
 RGSep

Viktor Vafeiadis

1

Coarse-grain locking

2 3 5 7 11 13

2

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A A

3

One lock per node:

— Traversals acquire locks in a “hand over hand” fashion.

— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 3 5 7 11 13

A

3

Fine-grain locking (optimistic)

2 3 5 7 11 13

4

Fine-grain locking (optimistic)

2 3 5 7 11 13

A

4

Fine-grain locking (optimistic)

2 3 5 7 11 13

Re-traverse the list OR perform deletions in two steps

Leaks memory: cannot dispose deleted nodes.

A

4

Actions (pessimistic algorithm)

Add node
A A

Unlock
A

Lock
A

Delete node
A A

A

5

Node becomes shared

Ownership transfer

Add node
A A

Delete node
A A

A
Node becomes local

6

Local and shared state

2 3 5 7 11 13Shared

Local 6

Pessimistic algorithm

A

Add node
A A

7

Local and shared state

2 3 5 7 11 13Shared

6

Local

Pessimistic algorithm

A

Add node
A A

7

Local and shared state

2 3 5 7 11 13Shared

6

Local

Pessimistic algorithm

A

Lock
A

7

Local and shared state

2 3 5 7 11 13Shared

6

Local

Pessimistic algorithm

A

A

Lock
A

7

Local and shared state

2 3 5 7 11 13Shared

6

Local

Pessimistic algorithm

A

A

Delete node
A A

A

7

Local and shared state

2 3 5 7 11 13Shared

Local 6

Pessimistic algorithm

A

A

Delete node
A A

A

7

Local and shared state

2 3 5 7 11 13Shared

Local 6

Now, the node is local; we can safely dispose it.

Pessimistic algorithm

A

A

7

Local and shared state

2 3 5 7 11 13Shared

Local

Now, the node is local; we can safely dispose it.

Pessimistic algorithm

A

7

Actions (optimistic algorithm)

Add node
A A

Unlock
A

Lock
A

Delete node
A A

A A

8

Local and shared state

2 3 5 7 11 13Shared

Local

6

Optimistic algorithm

A

A

Delete node
A A

A A

9

Local and shared state

2 3 5 7 11 13Shared

Local

6

Optimistic algorithm

A

A

Delete node
A A

A A

9

Interference: other threads

2 7 11 1353

A A

10

Interference: other threads

2 7 11 135

12

3

A A

10

Interference: other threads

2 7 11 135

12
A A

10

Interference: other threads

2 7 11 135

12
A A

75

A A

10

Unlock
B

Lock
B

Stability

75

A A

11

Add node
B B

Delete node
B B

B

Stability

75

A A

11

Assertions

P, Q, R, ... — separation logic assertions
p, q, r, ... — RGSep assertions

p ::= P | P | p ∗ q | p ∨ q | p ∧ q | ∃x. p | ∀x. p

 P(l, s) P(l)

 P (l, s) P(s)

 (p ∗ q)(l,s) ∃l1 l2. dom(l1)∩dom(l2)=∅ ∧ l=l1∪l2 ∧ p(l1,s) ∧ q(l2,s)

local state assertion

shared state assertion

def

def

def

12

Actions

A A

A

A

A A

A

A A

A A

x ↦ 0,v,y x ↦ A,v,y

x ↦ A,v,y x ↦ 0,v,y

 x ↦ A,v,z
∗ z ↦ 0,w,y

x ↦ A,v,z

x ↦ A,v,y

 x ↦ A,v,y
∗ y ↦ A,w,z

 x ↦ A,v,y
∗ y ↦ A,w,z

 x ↦ A,v,z
∗ y ↦ A,w,z

13

Parallel composition

C1 sat (p1, R ∪ G2, G1, q1)
C2 sat (p2, R ∪ G1, G2, q2)

(C1 || C2) sat (p1∗p2, R, G1 ∪ G2, q1∗q2)

14

Atomic commands

p,q stable under R
(atomic C) sat (p, ∅, G, q)
(atomic C) sat (p, R, G, q)

(P2 , Q2) ∈ G
{ P1 ∗ P2 } C { Q1 ∗ Q2 }

(atomic C) sat (P1 ∗ P2 ∗ F , ∅, G, Q1 ∗ Q2 ∗ F)

{ P } C { Q }
C sat (P , R, G, Q)

Local commands

15

— Local state assertions are trivially stable

— Shared state assertions:

S is stable under (P, Q)

if and only if

(P −∗ S) ∗ Q => S

(P −∗ S) (h) ∃h’. dom(h)∩dom(h’)=∅ ∧ P(h’) ∧ S(h ∪ h’)

Stability

def

16

Some further topics

Tool support:

— Symbolic execution with stabilization

— Action inference

— Linearization point inference (SmallfootRG & Cave)

Deny-guarantee & concurrent abstract predicates:

— Make interference specs first class

— Logical/abstract separation

17

