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Sequential consistency

Sequential consistency (SC):
I The standard model for concurrency.
I Interleave each thread’s atomic accesses.
I Almost all verification work assumes it.

Initially, x = y = 0.

x := 1;
a := y

y := 1;
b := x

In SC, this program cannot return a = b = 0.
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Store buffering in x86-TSO

cpu 1
write

write-back

read

cpu n

. . .

. . .

Memory

Initially, x = y = 0.

x := 1;
a := y ;

y := 1;
b := x ;

This program can return a = b = 0.
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Owicki-Gries method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering
{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference
R ∧ P ` R{u/x} for every:
I assertion R in the proof outline of one thread
I assignment x := u with precondition P in the proof
outline of the other thread
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Standard OG is unsound for WM

{
a 6= 0

}

{
a 6= 0

}

x := 1;

{
x 6= 0

}

a := y

{
x 6= 0

}

{
>

}

y := 1;

{
y 6= 0

}

b := x

{
y 6= 0 ∧ (a 6= 0 ∨ b = x)

}

{
a 6= 0 ∨ b 6= 0

}

To regain soundness, strengthen the non-inference check.
=⇒ OGRA: Owicki-Gries for release-acquire (ICALP’15)
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Standard OG is unsound for WM

{
a 6= 0

}{
a 6= 0

}
x := 1;{
x 6= 0

}
a := y{
x 6= 0

}

{
>

}
y := 1;{
y 6= 0

}
b := x{
y 6= 0 ∧ (a 6= 0 ∨ b = x)

}{
a 6= 0 ∨ b 6= 0

}

To regain soundness, strengthen the non-inference check.
=⇒ OGRA: Owicki-Gries for release-acquire (ICALP’15)
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Standard OG is unsound for WM

{
a 6= 0

}{
a 6= 0

}
x := 1;{
x 6= 0

}
a := y{
x 6= 0

}

{
>

}
y := 1;{
y 6= 0

}
b := x{
y 6= 0 ∧ (a 6= 0 ∨ b = x)
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a 6= 0 ∨ b 6= 0

}
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=⇒ OGRA: Owicki-Gries for release-acquire (ICALP’15)
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Outline

I Introduction to the C11 weak memory model
I Release-acquire synchronization
I Per-location coherence

I Reasoning about WMM using program logics
I RSL (relaxed separation logic)
I FSL (fenced separation logic)
I GPS (ghosts, protocols and separation)

I Avoiding to reason about WMM
I Use reduction theorems
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The C11 memory model: Atomics

Two types of locations

Ordinary
(Non-Atomic) Atomic

Races are errors
Welcome to the
expert mode
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The C11 memory model: Hierarchy of atomics

A spectrum of atomic accesses:

Relaxed
no fence

Release write
no fence (x86); lwsync (PPC)

Acquire read
no fence (x86); isync (PPC)

Seq. consistent
full memory fence

Explicit primitives for fences
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Store buffering in C11

Initially x = y = 0.

x .store(1, rlx);
print(y .load(rlx));

y .store(1, rlx);
print(x .load(rlx));

Can print 00 with the following execution:

[x = y = 0]

Wrlx(x , 1)

Rrlx(y , 0)

Wrlx(y , 1)

Rrlx(x , 0)

popo

po po
rf rf
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Release-acquire synchronization

Initially a = x = 0.

a = 5;
x .store(1, release);

while (x .load(acq) == 0);
print(a);

One possible execution:

Wna(a, 5)

Wrel(x , 1)

Racq(x , 0)

Racq(x , 1)

Rna(a, 5)

Wna(a, 0) Wna(x , 0)

sw

Happens before: hb = (po ∪ sw)+
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Coherence

Programs with a single shared variable behave as under SC.

x .store(1, rlx);
a = x .load(rlx);

x .store(2, rlx);
b = x .load(rlx);

The outcome a = 2 ∧ b = 1 is forbidden.

Wrlx(x , 1)

Rrlx(x , 2)

Wrlx(x , 2)

Rrlx(x , 1)

mo

reads-before

I Modification order, mox , total order of writes to x .
I Reads-before : rb , (rf −1;mo) ∩ (6=)
I Coherence : hb ∪ rfx ∪mox ∪ rbx is acyclic for all x .
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Relaxed program logics

I RSL (relaxed separation logic, OOPSLA’13)
I FSL (fenced separation logic, VMCAI’16)
I GPS (ghosts & protocols, OOPSLA’14, PLDI’15)



Separation logic

Key concept of ownership :
I Resourceful reading of Hoare triples.

{P} C {Q}

I To access a non-atomic location, you must own it:

{x 7→ v} ∗x {t. t = v ∧ x 7→ v}
{x 7→ v} ∗x = v ′; {x 7→ v ′}

I Disjoint parallelism:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}
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Rules for release/acquire accesses

Ownership transfer by rel-acq synchronizations.
I Atomic allocation  pick loc. invariant Q.

{Q(v)} x = alloc(v); {WQ(x) ∗ RQ(x)}

I Release write  give away permissions.

{Q(v) ∗WQ(x)} x .store(v , rel); {WQ(x)}

I Acquire read  gain permissions.

{RQ(x)} t = x .load(acq); {Q(t) ∗ RQ[t:=emp](x)}
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Release-acquire synchronization: message passing

Initially a = x = 0. Let J(v) , v = 0 ∨ &a 7→ 5.

{&a 7→ 0 ∗WJ(x)}
a = 5;
{&a 7→ 5 ∗WJ(x)}
x .store(release, 1);
{WJ(x)}

{RJ(x)}
while (x .load(acq) == 0);
{&a 7→ 5}
print(a);
{&a 7→ 5}

PL consequences:
Ownership transfer works!
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Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:

{RQ(x)} t := x .load(rlx) {RQ(x) ∧ (Q(t) 6≡ false)}

I Relaxed writes:

Q(v) = emp
{WQ(x)} x .store(v , rlx) {WQ(x)}

Unsound because of dependency cycles!
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Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification:
Rrlx(x , 1)

Wrlx(y , 1)

Rrlx(y , 1)

Wrlx(x , 1)

Relaxed accesses
don’t synchronize
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Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

What goes wrong:
Non-relational invariants are unsound.

x = 0 ∧ y = 0

The DRF-property does not hold.
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Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

How to fix this:
Don’t use relaxed writes

∨
Strengthen the model
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Incorrect message passing

int a; atomic_int x = 0; a = 5; if (x .load(rlx) 6= 0){

fence(release); fence(acq);

x .store(1, rlx); print(a); }



Wna(a, 5)

Frel

Wrlx(x , 1)

Rrlx(x , 1)

Facq

Rna(a, ?)

race
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Message passing with C11 memory fences

int a; atomic_int x = 0; a = 5; if (x .load(rlx) 6= 0){
fence(release); fence(acq);
x .store(1, rlx); print(a); }



Wna(a, 5)

Frel

Wrlx(x , 1)

Rrlx(x , 1)

Facq

Rna(a, 5)

sw
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Reasoning about fences

I Introduce two ‘modalities’ in the logic

{P} fence(release) {4P}

{WQ(x) ∗ 4Q(v)} x .store(v , rlx) {WQ(x)}

{RQ(x)} t := x .load(rlx) {RQ[t:=emp](x) ∗ 5Q(t)}

{5P} fence(acq) {P}
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Reasoning about fences

Let Q(v) , v = 0 ∨ &a 7→ 5.

{&a 7→ 0 ∗WQ(x) ∗ RQ(x)}

{&a 7→ 0 ∗WQ(x)}
a = 5;
{&a 7→ 5 ∗WQ(x)}
fence(release);
{4(&a 7→ 5) ∗WQ(x)}
x .store(1, rlx);
{>}

t = x .load(rlx);
{5(t = 0 ∨ &a 7→ 5)}
if (t 6= 0)

fence(acq);
{&a 7→ 5}
print(a); }

{>}


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GPS: A better logic for release-acquire

Three key features:
I Location protocols

I Ghost state/tokens

I Escrows for ownership transfer

Example (Racy message passing)
Initially, x = y = 0.

x .store(1, rlx);
y .store(1, rel);

x .store(1, rlx);
y .store(1, rel);

t = y .load(acq);
t ′ = x .load(rlx);

Cannot get t = 1 ∧ t ′ = 0.
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Racy message passing in GPS

Protocol for x : A: x = 0 B: x = 1

Protocol for y : C: y = 0 D: y = 1 ∧ x .st ≥ B

Acquire reads gain knowledge, not ownership.

{x .st ≥ A ∧ y .st ≥ C}
x .store(1, rlx);
{x .st ≥ B ∧ y .st ≥ C}
y .store(1, rel);
{x .st ≥ B ∧ y .st ≥ D}

{x .st ≥ A ∧ y .st ≥ C}
t = y .load(acq);{
t = 0 ∧ x .st ≥ A
∨ t = 1 ∧ x .st ≥ B

}
t ′ = x .load(rlx);
{t = 0 ∨ (t = 1 ∧ t ′ = 1)}
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GPS ghosts and escrows

To gain ownership, we use ghost state & escrows.

P ∗ P ⇒ false
Q V Esc(P,Q) Esc(P,Q) ∗ P V Q

Example (Message passing using escrows)
Invariant for x : x = 0 ∨ Esc(K , &a 7→ 7).

{&a 7→ 0}
a = 7;
{&a 7→ 7}
{Esc(K , &a 7→ 7)}
x .store(1, rel);

{K}
if (x .load(acq) 6= 0)
{K ∗ Esc(K , &a 7→ 7)}
{&a 7→ 7}
print(a);
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Avoiding weak memory reasoning

I DRF theorem
I Enough fences to guarantee SC



Data race freedom

Theorem (DRF)
If JPrgKSC contains no data races on non-SC accesses, then
JPrgKC11 = JPrgKSC.

I Requires strengthened semantics for relaxed accesses.
I Program logics that disallow data races are trivially sound.
I What about racy programs?
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C11’s SC-fences

I The strongest fence instruction provided by C11 is SC-fence.
I Can also be used to regain sequential consistency.

Example (Store Buffering)

x = y = 0
x .store(1, rlx);

a=y .load(rlx);

y .store(1, rlx);

b=x .load(rlx);

[x = y = 0]

Wrlx(x , 1)

Fsc

Rrlx(y , 0)

Wrlx(y , 1)

Fsc

Rrlx(x , 0)

Inconsistent: (Fsc × Fsc) ∩ (po?; (hb ∪ rf ∪mo ∪ rb); po?)
is cyclic.
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C11’s SC-fences

I The strongest fence instruction provided by C11 is SC-fence.
I Can also be used to regain sequential consistency.

Example (Store Buffering)

x = y = 0
x .store(1, rlx);
fence(sc);
a=y .load(rlx);

y .store(1, rlx);
fence(sc);
b=x .load(rlx);

[x = y = 0]

Wrlx(x , 1)

Fsc

Rrlx(y , 0)

Wrlx(y , 1)

Fsc

Rrlx(x , 0)

Inconsistent: (Fsc × Fsc) ∩ (po?; (hb ∪ rf ∪mo ∪ rb); po?)
is cyclic.
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SC-fences are overly weak

Initially, x = y = 0.

x .store
(1, rlx);

a = x .load(rlx);

fence(sc);

b = y .load(rlx);

c = y .load(rlx);

fence(sc);

d = x .load(rlx);

y .store
(1, rlx);

The outcome a = c = 1 ∧ b = d = 0 is allowed.

[x = y = 0]

Wrlx(x , 1) Rrlx(x , 1)

Fsc

Rrlx(y , 0)

Rrlx(y , 1)

Fsc

Rrlx(x , 0)

Wrlx(y , 1)

rf rf
rf rf

mox moy

rbyrbx

(Fsc × Fsc) ∩ (po?; (hb ∪ rf ∪mo ∪ rb); po?) is acyclic.
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SC-fences are overly weak

Initially, x = y = 0.

x .store
(1, rlx);

a = x .load(rlx);
fence(sc);
b = y .load(rlx);

c = y .load(rlx);
fence(sc);
d = x .load(rlx);

y .store
(1, rlx);

The outcome a = c = 1 ∧ b = d = 0 is allowed.

[x = y = 0]

Wrlx(x , 1) Rrlx(x , 1)

Fsc

Rrlx(y , 0)

Rrlx(y , 1)

Fsc

Rrlx(x , 0)

Wrlx(y , 1)

rf rf
rf rf

mox moy

rbyrbx

(Fsc × Fsc) ∩ (po?; (hb ∪ rf ∪mo ∪ rb); po?) is acyclic.
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Our suggestion

I Model SC-fences as release-acquire atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = f = 0]

Wrlx(x , 1) Rrlx(x , 1)

Uacq-rel(f )

Rrlx(y , 0)

Rrlx(y , 1)

Uacq-rel(f )

Rrlx(x , 0)

Wrlx(y , 1)

rbyrbx

Inconsistent: Rrlx(x , 0) reads an overwritten value.
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Basic reduction theorem

Theorem
If in a program P,
I all shared accesses are atomic (relaxed or stronger), and
I there is a fence between every two shared accesses to
different shared variables,

then P has only SC behaviors.
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Advanced reduction theorem

I For x86-TSO, it suffices to have a
fence between every racy write and
subsequent racy read.

I Generally, C11 requires more fences.

x := e;
fence();
r := y

Theorem (Advanced reduction to SC, simplified)
If in a client-server program P,
I all shared accesses are release/acquire, and
I there is a fence between every store to a shared location
and subsequent shared location load,

then P has only SC behaviors.
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Applying the theorem to RCU

rcu_quiescent_state() :
rc[get_my_tid()] := gc;
fence()

rcu_thread_offline() :
rc[get_my_tid()] := 0;
fence()

rcu_thread_online() :
rc[get_my_tid()] := gc;
fence()

synchronize_rcu() :
gc := gc + 1;
fence();
for i := 1 to N do
wait (rc[i] ∈ {0, gc})
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Conclusion

Reasoning about weak memory is
challenging and often unavoidable.

Two approaches:
I Use relaxed program logics to reason about weak memory.
I Use reduction theorems to avoid such reasoning.

Relaxed program logics also useful
for understanding weak memory.
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