Weak memory consistency

Lecture 2

Viktor Vafeiadis
MPI-SWS

2022-11-21

Axiomatic memory models

An alternative way of defining the semantics

Declarative /axiomatic concurrency semantics

» Define the notion of a program execution
(generalization of an execution trace)

» Map a program to a set of executions
» Define a consistency predicate on executions

» Semantics = set of consistent executions of a program

Exception: “catch-fire” semantics

» Existence of at least one “bad” consistent execution implies
undefined behavior.

Executions

Events
» Reads, Writes, Updates, Fences

Relations
» Program order, po (also called “sequenced-before”, sb)
» Reads-from, rf

Executions

Definition (Label)

A label has one of of the following forms:
RXx v, Wx v, Ux v, v, F

where x € Loc and v,, v,, € Val.

Definition (Event)

An event is a triple (id,i,[) where
» jd € N is an event identifier,
» j e TidU {0} is a thread identifier, and
» [is a label.

Executions

Definition (Execution graph)

An execution graph is a tuple (E, po, rf) where:
» E is a finite set of events
» po (“program order") is a partial order on E
» rf (“reads-from”) is a binary relation on E such that:
» For every (w,r) € rf
> typ(w) € {W,U}
> typ(r) € {R,U}
» loc(w) = loc(r)
> val,(w) = val.(r)
» rf~1is a function
(that is: if (wy, r), (wa, r) € rf then wy = w,)

Some notations

Let G = (E, po, rf) be an execution graph.

>

vVvyvVvyvVvyVvyYVYyYVvYy

GEZE

G.po £ po

G.rf = rf

GR={rec E|typ(r) =RV typ(r) = U}
GW= {wecE|typ(w) =WV typ(w) =U}
GU= {ucE|typ(u) =U}

GF = {f € E|typ(f) =F}

GR, = GRN{re€ E|loc(r) = x}

Mapping programs to executions: Example

Store buffering (SB)

X:y:

x=11| y:=

a=y | b:=x
WXO WyO Wx0 WyO Wx0 WyO
Wx1 \w' Wyl Wx1 Wyl Wx1 Wyl

N S |

Ry O Rx 0 Ryl Rx1 Ry O R x 42

Consistency predicate

Let X be some consistency predicate (on execution graphs)

Definition (Allowed outcome under a declarative model)

An outcome O is allowed for a program P under X if there
exists an execution graph G such that:

» G is an execution graph of P with outcome O.
» G is X-consistent.

Exception: “catch-fire” semantics

.. or if there exists an execution graph G such that:
» G is an execution graph of P.
» G is X-consistent.

» G is “bad”.

Completeness

The most basic consistency condition:

Definition (Completeness)

An execution graph G is called complete if
codom(G.rf) = G.R

i.e., every read reads from some write.

10

Sequential consistency

the result of any execution is the same as if the op-
erations of all the processors were executed in some
sequential order, respecting the order specified by the
program [Lamport, 1979]

11

Sequential consistency [Lamport]

Let sc be a total order on G.E. G is called SC-consistent
wrt sc if the following hold:

» If (a, b) € G.po then (a, b) € sc.

» If (a,b) € G.rf then (a, b) € sc and there does not exist
¢ € G.Wyoc(p) such that (a,c) € sc and (c, b) € sc.

Definition

An execution graph G is called SC-consistent if the following
hold:

» G is complete.
» G is SC-consistent wrt some total order sc on G.E.

12

SB example

Store buffering (SB)

x=y=0
x =11 y:=1
a=y || b:=x

Allowed Forbidden

Wx0 WyO Wx0 WyO
wx1l S oWyl Wx1l S oWyl
l“l' ~~“A l lk" snl
Ry O Rx1 Ry O Rx 0

Sequential consistency (Alternative)

Definition (Modification order (aka coherence order))

is called a modification order for an execution graph G if
= UyeLoc m0x Where each mo, is a total order on G.W,.

Definition (Alternative SC definition)

An execution graph G is called SC-consistent if the following
hold:

» G is complete

» There exists a modification order for G such that
G.poU G.rf Umo Urb is acyclic where:

» rb2 G.rf1;mo)\ id (from-reads / reads-before)

<

14

Equivalence

The two SC definitions are equivalent.

Proof (sketch).
Lamport SC = alternative SC:
> Take mo, = [W,]; sc; [Wy].
» Then, G.poU G.rf UmoUrb C sc.

Alternative SC = Lamport SC:

» Take sc to be any total order extending
G.poU G.rf Umo Urb.]

15

Relaxing sequential consistency

» SC is very expensive to implement in hardware.

» It also forbids various optimizations that are sound for
sequential code.

What most hardware guarantee and compilers preserve is
“SC-per-location” (aka coherence).

Definition

An execution graph G is called coherent if the following hold:
» G is complete

» For every location x, there exists a total order sc, on all
accesses to x such that:

» If (a, b) € [RWx]; G.po; [RWx] then (a, b) € scy

» If (a,b) € [Wy]; G.rf; [Ry] then (a, b) € scx and there
does not exist ¢ € G.W, such that (a, c) € scy and
(c, b) € scy.

16

Alternative definition of coherence |

SC: poUrf UmoUrb is acyclic
COH: polioc Urf Umo Urb is acyclic

Definition

Let mo be a modification order for an execution graph G. G is
called coherent wrt mo if G.po|i,c U G.rf Umo U rb is acyclic
(where rb £ G.rf~1;mo \ id).

Theorem

| A

An execution graph G is coherent iff the following hold:
» G is complete

» G is coherent wrt some modification order for G.

17

“Bad patterns” |

Ry
n

rf ‘\ipo a=x/1
Wy X =

no-future-read

rf
N
'y

- r:=CAS(x,1,1) /1

> W is either a write or an RMW.

» R is either a read or an RMW.

18

“Bad patterns” Il

x:=1
X =2
Wy
|po
Wy

coherence-wr

a=x/?2
a=x/1
wx":Ef">RX
|pe
Wy

coherence-rw

Wy ----= >R
X I‘f X
|
f
WX--l:-->R.X

coherence-rr

19

“Bad patterns” Ill

atomicity

In coherent executions, an RMW event may only read from its
immediate mo-predecessor.

J

20

Alternative definition of coherence I

Let mo be a modification order for an execution graph G.

G is coherent wrt mo iff the following hold:
» rf;po is irreflexive. (no-future-read)
» m0o; po is irreflexive. (coherence-ww)
» no;rf;po is irreflexive. (coherence-rw)
» rf1:no;po is irreflexive. (coherence-wr)
» rf~1:mo;rf; po is irreflexive. (coherence-rr)
» rf js irreflexive. (rmw-1)
» no;rf is irreflexive. (rmw-2)
> rf71 mo;mo is irreflexive. (rmw—atomicity))

Examples (aka “litmus tests")

Coherence test

x=0
x:=1 X =2
a=x/2 1| b:=x/1

Store buffering

x=y=0
x:=1 y:=1
a:=y /0| b:=x /0

22

Atomicity

Parallel increment

x =0
a:=FAA(x,1) | b:=FAA(x,1)

Guarantees that a=1Vv b =1.

Can we implement locks in this semantics?

Spinlock implementation

lock(/) : unlock(/) :
r:=0; =0
while —r do
r:= CAS(/,0,1)

23

Implementing locks?

Under COH, the spinlock implementation does not guarantee
mutual exclusion.

Spinlock implementation

lock(/) : unlock(/) :
r:=0; [:=0
while —r do
r:= CAS(/,0,1)
lock(/) lock(/)
x:=1 y:=1
a=y /0| b:=x /0
unlock(/) unlock(/)

Message passing

More generally, COH is often too weak:

x=y=0
x:=42; || 27

=1 b:=x /0

while —a do a ;= y;

x=y=0
X = 42; :y /1
y =1 =x /0

MP is a common programming idiom.

How can we disallow the weak behavior?

25

Supporting message passing

coherence-wr

Solution:

Wy Wy
ot l (poUrf)™
Y
Ry

coherence-wr

» Strengthen the notion of an “observed” write.

» In other words, make rf-edges “synchronizing.”

26

Release/acquire (RA) memory model

SC: poUrf UmoUrb is acyclic
COH: polioc Urf Umo Urb is acyclic
RA: (po U rf)T|10c Umo Urb is acyclic

Definition

Let mo be a modification order for an execution graph G.

G is called RA-consistent wrt mo if (po U rf)*|1,c Umo Urb is
acyclic for some modification order mo for G (where

rb = G.rf~%;mo \ id).

Definition
An execution graph G is RA-consistent if the following hold:

» G is complete

» G is RA-consistent wrt some modification order for G.

27

Alternative definition of RA consistency

Let mo be a modification order for an execution graph G. G is
RA-consistent wrt mo iff the following hold:

» (poUrf)" is irreflexive. (no-future-read)
» mo; (po Urf)t is irreflexive. (coherence-ww)
> rf1mo; (po Urf)T is irreflexive. (coherence-wr)

» rf~1:mo:mo is irreflexive. (rmw-atomicity)

The C/C++11 memory model

Mixing the models

COH < RA <« SC

» Revisit the MP idiom:

a:=y
o while mado a:=y
yi=1 b:=x /0

» We only need the last read of y to synchronize.

X =

» |dea: introduce access modes.

a = Yrix
X :=nx 42 || while ~ado a:=y
.y ::rel]- a = _yacq

b:=xu /0

30

Happens-before

Each memory accesses has a mode:
» Reads: rlx, acq, or sc
» Writes: rlx, rel, or sc
» RMWs: rlx, acq, rel, acq-rel, or sc

“Strength” order [is given by:
acq

/ ™
rlx——— acqg-rel —sc
\ -
rel

Synchronization:
G.sw = [wg“"']; G.rf; [Rgacq]
Happens-before:
G.hb = (G.poU G.sw)*t
31

Towards C/C++11 memory model

SC: poUrf UmoUrb is acyclic

COH: polioc Urf Umo Urb is acyclic
RA: (po U rf)" |1 Umo Urb is acyclic
C11: hb|iee Urf Umo Urb is acyclic

Definition

Let mo be a modification order for an execution graph G. G is
called Cl1-consistent wrt mo if hbl|y,. U rf Umo U rb is acyclic
(where rb £ G.rf~1;mo \ id).

Definition
An execution graph G is Cl1-consistent if the following hold:
» G is complete

» G is Cl1-consistent wrt some modification order mo for G.

32

The C/C++11 memory model

non- release/
. C relaxed [. C sc
atomic acquire

The full C/C++11 is more general:
» Non-atomics for non-racy code (the default!)
» Four types of fences for fine grained control
» SC accesses to ensure sequential consistency if needed

» More elaborate definition of sw (“release sequences")

33

C11 model through examples

34

C11 model through examples

“,’ int a

= 0;
int x = 0;

a=42; | if(x == 1){

x =1, print(a);

}

34

C11 model through examples

“,’ int a 0;

int x 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

34

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = O;
a = 42; || if(x == 1){ a = 42; || if (xgx == 1){
x = 14 == print(a); Xax = 1; print(a);
} }

34

C11 model through examples

“,’ int a = 0;

int x 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

int a = 0;
atomic_int x = O;

34

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

O int a = 0;

atomic_int x = 0O;
a = 42; || if(xaeq == DA
Xel = 1; print(a);

}

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

O int a = 0;

atomic_int x = 0O;
a = 42, rﬁi—f’gxacq == 1){
Xel = 157 print(a);

}

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

O int a = 0;

atomic_int x = 0O;

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

0 int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;
a=42; | if(xgx == 1){
fence,q; fence,eq;
Xax = 13 print(a);

}

34

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

0 int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;

a = 42; || if(xax == 1
fence,q; /ri’ fenceaeqs;
Xax = 1 print(a);

34

C11 model through examples

o int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a =42; | if(x == 1){
x = 14 == print(a);

}

0 int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;
a = 42; || if(xax == 1
fenceyel it i fenceaeqs;
Xax = 1 - print(a);

34

The “synchronizes-with"” relation

sw wrel ¥§ ---->R
el - - T _f_ -~ > Racd k j po
Facq
prel prel o LR
ST R
W----- {f.-___>Racq w—"‘ Facq

sw = (W2 U [FZ"]; po); rf; ([R2*9] U po; [FZ79])

Fence modes

acq
acq-rel ———sc
rel

35

Release sequences (RMW's)

Xk = 42; b = Vacq; /2
= FAl(y); /1 q
Yrel .= 1 ? I (y) / C = Xvlx; /0
sw
wrel >UJ----- > ciimmmmm >J---->R3
rf rf rf rf

sw = (W] U [F="]; po); r£*; ([RZ*] U po; [F="])

36

“Catch-fire” semantics

Definition (Race in C11)

Given a Cll-execution graph G, we say that two events a, b
Cll-race in G if the following hold:

> a#£b
» loc(a) = loc(b)
> {typ(a), typ(b)} N {w,U} # 0
» na € {mod(a),mod(b)}
» (a,b) € hb and (b, a) &€ hb
G is called Cl1-racy if some a, b Cll-race in G.

37

C11 consistency

Let mo be a modification order for an execution graph G.
G is called Cl1-consistent wrt mo if:
» hb|ioc Urf Umo Urb is acyclic (where
rb 2 G.rf~;mo \ id).
> .sc.. ?

Definition

An execution graph G is Cl1-consistent if the following hold:
» G is complete

» G is Cl1-consistent wrt some modification order for G.

38

SC conditions

» The most involved part of the model, due to the possible
mixing of different access modes to the same location.

» Changed in C++20

» [f there is no mixing of SC and non-SC accesses, then
additionally require acyclicity of hb U mog. U rbg.

Further reading:

» Overhauling SC atomics in C11 and OpenCL. Mark Batty,

Alastair F. Donaldson, John Wickerson, POPL 2016.

» Repairing sequential consistency in C/C++11. Ori Lahav,

Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek
Dreyer, PLDI 2017.

39

http://dl.acm.org/citation.cfm?id=2837637
http://plv.mpi-sws.org/scfix/

Repaired SC condition for fences

eco = (rf UmoUrb)" (extended coherence order)

pscr = [F5]; (hb U hb; eco; hb); [F*] (SC fence order)

Condition on SC fences
pscr is acyclic

Example: SB with fences

x=y=0
Xix = 1; Yax =1,
fence(sc); fence(sc);

a = Yrx; //O b:= Xrlx //0
X behavior disallowed

40

Reduction from RA to SC

Reduction to SC (robustness)

For TSO, it suffices to have a fence between every racy write
& subsequent racy read.

cPU| .. |CPU

write

read

write-back

| Memory |

For RA, we need more fences. Recall the IRIW example:

Independent reads of independent writes (IRIW)

x=y=0
a=x; /1| c=y;, /1 H

=10y 0 | d:=x 10

What is the semantics of SC fences?
From C11, we had:

eco = (rf UmoUrb)" (extended coherence order)
psce = [F*]; (hb U hb; eco; hb); [F*]
(partial SC fence order)

and required that pscr is acyclic.

That is,

Definition (RA consistency with fences)

An execution graph G is RA-consistent iff there exists some
modification order mo for G such that:

» G is complete,
» (poUrf)t|ic Umo Urb is acyclic, and
» pscr is acyclic.

43

Alternative definition of RA consistency

Theorem

An execution graph G is RA-consistent iff there exists a total
order sc on G.F*¢ and a modification order mo for G such
that:

» G is complete,
» (poUrf Usc)" is irreflexive, and

» (poUrf Usc)*; eco is irreflexive.

44

Simple reduction theorem

Let G be an RA-consistent execution graph. If
» For every G-racy events a, b, if (a,b) € (G.poU G.rf)T,
then (a, c), (c,b) € (G.poU G.rf)* for some fence event
c.

Then, G is SC-consistent.

45

Proof of the simple reduction theorem (1/2)

Recall:
» Recall SC-consistency : po U rf Umo U rb is acyclic.
> Let hb = (po Urf Usc)* and K = (mo Urb) \ hb.
» It suffices to prove : hb U K is acyclic.

Consider minimal cycle in (hb U K).
» Cycles with < 1 K-edges disallowed by RA consistency.
» Cycle with two K-edges:

hb hb

46

Proof of the simple reduction theorem (1/2)

Recall:
» Recall SC-consistency : po U rf Umo U rb is acyclic.
> Let hb = (po Urf Usc)* and K = (mo Urb) \ hb.
» It suffices to prove : hb U K is acyclic.

Consider minimal cycle in (hb U K).
» Cycles with < 1 K-edges disallowed by RA consistency.
» Cycle with two K-edges:

46

Proof of the simple reduction theorem (1/2)

Recall:
» Recall SC-consistency : po U rf Umo U rb is acyclic.
> Let hb = (po Urf Usc)* and K = (mo Urb) \ hb.
» It suffices to prove : hb U K is acyclic.

Consider minimal cycle in (hb U K).
» Cycles with < 1 K-edges disallowed by RA consistency.
» Cycle with two K-edges:

46

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

o

47

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

K

o

b
N e
hb| " h b |hb
C

/ K

x/\

.(thK)+.

47

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

o

47

