Relaxed separation logic

Viktor Vafeiadis ~ Chinmay Narayan

MPI-SWS IT Delhi

Concurrent program logics

Goal: Understand concurrent programs.

Tool: Concurrent program logics:

o Concurrent Separation Logic
o OG, RG, RGSep, LRG, DG, CAP, CaReSL. ..

« x x What about weak memory models? x x x

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 2/16

Relaxed memory models & data race freedom

All sane memory models satisfy the DRF property:

Theorem (DRF-property)
If [Prg]sc contains no data races, then
[Prg]retaxea = [Prg]sc:

o Program logics that disallow data races are
trivially sound.

o What about racy programs?

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 3/16

C11 operations

Two types of locations: ordinary and atomic

o Races on ordinary accesses ~+ undefined

Several kinds of atomic accesses:
o Sequentially consistent (reads & writes)
o Release (writes)
o Acquire (reads)

o Relaxed (reads & writes)

A few more advanced constructs:

o Fences, consume reads, ... (ignored here)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 4/16

C11 executions

Execution = set of events & a few relations:
e sb: sequenced before
o rf: reads-from map
e mo: memory order per location

sc: seq.consistency order

sw: synchronizes with (derived)

W-release R-acq = W-release =% R-acq
o hb: happens before (derived, hb o (sbUsw)™)

Axioms constraining the consistent executions.

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 5/16

Message passing example

[a]na =0;
[X]rlx = 0;

([a]ua = 10; |} if ([x]acq = 1) >
[X]rel =1 print [a]na;
Wna(a, O)
sb¢
erx(X, O)

Waa(10{*’/ \Sb*\R (x,1)
R % e
Wra(x, 1) " T = >Rpa(a, 10)

\st isb

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 6/16

Separation logic recap

[0~ v] < {h | h(t) = v}
[P+ P % {hwhy | by € [P A € [Ps]}

Proof rules:
==} []=v{l—v} (WRI)
{P} C{Q}
{PxR} C{Qx*R} (FRM)
{Pi} G {@Qi} {P} G {Q}
{P1x P} G||G {Q1 * @}

(PAR)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 7/16

Read-acquire & write-release permissions (1/2)

o Introduce two assertion forms:

P::...|€<r—d>Q|€<ag>lQ
where Q € Val — Assn.
o Initially (simplified rule):
Q(v) =emp

rel acq

{emp} x := alloc,iom(v) {x = Q*xx — Q}

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 8/16

Read-acquire & write-release permissions (2/2)

o Release writes:
rel rel

{9(v)x € — Q} [l :=v {{ — O}

o Acquire reads:
acq

{0 = O} x 1= [l]acq {Q(x) * £ i Q[x:=emp]}
where Q[x:=P] o Ay. if x=y then P else Q(y).

o Splitting permissions:

185 0508 0 «— 1% 0

acq

(8 Q1 %03 Qy = (3 (Q1% Q)

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 9/16

Simple ownership transfer example

Let Q := {(0,emp),(1,a — 2)}.

{ emp }

a := alloc,,(0); x := alloc,iom(0);

{a%O*ng*xﬂQ}

rel
a—=0xx— Q9

[a]na =2,
a—2xx (r—el> Q
[X]rel = 1;

{ true }

{x%a}

repeat

r = [X]acq
r:O*ng\/ }
r=1%xa< 2

until(r # 0);

{r=1xa=2}

r = [alna

{r=2%a—=2}

{r=2%xa—=2}

Viktor Vafeiadis, Chinmay Narayan

Relaxed separation logic

10/16

Relaxed atomics

Basically, disallow ownership transfer.

o Relaxed reads:

(055 0} x = [lux {€ = QN (Q(x) # false)}
o Relaxed writes:
Q(v) =emp
rel rel

{{ = O} [l]ix :=v {{ — 9}

o Unsound in C11 because of dependency cycles.

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 11/16

Dependency cycles

let a = alloc,i,u(0) in
let b = alloc,o,(0) in

(if 1[§rl}[{a:]ix 1then) <if 1[;1}[(t);]ix1then>

A problematic consistent execution:

[Initialization actions not shown|

erx(aa]-) erx(ba]-)
isb j B >:z< _ i isb
erx(b7]-) erx(aa 1)

[Crude fix: Require hb U rf to be acyclic.]

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 12/16

Compare and swap (CAS)

macq

o New assertion form, P:= ... |{ — Q.

macq

e Duplicable, ¢ e Q <— / e Qxl — Q.
e Proof rule for CAS:

macq

P=/ — Q *true

rel

PxQ(v)=(— Q% Q(V)x R[v/Z]
X € {rel,rlx} = 9(v) = emp
X € {acq,rlx} = Q'(V') = emp
{P}z:=[l]ly {z# v =R}
{P} z:= CASx y(¢,v,v') {R}

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 13/16

Mutual exclusion locks

Let

()é(=0Aemp)V (v=1AJ)
Lock(x,)é x5 Q) xx o5

Q
new-lock() o

lock(x) &
{/}

{ Lock(x,J) }
res := alloc,om(1) | repeat

{ Lock(res,J) } { Lock(x,J) }
unlock(x) &

y := CAS,cqnx(x, 1,0)
Lock(x. J y=0Aemp
J Lock(x, J) } ock(x, J) 7,
[X]re1 :=1

yzl/\J) }
until y #0
{ Lock(x,J) } { JxLock(x,J) }

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic

14/16

Technical challenges

o Assertions in heaps
— Store syntactic assertions (modulo *-ACl)
o No (global) notions of state and time
— Define a logical local notion of state
— Annotate hb edges with logical state
o No operational semantics
— Use the axiomatic semantics

— Induct over max hb-path distance from top

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic 15/16

Possible extensions / future work

o Take more advanced program logics
(rely-guarantee, RGSep, deny-guarantee, ...)
and adapt them to C11 concurrency

e Handle the more advanced C11 constructs:

consume atomics & fences

o Build a tool & verify real programs

Viktor Vafeiadis, Chinmay Narayan Relaxed separation logic

16/16

