Weak memory consistency

Lecture 1

Viktor Vafeiadis
MPI-SWS

2022-11-14

The illusion of sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul| --- |CPUn

read | | write

Memory

The illusion of sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul| --- |CPUn

read | | write

’ Memory ‘

But...
» No multicore processor implements SC.

» Compiler optimizations invalidate SC.

Weak consistency

Hardware provides weak consistency.
» Weak memory models ~» semantics of shared memory.

» Every hardware architecture has its own WMM:
x86-TSO, ARM, Power, Itanium.

x86-TSO model (2010) ARMv8 model (2016)

s g

read ‘Ti Ti‘ ‘Ti N‘
write-back il il

] Memory] Memory \

Weak consistency examples

Store buffering (SB)
Initially, x =y =0
x =1,
a=y /0

y =1
b:=x /0

Load buffering (LB)

Initially, x =y =0
=y, /1| b:=x; /1
= y:=1

11

read

x86-TSO
CPU

write

write-back

CPU

Memory

RMv

foge

A
;
1l

fl

‘Ti

‘Tl

Weak consistency in “real life”

» Messages may be delayed.

r MsgX =1, MsgY =1, 1
Wb_ a:= MsgY; /0 b:= MsgX; /0

» Messages may be sent/received out of order.

r Email :=1; a:=Sms; /1 1
=1: b := Email;)0 %

Operational memory models

A simple concurrent programming language

Basic domains:

r € Reg — Registers (local variables)
x € Loc — Locations

v € Val — Values including 0
ieTid={1,..,N} — Thread identifiers

Expressions and commands:

ex=r|v]ete] ..

c :=skip | if ethen c else ¢ | while e do ¢ |
cic|lri=e| r=x|x=e|
r:= FAA(x,e) | r:= CAS(x,e,e) | fence

Programs, P : Tid — Cmd, written as P = ¢ ... ||cn

Basic set up

Thread subsystem
» Thread-local steps: c,s N c,s.
» Interpret sequential programs.

» Lift them to program steps: P, S LEN P.S.

Storage subsystem (defined by the memory model)
» Describe the effect of memory accesses and fences.

> M 2L M where M is the state of the storage subsystem.

Linking the two

» Either the thread or the storage subsystem make an
internal step, €; or they make matching i:/ steps.

> P.S,M= P,S' M.

The thread subsystem

Store: s : Reg — Val (Initial store: sp = Ar. 0)
State: (c,s) € Command x Store

Transitions:

I
1,8 — cj, s s' = s[r s(e)]

. € N / € - ’
skip;c,s — ¢, s C; 6,5 = C;C, S r:=e,s — skip, s

I =R(x,v) I =W(x,s(e))

.. .
r:=x,s — skip, s[r — V] x := e, s — skip, s

s(e) #0 s(e)=0

- I - 1>
if ethen ¢ else ¢;,5 = ¢1, s if ethen ¢ else ¢;,5 — o, s

while e do ¢, s = if e then (c; while e do ¢) else skip, s

The thread subsystem: RMW and fence commands

Fetch-and-add:
I = U(x, v,v + 5(e))

r:=FAA(x, e),s - skip, s[r — v]
Compare-and-swap:

I =R(x, v) v # s(e,)

r .= CAS(x, e, ey),s N skip, s[r — 0]

I =U(x,s(e),s(ew))

r:= CAS(x, e, e,),s — skip, s[r — 1]

Fence:

F .
fence, s — skip, s

10

Lifting to concurrent programs

State: (P,S) € Program x (Tid — Store)

» Initial stores: Sy = \i. s

» Initial state: (P, Sp)

Transition:

P(i), S(i) & ¢, s
P,S 5 Pli s c], S[i + s]

11

SC storage subsystem

CPU 1

read write

CPU n

Memory

12

SC storage subsystem

Machine state: M : Loc — Val
» Maps each location to its value.

» Initial state: My = Ax. 0
(i.e., the memory that maps every location to 0)

Transitions:
I =W(x,v) I =R(x,v) M(x) = v
M =5 Mx — v] M= M
I =U(x, v, Vi) M(x) = v, |=F

M L Mx = v, M s m

13

SC: Linking the thread and storage subsystems

SILENT) NON—S'ILENT)
PS5 p s PSS p s MIw
P.SM= P, S M P.SSM= P, S M

Definition (Allowed outcome)

» An outcome is a function O : Tid — Store.

» An outcome O is allowed for a program P under SC if
there exists M such that
P, So, My =* skip]| ... ||skip, O, M.

14

TSO storage subsystem
CPU CPU CPU
¢ Mg Mg

J 3J J
Q@ Q Q

Memory

15

TSO storage subsystem

The state consists of:
» A memory M : Loc — Val

» A function B : Tid — (Loc x Val)*
assigning a store buffer to every thread.

Initial state: (My, By) where
» My = Ax.0 (the memory maps 0 to every location)
» By = Ai. e (all store buffers are empty)

16

TSO storage subsystem transitions

WRITE PROPAGATE
I'=W(x,v) B(i)=b-{(x,v)
M, B £ M, Bli — (x,v) - B(i)] M, B 5 M[x s v], B[i v b]
READ
I =R(x,v)

B(i) = (Xn, Vn)+ oo -{x2, va) + {x1, V1)
M[x1 = wvi][x2 = va] ... [xa = vp](x) = v

M, B m, B
RMW FENCE
I =U(x, v/, v) B(i)=e¢ M(x) = v, |=F B(iy=¢
M, B s M[x — w,], B M, B L m, B

17

TSO: linking thread and storage subsystems

SILENT—THREAD SILENT—STORAGE
PS5 P s M,B S M. B
P,S,M,B= P ,S',M,B P,SM,B= P,S,M, B

NON—S'ILENT)
PSP s MBI MB
P.SM,B= P S M, B

Definition (Allowed outcome)

An outcome O is allowed for a program P under TSO if there
exists M such that P, So, My, By =* skip|| ... ||skip, O, M, By.

18

