Correctness of compilation
under weak memory models

Ori Lahav Viktor Vafeiadis

29 August 2017

Correctness of compilation under weak memory models

What does “correct compilation” mean?

Compilation correctness

ﬂcompile(P)]]target memory model C “:P]]source memory model

ie.,

every outcome that is allowed compile(P) under the target memory
model is also an allowed outcome for P under the source memory
model

» The compiler is allowed to “lose” behaviors.

» Focusing on the weak memory concurrency aspect, we use
high-level programming languages in both sides.

» We are also ignoring non-terminating programs.

Compilation schemes

C/C++11 to various architectures:

https://www.cl.cam.ac.uk/ pes20/cpp/cppOxmappings.html

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Compilation of SC to TSO

Compilation correctness

[compilesc_,7s0(P)ltso S [Plsc

Two possible compilation schemes:
» place a TSO fence after every write; or
» place a TSO fence before every read

Both schemes ensure there is a fence between a write and a
subsequent read.

Example: Compilation of SB

x:=1; || y:=1,

. x:=1 || y:=1; _ _
compilesc_, 150 (a —y H b x> = fence; fence;
' ' a=y b:=x

Correctness of compilation of SC to TSO

Consider the first scheme (fence after writes).

» We show that every outcome of compilegc_,t50(P) under
TSO is an outcome of P under SC.

» We will use the operational semantics of SC and TSO.

CPU| .. |CPU
write [cPu] - [cPu]

read A C read write

write-back ’ Memory ‘

Memory

Correctness of compilation of SC to TSO

v

To show: [compilesc_,150(P)ltso € [Plsc
To simplify the argument, we split the proof in two steps.

v

v

First, just insert a fence after each write and show:

[compilesc_,tso(P)lsc € [Plsc

This is trivial because the SC machine simply ignores fences:

M ZE m

v

Then, we show that [Po]tso < [Po]sc for every program
Py that has a fence after every write.

Simulation for the second step

Assumption on the program

For every i € Tid, if Po(i), so %*M c,s, then ¢, s £E, .

(notation: ¢ L 23¢.q95 q)

A simulation relation:
(P,S,M,B) R (Psc, Ssc, Msc) if the following hold:
» for every i € Tid, one of the following holds:
» P(i) = Psc(i), S(i) = Ssc(i), and B(i) =€
> P(),S(i) 575, and there exist x, v such that B(i) = (x,v)
and Psc(i), Ssc(i) %57 p(iy, (i)
» M = Msc

| A\

» Show that R is a simulation relation.
» Deduce that every outcome of Py under TSO is also an
outcome under SC.

Correctness of compilation of SC to TSO

The correctness of the alternative compilation scheme (fence
before reads) can be proved similarly.

In fact, it suffices to ensure the following property:

Assumption on the program

W(x,v) ¢ R(x’,v/ .
(), e BV) _) for every i, x,v,x", v/

—\(Po(i), S0 —*

Exercise
Let Py be a program satisfying the assumption above.
> Devise a simulation relation relating executions of Py under
TSO with those under SC.
» Show that every outcome of Py under TSO is also an
outcome under SC.)

Compilation correctness via a declarative semantics

Compilation correctness

ﬂcomp”e(P)]]target memory model c HP]]source memory model

Alternatively, compilation correctness can be proven using
declarative semantics.

Definition (Allowed outcome under a declarative model)

An outcome O is allowed for a program P under X if there exists
an execution graph G such that:

» G is an execution graph of P with outcome O.

» G is X-consistent.

Given an execution graph of compile(P) which is consistent
according to the target memory model, we have to show an
execution graph of P with the same outcome which is consistent
according to the source memory model.

Declarative semantics for TSO

Owens et al. [TPHOLs '09] provided a declarative semantics for
TSO, which is equivalent to the following:

An execution graph is TSO-consistent if it is complete,
» (poUrf)T is irreflexive, and

> there exists a total order
following patterns occurs:

on WUF, such that none of the

W Wy Wy W W
) (pouUrf)* rf\‘\\4 /(po Urf)t rf\\\4
Wy Rx Ux
Wy Wy Wy, Wy Wy
rf\ N ,',rf \ po rf E
Y

https://www.cl.cam.ac.uk/~pes20/weakmemory/x86tso-paper.tphols.pdf

Declarative semantics for TSO

An outcome O is allowed for a program P under TSO if there
exists a TSO-consistent execution graph of P with outcome O.

11

Compilation of SC to TSO via the declarative semantics

> As before we may assume that the source program has fences
and the SC declarative semantics simply ignores them.

Assumption on the program

For every c,s such that Py(i), So —* c,s:
W(x, v) y* « R(X",v')
c’, s’ then

W(x,v) L RO,
5 MOyl o BE o

if c,s

» Given a TSO-consistent execution graph G of Py, we have to
construct an SC-consistent execution graph of Py with the
same outcome.

» We will take the same execution graph G.
» We have [W]; G.po; [R] C G.po; [F]; G.po.

» [t remains to show that G is SC-consistent.

12

Compilation of SC to TSO via the declarative semantics

Definition (Alternative SC definition)

An execution graph G is SC-consistent if the following hold:

v

G is complete

» There exists a modification order for G such that
G.poU G.rf Umo U rb is acyclic where:

» rb £ G.rf~Y;mo \ id (from-reads / reads-before)

4

» Take mosc = Uyeoc[Wx]i moTso: [Wx].

» Suppose that G.po U G.rf Umogc U rb is cyclic.

> Then, G.poU G.rf UmoTgo U rb is cyclic.

» Consider a cycle of minimal length.

» In a minimal cycle, there are at most two events in WUF.

» Analyze all such cycles. ..

Compilation of RA to TSO

Compilation correctness

[compilega_,1s0(P)ltso S [Plra

Trivial:
» Compilation is identity.

> It suffices to note that TSO-consistency implies
RA-consistency!

Theorem (Reminder)

Let mo be a modification order for an execution graph G. G is RA-consistent
wrt mo iff the following hold:

> (poUrE)" is irreflexive. (no-future-read)
> mo; (po Urf)T is irreflexive. (coherence-ww)
> rf 1 mo; (poUrf)t is irreflexive. (coherence-wr)

> rf1noimo is irreflexive. (rmw-atomicity)
v

Compilation to Power/ARM

Power and ARM are given by both declarative and operational
models. For the compilation proofs, the declarative models are
more convenient.

Power Herding cats: modelling, simulation, testing, and
data mining for weak memory. Jade Alglave, Luc
Maranget, Michael Tautschnig, TOPLAS 2017.

ARMvV8.2 aarch64.cat on GitHub

Since, however, the models are much more complex, compilation
proofs are error-prone. See, e.g.,
» Synchronising C/C++ and POWER. Susmit Sarkar, Kayvan

Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget,
Jade Alglave, Derek Williams, PLDI 2012.

> Repairing sequential consistency in C/C++11. Ori Lahav, Viktor
Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek Dreyer, PLDI 2017.

15

http://dl.acm.org/citation.cfm?id=2627752
http://dl.acm.org/citation.cfm?id=2627752
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
http://dl.acm.org/citation.cfm?doid=2254064.2254102
http://plv.mpi-sws.org/scfix/

Power declarative model

An execution G is Power-consistent if there exists a modification order
that the following hold:

1. hb is acyclic.

2. poliec Urf UrbU is acyclic.

3. (rb\ po); prop; hb* is irreflexive.

4. U prop is acyclic.

5. mo; [RMW]; po; [RMW] is acyclic.
where:
— sync = po; [F¥"]; po and lwsync = po; [F™*¥"]; po
— fence = sync U ([R]; lwsync; [RW] U ([W]; lwsync; [W]))
~ ro = (et Lu0) \ [

for G such

(no-thin-air)
(SC-per-loc)
(observation)

(propagation)

(fence order)
(read before)

— rfe =rf \ po (external reads-from)
— ppo = ... (preserved program order)
— hb = ppo U fence U rfe (happens-before)

— prop; = [w];rfe?; fence; hb*; [W]
— prop, = ((mo Urb) \ po)’; rfe’; (fence; hb*)?; sync; hb*

— prop = prop; U prop, (propagation relation)

16

Exercise: Correctness of compilation of SC to TSO

Use a simulation argument to prove the correctness of compilation
from SC to TSO, for a compilation scheme that places a TSO
fence between every write and read.

That is, let Py be a program such that
W(X,V) £>* R(X/vvl)

—(Po(i),s0 =" _) for every i, x, v,x', v/

» Devise a simulation relation relating executions of Py under
TSO with those under SC.

» Conclude that every outcome of Py under TSO is also an
outcome under SC.

17

Exercise: Correctness of compilation of RA to Power

The compilation scheme of RA to Power that places a lightweight fence before
every write and after every read.

Assuming no RMW's, prove the correctness of this compilation scheme.

You may prefer to use the following declarative model for WeakPower (which is
clearly weaker than the model for Power presented before):

Definition

An execution G is WeakPower-consistent if there exists a modification order mo for G such
that the following hold:
1. hb is acyclic. (no-thin-air)
2. polioc Urf Urb Umo is acyclic. (SC-per-loc)
3. (rb)\ po); prop; hb* is irreflexive. (observation)
4. U prop is acyclic. (propagation)
where:
— fence = [R]; po; [F"¥"]; po; [RW] U [W]; po; [F"]; po; [W] (fence order)
— rb = (rf~%mo)\id (reads before)
— rfe =rf \ po (external reads-from)
— hb = fence Urfe ((weak) happens-before)
— prop = [W]; rfe’; fence; hb*; [W] ((weak) propagation relation)

18

