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Sequential consistency

Sequential consistency (SC)
» The standard simplistic concurrency model.

» Threads access shared memory in an interleaved fashion.

cpul CPU n

read | | write

Memory
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But...
» No multicore processor implements SC.
» Compiler optimizations invalidate SC.

» In most cases, SC is not really necessary.



Weak memory consistency

x86-TSO
Store buffering (SB) CPU o CPU
Initially, x = y = 0 write
x = 1; y = 1: read
a.=y 70 b:=x /0 write-back
Memory
ARMv8
Load buffering (LB) %%%%%%%%
Initially, x =y =0 \ | | | | | | \
x:=1 y:=1 il il




Weak consistency in “real life”
» Messages may be delayed.

MsgX = 1; MsgY =1,
a:=MsgY; /0| b:=MsgX; /0 TN

» Messages may be sent/received out of order.

r Email :=1; a:=Sms; /1 ,

b := Email; /0




There is more to WMC than just reorderings [FM'16]

Independent reads of independent writes (IRIW)
Initially, x =y =0
a=x; /1 c=y; /1

x:=1 || lwsync; lwsync; y:=1
b:=y /0 d:=x /0

> Thread Il and Il can observe [
the x := 1 and y := 1 writes
happen in different orders.

» Because of the lwsync fences,
no reorderings are possible!



Embracing weak consistency

Weak consistency is not a threat, but an opportunity.

» Can lead to more scalable concurrent algorithms.
» Several open research problems.
» What is a good memory model?

Reasoning under WMC is often easier than under SC.
» Avoid thinking about thread interleavings.
» Many/most concurrent algorithms do not need SC!

» Positive vs negative knowledge.



What is the right semantics for

a concurrent programming language?



Programming language concurrency semantics




Programming language concurrency semantics

o O
i; Q l WMM desiderata

1. Mathematically sane
(e.g., monotone)

2. Not too strong

£er 4 (good for hardware)

3. Not too weak
(allows reasoning)

N

. Admits optimizations

@ § % (good for compilers)
5. No undefined behavior




Quiz. Should these transformations be allowed?

1. CSE over acquiring a lock:

a=x; a=x;
lock(); ~ lock();
b=x; b=a;
2. Load hoisting:
if (¢) - t=x;
a=x, a=c?t:a;

[x is a global variable; a, b, ¢ are local; t is a fresh temporary.]



Allowing both is clearly wrong! [CGO'16,CGO'17]

Consider the transformation sequence:

if (¢) t = x; t=x;
a=X, hoist a=c?t:a CSE a=c?t:a;

lock(); - lock(); - lock();

b=x; b=x; b=rt;

When c is false, x is moved out of the critical region!
So we have to forbid one transfomation.

» C11 forbids load hoisting, allows CSE over lock().
» LLVM allows load hoisting, forbids CSE over lock().

10



The out-of-thin-air problem in C11

> Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

a=x; /1
y:=1

This behavior must be allowed:
Power/ARM allow it
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The out-of-thin-air problem in C11

> Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

a=x; /1
y:=1

This behavior must be allowed:
Power/ARM allow it

program order

—_

reads from
------ >

11



The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1
y = a;

b:=y;
x:=b

The behavior should be forbidden:
Values appear out-of-thin-air!

12



The out-of-thin-air problem in C11

Load-buffering + data dependency

a:=x; /1 b:=y; [x =y =0]
y = a; x:=b / \
The behavior should be forbidden:
. Rx, 1 Ry,1
Values appear out-of-thin-air! j % . |
Wy,i T:JX, 1

Same execution as before!
C11 allows these behaviors

12



The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1 b:=y; [x =y =0]
y = a; x:=b / \
The behavior should be forbidden:
. Rx, 1 Ry,1
Values appear out-of-thin-air! % .
Load-buffering + control dependencies | '}\,\ l
a:=x; /1 b=y, /1 Wy, 1 ix, 1
if a=1then | if b=1 then
y=1 x:=1 Same execution as before!
C11 allows these behaviorsJ

The behavior should be forbidden:
DRF guarantee is broken!
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The hardware solution

Keep track of syntactic dependencies,

and forbid “dependency cycles”. [x =y =0]
Load-buffering + data dependency / \
a=x; /1 b=y, /1 Rx, 1 Ry, 1
y = a; x = b; t N t
Wl
Wy, 1 Wx, 1
dependency

13



The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency

a=x; /1 b=y, /1
y = a; X = b;
a=x; /1 b:=y; /1
yi=a+1l-g x = b;

=y =0]

Rx, 1 Ry, 1
PSRN
Wy, 1 Wx, 1

dependency

This approach is not suitable for a programming language:
Compilers do not preserve syntactic dependencies.

13



A “promising” semantics for relaxed-memory concurrency

We will now describe a model that satisfies all these goals, and
covers nearly all features of C11.

> DRF guarantees » Efficient implementation on

» No “out-of-thin-air” values modern hardware

> Avoid “undefined behavior” B Cinbleropimizations

Key idea: Start with an operational interleaving semantics, but
allow threads to promise to write in the future

14



Simple operational semantics for C11's relaxed accesses

Store buffering

15



Simple operational semantics for C11's relaxed accesses

Store buffering x{en(;;g T — T,'s view
: Xy X Yy
<y : 0@0> 0 0 0 0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last
observed timestamp for every location
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Simple operational semantics for C11's relaxed accesses

Store buffering Memory T.'sview HEEEE
(x : 0@0) 1x y 2x y
(y : 0@0) X o0 0 0
(x:le1) i
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observed timestamp for every location
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X Yy X Yy

X o o X
1 1
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
Xy Xy
X o o X
1 1
Coherence test T1's view .
T>’s view
x=0 (x : 000) X
» x =1, » x =2, 0 0

a=x; /2 b=x; /1
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

Xy X Yy
X o o X
1 1
Coherence test Memory T1XS view T
x=0 (x : 0e0) D X
x = 1; > x =2 (x:1le1) 0
»a=x; /2 b=x; /1 1
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy

X o o X
1 1

Coherence test

" T,’s view
x=0 (x : 0@0) D X
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view

X y X y
X o o X
1 1
Coherence test T1's view T.'s view
2
x=0 (x : 0@0) —%— X
x =1 x =2 (x:1le1) X
a=x; /2| »bi=x; /1 (x : 2@2) § 2
»
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Simple operational semantics for C11's relaxed accesses

Store buffering

T1's view T,'s view
X Yy X Yy
X o o X
1 1

T1Xs view T>'s view

X
X X
X A
2
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Supporting write-write reordering

» We want to allow the final outcome x =y = 1.
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T1's view T>'s view
Xy Xy
0 0 0 0
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Supporting write-write reordering

Memory

gy T1's view T>'s view

(y : 0@0) X 9

(x:1le1) 4 4
X o 0 o0
1

» We want to allow the final outcome x =y = 1.



Supporting write-write reordering

» We want to allow the final outcome x =y = 1.

Ti's view  T)’s view

Xy Xy
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Supporting write-write reordering

» We want to allow the final outcome x =y = 1.

T1's view T>'s view
X Yy Xy
X X o X
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Supporting write-write reordering

T1's view T>'s view

X y X y
X X X X
1 1 05 2

» We want to allow the final outcome x =y = 1.

» Writes choose timestamp greater than the thread’s view, not
necessarily the globally greatest one.

16



Promises

Load-buffering

» To model load-store reordering, we allow *“promises”.

> At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

17



Promises

Load-buffering Memory e i m—
<X : 0@0> 1 S view 2 S view
Xy Xy
: 0@0
<y > 0 O 0 O

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

Memory
(x : 0©0)
(y : 0e0)
(y:1le1)

T1's view T>'s view
Xy X Yy
0 O 0 O

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised

message.
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Promises

Load-buffering

T1's view T>'s view

X y X y

0 0 X X
1 1
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message.

17



Promises

Load-buffering

T1's view T>'s view
X y X y
X o X X
1 1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.

17



Promises

Load-buffering

T1's view T>'s view

X y X y
X X X X
1 1 1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the
future, allowing other threads to read from the promised
message.
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Promises

Load-buffering

x=y=0
a=x; /1 o
y =1, <
>
Load-buffering + dependency
a=x; /1 X v
y = a; =

<X : 0@0) T1's view T>'s view

X Yy X Yy
X X X X
11 11

Must not admit
the same execution!
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Promises

Load-buffering

x=y=0
a=x; /1 o
y:=1; <
>
Load-buffering + dependency
a:=x; /1 Xy
y = a; =

Key idea

A thread can promise only if it
can perform the write anyway
(even without having made the
promise).

17



Certified promises

Thread-local certification

A thread can promise to write a message if it can thread-locally
certify that its promise will be fulfilled.

Load-buffering Load buff. + fake dependency
a=x; /1 Xy a=x; /1 Xy
y =1 0 y:=a+1l-a 0

T; may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

T; may NOT promise y = 1, since
a=x; /1 ‘ it is not able to write y = 1 by itself.

yi=a

18



Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;
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Quick quiz #1

Is this behavior possible?

a=x; /1
x:=1;
No.

Suppose the thread promises x = 1. Then, once a := x reads 1,

the thread view is increased and so the promise cannot be fulfilled.

19



Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;
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Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;

Yes. And the ARM-Flowing model allows it!
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Quick quiz #2

Is this behavior possible?

X =y;

a=x; /1 H
y =X

x =1;

Yes. And the ARM-Flowing model allows it!

This behavior can be also explained by sequentialization:

a:=x /1 a:=x; /1
X;lv H}/ZZX; X =Y, ~ X::]_; X =y,
. ' y =X

20



Quick quiz #2

But, note that sequentialization is generally unsound in our model:

a = x, 1
a=x; /1 . A
. if a = 0then
if a=0then ||y :=x;| x:=y; X =y,
x:=1;
x:=1;
y = X;

21



The full model

In the paper, we extend this semantics to handle:
» Atomic updates (e.g., CAS, fetch-and-add)

Release/acquire fences and accesses

v

v

Release sequences

v

SC fences (no SC accesses)

v

Plain accesses (C11's non-atomics & Java's normal accesses)

To achieve all of this we enrich our timestamps, messages, and
thread views.

> A promising semantics for relaxed-memory concurrency. J. Kang,
C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer. POPL'17
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Atomic updates (RMW instructions)

Ensuring atomicity:
» The timestamp order keeps track of immediate adjacency.
(Technically, we use ranges of timestamps.)

Parallel atomic increment

a=x++ /0—1 || b:=x++ /0—1

How are promises affected?
» To allow reorderings, updates can be promised.

» Performing an update may invalidate existing already-certified
promises of other threads.

23



Atomic updates and promises

Main challenge

» Threads performing updates may invalidate the
already-certified promises of other threads.

a=x; /1
b:=z++; J0—=1 | x:=y; || z++
y:=b+1;

Conservative solution:
» Require certification for every future memory.

Guiding principle of thread locality

The set of actions a thread can take is determined only by the
current memory and its own state.

24



Release/acquire accesses

Message-passing

x = 1;
Yrel = 1;

x=y=0
3= Yacq: /1
b=x; /1

25



Release/acquire accesses

Message-passing

x=y=0
> x = 1; > a:= Yacq; /1
Yrel := 1, b:=x; /1

Memory T1's view  Ty's view

(x : 0@0) y Xy
: 0@o

<y 2 > 0 O 0 O
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Release/acquire accesses

Message-passing

x=y=0
x = 1; > a:= Yacq; /1
» Vel = 1; b:=x; /1
?f(erg;;y) T1's view T>'s view
(y : 0@0) = .
(x:1le1) )f 0 00
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Release/acquire accesses

Message-passing

x=y=0

x :=1; > a:= Yacq; /1
Yeel ' =1, b:=x; /1

>
?f(ergg;y) T1's view T>'s view
(y : 0@0) ;( ;{ ); ?)/
(x:1le1) L

(y:1le1 xe1)
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Release/acquire accesses

Message-passing

x=y=0
x :=1; a:= Yacq; /1
Yrel := 1 »b:=x; /1
>
?f(erg;;y) T1's view T>'s view
(y : 0@0) ;( ;{ ; )g
(x:1le1) L L
(y:1le1 xe1)
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Release/acquire accesses

Message-passing

x=y=0
x :=1; a:= Yacq; /1
Yrel := 1, b:=x; /1
> | 2

?f(ergg;y) T1's view T>'s view

(y : 0@0) ;( ;{ ;( g

(x:1le1) L L
(y:1le1 xe1)
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Results

O Compiler optimizations

O Efficient implementation on
modern hardware

O DRF guarantees
O No “out-of-thin-air” values
¥ Avoid “undefined behavior”
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Results

¥ Compiler optimizations O DRF guarantees
O Efficient implementation on O No “out-of-thin-air” values
modern hardware @ Avoid “undefined behavior”

Theorem (Local program transformations)

The following transformations are sound:
> Trace-preserving transformations

> Reorderings:

R Y W WE Wy, Ro,
Roin: Rpin R ix; Wygﬂx R-trix; Facq
W; Facq Fret; Worix Fre; R

> Merges:

Ro;Ro ~ Ro Wo; Wo ~ Wo W; R»acq’\”w




Results

¥ Compiler optimizations O DRF guarantees
& Efficient implementation on O No “out-of-thin-air” values
modern hardware @ Avoid “undefined behavior”

Theorem (Compilation to TSO/Power/ARM)

» Standard compilation to TSO is correct

» TSO can be fully explained by transformations over SC
» Compilation to Power is correct

» Using a declarative presentation of the promise-free machine
» Compilation to ARMVS is correct

» (For a subset of the features)
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Results

¥ Compiler optimizations ¥/ DRF guarantees
& Efficient implementation on O No “out-of-thin-air” values
modern hardware @ Avoid “undefined behavior”

Theorem (DRF Theorems)

Key Lemma Races only on RA under promise-free semantic
= only promise-free behaviors

DRF-RA Races only on RA under release/acquire semantics
= only release/acquire behaviors

DRF-locks  Races only on lock variables under SC semantics
= only SC behaviors

26



Results

¥ Compiler optimizations &/ DRF guarantees
& Efficient implementation on ¥ No “out-of-thin-air” values
modern hardware @ Avoid “undefined behavior”

Key Lemma Races only on RA under promise-free semantics
= only promise-free behaviors

y

Certification is needed at every step

if Wacq = 1then
z:=1;
else if Yacq = 1 then
Weel i= 1; Yrel :=1; if z=1then
a:=x /1 x = 1;
if a = 1then
z:=1;




Results

¥ Compiler optimizations ¥/ DRF guarantees
& Efficient implementation on ¥ No “out-of-thin-air” values
modern hardware @ Avoid “undefined behavior”

Theorem (Invariant-based program logic)

Fix a global invariant J. Hoare logic where all assertions are
of the form P A J, where P mentions only local variables, is sound.

v
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Results

¥ Compiler optimizations &/ DRF guarantees
& Efficient implementation on ¥ No “out-of-thin-air” values
modern hardware Z Avoid “undefined behavior”

Theorem (Invariant-based program logic)

Fix a global invariant J. Hoare logic where all assertions are
of the form P N\ J, where P mentions only local variables, is sound.

v

Load-buffering 4+ data dependency

x=y=0
(4} (4}
a:=x; b:=y;
{4 na=0} {J A b=0} J2 x=0Ay=0
yi=a x 1= b;

{Jna=0} | {JAb=0)




Distinguishing programs by event structures

= = 0
Load-buffering [X/ y . ]\
a=x; /1 || b:=y; Rx, 0~ Rx, 1 Ry,0 ~ Ry, 1
y = x = b; | | J |
: ; : ) Wy,1 Wy,1 Wx,0 Wx,1
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Distinguishing programs by event structures

pr— pr— 0
Load-buffering [X/ ¥ “ ]
a=x; /1 b:=y; R)l’ONR)l’l Ryi,ONRyi,l
Y= x = b; Wy,1 Wy,1 Wx,0 Wx,1
[x=y=10]
rd N
Rx,0~ Rx, 1 Ryh‘ Ry, 1
| l l |
Wy,0 Wy, 1 Wx,0  Wx, 1
LB + control dependency [x=y=0]
g o
a=x; /1 b=y RX,O@,]. Ryh‘Ry,l
if a # 0 then L bf l | |
y = a; X = 2 Wy, 1 Wx,0 Wx, 1
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Conclusion

Summary

» Weak memory consistency
The OOTA problem
The promising model

v

v

v

An event structure model

Challenges

» Handling global
optimizations

» Verification under the
promising semantics

> Relating the models

» Liveness under WMC
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