply/eqP; lia.
- by rewrite Bool.andb_false_r.
}
{ by rewrite cats0 ltnn in LT. }
}
{ destruct p as [t__c v__c]; ∃ v__c.
rewrite /steps_of //=; symmetry in LST.
apply mem_head_impl in LST.
by move: LST; rewrite mem_filter //= ⇒ /andP [/eqP → IN].
}
}
}
{ move: (H_sorted_leq); clear H_sorted_leq; rewrite /sorted_leq_steps //= ⇒ SORT; clear H_no_inf_arrivals.
induction steps; [by done | simpl in *].
move: SORT; rewrite path_sortedE; auto using leq_steps_is_transitive; move ⇒ /andP [LE SORT].
apply IHsteps in SORT.
rewrite path_sortedE; last by intros ? ? ? LE1 LE2; lia.
apply/andP; split; last by done.
apply/allP; intros [x y] IN.
by move: LE ⇒ /allP LE; specialize (LE _ IN); move: LE ⇒ /andP [LT _].
}
Qed.
End ArrivalCurvePrefixSortedLeq.
(* In the next section, we make the stronger assumption that
arrival-curve prefixes are sorted according to the ltn_steps
relation. *)
Section ArrivalCurvePrefixSortedLtn.
Consider an arbitrary ltn-sorted arrival-curve prefix without
infinite arrivals.
Variable ac_prefix : ArrivalCurvePrefix.
Hypothesis H_sorted_ltn : sorted_ltn_steps ac_prefix. (* Stronger assumption. *)
Hypothesis H_no_inf_arrivals : no_inf_arrivals ac_prefix.
Hypothesis H_sorted_ltn : sorted_ltn_steps ac_prefix. (* Stronger assumption. *)
Hypothesis H_no_inf_arrivals : no_inf_arrivals ac_prefix.
First, we show that an ltn-sorted arrival-curve prefix is an
leq-sorted arrival-curve prefix.
Lemma sorted_ltn_steps_imply_sorted_leq_steps_steps :
sorted_leq_steps ac_prefix.
Proof.
destruct ac_prefix; unfold sorted_leq_steps, sorted_ltn_steps in *; simpl in ×.
clear H_no_inf_arrivals d.
destruct l; simpl in *; first by done.
eapply sub_path; last by apply H_sorted_ltn.
intros [a1 b1] [a2 b2] LT.
by unfold ltn_steps, leq_steps in *; simpl in *; lia.
Qed.
sorted_leq_steps ac_prefix.
Proof.
destruct ac_prefix; unfold sorted_leq_steps, sorted_ltn_steps in *; simpl in ×.
clear H_no_inf_arrivals d.
destruct l; simpl in *; first by done.
eapply sub_path; last by apply H_sorted_ltn.
intros [a1 b1] [a2 b2] LT.
by unfold ltn_steps, leq_steps in *; simpl in *; lia.
Qed.
Lemma step_at_0_is_00 :
step_at ac_prefix 0 = (0, 0).
Proof.
unfold step_at; destruct ac_prefix as [h [ | [t v] steps]]; first by done.
have TR := ltn_steps_is_transitive.
move: (H_sorted_ltn); clear H_sorted_ltn; rewrite /sorted_ltn_steps //= path_sortedE // ⇒ /andP [ALL LT].
have EM : [seq step <- steps | fst step ≤ 0] = [::].
{ apply filter_in_pred0; intros [t' v'] IN.
move: ALL ⇒ /allP ALL; specialize (ALL _ IN); simpl in ALL.
by rewrite -ltnNge //=; move: ALL; rewrite /ltn_steps //= ⇒ /andP [T _ ]; lia. }
rewrite EM; destruct (posnP t) as [Z | POS].
{ subst t; simpl.
move: H_no_inf_arrivals; rewrite /no_inf_arrivals /value_at /step_at //= EM //=.
by move ⇒ /eqP EQ; subst v. }
{ by rewrite leqNgt POS //=. }
Qed.
step_at ac_prefix 0 = (0, 0).
Proof.
unfold step_at; destruct ac_prefix as [h [ | [t v] steps]]; first by done.
have TR := ltn_steps_is_transitive.
move: (H_sorted_ltn); clear H_sorted_ltn; rewrite /sorted_ltn_steps //= path_sortedE // ⇒ /andP [ALL LT].
have EM : [seq step <- steps | fst step ≤ 0] = [::].
{ apply filter_in_pred0; intros [t' v'] IN.
move: ALL ⇒ /allP ALL; specialize (ALL _ IN); simpl in ALL.
by rewrite -ltnNge //=; move: ALL; rewrite /ltn_steps //= ⇒ /andP [T _ ]; lia. }
rewrite EM; destruct (posnP t) as [Z | POS].
{ subst t; simpl.
move: H_no_inf_arrivals; rewrite /no_inf_arrivals /value_at /step_at //= EM //=.
by move ⇒ /eqP EQ; subst v. }
{ by rewrite leqNgt POS //=. }
Qed.
We show that functions steps_of and step_at are consistent.
That is, if a pair (t, v) is in steps of ac_prefix, then
step_at t is equal to (t, v).
Lemma step_at_agrees_with_steps_of :
∀ t v, (t, v) \in steps_of ac_prefix → step_at ac_prefix t = (t, v).
Proof.
intros × IN; destruct ac_prefix as [h steps].
unfold step_at; simpl in ×.
apply in_cat in IN; move: IN ⇒ [steps__l [steps__r EQ]]; subst steps.
apply sorted_cat in H_sorted_ltn; destruct H_sorted_ltn; clear H_sorted_ltn; last by apply ltn_steps_is_transitive.
rewrite filter_cat last_cat (nonnil_last _ _ (0,0)); last by rewrite //= leqnn.
move: H0; rewrite //= path_sortedE; auto using ltn_steps_is_transitive; rewrite //= leqnn ⇒ /andP [ALL SORT].
simpl; replace (filter _ _ ) with (@nil (nat × nat)); first by done.
symmetry; apply filter_in_pred0; intros x IN; rewrite -ltnNge.
by move: ALL ⇒ /allP ALL; specialize (ALL _ IN); move: ALL; rewrite /ltn_steps //= ⇒ /andP [LT _ ].
Qed.
End ArrivalCurvePrefixSortedLtn.
∀ t v, (t, v) \in steps_of ac_prefix → step_at ac_prefix t = (t, v).
Proof.
intros × IN; destruct ac_prefix as [h steps].
unfold step_at; simpl in ×.
apply in_cat in IN; move: IN ⇒ [steps__l [steps__r EQ]]; subst steps.
apply sorted_cat in H_sorted_ltn; destruct H_sorted_ltn; clear H_sorted_ltn; last by apply ltn_steps_is_transitive.
rewrite filter_cat last_cat (nonnil_last _ _ (0,0)); last by rewrite //= leqnn.
move: H0; rewrite //= path_sortedE; auto using ltn_steps_is_transitive; rewrite //= leqnn ⇒ /andP [ALL SORT].
simpl; replace (filter _ _ ) with (@nil (nat × nat)); first by done.
symmetry; apply filter_in_pred0; intros x IN; rewrite -ltnNge.
by move: ALL ⇒ /allP ALL; specialize (ALL _ IN); move: ALL; rewrite /ltn_steps //= ⇒ /andP [LT _ ].
Qed.
End ArrivalCurvePrefixSortedLtn.
In this section, we prove a few basic properties of
extrapolated_arrival_curve function, such as (1) monotonicity of
extrapolated_arrival_curve or (2) implications of the fact that
extrapolated_arrival_curve makes a step at time t + ε.
Consider an arbitrary leq-sorted arrival-curve prefix without infinite arrivals.
Variable ac_prefix : ArrivalCurvePrefix.
Hypothesis H_positive : positive_horizon ac_prefix.
Hypothesis H_sorted_leq : sorted_leq_steps ac_prefix.
Hypothesis H_positive : positive_horizon ac_prefix.
Hypothesis H_sorted_leq : sorted_leq_steps ac_prefix.
We show that extrapolated_arrival_curve is monotone.
Lemma extrapolated_arrival_curve_is_monotone :
monotone leq (extrapolated_arrival_curve ac_prefix).
Proof.
intros t1 t2 LE; unfold extrapolated_arrival_curve.
replace (horizon_of _) with h; last by done.
move: LE; rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LTs].
{ by subst t2. }
{ have ALT : (t1 %/ h == t2 %/ h) ∨ (t1 %/ h < t2 %/ h).
{ by apply/orP; rewrite -leq_eqVlt; apply leq_div2r, ltnW. }
move: ALT ⇒ [/eqP EQ | LT].
{ rewrite EQ leq_add2l; apply value_at_monotone ⇒ //.
by apply eqdivn_leqmodn; lia.
}
{ have EQ: ∃ k, t1 + k = t2 ∧ k > 0.
{ ∃ (t2 - t1); split; lia. }
destruct EQ as [k [EQ POS]]; subst t2; clear LTs.
rewrite divnD; last by done.
rewrite !mulnDl -!addnA leq_add2l.
destruct (leqP h k) as [LEk|LTk].
{ eapply leq_trans; last by apply leq_addr.
move: LEk; rewrite leq_eqVlt ⇒ /orP [/eqP EQk | LTk].
{ by subst; rewrite divnn POS mul1n; apply value_at_monotone, ltnW, ltn_pmod. }
{ rewrite -[value_at _ (t1 %% h)]mul1n; apply leq_mul.
rewrite divn_gt0; [by apply ltnW | by done].
by apply value_at_monotone, ltnW, ltn_pmod.
}
}
{ rewrite divn_small // mul0n add0n.
rewrite divnD // in LT; move: LT; rewrite -addnA -addn1 leq_add2l divn_small // add0n.
rewrite lt0b ⇒ F; rewrite F; clear F.
rewrite mul1n; eapply leq_trans; last by apply leq_addr.
by apply value_at_monotone, ltnW, ltn_pmod.
}
}
}
Qed.
monotone leq (extrapolated_arrival_curve ac_prefix).
Proof.
intros t1 t2 LE; unfold extrapolated_arrival_curve.
replace (horizon_of _) with h; last by done.
move: LE; rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LTs].
{ by subst t2. }
{ have ALT : (t1 %/ h == t2 %/ h) ∨ (t1 %/ h < t2 %/ h).
{ by apply/orP; rewrite -leq_eqVlt; apply leq_div2r, ltnW. }
move: ALT ⇒ [/eqP EQ | LT].
{ rewrite EQ leq_add2l; apply value_at_monotone ⇒ //.
by apply eqdivn_leqmodn; lia.
}
{ have EQ: ∃ k, t1 + k = t2 ∧ k > 0.
{ ∃ (t2 - t1); split; lia. }
destruct EQ as [k [EQ POS]]; subst t2; clear LTs.
rewrite divnD; last by done.
rewrite !mulnDl -!addnA leq_add2l.
destruct (leqP h k) as [LEk|LTk].
{ eapply leq_trans; last by apply leq_addr.
move: LEk; rewrite leq_eqVlt ⇒ /orP [/eqP EQk | LTk].
{ by subst; rewrite divnn POS mul1n; apply value_at_monotone, ltnW, ltn_pmod. }
{ rewrite -[value_at _ (t1 %% h)]mul1n; apply leq_mul.
rewrite divn_gt0; [by apply ltnW | by done].
by apply value_at_monotone, ltnW, ltn_pmod.
}
}
{ rewrite divn_small // mul0n add0n.
rewrite divnD // in LT; move: LT; rewrite -addnA -addn1 leq_add2l divn_small // add0n.
rewrite lt0b ⇒ F; rewrite F; clear F.
rewrite mul1n; eapply leq_trans; last by apply leq_addr.
by apply value_at_monotone, ltnW, ltn_pmod.
}
}
}
Qed.
Finally, we show that if
extrapolated_arrival_curve t ≠ extrapolated_arrival_curve (t + ε),
then either (1) t + ε divides h or (2) prefix (t mod h) < prefix ((t + ε) mod h).
Lemma extrapolated_arrival_curve_change :
∀ t,
extrapolated_arrival_curve ac_prefix t != extrapolated_arrival_curve ac_prefix (t + ε) →
(* 1 *) t %/ h < (t + ε) %/ h
∨ (* 2 *) t %/ h = (t + ε) %/ h ∧ prefix (t %% h) < prefix ((t + ε) %% h).
Proof.
intros t NEQ.
have LT := ltn_neqAle (extrapolated_arrival_curve ac_prefix t) (extrapolated_arrival_curve ac_prefix (t + ε)).
rewrite NEQ in LT; rewrite extrapolated_arrival_curve_is_monotone in LT; last by apply leq_addr.
clear NEQ; simpl in LT.
unfold extrapolated_arrival_curve in LT.
replace (horizon_of _) with h in LT; last by done.
have AF : ∀ s1 s2 m x y,
s1 ≤ s2 →
m × s1 + x < m × s2 + y →
s1 < s2 ∨ s1 = s2 ∧ x < y.
{ clear; intros × LEs LT.
move: LEs; rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LTs].
{ by subst s2; rename s1 into s; right; split; [ done | lia]. }
{ by left. }
}
apply AF with (m := prefix h).
{ by apply leq_div2r, leq_addr. }
{ by rewrite ![prefix _ × _]mulnC; apply LT. }
Qed.
End ExtrapolatedArrivalCurve.
∀ t,
extrapolated_arrival_curve ac_prefix t != extrapolated_arrival_curve ac_prefix (t + ε) →
(* 1 *) t %/ h < (t + ε) %/ h
∨ (* 2 *) t %/ h = (t + ε) %/ h ∧ prefix (t %% h) < prefix ((t + ε) %% h).
Proof.
intros t NEQ.
have LT := ltn_neqAle (extrapolated_arrival_curve ac_prefix t) (extrapolated_arrival_curve ac_prefix (t + ε)).
rewrite NEQ in LT; rewrite extrapolated_arrival_curve_is_monotone in LT; last by apply leq_addr.
clear NEQ; simpl in LT.
unfold extrapolated_arrival_curve in LT.
replace (horizon_of _) with h in LT; last by done.
have AF : ∀ s1 s2 m x y,
s1 ≤ s2 →
m × s1 + x < m × s2 + y →
s1 < s2 ∨ s1 = s2 ∧ x < y.
{ clear; intros × LEs LT.
move: LEs; rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LTs].
{ by subst s2; rename s1 into s; right; split; [ done | lia]. }
{ by left. }
}
apply AF with (m := prefix h).
{ by apply leq_div2r, leq_addr. }
{ by rewrite ![prefix _ × _]mulnC; apply LT. }
Qed.
End ExtrapolatedArrivalCurve.