
Relaxed separation logic

Viktor Vafeiadis Chinmay Narayan

MPI-SWS IIT Delhi



Concurrent program logics

Goal: Understand concurrent programs.

Tool: Concurrent program logics:
Concurrent Separation Logic
OG, RG, RGSep, LRG, DG, CAP, CaReSL. . .

∗ ∗ ∗ What about weak memory models? ∗ ∗ ∗

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 2/16



Relaxed memory models & data race freedom

All sane memory models satisfy the DRF property:

Theorem (DRF-property)
If JPrgKSC contains no data races, then
JPrgKRelaxed = JPrgKSC.

Program logics that disallow data races are
trivially sound.
What about racy programs?

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 3/16



C11 operations

Two types of locations: ordinary and atomic
Races on ordinary accesses ; undefined

Several kinds of atomic accesses:
Sequentially consistent (reads & writes)
Release (writes)
Acquire (reads)
Relaxed (reads & writes)

A few more advanced constructs:
Fences, consume reads, . . . (ignored here)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 4/16



C11 executions

Execution = set of events & a few relations:
sb: sequenced before
rf: reads-from map
mo: memory order per location
sc: seq.consistency order
sw: synchronizes with (derived)
W-release rf→ R-acq =⇒ W-release sw→ R-acq

hb: happens before (derived, hb def
= (sb ∪ sw)+)

Axioms constraining the consistent executions.

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 5/16



Message passing example

[a]na := 0;
[x ]rlx := 0;(

[a]na := 10; if ([x ]acq = 1)
[x ]rel := 1; print [a]na;

)
Wna(a, 0)

sb ��
Wrlx(x , 0)

sb
vv

sb
((

Wna(a, 10)
sb��

rf --

Racq(x , 1)
sb��

Wrel(x , 1)
sb
��

rf, sw 11

Rna(a, 10)
sb
��

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 6/16



Separation logic recap

J` 7→ vK def
= {h | h(`) = v}

JP1 ∗ P2K
def
= {h1 ] h2 | h1 ∈ JP1K ∧ h2 ∈ JP2K}

Proof rules:
{` 7→ −} [`] := v {` 7→ v} (WRI)

{P} C {Q}
{P ∗ R} C {Q ∗ R}

(FRM)

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}

(PAR)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 7/16



Read-acquire & write-release permissions (1/2)

Introduce two assertion forms:

P := . . . | ` rel
↪→ Q | `

acq
↪→ Q

where Q ∈ Val→ Assn.

Initially (simplified rule):

Q(v) = emp

{emp} x := allocatom(v) {x
rel
↪→ Q ∗ x

acq
↪→ Q}

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 8/16



Read-acquire & write-release permissions (2/2)

Release writes:

{Q(v) ∗ ` rel
↪→ Q} [`]rel := v {` rel

↪→ Q}

Acquire reads:

{`
acq
↪→ Q} x := [`]acq {Q(x) ∗ `

acq
↪→ Q[x :=emp]}

where Q[x :=P]
def
= λy . if x=y then P else Q(y).

Splitting permissions:

`
rel
↪→ Q ∗ ` rel

↪→ Q ⇐⇒ `
rel
↪→ Q

`
acq
↪→ Q1 ∗ `

acq
↪→ Q2 ⇐⇒ `

acq
↪→ (Q1 ∗ Q2)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 9/16



Simple ownership transfer example

Let Q := {(0, emp), (1, a ↪→ 2)}.{
emp

}
a := allocna(0); x := allocatom(0);{

a ↪→ 0 ∗ x rel
↪→ Q ∗ x

acq
↪→ Q

}
{

a ↪→ 0 ∗ x rel
↪→ Q

}
[a]na := 2;{

a ↪→ 2 ∗ x rel
↪→ Q

}
[x ]rel := 1;{

true
}

{
x

acq
↪→ Q

}
repeat
r := [x ]acq{

r = 0 ∗ x
acq
↪→ Q∨

r = 1 ∗ a ↪→ 2

}
until(r 6= 0);{

r = 1 ∗ a ↪→ 2
}

r := [a]na{
r = 2 ∗ a ↪→ 2

}{
r = 2 ∗ a ↪→ 2

}
Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 10/16



Relaxed atomics

Basically, disallow ownership transfer.

Relaxed reads:

{`
acq
↪→ Q} x := [`]rlx {`

acq
↪→ Q∧ (Q(x) 6= false)}

Relaxed writes:

Q(v) = emp

{` rel
↪→ Q} [`]rlx := v {` rel

↪→ Q}

Unsound in C11 because of dependency cycles.

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 11/16



Dependency cycles

let a = allocatom(0) in
let b = allocatom(0) in(

if 1 = [a]rlx then
[b]rlx := 1

) (
if 1 = [b]rlx then

[a]rlx := 1

)
A problematic consistent execution:

[Initialization actions not shown]
Rrlx(a, 1)

sb��

Rrlx(b, 1)
sb��

Wrlx(b, 1)

rf 44

Wrlx(a, 1)
rf

jj

[Crude fix: Require hb ∪ rf to be acyclic.]
Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 12/16



Compare and swap (CAS)

New assertion form, P := . . . | `
macq
↪→ Q.

Duplicable, `
macq
↪→ Q ⇐⇒ `

macq
↪→ Q ∗ `

macq
↪→ Q.

Proof rule for CAS:

P ⇒ `
macq
↪→ Q ∗ true

P ∗ Q(v)⇒ `
rel
↪→ Q′ ∗ Q′(v ′) ∗ R[v/z ]

X ∈ {rel, rlx} ⇒ Q(v) = emp
X ∈ {acq, rlx} ⇒ Q′(v ′) = emp

{P} z := [`]Y {z 6= v ⇒ R}
{P} z := CASX ,Y (`, v , v ′) {R}

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 13/16



Mutual exclusion locks

Let QJ(v)
def
= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)

Lock(x , J)
def
= x

rel
↪→ QJ ∗ x

macq
↪→ QJ

new-lock() def
={

J
}

res := allocatom(1){
Lock(res, J)

}
unlock(x) def

={
J ∗ Lock(x , J)

}
[x ]rel := 1{

Lock(x , J)
}

lock(x) def
={

Lock(x , J)
}

repeat{
Lock(x , J)

}
y := CASacq,rlx(x , 1, 0){

Lock(x , J) ∗
(
y = 0 ∧ emp
∨ y = 1 ∧ J

) }
until y 6= 0{

J ∗ Lock(x , J)
}

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 14/16



Technical challenges

Assertions in heaps
=⇒ Store syntactic assertions (modulo ∗-ACI)
No (global) notions of state and time
=⇒ Define a logical local notion of state
=⇒ Annotate hb edges with logical state

No operational semantics
=⇒ Use the axiomatic semantics
=⇒ Induct over max hb-path distance from top

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 15/16



Possible extensions / future work

Take more advanced program logics
(rely-guarantee, RGSep, deny-guarantee, . . . )

and adapt them to C11 concurrency

Handle the more advanced C11 constructs:
consume atomics & fences

Build a tool & verify real programs

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 16/16


