Introduction R/G Examples R/G thinking

Brief history
00000000 000000000000 000 000000

000000000

000000

Rely/Guarantee-thinking and Separation
Logic

Viktor Vafeiadis and Cliff Jones

MPI Kaiserslautern and Newcastle University

FM-2011 Tutorial
Limerick, Ireland
2011-06-21

RGSep: history and future Viktor Vafeiadis and Cliff Jones [1]

Introduction R/G Examples R/G thinking

Brief history
00000000 000000000000 000

000000
000000000
000000

Part Il. Rely/Guarantee thinking

RGSep: history and future Viktor Vafeiadis and Cliff Jones [2]

Brief history

Introduction R/G Examples R/G thinking
000000

@0000000 000000000000 [e]e]e}
000000000
000000

Part 1 (moving to Part 2)

e you've heard from Viktor about “separation”
e he’s shown it works on code that handles pointers (heap

storage)

o typically, this is low-level code

¢ IMHO pointer handling is nearly always a reification of more
abstract data structures

¢ switch now to “rigorous design” (by layers of abstraction)
¢ a dichotomy: avoiding races / reasoning about races

e SL for avoiding races
e R/G for reasoning about races
o we'll see later, it’'s not that crisp a distinction

RGSep: history and future Viktor Vafeiadis and Cliff Jones [4]

Introduction R/G Examples R/G thinking
0O@000000 000000000000 [e]e]e}
000000000
000000

Brief history
000000

Complex systems

¢ (IMHO) the only tool to master complexity is abstraction

e complex systems are likely to exhibit concurrency
e in detailed code
e ... and inherent in the application

¢ the essence of concurrency is interference

RGSep: history and future Viktor Vafeiadis and Cliff Jones [5]

Introduction R/G Examples R/G thinking Brief history

00@00000 000000000000 [e]e]e} 000000
000000000
000000

Successful abstractions

e key abstractions
1. pre/post-conditions (sequential programs)
2. abstract objects (crucial, pervasive)
3. “framing” (cf. Separation Logic)
4. recording interference (rely/guarantee thinking)
5. “fiction of atomicity” + splitting atoms safely

e revisit known abstractions to look for lessons

e BUT when we abstract, we ignore some things
be aware what we ignore — and consider its impact
e.g. model of message system built on CSP/CCS
atomicity: atomic operations

. (even) assignment — cf. “relaxed memory” models
we’ll be careful about atomicity!

RGSep: history and future Viktor Vafeiadis and Cliff Jones [6]

Introduction R/G Examples R/G thinking Brief history

000e0000 000000000000 [e]e]e} 000000
000000000
000000

Abstraction: pre/post-conditions (as in VDM/Z/B/. . .)
design by: sequential “operation decomposition rules”
e Floyd/Hoare-like rules
e even here, differences possible
e e.g. weakening built in/separate

e emphasise composition or decomposition
e ‘“total correctness”: termination

e coping with relational post-conditions (# [Hoare69])
post-OP;: 3 x ¥ — B cf. SLAyer

o “satisfiability”
Vo € ¥ - pre-OP;(0) = do’ € X - post-OP;(c0,0")

o this (slight) “expressive weakness” can be useful!

¢ allowed to widen pre

¢ allowed to narrow post (respecting satisfiability)

e role of non-determinism: postpone design decisions

e compositional development

RGSep: history and future Viktor Vafeiadis and Cliff Jones [7]

Introduction R/G Examples R/G thinking Brief history

0O000@000 000000000000 [e]e]e} 000000
000000000
000000

pre/post-conditions (continued)

¢ a rule for relational post-conditions:

(PADYS{PAW)
PA-bAW* = Q

P = §(b)
I@ {P} mk-While(b,S) {Q}

termination “for free” with well-founded W
(cf. “variant function”)

e don’t record unintended split then force equivalence proof
e ensure meaningful split (come back to this!)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [8]

Introduction R/G Examples R/G thinking

Brief history
00000800 000000000000 000 000000

000000000

000000

decomposition vs composition

... this becomes more important with R/G

Contrast:

{PABYS{PAW}
- PA-bAW*" = Q
@ {P} mk-While(b,S) {0}

@{P/\b}S{P/\W}

{P} mk-While(b,S) {P N —b A W*}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [9]

Introduction R/G Examples R/G thinking Brief history

00000080 000000000000 [e]e]e} 000000
000000000
000000

Interference

e interference is the essence of concurrency
¢ even with communication-based concurrency

e obvious: as soon as shared variables can be simulated
¢ trace assertions convenient for deadlock reasoning?

e “‘compositional” rules much harder to devise
¢ than for sequential constructs
e rely/guarantee thinking faces up to interference

¢ history below
e remember lessons from sequential decomposition

RGSep: history and future Viktor Vafeiadis and Cliff Jones [10]

Introduction R/G Examples R/G thinking

0000000 000000000000 [e]e]e}
000000000
000000
111 H H ”
R/G “thinking
pre rely
~~ ——
0'0 ... O’io'i+1 .o oe e o-jo-j+1 O-f
——
guar
post

e assumptions pre/rely
e commitments guar/post
e typical R/G conditions:

e x unchanged (but prefer to use “framing”)
o 5 Cs
e more commonly

flag =

e use a flag to signal between two processes (cf. locking)

e proof rules below

RGSep: history and future

Brief history
000000

Viktor Vafeiadis and Cliff Jones [11]

Introduction R/G Examples R/G thinking Brief history

00000000 @00000000000 [e]e]e} 000000
000000000

A simple example: FINDP

e a warming up example
simple searching problem
classic example from Sue Owicki’s thesis

concurrent version is non-trivial

illustrates the importance of data representation

RGSep: history and future Viktor Vafeiadis and Cliff Jones [13]

Introduction R/G Examples R/G thinking Brief history

00000000 O®@0000000000 [e]e]e} 000000
000000000
000000

Overview: FINDP Algorithm

a sequence of values: v
a predicate: pred

e e.g. first non-zero element
concurrency would make more sense with complex pred

task

e find the lowest index in v satisfying pred
¢ if none is found, result is one greater than the length of v
e vs. sentinel/assumption

use (simple) VDM notation
o stop me if unclear

RGSep: history and future Viktor Vafeiadis and Cliff Jones [14]

Introduction R/G Examples R/G thinking Brief history

Specification
FINDP
rd v: Value*
wr r:N;

pre Vi € inds v - §(pred(v(i)))
relyv="Ar="7
guar true
post (r=lenv+ 1V r € indsv A pred(v(r))) A
Vi € {]:r—]} -~ pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [15]

Introduction R/G Examples R/G thinking Brief history

00000000 O00®@00000000 [e]e]e} 000000
000000000
000000

Concurrent implementation

partition indexes
piU---Up,={1,...,lenv}
FINDP = SEARCH (p;) || - - - || SEARCH (p,,)

concurrent processes search, one process per partition
any partition would do
but simplest with two processes: even/odd indexes

RGSep: history and future Viktor Vafeiadis and Cliff Jones [16]

Introduction R/G Examples R/G thinking Brief history

00000000 0O000@0000000 [e]e]e} 000000
000000000

Naive Concurrency

disjoint concurrency!
each process checks indexes in its partition

final result = minimum of even and odd result
problem: this can perform worse than sequential
e because one process may continue unnecessarily

RGSep: history and future Viktor Vafeiadis and Cliff Jones [17]

Introduction
00000000

RGSep: history and future

R/G Examples R/G thinking
00000@000000 000
000000000

000000

Interfering Processes

allow processes to share variables
introduce top

each process tests/updates top

Brief history
000000

top records the lowest index found so far that satisfies pred

Viktor Vafeiadis and Cliff Jones [18]

Introduction R/G Examples R/G thinking Brief history
00000000 000000 e00000 000 000000
000000000
000000

Concurrent Specification

SEARCH (part: N;-set)

rd v: Value*

wr r:N;

pre Vi Epart 5(pred((1))

relyv="7" A Ntop < < top

guar rop = top V top < top A pred(v(top))
post Vi € part-i <top = —pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [19]

Introduction R/G Examples R/G thinking Brief history
00000000 000000080000 000 000000
000000000
000000

One possible R/G (decomposition) rule

remember, real message is “R/G thinking”
In the spirit of {P} S {Q} we write {P,R} S {G, 0}

{P, R} s1{Gi, O1}

{PaRr} Sr {GraQr}

RV G, = R,

RV G; = R,

GVG = G
PAOGANOARYGVG) = 0

@ {PaR} S H Sr {G,Q}

scope for variation in rules much larger (than in Hoare logics)
here: for decomposition (3 more compact presentations)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [20]

Introduction R/G Examples R/G thinking

Brief history
00000000 000000008000 000 000000
000000000
000000

Using the proof rule (i)

So:

FINDP = SEARCH (odds) || SEARCH (evens)

pre-FINDP = pre-SEARCH

Vi€ indsv-d(pred(v(i))) = Vi€ part-o(pred(v(i)))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [21]

Introduction R/G Examples

R/G thinking Brief history
00000000 000000000800 000 000000
000000000
000000

Using the proof rule (ii)

rely-FINDP V guar-SEARCH = rely-SEARCH

top:tLo?)\/top<tLo?) = lOpStLOYJ

RGSep: history and future Viktor Vafeiadis and Cliff Jones [22]

Introduction R/G Examples R/G thinking Brief history
00000000 000000000080 000 000000
000000000
000000

Using the proof rule (iii)

post-SEARCH (odds) N\ post-SEARCH (evens) N\
guar-SEARCH* =
post-FINDP

IS
(Vi € odds -i <top = —pred(v(i)) A
Vi e evens -i < top = —pred(v(i)) A
top = top V top < top A pred(v(top))) =
(top =lenv+ 1V top € indsv A pred(v(top))) N
Vie {l:top— 1} -—pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [23]

Introduction R/G Examples R/G thinking Brief history
00000000 00000000000 000 000000
000000000
000000

Interesting link between R/G and data reification
[Jon07]

e in FINDP

top «— min(top, local) in two (or n) parallel processes
assuming don’t want to “lock” rop

find a representation that helps us to realise R/G conditions

L]
L]
[]
e (simple) represent as ¢ as min(et, ot)

¢ (pattern repeated below — with less obvious reifications)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [24]

Introduction
00000000

This example:

R/G Examples R/G thinking
000000000000 000
©00000000

Sieve of Eratosthanes

Brief history
000000

e gives insight into the trade-offs between pre/rely and

guar/post

e more dramatic in concurrent QREL —- cf. [CJ00]

e shows importance of choosing the representation
(“reifying”) to achieve (more complex) G

RGSep: history and future

Viktor Vafeiadis and Cliff Jones [25]

Introduction R/G Examples R/G thinking Brief history
00000000 000000000000 000 000000
0e0000000
000000

Interfaces need thought (even sequential)

“achieve real split”
post-PRIMES('s ,s) 2 {1 <i < n | is-prime(i)}

(INIT; SIEVE) satisfies PRIMES
post-INIT('s ,s) s = {1,...,n}

pre-SIEVE(s) 2 post-INIT('s, s)
post-SIEVE('s . s) 2 post-Primes("s . 5)

versus . ..
pre-SIEVE 2 true
post-SIEVE('s ,s) & s =5 — U{mults(i) | 2 < i < [/n]}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [26]

Introduction R/G Examples R/G thinking Brief history
Sequential implementation of SIEVE
PRIMES:
fori—---
post-BODY:s =5 — mults(i)
forj — .

s —s—{i*j}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [27]

Introduction R/G Examples R/G thinking Brief history
00000000 000000000000 000

Parallel implementation of SIEVE
repeat message: “achieve real split”
post-PRIMES('s ,s) 2 {1 < i < n | is-prime(i)}
Lv/n]
|| REM(i) satisfies SIEVE
i=2
REM (i)
pre true
rely s C 5 can’t achieve post unless
guar (‘s —s) C mults(i) upper bound As C s to match rely
post s = 5 — mults(i) sequential exact set

RGSep: history and future Viktor Vafeiadis and Cliff Jones [28]

Introduction R/G Examples R/G thinking

Brief history
00000000 000000000000 000 000000
0000@0000
000000

Another proof rule (nary version)

remember, real message is “R/G thinking”

{P,RV V;Gj} si {Gi, Oi}
\/,G = G

P/\/\JQJ (RVV;G)* = Q
[Par] {P,R} |li si {G, 0}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [29]

Introduction R/G Examples R/G thinking

Brief history
00000000 000000000000 000 000000
000008000
000000

Using the proof rule (i)

Lv/n]

|| REM(i) satisfies SIEVE
=2

rely-SIEVE \/ guar-REM (i) = rely-SIEVE

RGSep: history and future Viktor Vafeiadis and Cliff Jones [30]

Introduction R/G Examples

R/G thinking Brief history
Using the proof rule (ii)
Lvn]
|| REM(i) satisfies SIEVE
i=2

\/ guar-REM(i) = guar-SIEVE

1

= true

RGSep: history and future Viktor Vafeiadis and Cliff Jones [31]

Introduction

R/G Examples R/G thinking Brief history
00000000 000000000000 000 000000
000000080
000000

Using the proof rule (iii)

Lvn]

(i) satisfies SIEVE
i=2

/\ post-REM(j) A'\/ guar-REM(j)* = post-SIEVE
J J

is:

Vie{2:|v/n]} - snmults(i) ={} A

(e {s- T} = Fe (2 Val}-i € ms()) =
s="5 — U{mults(i) | 2 < i< [/n]}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [32]

Introduction

R/G Examples R/G thinking
00000000

Brief history
000000000000 000 000000
00000000e
000000

(again) Interesting link between R/G and data

reification
e achieving monotonic reduction in s
e requires a suitable representation

e arepresentation that helps realise R/G conditions s C ‘s~
Rem(i):
forj — ...
s—s—{ixj}
e don’t want to “lock” s (it’s big!)
e represent s by a vector of bits
Rem(i):
forj«— ...
s(i xj) < false
e residual atomicity assumptions:

e care if 8 bits packed into one byte (memory access/change)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [33]

Introduction
00000000

Francesco’s

RGSep: history and future

R/G Examples R/G thinking

000000000000 [e]e]e}
000000000
900000

Concurrent set

(source Francesco Zappa Nardelli)

Brief history
000000

concurrent access to a (linked list) representation of a set
see slides from [Nar10]
although he uses R/G, my approach differs from

there are places where R/G (thinking) is too heavy!
... and it brings out another piece of work

Viktor Vafeiadis and Cliff Jones [34]

Introduction R/G Examples R/G thinking Brief history
00000000 000000000000 000 000000
000000000
O®@0000

Concurrent set: Specification
[Nar10, Slide 54]

Abstract and concrete state

Abstract specification of a set data type:

AbsContains(e) : < AbsResult := e € Abs >

AbsAdd(e) : < AbsResult :== e ¢ Abs ;
Abs := Abs U {e} >

AbsRemove(e) : < AbsResult := e € Abs ;
Abs := Abs \ {e} >

A module implements the abstract specification using local state and methods.

Sequential code: prove that the concrete methods are equivalent to their
abstract counterpart.

Concurrent code: must also establish that the externally visible effect of each
method takes place at some instant, atomically with respect to other threads.

This property is called linearisability:
each operation appears to take effect instantaneously.

RGSep: history&fftd fUtrg= > Viktor Vafeiadis and®Cliff Jones [35]

Introduction R/G Examples R/G thinking Brief history

00000000 000000000000 [e]e]e} 000000
000000000
[ele] le]ele]

Concurrent set: Implementation
[Nar10, Slide 56]

Pessimistic implementation of a set via a linked list

. add(e) : .
locate('ei) : . nl, n3 := locate(e) ; Temove('el. .
pred := Head ; if n3.val # ¢ then nl, n2 := locate(e) ;

pred.lock() ;

curr := pred.next ;

curr.lock() ;

while (curr.val < e) {
pred.unlock() ;

if n2.val = e then
n3 :=n2.mext [*C] ;
nl.next :=n3;
Result := true

else

n2 := new Node(e) ;
n2.next :=n3 ;
nl.next :=n2 [*A] ;
Result := true

- g else L
sred = ccurrr,1e .. Result i false [+B] erll-ldeisg{t := false [*D]
urr := curr.next ; endif ; ; '
curr.lock() nLunlock() ; nl.unlock() ;

n2.unlock() ;

n3.unlock() ; return Result

;
return pred, curr
pred, return Result

® Jocate uses lock-coupling: the lock on some node is not released until the next is locked.
Returns the previous and current (that is the first node >= e) node, both locked.

® add inserts the new element while holding the locks of the previous and next node;

® remove updates the previous next pointer while holding the locks on previous and current

RGSep: history&fftd fUtrg= > Viktor Vafeiadis andCliff Jones [36]

Introduction
00000000

RGSep: historyrtfid fligree 20

R/G Examples R/G thinking

000000000000 [e]e]e}
000000000
000e00

Concurrent set: R/G for locks
[Nar10, Slide 59]

Rely/Guarantee specification of locks

A mutex L is just a variable that holds the thread id (tid) of its owner, or null.
The semantics of lock and unlock can be formalised as:
L.lock() =< L.owner = null — L.owner := self >
L.unlock() = < L.owner := null >

where < C > denotes that C is executed atomically (and < B —. € > is a CCR),
and the distinguished variable self stands for the tid of the current thread.

L.lock = (L.owner = self ,lockRely , lockGuar , L.owner = self)
L.unlock(Q) & (L.owner = self , lockRely , lockGuar , L.owner = self)

where lockRely = ID(L.owner = self)
and JlockGuar = (Vi ¢ {self, null}. ID(L.owner = i)).

Brief history
000000

Viktor Vafeiadis an&Cliff Jones [37]

Introduction
00000000

in [Jon96]

RGSep: history and future

R/G Examples R/G thinking
000000000000 000
000000000

0000e0

Concurrent set

an alternative approach

use “fiction of atomicity”
“splitting atoms safely”
the approach to “refining atomicity” is (also) covered

Brief history
000000

. it fits with development by “layers of abstraction”

Viktor Vafeiadis and Cliff Jones [38]

roduction R/G Examples R/G thinking Brief history

0O0000e

TOPN

e mof)\ is a concurrent object-based language

e synchronisation: only one method active per object
(instance)

o effectively: atomic behaviour
e equivalence rules to introduce concurrency
e “islands”

e no observable difference

e ... butrelies on power of observers

e ... (thus) of observation language

e cf. “synchronisation points” / linearisability

RGSep: history and future Viktor Vafeiadis and Cliff Jones [39]

Introduction R/G Examples R/G thinking Brief history
00000000 000000000000 ®00 000000

uuuuuu

R/G comments

meaningful notion of compositionality

scope for variation in rules much larger
(than in Hoare logics)

e e.g. “stability” (Coleman, Dodds et al.)

odd variants
rely-OP;: 3% x ¥ — B
guar-OP;: % x ¥ — B
post-OP;: ¥ — B

even (deprecated)

but Stirling was looking for meta results
rely-OP;: ¥ — B
guar-OP;: % — B
post-OP;: ¥ — B

RGSep: history and future Viktor Vafeiadis and Cliff Jones [41]

Brief history

R/G thinking
000000

R/G Examples
o] Yo}

Introduction
000000000000

00000000

uuuuuu

R/G comments (continued)

e expressive weakness more marked!
¢ there are things (transitive) relations can’t express
e R/G “thinking”
e “phasing” (as a way to increase expressiveness)
¢ roughly: using PL constructs in specifications
e (drastically) simplifies R/G
e consider interference in two phases:
x increases; x decreases
e “4-slot” (in Part 4)
e proving soundness of R/G rules
¢ joint paper with Joey Coleman: [CJ07]

¢ language with nested parallel construct
e ... and fine granularity (+ STM in Coleman’s thesis)

e cf. Prensa Nieto’s mechanically checked soundness proofs
e my specific form of R also useful in our proof

RGSep: history and future Viktor Vafeiadis and Cliff Jones [42]

Introduction
00000000

R/G Examples R/G thinking
0000 ooe

Framing

There are several ways of achieving x = x :

RGSep: history and future

locking

local scope

we can conjoin pre/post with independent frames
what SL buys us is a concise notation for doing this

Brief history
000000

(perhaps less for “stack” variables, but) for heap variables

Viktor Vafeiadis and Cliff Jones [43]

Introduction
00000000

R/G Examples R/G thinking

000000000000 [e]e]e}
000000000

Disjoint concurrency

Hoare

all around us (e.g. paging)
Hoare in 1971

e check alphabet disjointness
e use sequential proof rules

e straight conjunction of pre/post conditions
see “framing”
cf. separation logic

e usual origin: Reynolds
e O’Hearn pointed to Hoare (at April 2009 event)

RGSep: history and future

Brief history
@00000

Viktor Vafeiadis and Cliff Jones [45]

Introduction R/G Examples R/G thinking Brief history

00000000 000000000000 [e]e]e} O@0000
000000000
000000

Interference

Ashcroft/Manna

interference (i.e. shared alphabets)
proof of “cross product” of control points
¢ labour intensive!

completely post facto
non compositional

arbitrary/fixed granularity assumption

e assignments taken to be atomic
¢ cf. so-called “Reynold’s rule”

RGSep: history and future Viktor Vafeiadis and Cliff Jones [46]

Introduction R/G Examples R/G thinking Brief history

00000000 000000000000 [e]e]e} 00@000
000000000
000000

Interference
Owicki/Gries

e interference (i.e. shared alphabets)

e separate sequential reasoning

e post facto: final “Einmischungsfrei” PO

e non compositional

e arbitrary/fixed granularity assumption

¢ of course, disjoint frames remove risk of interference

RGSep: history and future Viktor Vafeiadis and Cliff Jones [47]

Introduction R/G Examples R/G thinking Brief history

00000000 000000000000 [e]e]e} 000e00
000000000
000000

Rely/Guarantee conditions

e compositional

e takes “interference” head on

¢ no fixed view of granularity (atomicity)
e saw later, R/G “thinking”

e casiest reference [Jon96]

e thesis now on-line [Jon81]

e see also [Jon07]

RGSep: history and future Viktor Vafeiadis and Cliff Jones [48]

R/G thinking Brief history
000 000000

(more) R/G comments

¢ meaningful notion of compositionality
e R/G for reasoning about “racey” programs
¢ but also (see later) handling “abstract races”
e significant literature on extensions/variants (cf. www....)

rely/guar both transitive and reflexive (zero/multiple steps)
other versions of R/G rules use “dynamic invariants” [CJ00]
“progress” conditions — Stalen

RGSep — see Viktor's Part 3

“Deny/Guarantee” Parkinson et al.

e look for synergy — not competition

RGSep: history and future Viktor Vafeiadis and Cliff Jones [49]

Introduction R/G Examples R/G thinking Brief history

00000000 000000000000 [e]e]e} O0000e
000000000
000000

References

Pierre Collette and Cliff B. Jones.

Enhancing the tractability of rely/guarantee specifications in the development of interfering operations.
In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language and Interaction, chapter 10,
pages 277-307. MIT Press, 2000.

J. W. Coleman and C. B. Jones.

A structural proof of the soundness of rely/guarantee rules.
Journal of Logic and Computation, 17(4):807-841, 2007.

C. B. Jones.

Development Methods for Computer Programs including a Notion of Interference.

PhD thesis, Oxford University, June 1981.

Printed as: Programming Research Group, Technical Monograph 25.

C. B. Jones.

Accommodating interference in the formal design of concurrent object-based programs.
Formal Methods in System Design, 8(2):105-122, March 1996.

C. B. Jones.

Splitting atoms safely.
Theoretical Computer Science, 375(1-3):109-119, 2007.

) W & & W R

Francesco Zappa Nardelli.
Proof methods for concurrent programs (slides part 3), 2010.

slides: http://moscova.inria. fr/%appa/f:—rac:ung/rrprl/'2010 /fzn-mpri-2010-3.pdf.

RGSep: history and future Viktor Vafeiadis and Cliff Jones [50]

http://moscova.inria.fr/~zappa/teaching/mpri/2010/fzn-mpri-2010-3.pdf

	Introduction
	

	R/G Examples
	FINDP Example
	PRIMES example
	Concurrent set

	R/G thinking
	

	Brief history
	

