
RGSep Action Inference

Viktor Vafeiadis

Microsoft Research Cambridge, UK

Abstract. We present an automatic verification procedure based on
RGSep that is suitable for reasoning about fine-grained concurrent heap-
manipulating programs. The procedure computes a set of RGSep actions
overapproximating the interference that each thread causes to its con-
current environment. These inferred actions allow us to verify safety,
liveness, and functional correctness properties of a collection of practical
concurrent algorithms from the literature.

1 Introduction

Low level C programmers constantly rely on two very error-prone programming
features: manual memory management (malloc/free) and concurrency. While
there are several verification techniques for reasoning about either feature in
isolation, few techniques can handle programs using both features.

One such technique is RGSep [20], a recent extension of rely-guarantee rea-
soning [11] that incorporates separation logic [15]. RGSep specifications describe
the updates to the shared state using two binary relations: the rely and the guar-
antee. A thread’s rely relation under-approximates the interference it can tolerate
from its environment (that is, the updates that other threads are allowed to do),
whereas the guarantee over-approximates the updates the thread can do, i.e. the
interference that it causes to its concurrent environment. RGSep represents these
binary relations as the reflexive and transitive closure of a set of actions, which
are precondition-postcondition pairs describing the possible small updates.

On its own RGSep is just a program logic: users must prove their programs
correct with pencil and paper using RGSep’s proof rules. As constructing such
proofs manually is quite tedious and often error-prone, there has been some work
on constructing such proofs semi-automatically [5, 19] by letting the programmer
supply the rely and guarantee relations and doing abstract interpretation to
figure out the more tedious aspects of the proof.

Here, we extend the aforementioned work to be fully automatic. We present
an algorithm (Infer-Actions, §3) that calculates the rely and guarantee rela-
tions as a set of actions, each of which is extended with a special context assertion
describing the part of the state that is not affected by the action. These contexts
arise naturally during action inference and allow us to define a useful join on
actions (§4).

In the process of inferring these actions, our algorithm also proves memory
safety, discovers shape invariants, and discharges any user-supplied assertions.
The output of action inference has been used to prove advanced safety properties,
such as linearizability, and conditional termination [9].

2 Preliminaries

We consider programs in a first-order subset of C. Programs consist of an ini-
tialization phase followed by a top-level parallel composition of a possibly un-
bounded number of threads. The programs for the initialization phase and for
each thread are converted to the following simpler language of commands:

C ::= skip | x := E | x := [E] | [E] := E� | x := malloc()
| assume(E) | C1;C2 | C1 ⊕ C2 | C∗ | atomic C

where x ranges over program variables and E over arithmetic expressions. Pro-
gram commands, C, include the empty command, variable assignments, memory
loads and stores, memory allocation, assume statements, sequential composition,
non-deterministic choice, loops, and atomic commands.

An important aspect of our intermediate language is that the atomicity of
memory accesses is explicit. By default, we assume that memory accesses are
non-atomic. When, however, a memory access is guaranteed to be atomic by the
memory model (for example, a single-word memory access to a volatile variable
or field), we make this explicit by enclosing it in an atomic block. Similarly, we
also use atomic blocks to encode complex atomic instructions such as compare-
and-swap. As data races on non-atomic memory accesses can lead to incoherent
results, our proof system ensures that there are no races on non-atomic memory
accesses, but permits races between two atomic commands.

2.1 Underlying Separation Logic Domain

Our verification is parametric with respect to an underlying separation logic ab-
stract domain. Elements of a separation logic domain are assertions belonging to
a fragment of separation logic and are ordered by logical implication. Further, we
assume that this fragment of separation logic includes �→-assertions, disjunction,
∗-conjunction and that assertions can have free logical variables. We shall use
uppercase italic letters (P , Q, R) to range over such separation logic assertions.
Their meaning with respect to an interpretation (I) mapping logical variables
to values is a set of heaps (partial finite maps from addresses to values):

[[emp]]I
def
= {h | dom h = ∅}

[[E �→ E�]]I
def
= {h | dom h = {[[E]]I} ∧ h([[E]]I) = [[E�]]I}

[[P ∗Q]]I
def
= {h1 � h2 | h1 ∈ [[P]]I ∧ h2 ∈ [[Q]]I}

where h1 � h2 denotes the union of the functions h1 and h2 if their domains are
disjoint, and is undefined if their domains overlap. Finally, the abstract domain
must support the following three operations:

Abstraction: Abstract(P) over-approximates P ([[P]]I ⊆ [[Abstract(P)]]I)
ensuring that fixpoint calculations of the form P ← P ∨ α(transform(P))
terminate. This is usually achieved by Abstract having a finite range.

(Must-)Subtraction: Subtract(P,Q,A) is an enhanced entailment checking
procedure and is also known as ‘frame inference’ [2]. It takes two assertions
(P , Q) and a set of logical variables (A) that are implicitly existentially
quantified in Q. Subtraction tries to find an assertion F such that P =⇒
∃A. Q ∗ F . If such an assertion exists, it returns it; otherwise, it throws an
exception (usually resulting in a verification failure). Note that the frame F
may provide witnesses for the existentially quantified variables A.

May-Subtraction: May-Subtract(P,Q,R) takes three assertions P , Q, and
R and returns an assertion S denoting the left-over state if Q and R are
removed from P and the R-part is added back. Formally, for all I, h1, and
h2, if (h1 � h2) ∈ [[P]]I and h1 ∈ [[Q]]I and h2 ∈ [[R ∗ true]]I , then h2 ∈ [[S]]I .
May-subtraction is an overapproximation of the separation logic formula
(Q−� P) ∧ (R ∗ true), where −� is the ‘septraction’ operator [20, 5].

The difference between Subtract and May-Subtract is rather important.
Subtract(P,Q, ∅) proves that Q can be removed from P and returns the re-
maining part of the state. In contrast, May-Subtract(P,Q, emp) considers all
the ways that Q might be removed from P and returns the remaining parts of
the state. Consider the following example:

Example 1. Let P ≡ x �→ 1 ∗ y �→ 2, Q ≡ a �→ b. Calling Subtract(P,Q, ∅)
would throw an exception because P does not imply that a is allocated. In
contrast, May-Subtract(P,Q, emp) would return (a = x ∧ b = 1 ∧ y �→ 2) ∨
(a = y ∧ b = 2 ∧ x �→ 1). Similarly, May-Subtract(P, emp, Q) would return
(a = x ∧ b = 1 ∧ x �→ 1 ∗ y �→ 2) ∨ (a = y ∧ b = 2 ∧ x �→ 1 ∗ y �→ 2).

During action inference, we shall use Subtract to calculate the effect of the
atomic commands of the current thread, and May-Subtract to calculate the
effect of interference (i.e., of the commands of the other threads).

Our implementation uses the abstract domains from Distefano et al. [6] and
Vafeiadis [19] as underlying separation logic domains. For Subtract, we used
the entailment algorithm of Berdine et al. [2], and for May-Subtract an im-
provement over the septraction elimination algorithm of Calcagno et al. [5],
which is reported in Appendix A.

2.2 RGSep

RGSep [20] is the program logic on top of which our verification is based. RGSep
logically partitions the state of the program into a number of (disjoint) compo-
nents, which are called regions. Each thread owns one region for its local data,
and there is also one region containing data that is shared among threads. RGSep
assertions describe only the shared region and the current thread’s region and
are given by the following grammar:

p, q ::= PL ∗ PS | p ∨ q | ∃x. p

The first assertion form says that the thread’s local state satisfies PL and that
the shared state is disjoint and satisfies PS. Formally,

[[PL ∗ PS]]I
def
= {(hL, hS) | hL ∈ [[PL]]I ∧ hS ∈ [[PS]]I ∧ defined(hL � hS)}

Note that the separation logic formulas PL and PS can have common variables.
Such common variables keep track of the correlation between each thread’s local
state and the shared state. In contrast, there is no way of expressing correlations
between the local states of two threads.

The concurrent behaviour of a thread is abstracted by a set of precondition-
postcondition pairs, P � Q, known as actions. Actions summarise what mod-
ifications the atomic statements of a thread can perform on the shared state.
Their semantics is formally defined as follows:

A[[P � Q]]
def
= {(s � s0, s

� � s0) | ∃I. s ∈ [[P]]I ∧ s� ∈ [[Q]]I}

The action’s precondition and postcondition describe only the part of the state
that changes; the remaining part (s0) is assumed not to change, and is not
further constrained. The assertions P and Q can have some free logical variables
(in the domain of I): these are implicitly existentially quantified and their scope
extends over both P and Q.

In this paper, we extend the notion of actions with a context assertion, R,
restricting when the action can execute. Contexts are very useful during action
inference and, in particular, for defining a good join operation (see §4). Formally,
their meaning is:

A[[R | P � Q]]
def
= A[[P � Q]] ∩A[[P ∗R � Q ∗R]]
= {(s� s0, s� � s0) | ∃I. s∈ [[P]]I ∧ s� ∈ [[Q]]I ∧ s0 ∈ [[R ∗ true]]I}

The meaning of a set of actions is the reflexive and transitive closure of the
union of the meanings of the individual actions:

[[{a1, . . . , an}]]
def
= (A[[a1]] ∪ . . . ∪A[[an]])

∗

Reflexive and transitive closure models any arbitrary interleaving of any number
of repetitions of the actions a1 to an.

RGSep judgments are of the form Rely ,Guar �RGSep {p} C {q} , where Rely
and Guar are sets of actions and p and q are RGSep assertions. Informally, this
specification says that if the initial state satisfies p and all environment transi-
tions are included in Rely , then (a) C does not fault, (b) all of C’s transitions
are included in Guar , and (c) if C terminates, then the final state satisfies q.
RGSep provides a collection of proof rules for deriving such judgments, which
we omit for brevity. These can be found in [20, 18].

Stabilization. An important requirement of the RGSep proof rules is that
certain assertions appearing in the proof of a thread are stable under the rely
condition. Stability is formally defined as follows:

Definition 1 (Stability). An assertion P about the shared state is stable under
the binary relation R, if and only if interference with R cannot falsify P : i.e. for
all I, s, s�, if s ∈ [[P]]I and (s, s�) ∈ R, then s� ∈ [[P]]I .

Algorithm 1 Stabilize(S,Rely)
1: repeat
2: Sold ← S
3: for all (R | P � Q) ∈ Rely do
4: S ← S ∨Abstract(May-Subtract(S, P,R) ∗Q)
5: until S = Sold

6: return S

Given a rely condition Rely and a possibly unstable assertion S, Alg. 1 computes
a weaker assertion S� that is stable under Rely . It does so by taking into account
interference with each action in Rely until a fixpoint is reached. To ensure that
the fixpoint calculation converges, we apply abstraction at each loop iteration.

Theorem 1 (Stabilization Soundness). If Stabilize(S,Rely) = S�, then for
all I, [[S]]I ⊆ [[S�]]I and S� is stable under Rely.

The proof of this theorem follows directly from the definitions of stability, RGSep
actions, and the specification of May-Subtract.

Note that the execution time of Stabilize(S,Rely) is linear in the number
of actions in Rely . Since stabilization is the most time-consuming component of
action inference, it is important that action inference infers small sets of actions.
We shall return to this point in Sect. 4.

3 Action Inference Algorithm

A library consists of an initialization method, init , and a number of access meth-
ods, Ms, which can be executed concurrently after the initialization method has
finished. The most general concurrent client of a library is defined as follows:

Definition 2 (Most General Client). The most general client of a library
executes its initialization method followed by an unbounded number of threads,
each executing any number of the access methods in any order:

mgc(init , {C1, . . . , Cn})
def
= init ;�(C1 ⊕ . . .⊕ Cn)

∗

The most general client over-approximates all legal clients of the library in that
concrete clients will use the module in a more constrained way than the most
general client.

Some libraries require that their methods are called in a more constrained
fashion than the most general client above. For example, a lock library typically
assumes that threads do not attempt to acquire any locks that they already
hold nor to release any locks that they do not hold. These requirements can be
formalized with a simple state machine per thread describing which methods the
thread is allowed to call at each time. To verify the lock library, one can encode
the state machine in the body of the acquire and release methods using an
auxiliary thread-local variable.

Algorithm 2 Infer-Actions(init ,Ms)

1: G ← ∅
2: (−, Inv) ← Symb-Exec(emp, ∅, init)
3: repeat
4: Gold ← G
5: Inv ← Stabilize(Inv , G)
6: for all C ∈ Ms do
7: (Gnew,−) ← Symb-Exec(Inv ,G,C)
8: G ← G ∪Gnew

9: until G = Gold

10: return (G, Inv)

Algorithm 3 Memory reads: Symb-Exec(∃z. PL ∗ PS ,Rely , x := [E])

1: if Subtract(PL, E �→α, {α}) = RL then
2: return (∅, ∃z αβ. x = α ∧ E �→α ∗RL[β/x] ∗ PS[β/x])
3: else if inside an atomic block and Subtract(PS, E �→α, {α}) = RS then
4: return (∅, ∃z αβ. x = α ∧ PL[β/x] ∗ E �→α ∗RS[β/x])
5: else
6: return Error

Infer-Actions (see Alg. 2) takes a library and computes the total inter-
ference caused by its access methods (G) and its data structure invariant (Inv)
by considering the library’s most general client and doing a fixpoint computa-
tion. The algorithm assumes that clients of the library cannot directly access the
library’s internal state; thus, there is no external rely condition.

To calculate the interference produced by a command, Infer-Actions calls
our new symbolic execution procedure, Symb-Exec. This takes a precondition
p, a rely R, and a command C and tries to prove memory safety returning
a guarantee G and a postcondition q such that R,G �RGSep {p} C {q}. If
Symb-Exec(p,R,C) fails to prove memory safety, then it returns Error.

We consider memory safety to be the most basic property that all programs
should have, and thus fail verification if this property cannot be established.
In addition to memory safety, however, action inference can prove much more
interesting properties, such as data structure invariants, and discharge user-
supplied assertions.

Symbolic execution is defined by induction on the command, C.

Memory Reads. When symbolic execution encounters a memory read (see
Alg. 3), it tries to apply the memory read axiom of separation logic. If it is a non-
atomic read, the memory location must be in the local state: this is to prevent
race conditions. Otherwise, if the read is inside an atomic block (e.g. because
the read is atomic, or it used to implement a complex atomic instruction such as
CAS), the memory location can also be in the shared state. As memory reads do
not change the heap, the guarantee condition is empty. If Symb-Exec cannot
prove that the memory cell exists, it returns Error. This is consistent with

Algorithm 4 Memory writes: Symb-Exec(∃z. PL ∗ PS ,Rely , [E] := E�)

1: if Subtract(PL, E �→α, {α}) = RL then
2: return (∅, ∃z. E �→E� ∗RL ∗ PS)
3: else if inside an atomic block and Subtract(PS, E �→α, {α}) = RS then
4: (PL2S, P

�
L) ← Reachable-Split(PL, E �→E�)

5: act ← A-Abs(RS | E �→α � E �→E� ∗ PL2S)
6: return ({act}, ∃z. P �

L ∗ E �→E� ∗ PL2S ∗RS)
7: else
8: return Error

the standard memory model, where programs fail when they access unallocated
memory.

If the precondition is disjunctive, Symb-Exec does the obvious case split:

Symb-Exec(
�

i ∃zi. Pi ∗ Qi ,Rely , x := [E])
def
=

for each i do
(Gi, qi) ← Symb-Exec(∃zi. Pi ∗ Qi ,Rely , x := [E])

return (
�

i Gi,
�

i qi)

Memory Writes. If the precondition is disjunctive, symbolic execution does
the same case split as for memory reads above. For non-disjunctive preconditions,
see Alg. 4. If the write is local, it does not affect the shared state; so G = ∅. If,
however, the write is on the shared state (and hence the write is required to be
within an atomic block), then its effect is an action, act, which might include
some transfer of ownership that re-adjusts the boundary between the local and
the shared states. The algorithm relies on a simple reachability heuristic to decide
how to re-adjust this boundary. After the memory write, any part of the local
state that is reachable from E� is accessible from the shared memory location E,
and thus can be accessed by other threads. Therefore, symbolic execution splits
the local assertion PL into two parts: PL2S that becomes shared, and P �

L that
remains local.

As a final step, symbolic execution calls action abstraction, A-Abs, which
over-approximates the inferred action. Its input an action R | P � Q and
returns a larger action R� | P � � Q�; i.e. A[[R | P � Q]] ⊆ A[[R� | P � � Q�]].
Over-approximation is necessary in order to ensure convergence of the algorithm.

Our implementation of A-Abs consists of two steps. First, it existentially
quantifies over local program variables and forgets any pure facts involving them.
Second, it applies the underlying abstraction of the separation logic domain to
R, P , and Q. We have also experimented with a more aggressive abstraction that
removes any list segments appearing in the context. This was partly motivated
by our experience: actions containing list segments are rarely needed in manual
proofs. Nevertheless, they are necessary for some examples.

Other Program Constructs. Dealing with the other constructs is easy and
follows directly from the corresponding RGSep proof rules (see Alg. 5).

Assignments: For simplicity, we assume that all shared variables are allocated
in the heap. This is easy to achieve by a preprocessing step which allo-
cates global variables at statically known memory addresses, converting any
assignments to global variables into memory writes. Thus, the remaining as-
signments affect only local variables, and their guarantee condition is empty.

Allocation Commands: Allocated cells are part of the local state.
Sequencing: The guarantee condition of a sequential composition, C1;C2, is

the union of the guarantee conditions of the two commands, C1 and C2.
Choice: Similarly, the guarantee condition of C1 ⊕C2 is the union of the guar-

antee conditions of the two branches, C1 and C2.
Loops: Calculating the loop invariant involves a standard fixpoint computa-

tion which applies widening after each iteration. The guarantee condition
of the loop is the guarantee condition of the last iteration in the fixpoint
computation. To ensure that the fixpoint converges, at each iteration p is
abstracted by performing the abstraction of the underlying separation logic
domain (Abstract) to all its PL and PS components.

Atomic Commands: Symbolic execution runs the body of the atomic com-
mand assuming that there is no interference (Rely = ∅) and then does a
stabilization step to take into account interference from other threads. The
guarantee condition of the atomic block is just the guarantee condition of
its body.

Symbolic execution and action inference are sound in the following sense:

Theorem 2 (Symbolic Execution Soundness). If Symb-Exec(p,Rely , C)
returns (G, q), then Rely , G �RGSep {p} C {q}.

Theorem 3 (Action Inference Soundness). If Infer-Actions(init ,Ms)
returns (G, Inv), then ∅, G �RGSep {emp} mgc(init ,Ms) {Inv }.

To prove these theorems, we first have to prove the following simpler lemma:

Lemma 1. If Symb-Exec(p, ∅, C) returns (G, q), then ∅, G �RGSep {p} C {q}.

This follows from the RGSep proof rule for atomic blocks and the proof rules in
Section 4.2 of Vafeiadis’s thesis [18]. The theorems then follow easily from the
RGSep proof rules [20] and from Lemma 1.

Incompleteness. There are three sources of incompleteness to consider.
First, without auxiliary variables rely-guarantee reasoning is intentionally

incomplete. This incompleteness is exactly what makes rely-guarantee reason-
ing tractable. In practice, auxiliary variables are rarely needed for the sort of
programs we have looked at. (None of the memory safety benchmarks of Sect. 5
needed auxiliary variables, except that in the algorithms using locks we modelled
locks as storing the identifier of the thread holding the lock. In the linearizability
benchmarks, auxiliary variables are used as part of the specification.) Symbolic
execution does not attempt to infer such auxiliary variables.

Algorithm 5 Symb-Exec(p,Rely , C) where p ≡
�

i ∃zi. Pi ∗ Qi

1: if C is skip then
2: return (∅, p)
3: else if C is assume(E) then
4: return (∅,

�
i ∃zi. E �=0 ∧ Pi ∗ Qi)

5: else if C is x := E then
6: return (∅,

�
i ∃zi. ∃β. x=E[β/x] ∧ Pi[β/x] ∗ Qi[β/x])

7: else if C is x := malloc() then
8: return (∅,

�
i ∃zi. ∃αβ. x�→α ∗ Pi[β/x] ∗ Qi[β/x])

9: else if C is (C1;C2) then
10: (G1, q1) ← Symb-Exec(p,Rely , C1)
11: (G2, q2) ← Symb-Exec(q1,Rely , C2)
12: return (G1 ∪G2, q2)
13: else if C is (C1 ⊕ C2) then
14: (G1, q1) ← Symb-Exec(p,Rely , C1)
15: (G2, q2) ← Symb-Exec(p,Rely , C2)
16: return (G1 ∪G2, q1 ∨ q2)
17: else if C is (C0)

∗ then
18: repeat
19: pold ← p
20: (Gnew, p) ← Abs-Post(Symb-Exec(p,Rely , skip⊕ C0))
21: until p = pold
22: return (G ∨Gnew, p)
23: else if C is atomicC0 then
24: (G,

�
i ∃xi. Pi ∗ Qi) ← Symb-Exec(p, ∅, C0)

25: return (G,
�

i ∃xi. Pi ∗ Stabilize(Qi,Rely))

Second, symbolic execution of atomic blocks is incomplete if the body of an
atomic block contains an execution path with more than one memory write. For
example, consider the atomic block atomic ([a] := 10; [b] := 10). Assuming
the two memory locations a and b were initialized to α and β respectively, then
the atomic block does the action:

A
def
= (emp | a �→α ∗ b �→β � a �→10 ∗ b �→10)

However, calling Symb-Exec would return two actions:

G
def
= {(b�→β | a�→α � a �→10), (a �→10 | b�→β � b �→10)}

It is easy to show that [[{A}]] � [[G]]. Action A can be simulated by doing the
two actions of G in sequence. In the other direction, G allows us to change one
field at a time, whereas A demands that both fields are modified in one step.

Normally this form of incompleteness is harmless because atomic commands
arise from a single memory read, write or CAS and hence contain at most one
memory write. More advanced atomic commands, such as those due to a DCAS
or ones containing assignments to auxiliary variables, can contain more than
one memory writes. To deal with such atomic commands precisely we introduce

a parallel memory write command, which writes to multiple heap locations in
one step. This is analogous to the parallel assignment statement present in some
programming languages. Symbolic execution of parallel memory writes executes
each write separately, but collects all the updates together and returns one action
describing all the updates.

Third, the sub-procedures used by the analysis are often incomplete. This
includes Subtract, May-Subtract, the abstraction of separation logic asser-
tions and of RGSep actions, and the reachability heuristic for deciding ownership
transfer. From all these, incompleteness arising from the abstraction of separa-
tion logic assertions is the most frequent.

Small Example. To illustrate our symbolic execution and action inference
algorithms, consider a trivial shared stack which supports only a push operation:

init
def
= S := malloc(); [S] := NULL

push
def
= y := malloc(); b := false;

assume(¬b); atomic�x := [S]�; atomic�[y] := x�;

atomic

�
t := [S];

�
(assume(t = x); [S] := y; b := true)

⊕ assume(t �= x)

��

∗

;

assume(b)

The stack is implemented as a linked list starting from address S. The initial-
ization method, init, creates an empty stack. The method push creates a new
node (y) and tries to add it at the beginning of the stack using a compare&swap
(CAS) instruction inside a loop. The big atomic block inside the loop results
from desugaring the CAS instruction. Similarly, the variable b arises from a
break statement.

Let us execute action inference on this example: Symb-Exec(emp, ∅, init)
returns the postcondition S �→ NULL. As every assertion is stable under the
empty rely, stabilization does nothing and returns the same assertion. Then,
action inference calls Symb-Exec(S �→ NULL , ∅, push). Symbolically executing
the first two commands of push results in the state ∃α. ¬b ∗ y�→α ∗ S �→ NULL .

Now consider the loop of push. The first memory read is from the shared state
and gives us the postcondition: ∃α. x = NULL∗¬b∗y�→α∗ S �→ NULL . Next, there
is a local write, which gives the postcondition: x=NULL ∗ ¬b ∗ y�→x ∗ S �→ NULL .
Then, there is the big atomic block representing a CAS. After the memory read,
t := [S], we get: t=x ∗ x=NULL ∗¬b ∗ y �→x ∗ S �→ NULL . Therefore, from the two
conditional branches, only the first one is possible. In this branch, the memory
write is shared; so symbolic execution has to compute an action. According to
reachability heuristic, the memory cell y�→x becomes shared, as it is reachable
from y. The postcondition is t=x ∗ x=NULL ∗ ¬b ∗ S �→ y ∗ y �→NULL and the
inferred action is

A1
def
= emp | S �→ NULL � S �→ y ∗ y �→ NULL

Then, as b becomes true, symbolic execution exits the loop, and returns.

Therefore, in the first iteration of its fixpoint loop, action inference has com-
puted G = {A1} and Inv = S �→ NULL. In the second iteration, Inv is no longer
stable. Stabilization returns Inv = (S �→ NULL∨∃y. S �→ y ∗y �→ NULL), and sym-

bolic execution also returns the action A2
def
= x �→ NULL | S �→ x � S �→ y∗y �→ x.

In the third iteration, Inv becomes listseg(S, NULL)1 and symbolic execution also

returns: A3
def
= listseg(x, 0) | S �→ x � S �→ y ∗ y �→ x. In the fourth iteration,

Inv is already stable, and symbolic execution returns no new actions. Therefore,
action inference terminates after four iterations and having found three actions.

4 Non-Standard Join

As presented above, the Infer-Actions and Symb-Exec algorithms use set
union to combine sets of actions. Using set union, however, produces too many
actions, many of which are unnecessary. For instance, in the stack example above,
the actions A1 and A2 are both included in the action A3, and hence are unnec-
essary once A3 is discovered.

As remarked in Sect. 2, having a large set of actions makes stabilization
calculations slower, which in turn slows down action inference. More importantly,
however, the output of action inference becomes difficult to read and slows down
any verification procedures that use action inference as their first step (e.g. [9]).

Therefore, we shall replace set union with a more aggressive join operation.
The idea is to define a ‘lossless’ join that removes actions that are already in-
cluded in other actions. Note that there is a natural inclusion order on actions:
action a is semantically included in action b if and only if A[[a]] ⊆ A[[b]]. In gen-
eral, testing whether A[[a]] ⊆ A[[b]] is undecidable. We can, however, define the
following decidable approximation to action inclusion:

Definition 3. (R1 | P1 � Q1) � (R2 | P2 � Q2) if and only if there exists a
substitution σ of the logical variables such that P1 = σ(P2), Q1 = σ(Q2), and
R1 � σ(R2) ∗ true.

It is easy to check that if a � b, then A[[a]] ⊆ A[[b]]. To calculate (R1 | P1 �
Q1) � (R2 | P2 � Q2), we run first order unification to find a substitution σ
such that P1 = σ(P2) and Q1 = σ(Q2), and then call Subtract(R1,σ(R2), ∅)
to decide whether R1 � σ(R2) ∗ true.

Example 2. Consider the actions A
def
= (y �→3 | x�→0 � x �→1), A� def

= (x�→0 ∗
y�→3 � x�→1 ∗ y �→3), and B

def
= (x�→a � x�→1). Clearly, A[[A]] = A[[A�]] ⊆ A[[B]],

because A and A� allow us to write 1 to x only when it previously contained 0
and y contained 3, whereas B allows us to write 1 to x regardless of the original
value of x and the value of y. It is also easy to check that A � B; just take σ to
be the substitution mapping a to 0. In contrast, A� �� B, A �� A�, and A� �� A.
In principle, we could have defined a finer approximation to inclusion so that

1 The list segment comes from applying Distefano’s abstraction to the formula
∃yz. S �→ y ∗ y �→ z ∗ z �→ NULL, which arises during the initial stabilization.

Data structure No join Lossless join Man
#I #A Time #I #A Time #A

Treiber stack [17] 4 5 0.09s 4 2 0.08s 2
M&S two-lock queue [13] 5 26 0.33s 5 12 0.25s 6
M&S non-blocking queue [13] 5 10 1.69s 5 6 1.45s 3
DGLM non-blocking queue [7] 5 12 2.23s 5 8 1.97s 3
Lock-coupling list [10] 4 21 0.98s 4 10 0.81s 4
Optimistic list [10] 5 30 109.06s 5 10 52.29s 4
Lazy list [10] 5 48 59.98s 5 13 26.21s 5
CAS-based set [21] 3 9 24.74s 2 5 8.80s 3
DCAS-based set [21] 2 6 0.31s 2 4 0.27s 2

Fig. 1. Verification times for the memory safety benchmarks.

Data structure No join Lossless join Man
#I #A Time #I #A Time #A

Treiber stack [17] 4 5 0.14s 4 2 0.09s 2
M&S two-lock queue [13] 6 39 0.70s 6 13 0.48s 6
M&S non-blocking queue [13] 6 14 4.37s 6 7 3.76s 3
DGLM non-blocking queue [7] 6 16 4.88s 6 9 4.22s 3

Fig. 2. Verification times for the linearizability benchmarks.

the latter three inclusions were also true, but such a finer approximation would
have been significantly slower to compute. Instead, we simply avoid generating
problematic actions such as A�.

From this computable check for action inclusion, we define the following
‘lossless’ join operator:

A � {b} def
= if ∃a ∈ A. b � a then A else {b} ∪ {a ∈ A | a �� b}

A � {b1, . . . , bn}
def
= (· · · (A � {b1}) � . . .) � {bn}

The join A � B inserts the actions of B into A one at a time. For every such
action, b, if it is already included in A, it is discarded; otherwise, b is added into
A and every action of A that is included in b is removed.

Finally, we prove that join does not forget any information.

Lemma 2. For all sets of actions A and B, [[A �B]] = [[A ∪B]].

The proof of this lemma follows from the observation that if a � b, then
[[{a, b}]] = [[{b}]]. Lemma 2 means that we can replace union by the lossless
join in the Infer-Actions and Symb-Exec algorithms without any loss in
precision.

5 Evaluation

We have run action inference on a number of fine-grained concurrent algorithms
from the literature. For the first set of benchmarks (Fig. 1), we have proved

memory safety and inferred the expected data structure shape invariants (e.g.,
in all cases we can show the data structures are acyclic). For the second set of
benchmarks (Fig. 2), we have taken the stack and queue algorithms from Fig. 1
and have proved linearizability using the method described in [19, 1], which is to
instrument the algorithms by manually inserting auxiliary code describing the
linearization points of each algorithm.

We have run our tool in two modes: with no join enabled, and with lossless
join enabled. For each run, we have recorded the number of iterations that Infer-
Action takes in order to reach a fixpoint (#I), the number of actions inferred
(#A), and the total verification time (Time). The final column reports the
minimum number of actions needed for a manual proof of the algorithm. The
tests were conducted on a 3.4GHz Pentium 4 processor running Windows Vista.

Enabling join significantly reduces the number of actions inferred, and hence
also the verification times especially for the more difficult benchmarks. The num-
ber of actions inferred using the lossless join is still quite larger than what would
have been written by hand. This is mainly due to a number of unnecessary case
splits present in the set of inferred actions. Normally, enabling lossless join does
not affect the number of iterations taken by Infer-Action. This is expected,
because the action set calculated using lossless join is semantically equivalent to
the set calculated using normal set union. Somewhat counter-intuitively, how-
ever, the CAS-based set example finishes in fewer iterations when lossless join is
used. This is probably due to the incompleteness of entailment checking between
separation logic formulas.

Trying to further reduce the number of inferred actions, we have experi-
mented with a more aggressive action abstraction that drops all list segments
from the actions’ contexts. While this abstraction works well for most of the
examples, the resulting actions are too weak to prove functional correctness of
the linked list benchmarks. (They are sufficient for proving memory safety.)

Other Uses of Action Inference. Action inference has already been used
as a subcomponent in two related verification procedures. The first use was in
verifying liveness properties of non-blocking algorithms by Gotsman et al. [9].
There, one first runs action inference to prove memory safety and to compute a
set of RGSep actions. Then, one does a layered proof search attempting to show
that certain actions are not executed infinitely often and that certain operations
terminate. This proof search is quadratic in the number of inferred actions; so
inferring few actions is necessary for achieving good performance.

The second use is in a new verification procedure for linearizability that does
not require linearization point annotations. This procedure constructs a list of
candidate linearization point assignments, and then searches through the list
checking whether any of those assignments is valid. In this case, action inference
is executed both as an initial phase in order to find candidate linearization point
assignments and at each step of the proof search in order to determine whether
a given linearization point assignment is valid. This procedure can verify the
benchmarks in Fig. 2 within 10 seconds each.

6 Related Work

Action inference extends the original work on RGSep shape analysis [5]. It is
similar in spirit to the thread-local shape analysis by Gotsman et al. [8], but
technically quite different. Both works attempt to verify one thread at a time
and do a global fixpoint calculation to compute the interaction between threads.
The major difference is that Gotsman calculates resource invariants, whereas we
calculate a set of actions. The shift from invariants to sets of actions makes our
method more expressive and thus able to reason about fine-grained concurrency,
but also required us to introduce concepts such as stabilization. In contrast,
Gotsman et al. can handle only coarse-grained concurrency.

Manevich et al. [12], Berdine et al. [3], and Segalov et al. [16] have developed
a series of related shape analyses that suitably restrict the correlations between
the states of different threads that are tracked. This gives them a very strong
thread-modular flavour. Their main difference is that action inference does an
abstract interpretation over both invariants and actions, whereas the other three
analyses do abstract interpretation only over invariants. The second important
difference is the underlying abstract domain: we use separation logic, whereas
they use three value logic. Using action inference, we can verify roughly the same
programs and properties as the other three analyses, but our verification times
have so far been significantly faster.

7 Conclusion

We have presented an algorithm for computing the interference caused by a
program enabling us to verify safety properties of concurrent heap-manipulating
programs. Our action inference algorithm forms the basis of more advanced
verification methods for proving certain liveness properties [9] and linearizability.

In the future, we would like to apply action inference to larger and more
complex concurrent libraries. The main technical obstacle in achieving this is to
make the sequential shape analyses expressive enough to describe the invariants
of such libraries. We would also like to consider program verification in the
context of relaxed memory models, and to replace the reachability heuristic for
determining ownership transfer with a more robust technique possibly based on
footprint analysis [14] or bi-abduction [4].

Acknowledgements I would like to thank Alexey Gotsman, Matthew Parkin-
son, Mohammad Raza, Mooly Sagiv, and Hongseok Yang for useful discussions
and comments, and especially the anonymous reviewers for their constructive
and detailed feedback.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E. Comparison under abstrac-
tion for verifying linearisability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590. Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P. W. Symbolic execution with separation
logic. In: APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

3. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, S. Thread quan-
tification for concurrent shape analysis. In Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)

4. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H. Compositional shape anal-
ysis by means of bi-abduction. In: POPL 2009, pp. 289–300. ACM (2009)

5. Calcagno, C., Parkinson, M., Vafeiadis, V. Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007)

6. Distefano, D., O’Hearn, P.W., Yang, H. A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

7. Doherty, S., Groves, L., Luchangco, V., Moir, M. Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

8. Gotsman, A., Berdine, J., Cook, B., Sagiv, M. Thread-modular shape analysis. In:
PLDI 2007. ACM (2007)

9. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V. Proving that non-blocking
algorithms don’t block. In: POPL 2009, pp. 16–28. ACM (2009)

10. Herlihy, M., Shavit, N. The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

11. Jones, C.B. Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

12. Manevich, R., Lev-Ami, T., Ramalingam, G., Sagiv, M., Berdine, J. Heap decom-
position for concurrent shape analysis. In Alpuente, M., Vidal, G. (eds.) SAS 2008.
LNCS, vol. 5079, pp. 363–377. Springer, Heidelberg (2008)

13. Michael, M., Scott, M. Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: PODC 1996. ACM (1996)

14. Raza, M., Calcagno, C., Gardner, P. Automatic parallelization with separation
logic. In Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer,
Heidelberg (2009)

15. Reynolds, J.C. Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

16. Segalov, M., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M. Efficiently
tracking thread correlations. In: APLAS 2009. Springer, Heidelberg (2009)

17. Treiber, R.K. Systems programming: Coping with parallelism. Technical Report
RJ5118, IBM Almaden Res. Ctr., 1986.

18. Vafeiadis, V. Fine-grained concurrency verification. PhD dissertation, University
of Cambridge Computer Laboratory. Tech. report UCAM-CL-TR-726 (2007)

19. Vafeiadis, V. Shape-value abstraction for verifying linearizability. In Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 335–348. Springer, Hei-
delberg (2009)

20. Vafeiadis, V., Parkinson, M. A marriage of rely/guarantee and separation logic. In
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007)

21. Vechev, M., Yahav, E. Deriving linearizable fine-grained concurrent objects. In:
PLDI 2008, pp. 125–135. ACM (2008)

A May-Subtraction Implementation

This section describes an efficient implementation of may-subtraction for the
following simple list segment domain:

P,Q,R ::= false | (∃z.Π ∧Σ) | P ∨Q Full assertions
Π ::= true | E = E� | E �= E� | Π ∧Π Pure part
Σ ::= emp | true | E �→A E� | lsA(E,E�) | Σ ∗Σ Spatial part

To implement may-subtraction efficiently, each primitive assertion is annotated
with a permission set, ∅ �= A ⊆ {1, 2, 3}, represented as a bit-vector. These
permission annotations are used only internally within the may-substraction
calculation; its interface does not expose the permission annotations.

Similar to Berdine et al. [2], we represent formulas in a canonical form up
to the usual properties of ∗, ∧, and ∨ (commutativity, associativity, distribution
of ∗ and ∧ over disjunction, identity and nullary elements, true ∗ true = true),
substitution of equated terms, and the following three new normalization rules:

x �→Ay ∗ x �→Bz ⇐⇒ y = z ∧ x �→A⊙By
x �→Ay ∗ lsB(x, z) ⇐⇒ x = z ∧ x �→Ay ∨ x �→A⊙By ∗ lsB(y, z)

lsA(x, y) ∗ lsB(x, z) ⇐⇒ lsA⊙B(x, y) ∗ lsB(y, z) ∨ lsA⊙B(x, z) ∗ lsA(z, y)

where we take x �→A⊙By to mean x �→A∪By if A ∩ B = ∅ and false otherwise.
Similarly, lsA⊙B(x, y) stands for lsA∪B(x, y) if A ∩ B = ∅, and x = y ∧ emp
otherwise. These rules check whether there are any overlapping spatial conjuncts,
and perform case splits to eliminate such conjuncts. (Repeated application of
these rules terminates, because within each disjunct each rule either reduces the
number of spatial conjuncts, or keeps the same number of spatial conjuncts, but
increments one of their permission annotations.) Our rules are better than the
normalization rules of Berdine et al. [2], as they resolve all ‘spooky’ disjuncts
and avoid a quadratic expansion of the formula in the common case.

Our implementation of may-subtraction uses the permission annotations to
exploit the above normalization rules. It is defined in terms of a helper function:

May-Subtract(P,Q,R)
def
= MaySubHelper(P{1} ∗R{2} ∗Q{2,3})

where PA marks the spatial conjuncts of the (non-annotated) assertion P with
A. Permission {1} indicates that the conjunct belongs the P ; permission {2} says
that it belongs to either Q or the context R (and has to be matched with some-
thing in P), whereas permission {3} indicates the conjunct has to be matched
with something in P and then removed for the result.

The helper function, MaySubHelper, is defined in Alg. 6. First, it ap-
plies the normalization rules. If all conjuncts are matched (i.e., none remain
with a label not containing 1), it returns all the conjuncts that must not be
removed (i.e., those whose label does not contain 3). If, there is an unmatched
�→, then MaySubHelper does a case split as to which primitive conjunct the
�→ belongs, and continues. Otherwise, if an unmatched list segment remains,

Algorithm 6 MaySubHelper(P)
Res ← false
for each disjunct Π ∧Σ in Normalize(P) do

if ∃x, y,A such that (x �→Ay) ∈ Σ and 1 /∈ A then
Res ← Res ∨MaySubHelper(

�
S∈Σ Π ∧ Expose(x, y, S) ∗�(Σ \ S))

else if ∃x, y,A such that (lsA(x, y)) ∈ Σ and 1 /∈ A and 3 /∈ A then
Res ← Res ∨MaySubHelper(Π ∧Σ)

else if ∃x, y,A such that (lsA(x, y)) ∈ Σ and 1 /∈ A then
Res ← Res ∨ (Π ∧ true)

else
Res ← Res ∨ (Π ∧�{S | SA ∈ Σ ∧ 3 /∈ A})

return Res

where
Expose(x, y, true)

def
= x �→{1}y ∗ true Expose(x, y, z �→Bw)

def
= x = z ∧ x �→Bw

Expose(x, y, lsB(z, w))
def
= lsB(z, x) ∗ x �→By ∗ lsB(y, w)

MaySubHelper conservatively assumes that it could match any part of the
formula.

Our May-Subtract algorithm is a significant improvement over the sep-
traction elimination algorithm by Calcagno et al. [5], as it can handle contextual
matches (i.e., the R component) and it delays the application of the expensive
rule that exposes �→-assertions. The soundness of our algorithm follows from the
semantics of separation logic assertions and permissions.

