Formal reasoning about

the C11 weak memory model
Invited talk @ CPP'15

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

13 January 2015

What is a weak memory model?

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 2/32

What is a weak memory model?

The WMM defines the semantics

of concurrent memory acCcesses.

w < J
‘)
5 i
!

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 2/32

Sequential consistency

Sequential consistency (SC):
» The standard model for concurrency.
» Interleave each thread’s atomic accesses.

» Almost all verification work assumes it.

Initially, X =Y = 0.

X :=1; Y :=1;
a=Y b=X

In SC, this program cannot return a = b = 0.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 3/32

Store buffering in x86-TSO

CcpU1 s CPUnN
‘ lWRITE ‘ l
READ
lWRITE—BACK l
‘ Memory ‘

Initially, X =Y = 0.

X =1, Y :=1;
a=Y b:=X

Allowed outcome: a = b = 0.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 4/32

IRIW: Not just store buffering

Initially, X =Y = 0.

o
|

X =1[|Y:=1 _y

a:= X,

c=Y
d =X
0

Allowed outcome: a=c=1and b=d =

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 5/32

A basic guarantee: coherence

Coherence:

“SC for a single variable”

Initially, X = 0.
a=X; | c:=X,
Forbidden outcome: a=1,b=2,c=2,d = 1.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 6/32

The C11 memory model

Two types of locations: ordinary and atomic

» Races on ordinary accesses ~ error

A spectrum of atomic accesses:
» Seq. consistent ~ full memory fence
» Release writes ~» no fence (x86); lwsync (PPC)
» Acquire reads ~ no fence (x86); isync (PPC)
» Consume reads ~+ no fence, but preserve deps

» Relaxed ~» no fence

Explicit primitives for fences

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 7/32

Relaxed behaviour: store buffering

Initially x =y = 0.

x.store(1, rlx); y.store(1, rix);
t1 = y.load(rlx); | t, = x.load(rlx);

This can return t; = t, = 0.

Justification:

T) Behaviour observed
2 on x86,/Power/ARM

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 8/32

Getting rid of the SB behaviour

Initially x =y = 0.

x.store(1, sc); y.store(1, sc);
t1 = y.load(sc); | t» = x.load(sc);

This cannot return t; = t, = 0.

Justification:
/N /N
WSC(X7]-) /I WSC(ya]-) WSC(X7]-) ‘\ WSC(.y7 1)
‘1 ;;‘:";r 11 *y VAar"":.’\\ Vy
Rsc(ya O) RSC(Xa 1) Rsc(_y7 1) Rsc(xa 0)

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 9/32

Release-acquire synchronization: message passing

Initially a = x = 0.

a=>5;
x.store(1, release);

This will always print 5.

while (x.load(acqg) == 0);
print(a);

Justification:
Wia(a, 5)

Release-acquire
synchronization

Viktor Vafeiadis

Formal reasoning about the C11 weak memory model 10/32

Relaxed accesses don't synchronize
Initially a = x = 0.

a=>5 while (x.load(rlx) == 0);
x.store(1, rix); || print(a);

The program is racy ~» undefined semantics.

Justification:

> Relaxed accesses
don’t synchronize

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 11/32

Dependency cycles

Initially x =y = 0.

if (x.load(rlx) == 1)
y.store(1, rix);

if (y.load(rlx) == 1)
x.store(1, rix);

C11 allows the outcome x =y = 1.

Justification:
erx(x7 1)

~ v
~_ -
»
PR
- ~

- ~

erx (.y>)

erx(.y7 1)

erx (Xa 1)

Relaxed accesses
don’t synchronize

Viktor Vafeiadis

Formal reasoning about the C11 weak memory model 12/32

The C11 weak memory model (simplified)

isready,, (a) & 3X, 0. lab(a) € {Rx(£,v), Cx (¢, v,0")}

iswriter,, (a) % 3X,v'. lab(a) € {Wx (£,v), Cx (£,v',v)} | iswrite(a)

sameThread(a, b) % tid(a) = tid(b)

def

)
)
isfence(a) < lab(a) € {Faco, Fre}
)
)
)

isread;(a) 2 Jv. isready,, (a)

isaccess(a) % isread(a) V iswrite(a)

isrmw(a) = isread(a) A iswrite(a)

isread(a) ' 3¢. isread;(a)

iswrite(a) & 3¢. iswrite, (a)
isNA(a) % mode(a) = NA
isSC(a) o mode(a) = sC

isRel(a) & mode(a) 2 REL

def . .

= Ju. iswrites,, (a)
def

def

def

rsElem(a, b) = sameThread(a, b) V isrmw(b) isAcq(a) = mode(a) J ACQ
rseq(a,b) & a = bV rsElem(a, b) A mo(a, b) A (¥e. mo(a, ¢) A mo(c, b) = rsElem(a, c))
(a,8) & 30, 4. "sameThread(a,) AisRel(a) A isAcq(b) A rseqc 1f (4))
SWG0) =364\ (4 = eV isfence(a) A sb™ (a,¢) A (d = b V isfence(d) A sb™ (d, b))

hb % (sb U sw U asw)t

def isaccess(a) A isaccess(b) A loc(a) = loc(b) A a #
Aiswrite(a) V iswrite(b)) A (isNA(a) V isNA(B)) A ~(hb(a, b) V hb(b, a))

Racy = Ja, b.

Observation &' {(a,b) | mo(a,b) A loc(a) = loc(b) = world}

Va,b. sh(a,b) = tid(a) = tid(b) (ConsSB)
order(iswrite, mo) A V0. total(iswrite;, mo) (ConsMO)

order(isSC, sc) A total(isSC, sc)
A (hb U mo) A (isSC x isSC) C se (ConsSC)

Vb, (e rf(b) = ¢) <=

3¢, . iswrites(a) A isready (b) A hb(a,b) ~ (ConsRFdom)
Va,b. rf(b) = a == 3, v. iswrites,,(a) Aisread,,(b) (ConsRF)
Va,b. rf(b) = a A (isNA(a) V isNA(b)) = hb(a,b) (ConsRFna)

Ya,b. rf(b) =aNisSC(b) =
imm(scr, a, b) V =isSC(a) A Bz. hb(a, z) A imm(scr, z, b
4 (#a. R(a,a)) A (R* CR) A (RC P x P)

def

) (SCReads)

where order(P, R)
total(P, R)

Viktor Vafeiadis

(Va,b. P(a) A P(b) = a=bV R(a,b)V R(b,a))

b

Fa. hb(a,a) (IrrHB)

Ba,b. rf(b) = a A hb(b,a) (ConsRFhb)
Fa,b. hb(a,b) A mo(b,a) (CohWW)
Ba,b. hb(a,b) A mo(rf(b), rf(a)) (CohRR)
a,b. hb(a,b) A mo(rf(b),a) (CohWR)
fa,b. hb(a,b) A mo(b, 7f(a)) (CohRW)
Va,b. isrmw(a) A rf(a) =b = (AtRMW)

imm(mo,b,a

Va,b, 0. lab(a) = lab(b) = A(f) = a=b (ConsAlloc)

imm(R, a,b) & R(a,b) A fie. R(a, ¢) A R(c,b)
scr(a, b) oo sc(a, b) A iswriteioe(s) (a)

Formal reasoning about the C11 weak memory model

13/32

The C11 weak memory model (simplified)

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 14/32

The C11 weak memory model (simplified)

Use good tools:

» Program logics

» Interactive theorem

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 14/32

Two research directions

Verify compilation of C11:

» Compilation of the atomics to hardware
(Batty et al'11, Sarkar et al.'12)

» Source-to-source transformations (see POPL'15)

» An actual compiler (future work)

Verify concurrent C11 programs:
» Using program logics
» By reduction to SC (robustness)

7 - . .
» Pon't-verify—fust-find-bugs:

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 15/32

When should we care about relaxed memory?

C11 satisfies the DRF-SC property:

Theorem (DRF-SC)

If [Prg]sc contains no data races and no weak
atomics, then [Prg]ci1 = [Prg]sc.

» Program logics that disallow data races are
trivially sound for the NA+SC fragment of C11.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 17/32

Separation logic

Key concept of ownership :

» Resourceful reading of Hoare triples.

{P} C {Q} |

» Disjoint parallelism:

P G Q) {P2) G {Q)

{Pl * Pz} GllG {Ql * Qz}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 18/32

Separation logic rules for non-atomic accesses

» Allocation gives you permission to access x.
{emp} x = alloc(); {x+— _}
» To access a normal location, you must own it:

{va}t:*x; {X|—>v/\t:v}
{xr—>v} xx = v/ {xr—>v’}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 19/32

Reasoning about SC accesses

» Model SC accesses as non-atomic accesses
inside a CCR.

» Use concurrent separation logic (CSL)
JH{P} C{Q}
» Rule for SC-atomic reads:

emp - {J+ P} t =x; {J+Q}
- {p} t = x.load(sc); {Q}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 20/32

Rules for release/acquire accesses
Relaxed separation logic [OOPSLA'13]

Ownership transfer by rel-acq synchronizations.

» Atomic allocation ~» pick loc. invariant Q.

{O(v)} x =alloc(v); {Wo(x)* Ro(x)}

» Release write ~» give away permissions.
{O(v) * Wo(x)} x.store(v, rel); {Wo(x)}

» Acquire read ~» gain permissions.

{Ro(x)} t = x.load(acq); {QO(t) * Ropr—emp) (x) }

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 21/32

Release-acquire synchronization: message passing

Initially a = x = 0. Let J(v) % v =0V &a s 5.

{&a — 0 % WJ(X)}
a==>;

{&a — b x WJ(X)}
x.store(release, 1);

{W,(x)}

{Ry(x)}

while (x.load(acq) == 0);
{&a > 5}

print(a);

{&a > 5}

PL consequences:
Ownership transfer works!

Viktor Vafeiadis

Formal reasoning about the C11 weak memory model 22/32

Relaxed accesses

Basically, disallow ownership transfer.

» Relaxed reads:

{Ro(x)} t == x.load(rlx) {Ro(x)}
» Relaxed writes:

Q(v) =emp
{Wo(x)} x.store(v, rix) {Wqo(x)}

Unsound because of dependency cycles!

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 23/32

Dependency cycles

Initially x =y = 0.

if (x.load(rlx) == 1)
y.store(1, rlx);

if (y.load(rlx) == 1)
x.store(1, rlx);

C11 allows the outcome x =y = 1.

Justification:
erX(X7 1) erx(y7 1)

DE

~
erx(y> 1) erx(x7 1)

Relaxed accesses
don’t synchronize

Viktor Vafeiadis

Formal reasoning about the C11 weak memory model 24/32

Dependency cycles

Initially x =y = 0.

if (y.load(rlx) == 1)

x.store(1, rix);

if (x.load(rlx) == 1)
y.store(1, rix);

C11 allows the outcome x =y = 1.

What goes wrong:
Non-relational invariants are unsound.

x=0ANy=0

The DRF-property does not hold.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 24/32

Dependency cycles

Initially x =y = 0.

if (x. /oad(rlx
y.store(1, rlx);

f (y.load(rlx) == 1)
x.store(1, rlx)

C11 allows the outcome x =y = 1.

How to fix this:
Don't use relaxed writes
V
Strengthen the model

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 24/32

Incorrect message passing

int a; atomic_int x = 0;
if (x.load(rlx) # 0){
print(a); }

a==>;
x.store(1, rlx);

Wha(x,0)
/ \

Wna(37 5) R erx(xa 1)
y | ZecT !
erX(X7 1) race = Rna(37 5)
v v

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 25/32

Message passing with C11 memory fences

int a; atomic_int x = 0;

a=>; if (x.load(rlx) # 0){
fence(release); fence(acq);
x.store(1, rlx); print(a); }
Wha(x,0)
/ \
Wna(a, 5) erx(X7 1)
oS I
Fence, ~ o S>W/ Fence,.
¢ - - o NS ¢
erx(X, 1) Rna(aa 5)
\ |

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 25/32

Reasoning about fences

Joint work with Marko Doko. In progress.

» Introduce two ‘modalities’ in the logic

{P} fence(release) { AP}
{VP} fence(acq) {P}
{Ro(x)} t == x.load(rlx) {Rj—emp)(x) * VO(t)}

{Wo(x)* AO(v)} x.store(v, rix) {Wo(x)}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 26/32

Reasoning about fences

Let Q(v)défv:O\/&a»—>5.
{&a — 0% Wo(x) * RQ(X)}

{&a— 0% Wg(x)} t = x.load(rlx);
a=>; {V(t=0V&a+s 5)}
{&a 5% Wo(x)} if (t #0)
fence(release); fence(acq);
{A(&a— 5) « Wo(x)} {&a 5}
x.store(1, rlx); print(a); }
{true} {true}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 27/32

Release-consume synchronization

Initially a = x = 0.

a=>5: t = x.load(consume);
x.store(release, &a); || if (t # 0) print(xt);

This program cannot crash nor print 0.

Justification:
Wia(a, 5) Reon(X, &a)

o<l

Wia(x, &a) Rya(a, b)

Release-consume
synchronization

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 28/32

Release-consume synchronization

Initially a = x = 0. Let J(t) % t =0V t — 5.

{&a > 0% W, (x)} {
a=>5; t = x.load(consume);
{&a 5% W, (x)} {Vt(t:O\/tr—>5)}
x.store(release, &a); | if (t # 0) print(xt);

This program cannot crash nor print 0.

PL consequences:
Needs funny modality, but otherwise OK.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 28/32

Proposed rules for consume accesses

{RQ(X)} t := x.load(cons) {RQ[t::emp](X) * Vi Q(t)}

1P} C{Qy)

C is basic command mentioning t

{V: P} C{V,Q}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 29/32

Mutual exclusion locks

Let Q,(v) ¥ (v=0Aemp)V(v=1A1)
Lock(x, J) & W, (x) * RS (x)

new-lock() & lock(x) =
{2 {Lock(x,J)}
res = alloc(1) repeat
{Lock(res, J)} {LOCk x,J)}

def = x.CAS(1,0, acq, rix)
unlock(x) = 0 A emp
{J % Lock(x, J)} Lock(x, J)* (7, P
x.store(1, rel) until y # 0
{Lock(X,J)} {_j « Lock(x,J)}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 30/32

Summary of program logic features

Access kind | Program logic features
non-atomic | normal SL
SC-atomic | normal CSL invariants
release/ single-location invariants
acquire unidirectional ownership transfer
relaxed send only AP; receive VP
consume | receive only VP

Fence kind | Program logic effect
release introduces AP
acquire eliminates VP and VP

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 31/32

Slogan

Relaxed program logics
are good tools for
understanding
weak memory models

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 32/32

