Software verification under
weak memory consistency

Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)
January 2016
Joint work with Soham Chakraborty, Derek Dreyer, Marko

Doko, Nick Giannarakis, Ori Lahav, Chinmay Narayan,
Joseph Tassarotti, Aaron Turon.

Sequential consistency

Sequential consistency (SC):
» The standard model for concurrency.
» Interleave each thread's atomic accesses.
» Almost all verification work assumes it.

Initially, x =y = 0.

I
=

x = 1;

y:
a=y b:

I
>

In SC, this program cannot return a = b = 0.

Viktor Vafeiadis Software verification under weak memory consistency

Store buffering in x86-TSO

crul e CPUnN
‘ l WRITE ‘ l
READ | | N
l WRITE-BACK l
’ Memory ‘

Initially, x =y = 0.

This program can return a = b = 0.

Viktor Vafeiadis Software verification under weak memory consistency

Owicki-Gries method (1976)

OG = Hoare logic + rule for parallel composition]

{Pl}cl{Ql} {P2} Cz{Qz}

the two proofs are non-interfering
{PLAP}a | c{@ A Q}

Non-interference
RAPFE R{u/x} for every:
» assertion R in the proof outline of one thread

» assignment x := u with precondition P in the proof
outline of the other thread

Viktor Vafeiadis Software verification under weak memory consistency 4

Standard OG is unsound for WM

(o0}

{a#0Vvb#0}

Viktor Vafeiadis Software verification under weak memory consistency 5

Standard OG is unsound for WM

Viktor Vafeiadis

o,
gy
RN

Software ve

rification under weak memory consistenc

Standard OG is unsound for WM

el I

20 | be

{2#0} {}¢0A(a7éovb:x)}
{a#0vb#0}

To regain soundness, strengthen the non-inference check.
= OGRA: Owicki-Gries for release-acquire (ICALP'15)

Viktor Vafeiadis Software verification under weak memory consistency 5

Outline

» Introduction to the C11 weak memory model

» Release-acquire synchronization
» Per-location coherence

» Reasoning about WMM using program logics

» RSL (relaxed separation logic)
» FSL (fenced separation logic)
» GPS (ghosts, protocols and separation)

» Avoiding to reason about WMM
» Use reduction theorems

Viktor Vafeiadis Software verification under weak memory consistency

The C11 memory model: Atomics

Two types of locations

Ordinary

(Non-Atomic) Atomic

Welcome to the

rors
Races are er expert mode

Viktor Vafeiadis Software verification under weak memory consistency

The C11 memory model: Hierarchy of atomics

A spectrum of atomic accesses:

Seq. consistent

full memory fence

T T

Release write Acquire read
no fence (x86); lwsync (PPC) no fence (x86); isync (PPC)

\/

Relaxed

no fence

Explicit primitives for fences

Viktor Vafeiadis Software verification under weak memory consistency

Store buffering in C11

Initially x = y = 0.

x.store(1, rix); y.store(1, rix);
print(y.load(rlx)); | print(x.load(rlx));

Can print 00 with the following execution:

x=y=0]
b NS
erX(X71) rf,'l \‘\rf erx(yal)
po¢ ‘,’ \‘ ipo

erx(yu O) erx(X7 0)

Viktor Vafeiadis Software verification under weak memory consistency

Release-acquire synchronization

Initially a = x = 0.

a=>5 while (x.load(acq) == 0);
x.store(1, release); print(a);

One possible execution:

Happens before: hb = (po U sw)™

Viktor Vafeiadis Software verification under weak memory consistency 10

Coherence

Programs with a single shared variable behave as under SC.

x.store(1, rix); x.store(2, rix);
a = x.load(rlx); | b= x.load(rlx);

The outcome a =2 A b =1 is forbidden.

erx(Xa]-) WI']X(X’ 2)
l : >3 . l‘ reads-before

erx(X7 2) erx(X7 1)
» Modification order, , total order of writes to x.
» Reads-before : rb = (rf~1; mo) N (#)
» Coherence : hbU rf, U U rb, is acyclic for all x.

Viktor Vafeiadis Software verification under weak memory consistency

11

Relaxed program logics

» RSL (relaxed separation logic, OOPSLA'13)
» FSL (fenced separation logic, VMCAI'16)
» GPS (ghosts & protocols, OOPSLA'14, PLDI'15)

Separation logic

Key concept of ownership :
» Resourceful reading of Hoare triples.

{Pyci{a} |

» To access a non-atomic location, you must own it:

{x—=v}xx{t.t=vAx— v}
{x—=vlxx=V; {x—V}

» Disjoint parallelism:

1P} G{Q} {P} G {Q}
{Pl * Pz} C1||C2 {Q1 * Qz}

Viktor Vafeiadis Software verification under weak memory consistency 13

Rules for release/acquire accesses

Ownership transfer by rel-acq synchronizations.
» Atomic allocation ~~ pick loc. invariant Q.

{Q(1)} x = alloc(v); {Wo(x) * Ro(x)}
» Release write ~~ give away permissions.
{9(v) *x Wg(x)} x.store(v, rel); {Wqo(x)}

» Acquire read ~~ gain permissions.

{Ro(x)} t = x.load(acq); {Q(t) * Rgje:—emp](X)}

Viktor Vafeiadis Software verification under weak memory consistency

14

Release-acquire synchronization: message passing

Initially a = x = 0. Let J(v) £ v =0V &a 5.

{&a — 0% W,(x)} {R,(x)}

a=y>5; while (x.load(acq) == 0);
{&a—5xW,(x)} | {&a+— 5}

x.store(release, 1); print(a);

{W,(x)} {&a — 5}

PL consequences:
Ownership transfer works!

Viktor Vafeiadis Software verification under weak memory consistency 15

Relaxed accesses

Basically, disallow ownership transfer.
» Relaxed reads:

{Ro(x)} t := x.load(rlx) {Rg(x) A (Q(t) # false)}
» Relaxed writes:

Q(v) =emp
{Wqg(x)} x.store(v, rix) {Wg(x)}

‘ Unsound because of dependency cycles! ‘

Viktor Vafeiadis Software verification under weak memory consistency 16

Dependency cycles

Initially x = y = 0.

if (x.load(rix) ==1) | if (y.load(rlx) ==1)
y.store(1, rix); x.store(1, rix);

C11 allows the outcome x =y = 1.

Justification:
erx(Xa]-) erx(yu 1)
i -7 i Relaxed accesses
ST T don’t synchronize
erx(_y7 1) erx (Xa

Viktor Vafeiadis Software verification under weak memory consistency 17

Dependency cycles

Initially x = y = 0.

if (x.load(rlx) ==1) || if (y.load(rlx) == 1)
y.store(1, rix); x.store(1, rix);

C11 allows the outcome x =y = 1.

What goes wrong:
Non-relational invariants are unsound.

x=0Ay=0

The DRF-property does not hold.

Viktor Vafeiadis Software verification under weak memory consistency 17

Dependency cycles

Initially x = y = 0.

if (x.load(rlx) ==1) || if (y.load(rlx) == 1)
y.store(1, rix); x.store(1, rlx);

C11 allows the outcome x = y = 1.

How to fix this:
Don’t use relaxed writes
\
Strengthen the model

Viktor Vafeiadis Software verification under weak memory consistency 17

Incorrect message passing

int a; atomic_.int x = 0;
a=>5; if (x.load(rix) # 0){

x.store(1, rix); print(a); }

Viktor Vafeiadis Software verification under weak memory consistency 18

Message passing with C11 memory fences

int a; atomic_.int x = 0;

a=>5; if (x.load(rix) # 0){
fence(release); fence(acq);
x.store(1, rix); print(a); }

Wia(a, 5) Rux(x, 1)
l \\\\ /’, l

Frcl

b

- '
erX(X,]-) Rna(a,5)

Viktor Vafeiadis Software verification under weak memory consistency

18

Reasoning about fences

» Introduce two ‘modalities’ in the logic

{P} fence(release) { AP}
{Wo(x) * AQ(v)} x.store(v, rix) {Wg(x)}
{Ro(x)} t := x.load(rlx) {Roje:=emp)(X) * VO(t)}

{V P} fence(acq) {P}

Viktor Vafeiadis Software verification under weak memory consistency 19

Reasoning about fences

Let Q(v) £ v =0V &a+ 5.

{&a — 0% Wg(x) * Rg(x)}

{&a — 0% Wg(x)} = x.load(rlx);
a=y>5; {V(t=0V&a—5)}
{&a — 5« Wy(x)} if (t #0)
fence(release); fence(acq);
{A\(&a > 5) %« Wg(x)} {&a +— 5}
x.store(1, rix); print(a); }

{T} {T}

Viktor Vafeiadis Software verification under weak memory consistency 20

GPS: A better logic for release-acquire

Three key features:
» Location protocols

» Ghost state/tokens

» Escrows for ownership transfer

Example (Racy message passing)

Initially, x =y = 0.

x.store(1, rix);
y.store(1, rel);

x.store(1, rlx);
y.store(1, rel);

t = y.load(acq);
t' = x.load(rlx);

Cannot get t =1At' =0.

Viktor Vafeiadis Software verification under weak memory consistency 21

Racy message passing in GPS

Protocol for x: | A: x =0 B: x=1

Protocol for y: | C: y =0 - D:y=1Axst>B

Acquire reads gain knowledge, not ownership.

{x.st > AAy.st>C} ST A

S5t > y.st > t = y.load(acq);

x.store(1, rix); t=0Ax.st>A

{x.st >BAy.st>C} v_lk—le;l“>B

y.store(1, rel); # _Ioad(r/.)' a
B oD = X. x);

best=BAyst =D} | 0V =T ar — 1))

Viktor Vafeiadis Software verification under weak memory consistency 22

GPS ghosts and escrows

To gain ownership, we use ghost state & escrows.

P x P = false
Q = Esc(P, Q) Esc(P,Q)*x P = @

Example (Message passing using escrows)

Invariant for x: x =0V Esc(K, &a — 7).
{&a— 0} {K}
a="T, if (x.load(acq) # 0)
{&a— 7} {K * Esc(K,&a—T7)}
{Esc(K,&a—T7)} {&a— T}
x.store(1, rel); print(a);

Viktor Vafeiadis Software verification under weak memory consistency

23

Avoiding weak memory reasoning

» DRF theorem
» Enough fences to guarantee SC

Data race freedom

Theorem (DRF)

If [Prg]lsc contains no data races on non-SC accesses, then
[Prelcn = [Pre]sc.

» Requires strengthened semantics for relaxed accesses.
» Program logics that disallow data races are trivially sound.
» What about racy programs?

Viktor Vafeiadis Software verification under weak memory consistency 25

C11's SC-fences

» The strongest fence instruction provided by C11 is SC-fence.
» Can also be used to regain sequential consistency.

Example (Store Buffering)

[x =y =0]
x=y=0 PR
N 5 WI‘ X 9]. :I\ Wr 52 , 1
x.store(1, rix); || y.store(1, rix); 1 (X‘) o 41 (v,1)
a:y.load(r/x); b:X-|Oad(r/x); \ ‘;/,/.::::‘.‘:..:\‘.\~\‘ \

Viktor Vafeiadis Software verification under weak memory consistency

26

C11's SC-fences

» The strongest fence instruction provided by C11 is SC-fence.

» Can also be used to regain sequential consistency.

Example (Store Buffering)

[x=y=0]
o Wk (x, 1) + Wee(y, 1
x.store(1, rix); | y.store(1, rix); ! 5X‘) n 41 5)’)
fence(sc); fenCe(SC); F . lII \\\ B F
a=y.load(rlx); | b=x.load(rlx); fc ey :c

erx(ya O) erx(X7 O)
Inconsistent: (F.. x F..) N (po?; (hbU rf U mo U rb); po?)

is cyclic.

Viktor Vafeiadis

v

Software verification under weak memory consistency

26

SC-fences are overly weak

Initially, x =y = 0.

+ store a = x.load(rlx);

(L) |~y load(rix):

¢ = y.load(rlx); y store

d = xJoad(rlx); | L)

The outcome a=c=1Ab=d =0 is allowed.

[x=y=0]
PR

’

7

erX(X, 1) "r;’ erx(X7 1) !

rbX

Viktor Vafeiadis

\\\ erx(y7 1) 4;)(_ - erx(_y7 1)

\ ‘
rf
\\
X

Ru(x,0)

T ORUUTIIRPIL, rby

Software verification under weak memory consistency

27

SC-fences are overly weak

Initially, x =y = 0.

a = x.load(rlx); || ¢ = y.load(rlx);
fence(sc); fence(sc);

b = y.load(rlx); || d = x.load(rlx);
The outcome a=c=1Ab=d =0 is allowed.

X.store
(1, rix);

y.store
(1, rix);

moy [X —y= 0] mo
& NN %
erx(Xa 1) e erx(Xa 1) . ' erx(y7 1) - erx()’a 1)
rf ’ \ 1
|3 + Ilf f\\ + ‘
3 4
..~,......erx(y’ 0) erX(X7 0)
e)

(Fse x Foo) N (po?; (hb U rf U mo U rb); po®) is acyclic.

Viktor Vafeiadis Software verification under weak memory consistency

27

Our suggestion

» Model SC-fences as release-acquire atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

.

erX(X7 1) R erx(Xa 1) I’“‘\ erx(y7 1) - rlx(_y7 1)

S ' S : 4
‘ Uacq—rel (f},’, \‘\pacq-rel (f) :
A\ 1 PN
....~......erx(y, O) erx(X> 0)
P e it b,

Viktor Vafeiadis Software verification under weak memory consistency 28

Our suggestion

» Model SC-fences as release-acquire atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

~
Xl
<
== ||
/0

/ n
erx(X,].) R erx(Xa 1) n erx(}’)]-) - rlX(_y7 1)

erx(_ya 0) erx(X> 0)

Phy et }‘by

Viktor Vafeiadis Software verification under weak memory consistency 28

Our suggestion

» Model SC-fences as release-acquire atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

erx(x 1) o> erx X / \rlx - rlX(_y7 1)
!-

4

acq—rel ’" ---m Uacq—rel
vox NV
'~........R,r]x(_y, 0) RI‘IX(X7 0)

Viktor Vafeiadis Software verification under weak memory consistency

28

Our suggestion

» Model SC-fences as release-acquire atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

erX(X7 1) o> erx(xa 1) I’“‘\ erX(.y7 1) <o FlX(.y7 1)
;‘ * 1\ + 4
‘ Uacq—rel(f),’"l' - '\"\Uacq-rel(f)
vox NV
" Rux(y, 0) Rux(x, 0)

by, e }’by
Inconsistent: R,<(x,0) reads an overwritten value.

Viktor Vafeiadis Software verification under weak memory consistency 28

Basic reduction theorem

If in a program P,
» all shared accesses are atomic (relaxed or stronger), and

» there is a fence between every two shared accesses to
different shared variables,

then P has only SC behaviors.

Viktor Vafeiadis Software verification under weak memory consistency

29

Advanced reduction theorem

» For x86-TSO, it suffices to have a
fence between every racy write and X = e
subsequent racy read. fence();
ri=y

» Generally, C11 requires more fences.

Theorem (Advanced reduction to SC, simplified)

If in a client-server program P,
» all shared accesses are release/acquire, and
» there is a fence between every store to a shared location
and subsequent shared location load,

then P has only SC behaviors.

Viktor Vafeiadis Software verification under weak memory consistency

30

Applying the theorem to RCU

rcu_quiescent_state():
rc[get_my_tid()] := gc;
fence()

rcu_thread_offline():
rc[get_my_tid()] :=0;
fence()

rcu_thread_online():
rcl[get_my_tid()] := gc;
fence()

Viktor Vafeiadis

synchronize_rcu() :
gc:=gc+ 1,
fence();
fori:=1toNdo
wait (rc[i] € {0,gc})

Software verification under weak memory consistency

31

Conclusion

Reasoning about weak memory is
challenging and often unavoidable.

Two approaches:

» Use relaxed program logics to reason about weak memory.

» Use reduction theorems to avoid such reasoning.

Relaxed program logics also useful
for understanding weak memory.

Viktor Vafeiadis Software verification under weak memory consistency

32

