
Weak memory consistency
Lecture 2

Viktor Vafeiadis
MPI-SWS

2022-11-21

Axiomatic memory models

An alternative way of defining the semantics

Declarative/axiomatic concurrency semantics
I Define the notion of a program execution

(generalization of an execution trace)
I Map a program to a set of executions
I Define a consistency predicate on executions
I Semantics = set of consistent executions of a program

Exception: “catch-fire” semantics

I Existence of at least one “bad” consistent execution implies
undefined behavior.

3

Executions

Events
I Reads, Writes, Updates, Fences

Relations
I Program order, po (also called “sequenced-before”, sb)
I Reads-from, rf

W x 0 W y 0

W x 1 R x 1

R y 0

R y 1

R x 0

W y 1
porf rfrf

4

Executions

Definition (Label)
A label has one of of the following forms:

R x vr W x vw U x vr vw F

where x ∈ Loc and vr , vw ∈ Val.

Definition (Event)
An event is a triple 〈id , i , l〉 where
I id ∈ N is an event identifier,
I i ∈ Tid ∪ {0} is a thread identifier, and
I l is a label.

5

Executions

Definition (Execution graph)
An execution graph is a tuple 〈E , po, rf 〉 where:
I E is a finite set of events
I po (“program order”) is a partial order on E
I rf (“reads-from”) is a binary relation on E such that:

I For every 〈w , r〉 ∈ rf
I typ(w) ∈ {W, U}
I typ(r) ∈ {R, U}
I loc(w) = loc(r)
I valw(w) = valr(r)

I rf −1 is a function
(that is: if 〈w1, r〉, 〈w2, r〉 ∈ rf then w1 = w2)

6

Some notations

Let G = 〈E , po, rf 〉 be an execution graph.
I G .E 4= E
I G .po 4= po
I G .rf 4= rf
I G .R 4= {r ∈ E | typ(r) = R ∨ typ(r) = U}
I G .W 4= {w ∈ E | typ(w) = W ∨ typ(w) = U}
I G .U 4= {u ∈ E | typ(u) = U}
I G .F 4= {f ∈ E | typ(f) = F}
I G .Rx

4= G .R ∩ {r ∈ E | loc(r) = x}
I ...

7

Mapping programs to executions: Example

Store buffering (SB)

x = y = 0
x := 1
a := y

y := 1
b := x

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

W x 0 W y 0

W x 1

R y 1

W y 1

R x 1

W x 0 W y 0

W x 1

R y 0

W y 1

R x 42

8

Consistency predicate

Let X be some consistency predicate (on execution graphs)

Definition (Allowed outcome under a declarative model)
An outcome O is allowed for a program P under X if there
exists an execution graph G such that:
I G is an execution graph of P with outcome O.
I G is X-consistent.

Exception: “catch-fire” semantics
... or if there exists an execution graph G such that:
I G is an execution graph of P.
I G is X-consistent.
I G is “bad”.

9

Completeness

The most basic consistency condition:

Definition (Completeness)
An execution graph G is called complete if

codom(G .rf) = G .R

i.e., every read reads from some write.

10

Sequential consistency

the result of any execution is the same as if the op-
erations of all the processors were executed in some
sequential order, respecting the order specified by the
program [Lamport, 1979]

11

Sequential consistency [Lamport]

Definition
Let sc be a total order on G .E. G is called SC-consistent
wrt sc if the following hold:
I If 〈a, b〉 ∈ G .po then 〈a, b〉 ∈ sc.
I If 〈a, b〉 ∈ G .rf then 〈a, b〉 ∈ sc and there does not exist

c ∈ G .Wloc(b) such that 〈a, c〉 ∈ sc and 〈c , b〉 ∈ sc.

Definition
An execution graph G is called SC-consistent if the following
hold:
I G is complete.
I G is SC-consistent wrt some total order sc on G .E.

12

SB example

Store buffering (SB)

x = y = 0
x := 1
a := y

y := 1
b := x

Allowed

W x 0 W y 0

W x 1

R y 0

W y 1

R x 1

Forbidden

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

13

Sequential consistency (Alternative)

Definition (Modification order (aka coherence order))
mo is called a modification order for an execution graph G if
mo = ⋃

x∈Loc mox where each mox is a total order on G .Wx .

Definition (Alternative SC definition)
An execution graph G is called SC-consistent if the following
hold:
I G is complete
I There exists a modification order mo for G such that

G .po ∪ G .rf ∪ mo ∪ rb is acyclic where:
I rb 4= G .rf−1; mo \ id (from-reads / reads-before)

14

Equivalence

Theorem
The two SC definitions are equivalent.

Proof (sketch).
Lamport SC ⇒ alternative SC:
I Take mox

4= [Wx]; sc; [Wx].
I Then, G .po ∪ G .rf ∪ mo ∪ rb ⊆ sc.

Alternative SC ⇒ Lamport SC:
I Take sc to be any total order extending

G .po ∪ G .rf ∪ mo ∪ rb.

15

Relaxing sequential consistency

I SC is very expensive to implement in hardware.
I It also forbids various optimizations that are sound for

sequential code.
What most hardware guarantee and compilers preserve is
“SC-per-location” (aka coherence).

Definition
An execution graph G is called coherent if the following hold:
I G is complete
I For every location x , there exists a total order scx on all

accesses to x such that:
I If 〈a, b〉 ∈ [RWx]; G .po; [RWx] then 〈a, b〉 ∈ scx
I If 〈a, b〉 ∈ [Wx]; G .rf; [Rx] then 〈a, b〉 ∈ scx and there

does not exist c ∈ G .Wx such that 〈a, c〉 ∈ scx and
〈c, b〉 ∈ scx .

16

Alternative definition of coherence I

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G . G is
called coherent wrt mo if G .po|loc ∪ G .rf ∪ mo ∪ rb is acyclic
(where rb 4= G .rf−1; mo \ id).

Theorem
An execution graph G is coherent iff the following hold:
I G is complete
I G is coherent wrt some modification order mo for G.

17

“Bad patterns” I

Rx

Wx

porf

no-future-read

a := x // 1
x := 1

Ux

rf

rmw-1

r := CAS(x , 1, 1) // 1

Recall:
I W is either a write or an RMW.
I R is either a read or an RMW.

18

“Bad patterns” II

x := 1
x := 2

a := x // 2
a := x // 1

Wx

Wx

pomo

coherence-ww

Wx Rx

Wx

rf

pomo

coherence-rw

Wx Wx

Rx

rf po

mo

coherence-wr

Wx Rx

RxWx

rf

rf
pomo

coherence-rr

19

“Bad patterns” III

Wx Ux
mo

rf

rmw-2

Wx Wx Ux
mo mo

rf

atomicity

In coherent executions, an RMW event may only read from its
immediate mo-predecessor.

20

Alternative definition of coherence II

Theorem
Let mo be a modification order for an execution graph G.
G is coherent wrt mo iff the following hold:
I rf; po is irreflexive. (no-future-read)
I mo; po is irreflexive. (coherence-ww)
I mo; rf; po is irreflexive. (coherence-rw)
I rf−1; mo; po is irreflexive. (coherence-wr)
I rf−1; mo; rf; po is irreflexive. (coherence-rr)
I rf is irreflexive. (rmw-1)
I mo; rf is irreflexive. (rmw-2)
I rf−1; mo; mo is irreflexive. (rmw-atomicity)

21

Examples (aka “litmus tests”)

Coherence test
x = 0

x := 1
a := x // 2

x := 2
b := x // 1

Store buffering
x = y = 0

x := 1
a := y //0

y := 1
b := x //0

22

Atomicity

Parallel increment
x = 0

a := FAA(x , 1) b := FAA(x , 1)

Guarantees that a = 1 ∨ b = 1.

Can we implement locks in this semantics?

Spinlock implementation
lock(l) :
r := 0;
while ¬r do
r := CAS(l , 0, 1)

unlock(l) :
l := 0

23

Implementing locks?

Under COH, the spinlock implementation does not guarantee
mutual exclusion.

Spinlock implementation
lock(l) :
r := 0;
while ¬r do
r := CAS(l , 0, 1)

unlock(l) :
l := 0

Lock example
lock(l)
x := 1
a := y //0
unlock(l)

lock(l)
y := 1
b := x //0
unlock(l)

24

Message passing

More generally, COH is often too weak:

x = y = 0

x := 42;
y := 1

a := y ;
while ¬a do a := y ;
b := x //0

x = y = 0
x := 42;
y := 1

a := y ; //1
b := x //0

MP is a common programming idiom.
How can we disallow the weak behavior?

25

Supporting message passing

Wx Wx

Rx

rf po

mo

coherence-wr

;

Wx Wx

Rx

rf (po ∪ rf)+

mo

coherence-wr

Solution:
I Strengthen the notion of an “observed” write.
I In other words, make rf-edges “synchronizing.”

26

Release/acquire (RA) memory model

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic
RA: (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G .
G is called RA-consistent wrt mo if (po ∪ rf)+|loc ∪ mo ∪ rb is
acyclic for some modification order mo for G (where
rb 4= G .rf−1; mo \ id).

Definition
An execution graph G is RA-consistent if the following hold:
I G is complete
I G is RA-consistent wrt some modification order mo for G .

27

Alternative definition of RA consistency

Theorem
Let mo be a modification order for an execution graph G. G is
RA-consistent wrt mo iff the following hold:
I (po ∪ rf)+ is irreflexive. (no-future-read)
I mo; (po ∪ rf)+ is irreflexive. (coherence-ww)
I rf−1; mo; (po ∪ rf)+ is irreflexive. (coherence-wr)
I rf−1; mo; mo is irreflexive. (rmw-atomicity)

28

The C/C++11 memory model

Mixing the models

COH < RA < SC

I Revisit the MP idiom:

x := 42
y := 1

a := y
while ¬a do a := y
b := x //0

I We only need the last read of y to synchronize.
I Idea: introduce access modes.

x :=rlx 42
y :=rel 1

a := yrlx
while ¬a do a := y
a := yacq
b := xrlx //0

30

Happens-before

Each memory accesses has a mode:
I Reads: rlx, acq, or sc
I Writes: rlx, rel, or sc
I RMWs: rlx, acq, rel, acq-rel, or sc

“Strength” order < is given by:

acq **
rlx

66

((
// acq-rel // sc

rel
44

Synchronization:

G .sw = [Wwrel];G .rf; [Rwacq]

Happens-before:

G .hb = (G .po ∪ G .sw)+

31

Towards C/C++11 memory model

SC: po ∪ rf ∪ mo ∪ rb is acyclic
COH: po|loc ∪ rf ∪ mo ∪ rb is acyclic
RA: (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic
C11: hb|loc ∪ rf ∪ mo ∪ rb is acyclic

Definition
Let mo be a modification order for an execution graph G . G is
called C11-consistent wrt mo if hb|loc ∪ rf ∪ mo ∪ rb is acyclic
(where rb 4= G .rf−1; mo \ id).

Definition
An execution graph G is C11-consistent if the following hold:
I G is complete
I G is C11-consistent wrt some modification order mo for G .

32

The C/C++11 memory model

non-
atomic

< relaxed <
release/
acquire

< sc

The full C/C++11 is more general:
I Non-atomics for non-racy code (the default!)
I Four types of fences for fine grained control
I SC accesses to ensure sequential consistency if needed
I More elaborate definition of sw (“release sequences”)

33

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf

sw

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf

sw

4

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf

sw

4

rf

34

C11 model through examples

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xacq == 1){
xrel = 1; print(a);

}

int a = 0;
atomic_int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}

1

race

2

race

3

rf

sw

4

rf

sw

34

The “synchronizes-with” relation

Wrel Racqrf

sw Wrel

Facq

R
rf

po
sw

Frel

RacqW
rf

po
sw

Frel

FacqW

R

rfpo po
sw

sw 4= ([Wwrel] ∪ [Fwrel]; po); rf; ([Rwacq] ∪ po; [Fwacq])

Fence modes
acq

,, acq-rel // sc
rel

33

35

Release sequences (RMW’s)

xrlx := 42;
yrel := 1 a := FAIrlx(y); // 1 b := yacq; // 2

c := xrlx; // 0

Wrel U ... U Racq
rf rf rf rf

sw

sw 4= ([Wwrel] ∪ [Fwrel]; po); rf+; ([Rwacq] ∪ po; [Fwacq])

36

“Catch-fire” semantics

Definition (Race in C11)
Given a C11-execution graph G , we say that two events a, b
C11-race in G if the following hold:
I a 6= b
I loc(a) = loc(b)
I {typ(a), typ(b)} ∩ {W, U} 6= ∅
I na ∈ {mod(a), mod(b)}
I 〈a, b〉 6∈ hb and 〈b, a〉 6∈ hb

G is called C11-racy if some a, b C11-race in G .

37

C11 consistency

Definition
Let mo be a modification order for an execution graph G .
G is called C11-consistent wrt mo if:
I hb|loc ∪ rf ∪ mo ∪ rb is acyclic (where

rb 4= G .rf−1; mo \ id).
I ...sc... ?

Definition
An execution graph G is C11-consistent if the following hold:
I G is complete
I G is C11-consistent wrt some modification order mo for G .

38

SC conditions

I The most involved part of the model, due to the possible
mixing of different access modes to the same location.

I Changed in C++20
I If there is no mixing of SC and non-SC accesses, then

additionally require acyclicity of hb ∪ mosc ∪ rbsc.

Further reading:
I Overhauling SC atomics in C11 and OpenCL. Mark Batty,

Alastair F. Donaldson, John Wickerson, POPL 2016.
I Repairing sequential consistency in C/C++11. Ori Lahav,

Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek
Dreyer, PLDI 2017.

39

http://dl.acm.org/citation.cfm?id=2837637
http://plv.mpi-sws.org/scfix/

Repaired SC condition for fences

eco 4= (rf ∪ mo ∪ rb)+ (extended coherence order)
pscF

4= [Fsc]; (hb ∪ hb; eco; hb); [Fsc] (SC fence order)

Condition on SC fences
pscF is acyclic

Example: SB with fences
x = y = 0

xrlx := 1;
fence(sc);
a := yrlx; // 0

yrlx := 1;
fence(sc);
b := xrlx; // 0

7 behavior disallowed

40

Reduction from RA to SC

Reduction to SC (robustness)

For TSO, it suffices to have a fence between every racy write
& subsequent racy read.

CPU
write

write-back

read

CPU

. . .

. . .

Memory

For RA, we need more fences. Recall the IRIW example:

Independent reads of independent writes (IRIW)

x = y = 0

x := 1 a := x ; //1
b := y //0

c := y ; //1
d := x //0 y := 1

42

What is the semantics of SC fences?

From C11, we had:

eco 4= (rf ∪ mo ∪ rb)+ (extended coherence order)
pscF

4= [Fsc]; (hb ∪ hb; eco; hb); [Fsc]
(partial SC fence order)

and required that pscF is acyclic.

That is,
Definition (RA consistency with fences)
An execution graph G is RA-consistent iff there exists some
modification order mo for G such that:
I G is complete,
I (po ∪ rf)+|loc ∪ mo ∪ rb is acyclic, and
I pscF is acyclic.

43

Alternative definition of RA consistency

Theorem
An execution graph G is RA-consistent iff there exists a total
order sc on G .Fsc and a modification order mo for G such
that:
I G is complete,
I (po ∪ rf ∪ sc)+ is irreflexive, and
I (po ∪ rf ∪ sc)∗; eco is irreflexive.

44

Simple reduction theorem

Theorem
Let G be an RA-consistent execution graph. If
I For every G-racy events a, b, if 〈a, b〉 ∈ (G .po ∪ G .rf)+,

then 〈a, c〉, 〈c , b〉 ∈ (G .po ∪ G .rf)+ for some fence event
c.

Then, G is SC-consistent.

45

Proof of the simple reduction theorem (1/2)

Recall:
I Recall SC-consistency : po ∪ rf ∪ mo ∪ rb is acyclic.
I Let hb 4= (po ∪ rf ∪ sc)+ and K 4= (mo ∪ rb) \ hb.
I It suffices to prove : hb ∪ K is acyclic.

Consider minimal cycle in (hb ∪ K).
I Cycles with ≤ 1 K -edges disallowed by RA consistency.
I Cycle with two K -edges:

a b

cd

K

hb

K

hb

46

Proof of the simple reduction theorem (1/2)

Recall:
I Recall SC-consistency : po ∪ rf ∪ mo ∪ rb is acyclic.
I Let hb 4= (po ∪ rf ∪ sc)+ and K 4= (mo ∪ rb) \ hb.
I It suffices to prove : hb ∪ K is acyclic.

Consider minimal cycle in (hb ∪ K).
I Cycles with ≤ 1 K -edges disallowed by RA consistency.
I Cycle with two K -edges:

a b

cd

f1 f2

K

hb

K

hb

46

Proof of the simple reduction theorem (1/2)

Recall:
I Recall SC-consistency : po ∪ rf ∪ mo ∪ rb is acyclic.
I Let hb 4= (po ∪ rf ∪ sc)+ and K 4= (mo ∪ rb) \ hb.
I It suffices to prove : hb ∪ K is acyclic.

Consider minimal cycle in (hb ∪ K).
I Cycles with ≤ 1 K -edges disallowed by RA consistency.
I Cycle with two K -edges:

a b

cd

f1 f2

K

hb

K

hb

46

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K -edges.

a b

cd
. .

K

hb

KK
(hb ∪ K)+

hb

47

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K -edges.

a b

cd
. .

f1 f2

K

hb

KK
(hb ∪ K)+

hb

47

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K -edges.

a b

cd
. .

f1 f2

K

hb

KK
(hb ∪ K)+

hb

47

