
Reasoning about
the C/C++ weak memory model

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

17 July 2014



Understanding weak memory consistency

Read the architecture/language specs?
I Too informal, often wrong.

Read the formalisations?
I Fairly complex.

Run benchmarks / Litmus tests?
I Observe only subset of behaviours.

We need a better methodology. . .

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 2/34



The C11 memory model

Two types of locations: ordinary and atomic
I Races on ordinary accesses ; error

A spectrum of atomic accesses:
I Relaxed ; no fence
I Consume reads ; no fence, but preserve deps
I Release writes ; no fence (x86); lwsync (PPC)
I Acquire reads ; no fence (x86); isync (PPC)
I Seq. consistent ; full memory fence

Explicit primitives for fences

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 3/34



Relaxed behaviour: store buffering

Initially x = y = 0.

x .store(1, rlx);
t1 = y .load(rlx);

y .store(1, rlx);
t2 = x .load(rlx);

This can return t1 = t2 = 0.
Justification:

[x = y = 0]

Wrlx(x , 1)

Rrlx(y , 0)

Wrlx(y , 1)

Rrlx(x , 0)

Behaviour observed
on x86/Power/ARM

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 4/34



Release-acquire synchronization: message passing

Initially a = x = 0.

a = 5;
x .store(1, release);

while (x .load(acq) == 0);
print(a);

This will always print 5.

Justification:
Wna(a, 5)

Wrel(x , 1)

Racq(x , 1)

Rna(a, 5)

Release-acquire
synchronization

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 5/34



Relaxed accesses don’t synchronize

Initially a = x = 0.

a = 5;
x .store(1, rlx);

while (x .load(rlx) == 0);
print(a);

The program is racy ; undefined semantics.

Justification:
Wna(a, 5)

Wrlx(x , 1)

Rrlx(x , 1)

Rna(a, ?)
race

Relaxed accesses
don’t synchronize

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 6/34



Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification:
Rrlx(x , 1)

Wrlx(y , 1)

Rrlx(y , 1)

Wrlx(x , 1)

Relaxed accesses
don’t synchronize

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 7/34



Given a memory model definition

1. Check that the model is mathematically sane.
I For example, it is monotone.

2. Check that it is not too weak.
I Provides useful reasoning principles.

3. Check that it is not too strong.
I Can be implemented efficiently.

4. Check that it is actually useful.
I Admits the intended program optimisations.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 8/34



How does the C11 definition rate? (1/2)

Let’s start with some good news. . .

Verified compilation of atomic accesses to x86 and
Power/ARM.

[Batty et al., POPL’11]
[Batty et al., POPL’12]
[Sarkar et al., PLDI’12]

=⇒ The C11 model is not too strong.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 9/34



How does the C11 definition rate? (2/2)

1. Check that the model is mathematically sane.
7 No, it is not monotone.

2. Check that it is not too weak.
7 No, due to dependency cycles.

3. Check that the model is not too strong.
3 OK, prior work.

4. Check that it is actually useful.
7 No, it disallows intended
program transformations.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 10/34



Part I. Mathematical sanity

I Monotonicity
I Prefix closure



Monotonicity

“Adding synchronisation should not
introduce new behaviours”

Examples:
I Adding a memory fence
I Strengthening the access mode of an operation
I Reducing parallelism, C1‖C2 ; C1 ; C2

I Expression evaluation linearisation:

x = a + b ; ; t1 = a ; t2 = b ; x = t1 + t2 ;

I (Roach motel reorderings)

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 12/34



Obstacles to monotonicity

1. The axiom for non-atomic reads

rf(b) = a ∧ (isNA(a) ∨ isNA(b)) =⇒ hb(a, b)

(in combination with dependency cycles)

2. The axiom for SC reads

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 13/34



Sequentionalisation is invalid

a = 1;
if (x .load(rlx) == 1)
if (a == 1)

y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

[a = x = y = 0]

Wna(a, 1) Rrlx(x , 1)

Rna(a, 1)

Wrlx(y , 1)

Rrlx(y , 1)

Wrlx(x , 1)

rf(b) = a ∧ (isNA(a) ∨ isNA(b)) =⇒ hb(a, b)

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 14/34



SC read restriction

There shall be a single total order S on all seq_cst operations
[. . . ] such that each seq_cst operation B that loads a value
from an atomic object M observes one of the following values:

I the result of the last modification A of M that precedes B
in S, if it exists, or

I if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is
not seq_cst and that does not happen before A, or

I if A does not exist, [. . . ]
[N1570, §7.17.3.6]

rf(b) = c ∧ isSC(b) =⇒
iscr(c , b) ∨ ¬isSC(c) ∧ @a. hb(c , a) ∧ iscr(a, b)

where iscr(c , b) def= scr(c , b) ∧ @d . scr(c , d) ∧ scr(d , b)
scr(c , b) def= iswritelocs(b)(c) ∧ sc(c , b)

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 15/34



Strengthening is invalid

x .store(1, rlx);
x .store(2, sc);
y .store(1, sc);

x .store(3, rlx);
y .store(2, sc);

y .store(3, sc);
r = x .load(sc);

s1 = x .load(rlx);
s2 = x .load(rlx);
s3 = x .load(rlx);
t1 = y .load(rlx);
t2 = y .load(rlx);
t3 = y .load(rlx);

r = s1 = t1 = 1 ∧ s2 = t2 = 2 ∧ s3 = t3 = 3 — Disallowed

Wrlx(x , 1)

Wsc(x , 2)

Wrlx(x , 3)

Wsc(y , 1)

Wsc(y , 2)

Wsc(y , 3)

Rsc(x , 1)
sc

sc
sc

sc

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 16/34



Strengthening is invalid

x .store(1, rlx);
x .store(2, sc);
y .store(1, sc);

x .store(3, sc);
y .store(2, sc);

y .store(3, sc);
r = x .load(sc);

s1 = x .load(rlx);
s2 = x .load(rlx);
s3 = x .load(rlx);
t1 = y .load(rlx);
t2 = y .load(rlx);
t3 = y .load(rlx);

r = s1 = t1 = 1 ∧ s2 = t2 = 2 ∧ s3 = t3 = 3 — Allowed

Wrlx(x , 1)

Wsc(x , 2)

Wsc(x , 3)

Wsc(y , 1)

Wsc(y , 2)

Wsc(y , 3)

Rsc(x , 1)
sc sc

sc

sc
sc

sc

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 16/34



Prefix closure

“Removing (hb ∪ rf)-maximal events
should preserve consistency”

I Maximal events should not affect other events
I Does not hold because of release sequences

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 17/34



Release sequences too strong (relaxed writes)

Initially x = y = 0.

a = 1;
x .store(1, release);
x .store(3, rlx);

x .store(2, rlx); (∗)

while (x .load(acq) 6= 3);
a = 2;

This program is not racy.
The acquire synchronizes with the release.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 18/34



Release sequences too strong (relaxed writes)

Initially x = y = 0.

a = 1;
x .store(1, release);
x .store(3, rlx);

x .store(2, rlx); (∗)
while (x .load(acq) 6= 3);
a = 2;

But this one is racy according to C11.
The acquire no longer synchronizes with the release.
Same if (*) is in a different thread.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 18/34



Part II. Not overly weak

I High-level reasoning principles



Some basic high-level reasoning principles

DRF: Race-free programs have SC semantics
≈ Ownership-based reasoning

Coherence: SC for single-variable programs
≈ Non-relational invariants; e.g., x ≥ 0 ∧ y ≥ 0.

Cumulativity: Transitive visibility for Rel-Acq
I Ownership tranfer possible

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 20/34



Release-acquire synchronization: message passing

Initially a = x = 0.

a = 5;
x .store(release, 1);

while (x .load(acq) == 0);
print(a);

This will always print 5.

Justification:
Wna(a, 5)

�� ((

Racq(x , 1)
��

Wrel(x , 1)

66

Rna(x , 5)

Release-acquire
synchronization

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 21/34



Rules for release/acquire accesses
Relaxed separation logic [OOPSLA’13]

Ownership transfer by rel-acq synchronizations.
I Atomic allocation ; pick loc. invariant Q.{

Q(v)
}

x = alloc(v);
{
WQ(x) ∗ RQ(x)

}
I Release write ; give away permissions.{

Q(v) ∗WQ(x)
}

x .store(v , rel);
{
WQ(x)

}
I Acquire read ; gain permissions.{

RQ(x)
}

t = x .load(acq);
{
Q(t) ∗ RQ[t:=emp](x)

}

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 22/34



Release-acquire synchronization: message passing

Initially a = x = 0. Let J(v) def= v = 0 ∨&a 7→ 5.{
&a 7→ 0 ∗WJ(x)

}
a = 5;{
&a 7→ 5 ∗WJ(x)

}
x .store(release, 1);{
WJ(x)

}

{
RJ(x)

}
while (x .load(acq) == 0);{
&a 7→ 5

}
print(a);{
&a 7→ 5

}

PL consequences:
Ownership transfer works!

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 23/34



Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:{

RQ(x)
}

t := x .load(rlx)
{
RQ(x)

}
I Relaxed writes:

Q(v) = emp{
WQ(x)

}
x .store(v , rlx)

{
WQ(x)

}

Unsound because of dependency cycles!

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 24/34



Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification:
Rrlx(x , 1)

��

Rrlx(y , 1)
��

Wrlx(y , 1)

66

Wrlx(x , 1)

hh Relaxed accesses
don’t synchronize

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 25/34



Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

What goes wrong:
Non-relational invariants are unsound.

x = 0 ∧ y = 0

The DRF-property does not hold.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 25/34



Dependency cycles

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

How to fix this:
Don’t use relaxed writes

∨
Strengthen the model

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 25/34



Release-consume synchronization

Initially a = x = 0.

a = 5;
x .store(release,&a);

t = x .load(consume);
if (t 6= 0) print(∗t);

This program cannot crash nor print 0.

Justification:
Wna(a, 5)

�� ((

Rcon(x ,&a)
��

Wrel(x ,&a)

66

Rna(a, 5)

Release-consume
synchronization

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 26/34



Release-consume synchronization

Initially a = x = 0. Let J(t) def= t = 0 ∨ t 7→ 5.{
&a 7→ 0 ∗WJ(x)

}
a = 5;{
&a 7→ 5 ∗WJ(x)

}
x .store(release,&a);

{
RJ(x)

}
t = x .load(consume);{
∇t(t = 0 ∨ t 7→ 5)

}
if (t 6= 0) print(∗t);

This program cannot crash nor print 0.

PL consequences:
Needs funny modality, but otherwise OK.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 26/34



Proposed rules for consume accesses

{
RQ(x)

}
t := x .load(cons)

{
RQ[t:=emp](x) ∗ ∇t Q(t)

}
{
P

}
C

{
Q

}
C is basic command mentioning t{

∇t P
}

C
{
∇t Q

}

Question: Is the following valid?{
WQ(x) ∗ ∇tQ(v)

}
x .store(v , rel);

{
WQ(x)

}

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 27/34



Release-acquire too weak in the presence of consume

Initially x = y = 0.

a = 1;
x .store(1, release);

while (x .load(consume) 6= 1);
y .store(1, release);

(∗) while (y .load(acquire) 6= 1);
(∗) a = 2;

C11 deems this program racy.
I Only different thread rel-acq synchronize.

What goes wrong in PL:
On ownership transfers, we must prove

that we don’t read from the same thread.
Viktor Vafeiadis Reasoning about the C/C++ weak memory model 28/34



Release-acquire too weak in the presence of consume

Initially x = y = 0.

a = 1;
x .store(1, release);

while (x .load(consume) 6= 1);
y .store(1, release);

(∗) while (y .load(acquire) 6= 1);
(∗) a = 2;

C11 deems this program racy. But, it is not racy:
I On x86-TSO, Power, ARM, and Itanium.
I Or if we move the (∗) lines to a new thread.

So, drop the “different thread” restriction.

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 28/34



Part III. Actual usefulness

I Verify source-to-source program transformations



A study of optimisations under C11

I “Roach motel” reorderings
(depends on how we fix dependency cycles)

I Elimination of redundant accesses
(overwritten write, read after same R/W)
(write after same read is invalid)

I Introduction of unused reads
(invalid ; may race)

I Elimination of unused reads
(only non-atomic, others may synchronise)

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 30/34



Valid instruction reorderings a ; b ; b ; a

↓ a \ b→ R6=sc Rsc Wna Wrlx Wwrel Crlx|acq Cwrel Facq Frel
Rna 3 3 (3) (3) 7 (3) 7 3 7

Rrlx 3 3 (3) (7) 7 (7) 7 7 7

Rwacq 7 7 7 7 7 7 7 3 7

W6=sc 3 3 3 3 7 3 7 3 7

Wsc 3 7 3 3 7 3 7 3 7

Crlx|rel 3 3 (3) (7) 7 (7) 7 7 7

Cwacq 7 7 7 7 7 7 7 3 7

Facq 7 7 7 7 7 7 7 = 7

Frel 3 3 3 7 3 7 3 3 =

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 31/34



Redundant instruction eliminations

Overwritten write:
x .store(v , M) ; C ; x .store(v ′, M) C has no rel

; C ; x .store(v ′, M) & no x accesses

Read after write:
x .store(v , M) ; C ; t = x .load(M ′) C has no acq

; x .store(v , M) ; C ; t = v & no x accesses

Read after read:
t = x .load(M) ; C ; t ′ = x .load(M) C has no acq

; t = x .load(M) ; C ; t ′ = t & no x accesses

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 32/34



Write-after-read elimination is invalid

t = x .load(M) ; x .store(t, rlx)
6; t = x .load(M)

There could be a CAS “in between”
x = y = 0;

y .store(1, rlx);
fence(release);
t1 = x .load(rlx);
x .store(t1, rlx);

t2 = x .CAS(0, 1, acq);
t3 = y .load(rlx);

t4 = x .load(rlx);

Can we get t1 = t2 = t3 = 0 and t4 = 1?

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 33/34



What have we learnt?

The C11 memory model is broken
I But is largely fixable

Tools for understanding weak memory models:
I Source-to-source program transformations
I Relaxed program logics

Viktor Vafeiadis Reasoning about the C/C++ weak memory model 34/34


