
Introduction R/G Examples R/G thinking Brief history

Rely/Guarantee-thinking and Separation
Logic

Viktor Vafeiadis and Cliff Jones

MPI Kaiserslautern and Newcastle University

FM-2011 Tutorial
Limerick, Ireland

2011-06-21

RGSep: history and future Viktor Vafeiadis and Cliff Jones [1]

Introduction R/G Examples R/G thinking Brief history

Part II. Rely/Guarantee thinking

RGSep: history and future Viktor Vafeiadis and Cliff Jones [2]

Introduction R/G Examples R/G thinking Brief history

Part 1 (moving to Part 2)

• you’ve heard from Viktor about “separation”
• he’s shown it works on code that handles pointers (heap

storage)
• typically, this is low-level code
• IMHO pointer handling is nearly always a reification of more

abstract data structures

• switch now to “rigorous design” (by layers of abstraction)
• a dichotomy: avoiding races / reasoning about races

• SL for avoiding races
• R/G for reasoning about races
• we’ll see later, it’s not that crisp a distinction

RGSep: history and future Viktor Vafeiadis and Cliff Jones [4]

Introduction R/G Examples R/G thinking Brief history

Complex systems

• (IMHO) the only tool to master complexity is abstraction
• complex systems are likely to exhibit concurrency

• in detailed code
• . . . and inherent in the application

• the essence of concurrency is interference

RGSep: history and future Viktor Vafeiadis and Cliff Jones [5]

Introduction R/G Examples R/G thinking Brief history

Successful abstractions

• key abstractions
1. pre/post-conditions (sequential programs)
2. abstract objects (crucial, pervasive)
3. “framing” (cf. Separation Logic)
4. recording interference (rely/guarantee thinking)
5. “fiction of atomicity” + splitting atoms safely

• revisit known abstractions to look for lessons
• BUT when we abstract, we ignore some things

• be aware what we ignore — and consider its impact
• e.g. model of message system built on CSP/CCS
• atomicity: atomic operations
• . . . (even) assignment — cf. “relaxed memory” models
• we’ll be careful about atomicity!

RGSep: history and future Viktor Vafeiadis and Cliff Jones [6]

Introduction R/G Examples R/G thinking Brief history

Abstraction: pre/post-conditions (as in VDM/Z/B/. . .)
design by: sequential “operation decomposition rules”

• Floyd/Hoare-like rules
• even here, differences possible

• e.g. weakening built in/separate
• emphasise composition or decomposition
• “total correctness”: termination

• coping with relational post-conditions (6= [Hoare69])
post-OPi: Σ× Σ→ B cf. SLAyer

• “satisfiability”
∀σ ∈ Σ · pre-OPi(σ) ⇒ ∃σ′ ∈ Σ · post-OPi(σ, σ′)

• this (slight) “expressive weakness” can be useful!
• allowed to widen pre
• allowed to narrow post (respecting satisfiability)

• role of non-determinism: postpone design decisions
• compositional development
• . . .

RGSep: history and future Viktor Vafeiadis and Cliff Jones [7]

Introduction R/G Examples R/G thinking Brief history

pre/post-conditions (continued)

• a rule for relational post-conditions:

While-I

{P ∧ b} S {P ∧W}
P ∧ ¬ b ∧W∗ ⇒ Q
P ⇒ δl(b)
{P} mk-While(b, S) {Q}

termination “for free” with well-founded W
(cf. “variant function”)

• don’t record unintended split then force equivalence proof
• ensure meaningful split (come back to this!)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [8]

Introduction R/G Examples R/G thinking Brief history

decomposition vs composition
. . . this becomes more important with R/G

Contrast:

While-I

{P ∧ b} S {P ∧W}
P ∧ ¬ b ∧W∗ ⇒ Q
{P} mk-While(b, S) {Q}

While-I
{P ∧ b} S {P ∧W}
{P} mk-While(b, S) {P ∧ ¬ b ∧W∗}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [9]

Introduction R/G Examples R/G thinking Brief history

Interference

• interference is the essence of concurrency
• even with communication-based concurrency

• obvious: as soon as shared variables can be simulated
• trace assertions convenient for deadlock reasoning?

• “compositional” rules much harder to devise
• than for sequential constructs

• rely/guarantee thinking faces up to interference
• history below
• remember lessons from sequential decomposition

RGSep: history and future Viktor Vafeiadis and Cliff Jones [10]

Introduction R/G Examples R/G thinking Brief history

R/G “thinking”
pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

• assumptions pre/rely
• commitments guar/post
• typical R/G conditions:

• x unchanged (but prefer to use “framing”)
• ↼−s ⊆ s
• more commonly

flag ⇒ · · ·

• use a flag to signal between two processes (cf. locking)
• proof rules below

RGSep: history and future Viktor Vafeiadis and Cliff Jones [11]

Introduction R/G Examples R/G thinking Brief history

A simple example: FINDP

• a warming up example
• simple searching problem
• classic example from Sue Owicki’s thesis
• concurrent version is non-trivial
• illustrates the importance of data representation

RGSep: history and future Viktor Vafeiadis and Cliff Jones [13]

Introduction R/G Examples R/G thinking Brief history

Overview: FINDP Algorithm

• a sequence of values: v
• a predicate: pred

• e.g. first non-zero element
concurrency would make more sense with complex pred

• task
• find the lowest index in v satisfying pred
• if none is found, result is one greater than the length of v
• vs. sentinel/assumption

• use (simple) VDM notation
• stop me if unclear

RGSep: history and future Viktor Vafeiadis and Cliff Jones [14]

Introduction R/G Examples R/G thinking Brief history

Specification

FINDP
rd v: Value∗

wr r: N1

pre ∀i ∈ inds v · δ(pred(v(i)))
rely v = ↼−v ∧ r = ↼−r
guar true
post (r = len v + 1 ∨ r ∈ inds v ∧ pred(v(r))) ∧

∀i ∈ {1: r − 1} · ¬ pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [15]

Introduction R/G Examples R/G thinking Brief history

Concurrent implementation

• partition indexes
p1 ∪ · · · ∪ pn = {1, . . . , len v}
FINDP = SEARCH(p1) || · · · || SEARCH(pn)

• concurrent processes search, one process per partition
• any partition would do
• but simplest with two processes: even/odd indexes

RGSep: history and future Viktor Vafeiadis and Cliff Jones [16]

Introduction R/G Examples R/G thinking Brief history

Naive Concurrency

• disjoint concurrency!
• each process checks indexes in its partition
• final result = minimum of even and odd result
• problem: this can perform worse than sequential

• because one process may continue unnecessarily

RGSep: history and future Viktor Vafeiadis and Cliff Jones [17]

Introduction R/G Examples R/G thinking Brief history

Interfering Processes

• allow processes to share variables
• introduce top
• top records the lowest index found so far that satisfies pred
• each process tests/updates top

RGSep: history and future Viktor Vafeiadis and Cliff Jones [18]

Introduction R/G Examples R/G thinking Brief history

Concurrent Specification

SEARCH(part: N1-set)
rd v: Value∗

wr r: N1

pre ∀i ∈ part · δ(pred(v(i)))
rely v = ↼−v ∧ top ≤↼−top
guar top = ↼−top ∨ top < ↼−top ∧ pred(v(top))
post ∀i ∈ part · i ≤ top ⇒ ¬ pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [19]

Introduction R/G Examples R/G thinking Brief history

One possible R/G (decomposition) rule
remember, real message is “R/G thinking”

In the spirit of {P} S {Q} we write {P,R} S {G,Q}

Par-I

{P,Rl} sl {Gl,Ql}
{P,Rr} sr {Gr,Qr}
R ∨ Gr ⇒ Rl
R ∨ Gl ⇒ Rr

Gl ∨ Gr ⇒ G
↼−
P ∧ Ql ∧ Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q
{P,R} sl || sr {G,Q}

scope for variation in rules much larger (than in Hoare logics)
here: for decomposition (∃ more compact presentations)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [20]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (i)

So:

FINDP = SEARCH(odds) || SEARCH(evens)

pre-FINDP ⇒ pre-SEARCH

is:

∀i ∈ inds v · δ(pred(v(i))) ⇒ ∀i ∈ part · δ(pred(v(i)))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [21]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (ii)

rely-FINDP ∨ guar-SEARCH ⇒ rely-SEARCH

is

top = ↼−top ∨ top < ↼−top ⇒ top ≤↼−top

RGSep: history and future Viktor Vafeiadis and Cliff Jones [22]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (iii)

post-SEARCH(odds) ∧ post-SEARCH(evens) ∧
guar-SEARCH∗ ⇒

post-FINDP

is

(∀i ∈ odds · i ≤ top ⇒ ¬ pred(v(i)) ∧
∀i ∈ evens · i ≤ top ⇒ ¬ pred(v(i)) ∧
top = ↼−top ∨ top < ↼−top ∧ pred(v(top))) ⇒

(top = len v + 1 ∨ top ∈ inds v ∧ pred(v(top))) ∧
∀i ∈ {1: top− 1} · ¬ pred(v(i))

RGSep: history and future Viktor Vafeiadis and Cliff Jones [23]

Introduction R/G Examples R/G thinking Brief history

Interesting link between R/G and data reification
[Jon07]

• in FINDP
• top← min(top, local) in two (or n) parallel processes
• assuming don’t want to “lock” top
• find a representation that helps us to realise R/G conditions
• (simple) represent as t as min(et, ot)

• (pattern repeated below — with less obvious reifications)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [24]

Introduction R/G Examples R/G thinking Brief history

Sieve of Eratosthanes

This example:

• gives insight into the trade-offs between pre/rely and
guar/post

• more dramatic in concurrent QREL —- cf. [CJ00]
• shows importance of choosing the representation

(“reifying”) to achieve (more complex) G

RGSep: history and future Viktor Vafeiadis and Cliff Jones [25]

Introduction R/G Examples R/G thinking Brief history

Interfaces need thought (even sequential)
“achieve real split”

post-PRIMES(↼−s , s) 4 {1 ≤ i ≤ n | is-prime(i)}

(INIT; SIEVE) satisfies PRIMES
post-INIT(↼−s , s) 4 s = {1, . . . , n}

pre-SIEVE(s) 4 post-INIT(↼−s , s)
post-SIEVE(↼−s , s) 4 post-Primes(↼−s , s)

versus . . .

pre-SIEVE 4 true
post-SIEVE(↼−s , s) 4 s = ↼−s −⋃{mults(i) | 2 ≤ i ≤ b

√
nc}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [26]

Introduction R/G Examples R/G thinking Brief history

Sequential implementation of SIEVE

PRIMES:
for i← · · ·

post-BODY: s = ↼−s − mults(i)
for j← · · ·

s← s− {i ∗ j}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [27]

Introduction R/G Examples R/G thinking Brief history

Parallel implementation of SIEVE
repeat message: “achieve real split”

post-PRIMES(↼−s , s) 4 {1 ≤ i ≤ n | is-prime(i)}

b
√

ncn

i=2

REM(i) satisfies SIEVE

REM(i)
pre true
rely s ⊆↼−s can’t achieve post unless
guar (↼−s − s) ⊆ mults(i) upper bound ∧ s ⊆↼−s to match rely
post s = ↼−s − mults(i) sequential exact set

RGSep: history and future Viktor Vafeiadis and Cliff Jones [28]

Introduction R/G Examples R/G thinking Brief history

Another proof rule (nary version)
remember, real message is “R/G thinking”

Par-I

{P,R ∨ ∨
j Gj} si {Gi,Qi}∨

i Gi ⇒ G
↼−
P ∧∧

j Qj ∧ (R ∨ ∨
j Gj)∗ ⇒ Q

{P,R} ||i si {G,Q}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [29]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (i)

b
√

ncn

i=2

REM(i) satisfies SIEVE

rely-SIEVE ∨
∨

i

guar-REM(i) ⇒ rely-SIEVE

is:

s ⊆↼−s ⇒ s ⊆↼−s

RGSep: history and future Viktor Vafeiadis and Cliff Jones [30]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (ii)

b
√

ncn

i=2

REM(i) satisfies SIEVE

∨
i

guar-REM(i) ⇒ guar-SIEVE

is:

· · · ⇒ true

RGSep: history and future Viktor Vafeiadis and Cliff Jones [31]

Introduction R/G Examples R/G thinking Brief history

Using the proof rule (iii)

b
√

ncn

i=2

REM(i) satisfies SIEVE

∧
j

post-REM(j) ∧
∨

j

guar-REM(j)∗ ⇒ post-SIEVE

is:

∀i ∈ {2: b
√

nc} · s ∩ mults(i) = { } ∧
(i ∈ {s−↼−s } ⇒ ∃j ∈ {2: b

√
nc} · i ∈ mults(j)) ⇒

s = ↼−s −⋃{mults(i) | 2 ≤ i ≤ b
√

nc}

RGSep: history and future Viktor Vafeiadis and Cliff Jones [32]

Introduction R/G Examples R/G thinking Brief history

(again) Interesting link between R/G and data
reification

• achieving monotonic reduction in s
• requires a suitable representation
• a representation that helps realise R/G conditions s ⊆↼−s

Rem(i):
for j← · · ·

s← s− {i ∗ j}
• don’t want to “lock” s (it’s big!)
• represent s by a vector of bits

Rem(i):
for j← · · ·

s(i ∗ j)← false
• residual atomicity assumptions:

• care if 8 bits packed into one byte (memory access/change)
RGSep: history and future Viktor Vafeiadis and Cliff Jones [33]

Introduction R/G Examples R/G thinking Brief history

Concurrent set
(source Francesco Zappa Nardelli)

• concurrent access to a (linked list) representation of a set
• see slides from [Nar10]
• although he uses R/G, my approach differs from

Francesco’s
• there are places where R/G (thinking) is too heavy!
• . . . and it brings out another piece of work

RGSep: history and future Viktor Vafeiadis and Cliff Jones [34]

Introduction R/G Examples R/G thinking Brief history

Concurrent set: Specification
[Nar10, Slide 54]

Abstract specification of a set data type:

A module implements the abstract specification using local state and methods.

Sequential code: prove that the concrete methods are equivalent to their
abstract counterpart.

Concurrent code: must also establish that the externally visible effect of each
method takes place at some instant, atomically with respect to other threads.

This property is called linearisability:

Abstract and concrete state

each operation appears to take effect instantaneously.

48Thursday, 10 December 2009RGSep: history and future Viktor Vafeiadis and Cliff Jones [35]

Introduction R/G Examples R/G thinking Brief history

Concurrent set: Implementation
[Nar10, Slide 56]

Pessimistic implementation of a set via a linked list

• locate uses lock-coupling: the lock on some node is not released until the next is locked.
Returns the previous and current (that is the first node >= e) node, both locked.

• add inserts the new element while holding the locks of the previous and next node;

• remove updates the previous next pointer while holding the locks on previous and current

50Thursday, 10 December 2009RGSep: history and future Viktor Vafeiadis and Cliff Jones [36]

Introduction R/G Examples R/G thinking Brief history

Concurrent set: R/G for locks
[Nar10, Slide 59]

Rely/Guarantee specification of locks

A mutex L is just a variable that holds the thread id (tid) of its owner, or null.

The semantics of lock and unlock can be formalised as:

L.lock() = < L.owner = null ⟶ L.owner := self >

L.unlock() = < L.owner := null >

where < C > denotes that C is executed atomically (and < B ⟶ C > is a CCR),
and the distinguished variable self stands for the tid of the current thread.

 L.lock ⊨ (L.owner ≠ self , lockRely , lockGuar , L.owner = self)

 L.unlock() ⊨ (L.owner = self , lockRely , lockGuar , L.owner ≠ self)

where lockRely = ID(L.owner = self)

and lockGuar = (∀i ∉ {self, null}. ID(L.owner = i)).

53Thursday, 10 December 2009RGSep: history and future Viktor Vafeiadis and Cliff Jones [37]

Introduction R/G Examples R/G thinking Brief history

Concurrent set
an alternative approach

• use “fiction of atomicity”
• “splitting atoms safely”
• the approach to “refining atomicity” is (also) covered

in [Jon96]
• . . . it fits with development by “layers of abstraction”

RGSep: history and future Viktor Vafeiadis and Cliff Jones [38]

Introduction R/G Examples R/G thinking Brief history

πoβλ

• πoβλ is a concurrent object-based language
• synchronisation: only one method active per object

(instance)
• effectively: atomic behaviour
• equivalence rules to introduce concurrency

• “islands”

• no observable difference
• . . . but relies on power of observers
• . . . (thus) of observation language
• cf. “synchronisation points” / linearisability

RGSep: history and future Viktor Vafeiadis and Cliff Jones [39]

Introduction R/G Examples R/G thinking Brief history

R/G comments

• meaningful notion of compositionality
• scope for variation in rules much larger

(than in Hoare logics)
• e.g. “stability” (Coleman, Dodds et al.)

• odd variants
rely-OPi: Σ× Σ→ B
guar-OPi: Σ× Σ→ B
post-OPi: Σ→ B

• even (deprecated)
but Stirling was looking for meta results

rely-OPi: Σ→ B
guar-OPi: Σ→ B
post-OPi: Σ→ B

RGSep: history and future Viktor Vafeiadis and Cliff Jones [41]

Introduction R/G Examples R/G thinking Brief history

R/G comments (continued)
• expressive weakness more marked!

• there are things (transitive) relations can’t express
• R/G “thinking”

• “phasing” (as a way to increase expressiveness)
• roughly: using PL constructs in specifications
• (drastically) simplifies R/G
• consider interference in two phases:

x increases; x decreases
• “4-slot” (in Part 4)

• proving soundness of R/G rules
• joint paper with Joey Coleman: [CJ07]
• language with nested parallel construct
• . . . and fine granularity (+ STM in Coleman’s thesis)

• cf. Prensa Nieto’s mechanically checked soundness proofs
• my specific form of R also useful in our proof

RGSep: history and future Viktor Vafeiadis and Cliff Jones [42]

Introduction R/G Examples R/G thinking Brief history

Framing

There are several ways of achieving x = ↼−x :
• locking
• local scope
• we can conjoin pre/post with independent frames
• what SL buys us is a concise notation for doing this
• (perhaps less for “stack” variables, but) for heap variables

RGSep: history and future Viktor Vafeiadis and Cliff Jones [43]

Introduction R/G Examples R/G thinking Brief history

Disjoint concurrency
Hoare

• all around us (e.g. paging)
• Hoare in 1971

• check alphabet disjointness
• use sequential proof rules
• straight conjunction of pre/post conditions

• see “framing”
• cf. separation logic

• usual origin: Reynolds
• O’Hearn pointed to Hoare (at April 2009 event)

RGSep: history and future Viktor Vafeiadis and Cliff Jones [45]

Introduction R/G Examples R/G thinking Brief history

Interference
Ashcroft/Manna

• interference (i.e. shared alphabets)
• proof of “cross product” of control points

• labour intensive!

• completely post facto
• non compositional
• arbitrary/fixed granularity assumption

• assignments taken to be atomic
• cf. so-called “Reynold’s rule”

RGSep: history and future Viktor Vafeiadis and Cliff Jones [46]

Introduction R/G Examples R/G thinking Brief history

Interference
Owicki/Gries

• interference (i.e. shared alphabets)
• separate sequential reasoning
• post facto: final “Einmischungsfrei” PO
• non compositional
• arbitrary/fixed granularity assumption
• of course, disjoint frames remove risk of interference

RGSep: history and future Viktor Vafeiadis and Cliff Jones [47]

Introduction R/G Examples R/G thinking Brief history

Rely/Guarantee conditions

• compositional
• takes “interference” head on
• no fixed view of granularity (atomicity)
• saw later, R/G “thinking”
• easiest reference [Jon96]
• thesis now on-line [Jon81]
• see also [Jon07]

RGSep: history and future Viktor Vafeiadis and Cliff Jones [48]

Introduction R/G Examples R/G thinking Brief history

(more) R/G comments

• meaningful notion of compositionality
• R/G for reasoning about “racey” programs
• but also (see later) handling “abstract races”

• significant literature on extensions/variants (cf. www.. . .)
• rely/guar both transitive and reflexive (zero/multiple steps)
• other versions of R/G rules use “dynamic invariants” [CJ00]
• “progress” conditions — Stølen
• RGSep — see Viktor’s Part 3
• “Deny/Guarantee” Parkinson et al.

• look for synergy — not competition

RGSep: history and future Viktor Vafeiadis and Cliff Jones [49]

Introduction R/G Examples R/G thinking Brief history

References
Pierre Collette and Cliff B. Jones.
Enhancing the tractability of rely/guarantee specifications in the development of interfering operations.
In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language and Interaction, chapter 10,
pages 277–307. MIT Press, 2000.

J. W. Coleman and C. B. Jones.
A structural proof of the soundness of rely/guarantee rules.
Journal of Logic and Computation, 17(4):807–841, 2007.

C. B. Jones.
Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981.
Printed as: Programming Research Group, Technical Monograph 25.

C. B. Jones.
Accommodating interference in the formal design of concurrent object-based programs.
Formal Methods in System Design, 8(2):105–122, March 1996.

C. B. Jones.
Splitting atoms safely.
Theoretical Computer Science, 375(1–3):109–119, 2007.

Francesco Zappa Nardelli.
Proof methods for concurrent programs (slides part 3), 2010.
slides: http://moscova.inria.fr/↼−z appa/teaching/mpri/2010/fzn-mpri-2010-3.pdf.

RGSep: history and future Viktor Vafeiadis and Cliff Jones [50]

http://moscova.inria.fr/~zappa/teaching/mpri/2010/fzn-mpri-2010-3.pdf

	Introduction
	

	R/G Examples
	FINDP Example
	PRIMES example
	Concurrent set

	R/G thinking
	

	Brief history
	

