
Formal reasoning about
the C11 weak memory model

Invited talk @ CPP’15

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

13 January 2015

What is a weak memory model?

The WMM defines the semantics
of concurrent memory accesses.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 2/32

What is a weak memory model?

The WMM defines the semantics
of concurrent memory accesses.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 2/32

Sequential consistency

Sequential consistency (SC):
I The standard model for concurrency.
I Interleave each thread’s atomic accesses.
I Almost all verification work assumes it.

Initially, X = Y = 0.

X := 1;
a := Y

Y := 1;
b := X

In SC, this program cannot return a = b = 0.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 3/32

Store buffering in x86-TSO

cpu 1
write

write-back

read

cpu n

. . .

. . .

Memory

Initially, X = Y = 0.

X := 1;
a := Y

Y := 1;
b := X

Allowed outcome: a = b = 0.
Viktor Vafeiadis Formal reasoning about the C11 weak memory model 4/32

IRIW: Not just store buffering

Initially, X = Y = 0.

X := 1 Y := 1 a := X ;
b := Y

c := Y ;
d := X

Allowed outcome: a = c = 1 and b = d = 0.

X := 1

a := X
b := Y

Y := 1

c := Y
d := X

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 5/32

A basic guarantee: coherence

Coherence:
“SC for a single variable”

Initially, X = 0.

X := 1 X := 2 a := X ;
b := X

c := X ;
d := X

Forbidden outcome: a = 1, b = 2, c = 2, d = 1.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 6/32

The C11 memory model

Two types of locations: ordinary and atomic
I Races on ordinary accesses ; error

A spectrum of atomic accesses:
I Seq. consistent ; full memory fence
I Release writes ; no fence (x86); lwsync (PPC)
I Acquire reads ; no fence (x86); isync (PPC)
I Consume reads ; no fence, but preserve deps
I Relaxed ; no fence

Explicit primitives for fences

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 7/32

Relaxed behaviour: store buffering

Initially x = y = 0.

x .store(1, rlx);
t1 = y .load(rlx);

y .store(1, rlx);
t2 = x .load(rlx);

This can return t1 = t2 = 0.
Justification:

[x = y = 0]

Wrlx(x , 1)

Rrlx(y , 0)

Wrlx(y , 1)

Rrlx(x , 0)

Behaviour observed
on x86/Power/ARM

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 8/32

Getting rid of the SB behaviour

Initially x = y = 0.

x .store(1, sc);
t1 = y .load(sc);

y .store(1, sc);
t2 = x .load(sc);

This cannot return t1 = t2 = 0.
Justification:

[x = y = 0]

Wsc(x , 1)

Rsc(y , 0)

Wsc(y , 1)

Rsc(x , 1)

[x = y = 0]

Wsc(x , 1)

Rsc(y , 1)

Wsc(y , 1)

Rsc(x , 0)

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 9/32

Release-acquire synchronization: message passing

Initially a = x = 0.

a = 5;
x .store(1, release);

while (x .load(acq) == 0);
print(a);

This will always print 5.

Justification:
Wna(a, 5)

Wrel(x , 1)

Racq(x , 1)

Rna(a, 5)

Release-acquire
synchronization

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 10/32

Relaxed accesses don’t synchronize

Initially a = x = 0.

a = 5;
x .store(1, rlx);

while (x .load(rlx) == 0);
print(a);

The program is racy ; undefined semantics.

Justification:
Wna(a, 5)

Wrlx(x , 1)

Rrlx(x , 1)

Rna(a, ?)
race

Relaxed accesses
don’t synchronize

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 11/32

Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification:
Rrlx(x , 1)

Wrlx(y , 1)

Rrlx(y , 1)

Wrlx(x , 1)

Relaxed accesses
don’t synchronize

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 12/32

The C11 weak memory model (simplified)

isread`,v(a)
def
= 9X, v0. lab(a) 2 {RX(`, v), CX(`, v, v0)} isread`(a)

def
= 9v. isread`,v(a) isread(a)

def
= 9`. isread`(a)

iswrite`,v(a)
def
= 9X, v0. lab(a) 2 {WX(`, v), CX(`, v0, v)} iswrite`(a)

def
= 9v. iswrite`,v(a) iswrite(a)

def
= 9`. iswrite`(a)

isfence(a)
def
= lab(a) 2 {FACQ, FREL} isaccess(a)

def
= isread(a) _ iswrite(a) isNA(a)

def
= mode(a) = NA

sameThread(a, b)
def
= tid(a) = tid(b) isrmw(a)

def
= isread(a) ^ iswrite(a) isSC(a)

def
= mode(a) = SC

rsElem(a, b)
def
= sameThread(a, b) _ isrmw(b) isAcq(a)

def
= mode(a) w ACQ isRel(a)

def
= mode(a) w REL

rseq(a, b)
def
= a = b _ rsElem(a, b) ^ mo(a, b) ^ (8c. mo(a, c) ^ mo(c, b)) rsElem(a, c))

sw(a, b)
def
= 9c, d.

¬sameThread(a, b) ^ isRel(a) ^ isAcq(b) ^ rseq(c, rf (d))
^ (a = c _ isfence(a) ^ sb+(a, c)) ^ (d = b _ isfence(d) ^ sb+(d, b))

hb
def
= (sb [sw [asw)+

Racy
def
= 9a, b.

isaccess(a) ^ isaccess(b) ^ loc(a) = loc(b) ^ a 6= b
^(iswrite(a) _ iswrite(b)) ^ (isNA(a) _ isNA(b)) ^ ¬(hb(a, b) _ hb(b, a))

Observation
def
= {(a, b) | mo(a, b) ^ loc(a) = loc(b) = world}

Figure 2. Auxiliary definitions for a C11 execution (lab, sb, asw , rf ,mo, sc).

a : WREL

rf (b) b : RACQ
rf

rseq
sw a : FREL

c rf (b) b : RACQ
rfrseq

sw a : WREL rf (d) d

b : FACQ

rfrseq

sw

a : FREL

c rf (d)

d

b : FACQ

rf

rseq

sw

Figure 3. Illustration of the “synchronizes-with” definition: the four cases inducing an sw edge.

the environment does not perform any write to the shared variables
(each read returns the last value written).

The set of all the opsems of a program is an opsemset, denoted
by S. We require opsemsets to be receptive: S is receptive if, for
every opsem O, for every read action r in the opsem O, for all
values v0 there is an opsem O0 in S which only differs from O
because the read r returns v0 rather than v, and for the actions that
occur after r in sb [asw . Intuitively an opsemset is receptive if it
defines a behaviour for each possible value returned by each read.

We additionally require opsemsets to be prefix-closed, assuming
that a program can halt at any time. Formally, we say that an opsem
O0 is a prefix of an opsem O if there is an injection of the actions
of O0 into the actions of O that behaves as the identity on actions,
preserves sb and asw , and, for each action x 2 O0, whenever
x 2 O and (sb [asw)(y, x), it holds that y 2 O0.

Program Transformations. Opsemsets abstract the syntax of
programs by identifying each program with the set of actions it
can perform in an arbitrary environment. We can then characterise
the effect of an arbitrary source code transformation directly on
opsemsets. On a given opsem, the effect of any transformation of
the source code is to eliminate, reorder, or introduce actions and
modifying the sb and asw relations accordingly.

In the example in Figure 4, taken from Morisset et al. [11], the
loop on the left is optimised into the code on the right by loop
invariant code motion. As we said, the figure shows opsems for
the initial state z = 0, y = 3 assuming that the code is not
run in parallel with an interfering context. Observe that the effect
of the optimisation on the first opsem is to eliminate the shaded
actions, and to reorder the stores to x, thus mapping the opsem of
the unoptimised code into an opsem of the optimised code.

An opsem captures a possible execution of the program, so by
applying a transformation to an opsem we are actually optimising
one particular execution. Lifting pointwise this definition of seman-
tic transformations to opsemsets enables optimising all the execu-
tion paths of a program, one at a time, thus abstracting from actual
source program transformation.

Soundness of program transformations can then be formalised
by identifying the set of conditions under which eliminating, re-
ordering or introducing actions in the opsems of an opsemset does

for (i=0; i<2; i++) {
z = z + y + i;
x = y;

}

t = y; x = t;
for (i=0; i<2; i++) {

z = z + t + i;
}

RNA(z, 0) RNA(y, 3)

WNA(z, 3)

RNA(y, 3)

WNA(x, 3)

RNA(y, 3) RNA(z, 3)

WNA(z, 7)

RNA(y, 3)

WNA(x, 3)

RNA(y, 3)

WNA(x, 3)

RNA(z, 0)

WNA(z, 3)

RNA(z, 3)

WNA(z, 7)

Figure 4. Effect of loop invariant code motion on an opsem.

not introduce new observable behaviours. We must thus define what
it means to execute an opsemset.

2.2 Executing Programs [c11.v, lang.v]
The mapping of programs to opsemsets only takes into account
the structure of each thread’s statements, not the semantics of
memory operations. In particular, the values of reads are chosen
arbitrarily, without regard for writes that have taken place. (In our
Coq development, we present such a mapping from programs to
opsemsets for a concurrent WHILE language.)

The C11 memory model then filters inconsistent opsems by con-
structing additional relations and checking the resulting candidate
executions against the axioms of the model. For the subset of C11
we consider, a witness W for an opsem O contains the following
additional relations:3

3 The full model includes two additional relations, dd (data dependency)
and dob (dependency ordered before), used to define hb for consume reads.

8a, b. sb(a, b) =) tid(a) = tid(b) (ConsSB)

order(iswrite,mo) ^ 8`. total(iswrite`,mo) (ConsMO)

order(isSC, sc) ^ total(isSC, sc)
^ (hb [mo) \ (isSC ⇥ isSC) ✓ sc

(ConsSC)

8b. (9c. rf (b) = c) ()
9`, a. iswrite`(a) ^ isread`(b) ^ hb(a, b)

(ConsRFdom)

8a, b. rf (b) = a =) 9`, v. iswrite`,v(a) ^ isread`,v(b) (ConsRF)

8a, b. rf (b) = a ^ (isNA(a) _ isNA(b)) =) hb(a, b) (ConsRFna)

8a, b. rf (b) = a ^ isSC(b) =)
imm(scr, a, b) _ ¬isSC(a) ^ @x. hb(a, x) ^ imm(scr, x, b) (SCReads)

@a. hb(a, a) (IrrHB)

@a, b. rf (b) = a ^ hb(b, a) (ConsRFhb)

@a, b. hb(a, b) ^ mo(b, a) (CohWW)

@a, b. hb(a, b) ^ mo(rf (b), rf (a)) (CohRR)

@a, b. hb(a, b) ^ mo(rf (b), a) (CohWR)

@a, b. hb(a, b) ^ mo(b, rf (a)) (CohRW)

8a, b. isrmw(a) ^ rf (a) = b =)
imm(mo, b, a)

(AtRMW)

8a, b, `. lab(a) = lab(b) = A(`) =) a = b (ConsAlloc)

where order(P, R)
def
= (@a. R(a, a)) ^ (R+ ✓ R) ^ (R ✓ P ⇥ P) imm(R, a, b)

def
= R(a, b) ^ @c. R(a, c) ^ R(c, b)

total(P, R)
def
= (8a, b. P (a) ^ P (b) =) a = b _ R(a, b) _ R(b, a)) scr(a, b)

def
= sc(a, b) ^ iswriteloc(b)(a)

Figure 5. Axioms satisfied by consistent C11 executions, Consistent(lab, sb, asw , rf ,mo, sc).

• The reads-from map (rf) maps every read action r to the write
action w that wrote the value read by r.

• The modification-order (mo) relates writes to the same loca-
tion; for every location, it is a total order among the writes to
that location.

• The sequential-consistency order (sc) is a total order over all
SC-atomic actions. (The standard calls this relation S.)

From these relations, C11 defines a number of derived relations
(written in sans-serif font), the most important of which are: the
synchronizes-with relation and the happens-before order.
• Synchronizes-with (sw) relates each release write with the ac-

quire reads that read from some write in its release sequence
(rseq). This sequence includes the release write and certain sub-
sequent writes in modification order that belong to the same
thread or are RMW operations. The sw relation also relates
fences under similar conditions. Roughly speaking, a release
fence turns succeeding writes in sb into releases and an acquire
fence turns preceding reads into acquires. (For details, see the
definition in Figure 2 and the illustration in Figure 3.)

• Happens-before (hb) is a partial order on actions formalising
the intuition that one action was completed before the other. In
the C11 subset we consider, hb = (sb [sw [asw)+.

We refer to a pair of an opsem and a witness (O, W) as a candi-
date execution. A candidate execution is said to be consistent if it
satisfies the axioms of the memory model, which will be presented
shortly. The model finally checks if none of the consistent execu-
tions contains an undefined behaviour, arising from a race (two
conflicting accesses not related by hb)4 or a memory error (access-
ing an unallocated location), where two accesses are conflicting if
they are to the same address, at least one is a write, and at least one
is non-atomic. Programs that exhibit an undefined behaviour in one
of their consistent executions are undefined; programs that do not
exhibit any undefined behaviour are called well-defined, and their
semantics is given by the set of their consistent executions.

Consistent Executions. According to the C11 model, a candidate
execution (lab, sb, asw , rf ,mo, sc) is consistent if all of the prop-
erties shown in Figure 5 hold.

(ConsSB) Sequenced-before relates only same-thread actions.

4 The standard distinguishes between races arising from accesses of differ-
ent threads, which it calls data races, and from those of the same thread,
which it calls unsequenced races. The standard says unsequenced races can
occur even between atomic accesses.

(ConsMO) Writes on the same location are totally ordered by mo.
(ConsSC) The sc relation must be a total order over SC actions and

include both hb and mo restricted to SC actions. This in effect
means that SC actions are globally synchronised.

(ConsRFdom) The reads-from map, rf , is defined for those read
actions for which the execution contains an earlier write to the
same location.

(ConsRF) Each entry in the reads-from map, rf , should map a read
to a write to the same location and with the same value.

(ConsRFna) If a read reads from a write and either the read or
the write are non-atomic, then the write must have happened
before the read. Batty et al. [4] additionally require the write to
be visible: i.e. not to have been overwritten by another write that
happened before the read. This extra condition is unnecessary,
as it follows from (CohWR).

(SCReads) SC reads are restricted to read only from the immedi-
ately preceding SC write to the same location in sc order or
from a non-SC write that has not happened before that immedi-
ately preceding SC write.

(IrrHB) The happens-before order, hb, must be irreflexive: an ac-
tion cannot happen before itself.

(ConsRFhb) A read cannot read from a future write.
(CohWW, CohRR, CohWR, CohRW) Next, we have four coher-

ence properties relating mo, hb, and rf on accesses to the same
location. These properties require that mo never contradicts hb
or the observed read order, and that rf never reads values that
have been overwritten by more recent actions that happened be-
fore the read.

(AtRMW) Read-modify-write accesses execute atomically: they
read from the immediately preceding write in mo.

(ConsAlloc) The same location cannot be allocated twice by dif-
ferent allocation actions. (This axiom is sound because for sim-
plicity we do not model deallocation. The C11 model by Batty
et al. [4, 3] does not even model allocation.)

Observable Behaviour. The observable behaviour of a candidate
execution is the restriction of the mo relation to the distinguished
world location. If none of the candidate executions of a program
exhibit an undefined behaviour, then its observable behaviour is the
set of all observable behaviours of its candidate executions. In our
counterexamples, we often distinguish executions based on the final
values of memory—this is valid because there could be a context
program reading those values and writing them to world.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 13/32

The C11 weak memory model (simplified)

Use good tools:
I Program logics
I Interactive theorem provers (Coq)

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 14/32

The C11 weak memory model (simplified)

Use good tools:
I Program logics
I Interactive theorem provers (Coq)

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 14/32

Two research directions

Verify compilation of C11:
I Compilation of the atomics to hardware

(Batty et al.’11, Sarkar et al.’12)
I Source-to-source transformations (see POPL’15)
I An actual compiler (future work)

Verify concurrent C11 programs:
I Using program logics
I By reduction to SC (robustness)
I Don’t verify, just find bugs.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 15/32

Understanding C11 using
relaxed program logics

When should we care about relaxed memory?

C11 satisfies the DRF-SC property:

Theorem (DRF-SC)
If JPrgKSC contains no data races and no weak
atomics, then JPrgKC11 = JPrgKSC.

I Program logics that disallow data races are
trivially sound for the NA+SC fragment of C11.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 17/32

Separation logic

Key concept of ownership :
I Resourceful reading of Hoare triples.

{P} C {Q}

I Disjoint parallelism:{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}
{
P1 ∗ P2

}
C1‖C2

{
Q1 ∗ Q2

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 18/32

Separation logic rules for non-atomic accesses

I Allocation gives you permission to access x .{
emp

}
x = alloc();

{
x 7→ _

}
I To access a normal location, you must own it:{

x 7→ v
}
t = ∗x ;

{
x 7→ v ∧ t = v

}
{
x 7→ v

}
∗x = v ′;

{
x 7→ v ′

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 19/32

Reasoning about SC accesses

I Model SC accesses as non-atomic accesses
inside a CCR.

I Use concurrent separation logic (CSL)

J `
{
P

}
C

{
Q

}
I Rule for SC-atomic reads:

emp `
{
J ∗ P

}
t = ∗x ;

{
J ∗ Q

}
J `

{
P

}
t = x .load(sc);

{
Q

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 20/32

Rules for release/acquire accesses
Relaxed separation logic [OOPSLA’13]

Ownership transfer by rel-acq synchronizations.
I Atomic allocation ; pick loc. invariant Q.{

Q(v)
}
x = alloc(v);

{
WQ(x) ∗ RQ(x)

}
I Release write ; give away permissions.{

Q(v) ∗WQ(x)
}
x .store(v , rel);

{
WQ(x)

}
I Acquire read ; gain permissions.{

RQ(x)
}
t = x .load(acq);

{
Q(t) ∗ RQ[t:=emp](x)

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 21/32

Release-acquire synchronization: message passing

Initially a = x = 0. Let J(v) def= v = 0 ∨&a 7→ 5.{
&a 7→ 0 ∗WJ(x)

}
a = 5;{
&a 7→ 5 ∗WJ(x)

}
x .store(release, 1);{
WJ(x)

}

{
RJ(x)

}
while (x .load(acq) == 0);{
&a 7→ 5

}
print(a);{
&a 7→ 5

}

PL consequences:
Ownership transfer works!

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 22/32

Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:{

RQ(x)
}
t := x .load(rlx)

{
RQ(x)

}
I Relaxed writes:

Q(v) = emp{
WQ(x)

}
x .store(v , rlx)

{
WQ(x)

}

Unsound because of dependency cycles!

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 23/32

Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification:
Rrlx(x , 1)

��

Rrlx(y , 1)
��

Wrlx(y , 1)

66

Wrlx(x , 1)

hh Relaxed accesses
don’t synchronize

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 24/32

Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

What goes wrong:
Non-relational invariants are unsound.

x = 0 ∧ y = 0

The DRF-property does not hold.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 24/32

Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

How to fix this:
Don’t use relaxed writes

∨
Strengthen the model

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 24/32

Incorrect message passing

int a; atomic_int x = 0; a = 5; if (x .load(rlx) 6= 0){
x .store(1, rlx); print(a); }



Wna(x , 0)
vv ((

Wna(a, 5)
��

race ..

Rrlx(x , 1)
��

Wrlx(x , 1)
��

11

Rna(a, 5)
��

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 25/32

Message passing with C11 memory fences

int a; atomic_int x = 0;
a = 5; if (x .load(rlx) 6= 0){
fence(release); fence(acq);
x .store(1, rlx); print(a); }


Wna(x , 0)

vv ((
Wna(a, 5)

��

**

Rrlx(x , 1)
��

Fencerel
��

sw // Fenceacq
��

Wrlx(x , 1)
��

99

Rna(a, 5)
��

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 25/32

Reasoning about fences
Joint work with Marko Doko. In progress.

I Introduce two ‘modalities’ in the logic

{
P

}
fence(release)

{
4P

}
{
∇P

}
fence(acq)

{
P

}
{
RQ(x)

}
t := x .load(rlx)

{
RQ[t:=emp](x) ∗ ∇Q(t)

}
{
WQ(x) ∗ 4Q(v)

}
x .store(v , rlx)

{
WQ(x)

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 26/32

Reasoning about fences

Let Q(v) def= v = 0 ∨&a 7→ 5.{
&a 7→ 0 ∗WQ(x) ∗ RQ(x)

}

{
&a 7→ 0 ∗WQ(x)

}
a = 5;{
&a 7→ 5 ∗WQ(x)

}
fence(release);{
4(&a 7→ 5) ∗WQ(x)

}
x .store(1, rlx);{
true

}

t = x .load(rlx);{
∇(t = 0 ∨&a 7→ 5)

}
if (t 6= 0)

fence(acq);{
&a 7→ 5

}
print(a); }{

true
}



Viktor Vafeiadis Formal reasoning about the C11 weak memory model 27/32

Release-consume synchronization

Initially a = x = 0.

a = 5;
x .store(release,&a);

t = x .load(consume);
if (t 6= 0) print(∗t);

This program cannot crash nor print 0.

Justification:
Wna(a, 5)

�� ((

Rcon(x ,&a)
��

Wrel(x ,&a)

66

Rna(a, 5)

Release-consume
synchronization

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 28/32

Release-consume synchronization

Initially a = x = 0. Let J(t) def= t = 0 ∨ t 7→ 5.{
&a 7→ 0 ∗WJ(x)

}
a = 5;{
&a 7→ 5 ∗WJ(x)

}
x .store(release,&a);

{
RJ(x)

}
t = x .load(consume);{
∇t(t = 0 ∨ t 7→ 5)

}
if (t 6= 0) print(∗t);

This program cannot crash nor print 0.

PL consequences:
Needs funny modality, but otherwise OK.

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 28/32

Proposed rules for consume accesses

{
RQ(x)

}
t := x .load(cons)

{
RQ[t:=emp](x) ∗ ∇t Q(t)

}

{
P

}
C

{
Q

}
C is basic command mentioning t{

∇t P
}
C

{
∇t Q

}

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 29/32

Mutual exclusion locks

Let QJ(v) def= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)
Lock(x , J) def= WQJ (x) ∗ RCAS

QJ
(x)

new-lock() def={
J

}
res = alloc(1){
Lock(res, J)

}
unlock(x) def={

J ∗ Lock(x , J)
}

x .store(1, rel){
Lock(x , J)

}

lock(x) def={
Lock(x , J)

}
repeat{

Lock(x , J)
}

y = x .CAS(1, 0, acq, rlx)Lock(x , J) ∗
y=0 ∧ emp
∨ y=1 ∧ J


until y 6= 0{
J ∗ Lock(x , J)

}
Viktor Vafeiadis Formal reasoning about the C11 weak memory model 30/32

Summary of program logic features

Access kind Program logic features
non-atomic normal SL 7→
SC-atomic normal CSL invariants
release/ single-location invariants
acquire unidirectional ownership transfer
relaxed send only 4P; receive ∇P
consume receive only ∇tP

Fence kind Program logic effect
release introduces 4P
acquire eliminates ∇P and ∇tP

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 31/32

Slogan

Relaxed program logics
are good tools for

understanding
weak memory models

Viktor Vafeiadis Formal reasoning about the C11 weak memory model 32/32

