An introduction to weak memory consistency and the out-of-thin-air problem

Viktor Vafeiadis

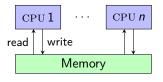
Max Planck Institute for Software Systems (MPI-SWS)

CONCUR, 7 September 2017

Sequential consistency

Sequential consistency (SC)

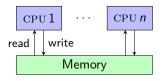
- The standard simplistic concurrency model.
- ► Threads access shared memory in an interleaved fashion.



Sequential consistency

Sequential consistency (SC)

- ► The standard simplistic concurrency model.
- ► Threads access shared memory in an interleaved fashion.



But...

- No multicore processor implements SC.
- Compiler optimizations invalidate SC.
- In most cases, SC is not really necessary.

Weak memory consistency

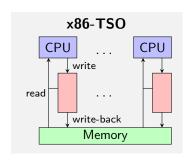
Store buffering (SB)

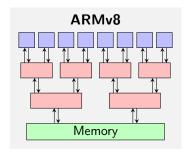
Initially,
$$x = y = 0$$

$$x := 1;$$
 $y := 1;$ $b := x //0$

Load buffering (LB)

Initially,
$$x = y = 0$$





Weak consistency in "real life"

Messages may be delayed.

$$MsgX := 1;$$
 $a := MsgY;$ $\#0$ $MsgY := 1;$ $b := MsgX;$ $\#0$

Messages may be sent/received out of order.

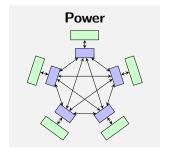
$$Email := 1;$$
 $a := Sms;$ $//1$ $b := Email;$ $//0$

Independent reads of independent writes (IRIW)

Initially,
$$x = y = 0$$

$$x := 1 \begin{vmatrix} a := x; & //1 & c := y; & //1 \\ lwsync; & lwsync; & y := 1 \\ b := y & //0 & d := x & //0 \end{vmatrix} y := 1$$

- ► Thread II and III can observe the *x* := 1 and *y* := 1 writes happen in different orders.
- ► Because of the lwsync fences, no reorderings are possible!



Embracing weak consistency

Weak consistency is not a threat, but an opportunity.

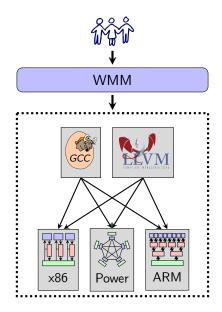
- ▶ Can lead to more scalable concurrent algorithms.
- Several open research problems.
 - What is a good memory model?

Reasoning under WMC is often easier than under SC.

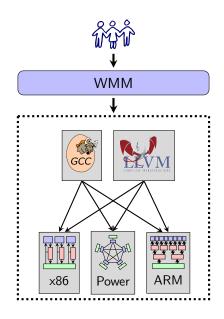
- Avoid thinking about thread interleavings.
- Many/most concurrent algorithms do not need SC!
- Positive vs negative knowledge.

What is the right semantics for a concurrent programming language?

Programming language concurrency semantics



Programming language concurrency semantics



WMM desiderata

- 1. Mathematically sane (e.g., monotone)
- Not too strong (good for hardware)
- Not too weak (allows reasoning)
- 4. Admits optimizations (good for compilers)
- 5. No undefined behavior

Quiz. Should these transformations be allowed?

1. CSE over acquiring a lock:

$$a = x;$$
 $a = x;$ $lock();$ $b = x;$ $b = a;$

2. Load hoisting:

if
$$(c)$$
 \Rightarrow $t = x;$ \Rightarrow $a = c? t : a;$

[x is a global variable; a, b, c are local; t is a fresh temporary.]

Consider the transformation sequence:

```
\begin{array}{lll} \text{if } (c) & t=x; & t=x; \\ a=x; & \underset{lock();}{\text{hoist}} & a=c?t:a; & \underset{lock();}{\text{CSE}} & a=c?t:a; \\ b=x; & b=x; & b=t; \end{array}
```

When c is false, x is moved out of the critical region!

So we have to forbid one transformation.

- ► C11 forbids load hoisting, allows CSE over lock().
- ► LLVM allows load hoisting, forbids CSE over lock().

- ▶ Initially, x = y = 0.
- ► All accesses are "relaxed".

Load-buffering $a := x; \quad /\!\!/ 1 \quad \Big\| \quad b := y; \\ y := 1; \quad \Big\| \quad x := b;$

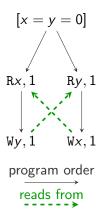
This behavior must be allowed:

Power/ARM allow it

- ▶ Initially, x = y = 0.
- ► All accesses are "relaxed".

Load-buffering $a:=x; \quad /\!\!/ 1 \quad \Big\| \quad b:=y; \ y:=1; \quad \Big\| \quad x:=b;$

This behavior must be allowed: Power/ARM allow it



Load-buffering + data dependency

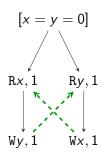
$$a := x;$$
 //1 || $b := y;$
 $y := a;$ || $x := b$

The behavior should be forbidden: **Values appear out-of-thin-air!**

Load-buffering + data dependency

$$a := x; \ //1 \ | \ b := y; \ y := a; \ | \ x := b$$

The behavior should be forbidden: **Values appear out-of-thin-air!**



Same execution as before! C11 allows these behaviors

Load-buffering + data dependency

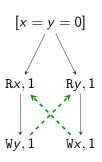
$$a := x;$$
 //1 $|| b := y;$
 $y := a;$ $|| x := b$

The behavior should be forbidden: **Values appear out-of-thin-air!**

Load-buffering + control dependencies

$$a := x;$$
 //1
if $a = 1$ then
 $y := 1$ $b := y;$ //1
if $b = 1$ then
 $x := 1$

The behavior should be forbidden: **DRF guarantee is broken!**

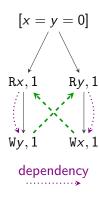


Same execution as before! C11 allows these behaviors

The hardware solution

Keep track of syntactic dependencies, and forbid "dependency cycles".

Load-buffering + data dependency



The hardware solution

Keep track of syntactic dependencies, and forbid "dependency cycles".

Load-buffering + data dependency

$$a := x; \ //1$$
 $b := y; \ //1$ $y := a;$ $x := b;$

Load-buffering + fake dependency

$$a := x;$$
 //1 $b := y;$ //1 $y := a + 1 - a;$ $x := b;$

$$[x = y = 0]$$

$$Rx, 1 \quad Ry, 1$$

$$Wy, 1 \quad Wx, 1$$

$$dependency$$

$$\dots$$

This approach is not suitable for a programming language: Compilers do not preserve syntactic dependencies.

A "promising" semantics for relaxed-memory concurrency

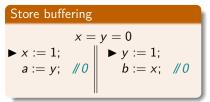
We will now describe a model that satisfies all these goals, and covers nearly all features of C11.

- ▶ DRF guarantees
- ▶ No "out-of-thin-air" values
- Avoid "undefined behavior"

- Efficient implementation on modern hardware
- Compiler optimizations

Key idea: Start with an operational interleaving semantics, but allow threads to **promise** to write in the future

Store buffering x = y = 0 x := 1; a := y; b := x; y := 1; b := x; y := 1;



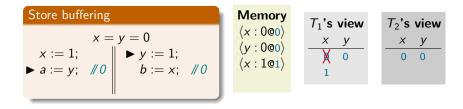
Memory $\langle x:0@0\rangle$ $\langle y:0@0\rangle$

$$\frac{T_1\text{'s view}}{\begin{array}{cc} x & y \\ \hline 0 & 0 \end{array}$$

$$\frac{T_2\text{'s view}}{\frac{x}{0}}$$

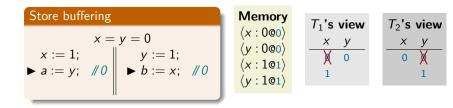
▶ Global memory is a pool of messages of the form

⟨location : value @ timestamp⟩



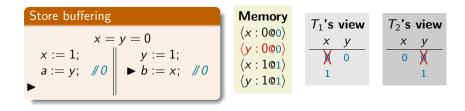
Global memory is a pool of messages of the form

⟨location : value @ timestamp⟩



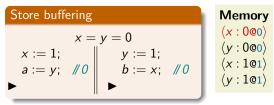
Global memory is a pool of messages of the form

⟨location : value @ timestamp⟩



Global memory is a pool of messages of the form

⟨location : value @ timestamp⟩



Memory $\langle x:0@0\rangle$ $\langle y:0@0\rangle$

$$T_1$$
's view $\begin{array}{cc} x & y \\ \hline & 0 \\ 1 \end{array}$

$$T_2$$
's view
$$\begin{array}{c|c} X & y \\ \hline 0 & X \\ \hline & 1 \end{array}$$

Global memory is a pool of messages of the form

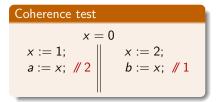
(location : value @ timestamp)

Store buffering x = y = 0

Memory $\langle x:0@0\rangle$

$$T_1$$
's view
$$\begin{array}{ccc}
x & y \\
\hline
x & 0 \\
1
\end{array}$$

$$\begin{array}{c|c}
T_2's \text{ view} \\
\hline
x & y \\
\hline
0 & X \\
1
\end{array}$$



Store buffering

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$
 $\langle x:1@1\rangle$

$$T_1$$
's view

$$\frac{T_2\text{'s view}}{\overset{x}{\underset{1}{\bigvee}}}$$

Coherence test

$$x = 0$$
 $x = 1;$
 $a := x; // 2$
 $x := 2;$
 $b := x; // 1$

Memory $\langle x:0@0\rangle$

$$T_1$$
's view $\frac{x}{0}$

$$\frac{T_2$$
's view $\frac{x}{0}$

Store buffering

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$
 $\langle x:1@1\rangle$
 $\langle y:1@1\rangle$

$$T_1$$
's view

$$T_2$$
's view
$$\begin{array}{c|c} X & y \\ \hline 0 & X \\ \hline & 1 \end{array}$$

Coherence test

$$x = 0$$

 $x := 1;$ $\blacktriangleright x := 2;$
 $b := x; // 2$ $b := x; // 1$

Memory $\langle x:0@0\rangle$

$$\langle x:0@0\rangle$$

 $\langle x:1@1\rangle$

$$T_1$$
's view

$$T_2$$
's view $\frac{x}{0}$

Store buffering

$$x = y = 0$$

 $x := 1;$ $y := 1;$ $b := x;$ #0

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$
 $\langle x:1@1\rangle$
 $\langle y:1@1\rangle$

$$T_1$$
's view

$$\begin{array}{c|c}
T_2's \text{ view} \\
\hline
x & y \\
\hline
0 & X \\
1
\end{array}$$

Coherence test

$$x = 0$$

 $x := 1;$ $x := 2;$
 $\Rightarrow a := x;$ $/\!\!/ 2$ $\Rightarrow b := x;$ $/\!\!/ 1$

Memory

$$\langle x:0@0\rangle$$

 $\langle x:1@1\rangle$
 $\langle x:2@2\rangle$

$$T_1$$
's view $\frac{x}{x}$

$$T_2$$
's view $\frac{x}{x}$

Store buffering

$$x = y = 0$$

 $x := 1;$ $y := 1;$ $b := x;$ #0

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$
 $\langle x:1@1\rangle$
 $\langle y:1@1\rangle$

$$T_1$$
's view

$$T_2$$
's view
$$\begin{array}{c|c} x & y \\ \hline 0 & X \\ \hline & 1 \end{array}$$

Coherence test

$$x = 0$$

 $x := 1;$ $x := 2;$
 $a := x; // 2$ $\Rightarrow b := x; // 1$

Memory

$$\langle x:0@0\rangle$$

 $\langle x:1@1\rangle$
 $\langle x:2@2\rangle$

T_1 's view

X	
X	
X	
2	

$$T_2$$
's view

Store buffering

$$x = y = 0$$

 $x := 1;$ $y := 1;$ $b := x;$ #0

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$
 $\langle x:1@1\rangle$
 $\langle y:1@1\rangle$

$$T_1$$
's view

$$T_2$$
's view
$$\begin{array}{c|c} x & y \\ \hline 0 & X \\ 1 \end{array}$$

Coherence test

$$x = 0$$
 $x := 1;$
 $a := x; // 2$
 $x := 2;$
 $b := x; // 1$

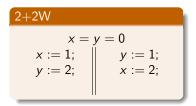
Memory

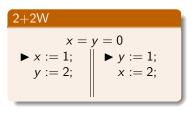
$$\langle x:0@0\rangle$$

 $\langle x:1@1\rangle$
 $\langle x:2@2\rangle$

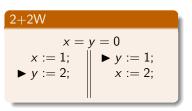
$$T_1$$
's view $\frac{x}{x}$

$$T_2$$
's view $\frac{x}{x}$



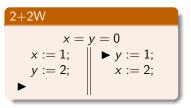


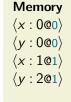
$$\frac{T_2\text{'s view}}{\frac{x}{0}}$$



$$\begin{array}{c|c}
T_1 \text{'s view} \\
\hline
x & y \\
\hline
y & 0 \\
1
\end{array}$$

$$T_2$$
's view $\frac{x}{0}$ $\frac{y}{0}$

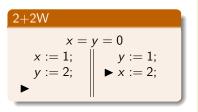


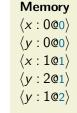


$$\begin{array}{c|c} T_1 \text{'s view} \\ \hline x & y \\ \hline x & x \\ \hline 1 & 1 \\ \end{array}$$

$$T_2$$
's view $\frac{x}{0} = \frac{y}{0}$

Supporting write-write reordering



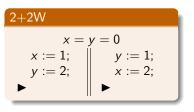


$$T_1$$
's view $\begin{array}{c|c} X & y \\ \hline & \chi & \chi \\ \hline & 1 & 1 \end{array}$

$$T_2$$
's view
$$\begin{array}{ccc} x & y \\ \hline 0 & \chi \\ & 2 \end{array}$$

▶ We want to allow the final outcome x = y = 1.

Supporting write-write reordering

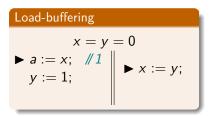


```
Memory \langle x : 0@0 \rangle \langle y : 0@0 \rangle \langle x : 1@1 \rangle \langle y : 2@1 \rangle \langle y : 1@2 \rangle \langle x : 2@0.5 \rangle
```


- ▶ We want to allow the final outcome x = y = 1.
- ▶ Writes choose timestamp *greater than the thread's view*, not necessarily the globally greatest one.

```
Load-buffering  \begin{aligned} x &= y = 0 \\ a &:= x; \quad /\!\!/ 1 \\ y &:= 1; \end{aligned} \qquad x := y;
```

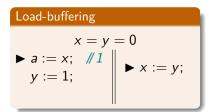
- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



$$\frac{T_1'\text{s view}}{\frac{x}{0}}$$

$$T_2$$
's view $\frac{x}{0} = \frac{y}{0}$

- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



$$\frac{T_1'\text{s view}}{\frac{x}{0}}$$

$$\frac{T_2\text{'s view}}{\frac{x}{0}}$$

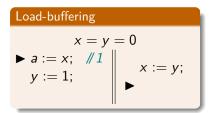
- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



$$\frac{T_1 \text{'s view}}{\frac{x}{0}}$$

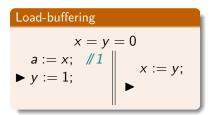
 T_2 's view $\frac{x}{0}$ $\frac{y}{1}$

- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



$$\frac{T_1's \text{ view}}{\frac{x}{0}}$$

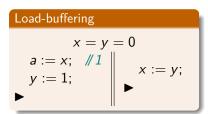
- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



$$T_1$$
's view
$$\begin{array}{cc} x & y \\ \hline & 0 \\ 1 \end{array}$$

$$\begin{array}{c|c} T_2 \text{'s view} \\ \hline x & y \\ \hline x & x \\ \hline 1 & 1 \\ \end{array}$$

- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.



Memory $\langle x:0@0\rangle$ $\langle y:0@0\rangle$ $\langle y:1@1\rangle$

 $\langle x:1@1\rangle$

$$T_1$$
's view $\frac{x \quad y}{x \quad x}$

- ► To model load-store reordering, we allow "promises".
- At any point, a thread may promise to write a message in the future, allowing other threads to read from the promised message.

Load-buffering

$$x = y = 0$$

$$a := x; //1$$

$$y := 1;$$

$$x := y;$$

Memory

 $\langle x:0@0\rangle$ $\langle y:0@0\rangle$

 $\langle y: 1@1 \rangle$ $\langle x: 1@1 \rangle$ T_1 's view

x y X 1 1

 T_2 's view

x y X X 1 1

Load-buffering + dependency

$$a := x; //1 y := a;$$
 $x := y;$

Must not admit the same execution!

Load-buffering

$$x = y = 0$$

$$a := x; //1$$

$$y := 1;$$

$$x := y;$$

Load-buffering + dependency

$$a := x; \ //1 \ y := a; \ x := y;$$

Key idea

A thread can promise *only if* it can perform the write anyway (even without having made the promise).

Certified promises

Thread-local certification

A thread can promise to write a message if it can *thread-locally certify* that its promise will be fulfilled.

Load-buffering

$$a := x; //1 y := 1; //1 x := y;$$

Load buff. + fake dependency

$$a := x; //1$$

 $y := a + 1 - a;$ $x := y;$

 T_1 may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

$$a := x; //1 y := a;$$
 $x := y;$

 T_1 may **NOT** promise y = 1, since it is not able to write y = 1 by itself.

Is this behavior possible?

$$a := x; //1$$

 $x := 1;$

Is this behavior possible?

$$a := x; //1$$

 $x := 1;$

No.

Suppose the thread promises x = 1. Then, once a := x reads 1, the thread view is increased and so the promise cannot be fulfilled.

Is this behavior possible?

$$a := x; \ //1 \ | \ y := x; \ | \ x := y;$$

Is this behavior possible?

$$a := x; \ //1 \ | \ y := x; \ | \ x := y;$$

Yes. And the ARM-Flowing model allows it!

Is this behavior possible?

$$a := x; //1 \ x := 1; \ y := x; \ x := y;$$

Yes. And the ARM-Flowing model allows it!

This behavior can be also explained by sequentialization:

$$a := x;$$
 $//1$ $|| y := x;$ $|| x := y;$ \Rightarrow $x := 1;$ $y := x;$ $|| x := y;$

But, note that sequentialization is generally unsound in our model:

The full model

In the paper, we extend this semantics to handle:

- Atomic updates (e.g., CAS, fetch-and-add)
- ► Release/acquire fences and accesses
- Release sequences
- SC fences (no SC accesses)
- ▶ Plain accesses (C11's non-atomics & Java's normal accesses)

To achieve all of this we enrich our timestamps, messages, and thread views.

 A promising semantics for relaxed-memory concurrency. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer. POPL'17

Atomic updates (RMW instructions)

Ensuring atomicity:

► The timestamp order keeps track of immediate adjacency. (Technically, we use ranges of timestamps.)

Parallel atomic increment
$$a:=x++; \ \#\ 0 \to 1 \ \ \| \ \ b:=x++; \ \#\ 0 \to 1$$

How are promises affected?

- ▶ To allow reorderings, updates can be promised.
- Performing an update may invalidate existing already-certified promises of other threads.

Atomic updates and promises

Main challenge

Threads performing updates may invalidate the already-certified promises of other threads.

Conservative solution:

▶ Require certification for *every future memory*.

Guiding principle of thread locality

The set of actions a thread can take is determined only by the current memory and its own state.

Message-passing

$$\triangleright x := 1;$$

$$x = y = 0$$
 $x = 1;$
 $y_{rel} := 1;$
 $x = y = 0$
 $a := y_{acq}; //1$
 $b := x; //1$

Memory

$$\langle x:0@0\rangle$$

 $\langle y:0@0\rangle$

$$\frac{T_1'\text{s view}}{\frac{x}{0}}$$

$$\begin{array}{cc} T_2 \text{'s view} \\ \hline x & y \\ \hline 0 & 0 \end{array}$$

Message-passing

$$x = y = 0$$

 $x := 1;$ $\Rightarrow a := y_{acq}; //1$
 $\Rightarrow y_{rel} := 1;$ $\Rightarrow a := y_{acq}; //1$

Memory

 $\langle x:0@0\rangle$ $\langle y:0@0\rangle$ $\langle x:1@1\rangle$

$$T_1$$
's view
$$\begin{array}{ccc}
x & y \\
\hline
 & 0 \\
1
\end{array}$$

$$T_2$$
's view $\frac{x}{0}$ $\frac{y}{0}$

Message-passing
$$\begin{array}{c} x=y=0 \\ x:=1; \\ y_{\text{rel}}:=1; \\ \end{array} \quad \begin{array}{c} b \text{ } a:=y_{\text{acq}}; \text{ } \#1 \\ b:=x; \text{ } \#1 \end{array}$$

$$T_1$$
's view $\begin{array}{c|c} X & y \\ \hline & X & X \\ \hline & 1 & 1 \end{array}$

$$T_2$$
's view $\frac{x}{0}$ $\frac{y}{0}$

Memory $\langle x:0@0\rangle$ $\langle y:0@0\rangle$ $\langle x:1@1\rangle$ $\langle y:1@1 x@1\rangle$

$$T_1$$
's view $\begin{array}{c|c} X & y \\ \hline & X & X \\ \hline & 1 & 1 \end{array}$

Message-passing
$$\begin{array}{c} x=y=0 \\ x:=1; & \text{$a:=y_{acq};$ $/\!\!/ 1$} \\ y_{rel}:=1; & \text{$b:=x;$ $/\!\!/ 1$} \\ \end{array}$$

$$T_1$$
's view $\begin{array}{c|c} x & y \\ \hline & \chi & \chi \\ \hline & 1 & 1 \end{array}$

□ Compiler optimizations	□ DRF guarantees
☐ Efficient implementation on	□ No "out-of-thin-air" values
modern hardware	✓ Avoid "undefined behavior"

- ✓ Compiler optimizations
- □ DRF guarantees
- ☐ Efficient implementation on modern hardware
- □ No "out-of-thin-air" values
- Avoid "undefined behavior"

Theorem (Local program transformations)

The following transformations are sound:

- Trace-preserving transformations
- ► Reorderings:

$$R_{\square rlx}^{x}; R^{y}$$

$$W^{\times}; W^{y}_{\Box rlx}$$

$$W_{o_1}^{\times}$$
; $R_{o_2}^{y}$

$$R_{pln}^{\times}; R_{pln}^{\times}$$

W; Facq

$$R_{\sqsubseteq rlx}^{x}; W_{\sqsubseteq rlx}^{y}$$

$$R_{\neq rlx}$$
; F_{acq}

$$F_{\mathsf{rel}}; V_{\neq \mathsf{rlx}}$$

Merges:

$$R_0: R_0 \rightsquigarrow R_0$$

$$W_o$$
; $W_o \sim W_o$

$$W$$
; $R_{acq} \rightsquigarrow W$

- ✓ Compiler optimizations
- ☑ Efficient implementation on modern hardware
- □ DRF guarantees
- □ No "out-of-thin-air" values
- Avoid "undefined behavior"

Theorem (Compilation to TSO/Power/ARM)

- Standard compilation to TSO is correct
 - TSO can be fully explained by transformations over SC
- Compilation to Power is correct
 - Using a declarative presentation of the promise-free machine
- Compilation to ARMv8 is correct
 - (For a subset of the features)

✓ Compiler optimizations
 ✓ DRF guarantees
 ✓ Efficient implementation on modern hardware
 ✓ Avoid "undefined behavior"

Theorem (DRF Theorems) Key Lemma Races only on RA under promise-free semantic \Rightarrow only promise-free behaviors DRF-RA Races only on RA under release/acquire semantics \Rightarrow only release/acquire behaviors DRF-locks Races only on lock variables under SC semantics \Rightarrow only SC behaviors

- ✓ Compiler optimizations
- Efficient implementation on modern hardware
- ✓ DRF guarantees
- $\ oldsymbol{arnothin}$ No "out-of-thin-air" values
- Avoid "undefined behavior"

Key Lemma Races only on RA under promise-free semantics

⇒ only promise-free behaviors

Certification is needed at every step

$$\begin{aligned} w_{\text{rel}} &:= 1; \\ w_{\text{rel}} &:= 1; \\ w_{\text{rel}} &:= 1; \\ a &:= x \quad \text{$/\!\!/ 1$} \\ \text{if } a &= 1 \text{ then} \\ z &:= 1; \end{aligned}$$

$$\begin{aligned} & \text{if } y_{\text{acq}} = 1 \text{ then} \\ & \text{if } z = 1 \text{ then} \\ & x := 1; \end{aligned}$$

✓ Compiler optimizations	✓ DRF guarantees
☑ Efficient implementation on	✓ No "out-of-thin-air" values
modern hardware	✓ Avoid "undefined behavior"

Theorem (Invariant-based program logic)

Fix a global invariant J. Hoare logic where all assertions are of the form $P \wedge J$, where P mentions only local variables, is sound.

- ✓ Compiler optimizations
- Efficient implementation on modern hardware
- ☑ DRF guarantees
- ✓ No "out-of-thin-air" values
- Avoid "undefined behavior"

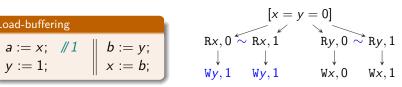
Theorem (Invariant-based program logic)

Fix a global invariant J. Hoare logic where all assertions are of the form $P \wedge J$, where P mentions only local variables, is sound.

${\sf Load\text{-}buffering} + {\sf data} \ {\sf dependency}$

Distinguishing programs by event structures

Load-buffering



Distinguishing programs by event structures

Load-buffering

$$a := x; //1 | b := y; y := 1; | x := b;$$

LB + data dependency

$$a := x; //1 y := a; | b := y; x := b;$$

LB + control dependency

$$a := x; //1$$

if $a \neq 0$ then
 $y := a;$ $b := y;$
 $x := b;$

$$\begin{bmatrix} x = y = 0 \end{bmatrix}$$

$$Rx, 0 \sim Rx, 1 \qquad Ry, 0 \sim Ry, 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

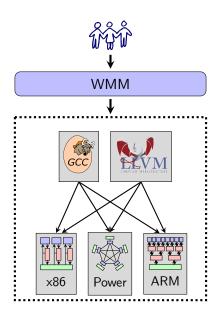
$$Wy, 1 \qquad Wy, 1 \qquad Wx, 0 \qquad Wx, 1$$

$$\begin{bmatrix} x = y = 0 \end{bmatrix}$$

$$Rx, 0 \sim Rx, 1 \qquad Ry, 0 \sim Ry, 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Wy, 0 \qquad Wy, 1 \qquad Wx, 0 \qquad Wx, 1$$



Summary

- Weak memory consistency
- ► The **OOTA** problem
- ► The promising model
- An event structure model

Challenges

- Handling global optimizations
- Verification under the promising semantics
- ► Relating the models
- Liveness under WMC