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Abstract. This paper presents a novel abstraction for heap-allocated
data structures that keeps track of both their shape and their con-
tents. By combining this abstraction with thread-local analysis and rely-
guarantee reasoning, we can verify a collection of fine-grained blocking
and non-blocking concurrent algorithms for an arbitrary (unbounded)
number of threads. We prove that these algorithms are linearizable,
namely equivalent (modulo termination) to their sequential counterparts.

1 Introduction

Linearizability [1] is the standard correctness criterion for high-performance li-
braries of concurrent data structures, such as java.util.concurrent and Intel’s
TBB (thread building blocks). Linearizability is a safety property. Informally, a
library is linearizable if calling any of its exported operations appears to execute
atomically at some instant between its invocation and its return. This instant
when the entire observable effect of a method is deemed to occur is known as
the linearization point. Equivalently, a concurrent library is linearizable if every
concurrent execution consisting of calls to its exported operations is equivalent
to a sequential execution that preserves the order of non-overlapping operations.
Therefore, a linearizable library can be fully specified by its sequential interface;
any interesting concurrency is hidden inside the library.

One can easily achieve this atomicity with global lock, but concurrency ex-
perts use multiple fine-grained locks and non-blocking instructions, such as com-
pare and swap (CAS), to get better performance and scalability. However, even
these experts make mistakes, and it is not unusual for published concurrent al-
gorithms to have subtle errors. Our aim is to provide automated verification
tools to these experts so that they can formally verify the correctness of their
algorithms.

The literature contains several hand-crafted linearizability proofs [2–5], but
until recently nobody had automated the derivation of such proofs. Amit et
al. [6] used shape analysis to verify linearizability for a fixed (small) number
of threads. More recently, Manevich et al. [7] and Berdine et al. [8] extended
this analysis, so that it works for a larger (fixed) number of threads and for an
unbounded number of threads respectively. These works require a specialized
abstract domain, do not handle memory deallocation, and do not prove that the
linearization point occurred exactly once for each method call.



In contrast, we check that that the specified linearization points are sound,
and we allow complex linearization points that occur in a different thread than
the one being verified.

Our prototype implementation is based on RGSep [9], a program logic that
combines rely-guarantee [10] and separation logic [11]. As a result, it deals with
an unbounded number of threads, can reason about memory deallocation, which
affects linearizability in subtle ways (see Sect. 2), and can prove the absence of
memory leaks (where applicable).

Main results. The contributions of this paper are summarised below:

– We present a simple proof method for verifying linearizability given a spec-
ified set of linearization points (see Sect. 3). Our method can handle lin-
earization points occuring in a different thread than the one being verified.

– Our shape analysis can remember an adjustable amount of information about
the values stored in a data structure (see Sect. 4). The amount of information
can be adjusted by selecting a different backend value abstraction.

– We replace the complex RGSep atomic proof rule with two rules, thereby
simplifying the presentation and enabling concise actions specifications for
operations such as CAS (see Sect. 5).

– Our tool compares favourably to the other known tools, and succeeded in
proving that several concurrent algorithms are linearizable (see Sect. 6).

Limitations. (1) We assume a sequentially consistent memory model; this means
that parallel composition can be understood as trace interleaving. (2) The pro-
gram must be accurately analysable by (sequential) shape analysis: this currently
restricts our analysis to programs operating on linked lists. (3) The programmer
must annotate the locations of the linearization points. (4) The programmer
must describe the interference imposed by the module.

2 A Simple Example: Treiber’s Stack

Figure 1 contains C-like pseudocode for Treiber’s stack [12], one of the simplest
non-blocking concurrent algorithms. The stack is represented as a singly linked
list rooted at S->Top, which is updated using CAS (compare and swap). CAS is
a primitive operation that reads a word from a memory adress and conditionally
writes to the same address in one atomic step. In particular, CAS(&S->Top,t,x)
atomically compares the value of S->Top with the value of t and if the two match,
the CAS succeeds: it stores the value of x in S->Top and returns 1. Otherwise,
the CAS fails: it returns 0 and does not change the value of S->Top.

This algorithm leaks memory: we cannot free popped nodes because of the
following scenario. Assume the stack initially consists of the nodes α and β.
First, thread T calls pop, executes lines 21–25 and is then descheduled. At this
point, T ’s local state is t = α and x = β. Now, suppose some other thread comes
along and pops α off the stack and then pushes γ onto the stack. If pop were to
dispose node α, it is possible for a new node to be allocated at the same address



struct node {
struct node *next;
value t data;

};

struct stack {
struct node *Top;

};

struct stack *S;

void init() {
S = alloc();
S->Top = NULL;

/* ABS->val = �; */
}

[10] void push(value t v) { struct node *t, *x;
[11] x = alloc();
[12] x->data = v;
[13] do {
[14] t = S->Top;
[15] x->next = t;
[16] } while (¬CAS(&S->Top,t,x)); // @1
[17] }

[20] value t pop() { struct node *t, *x;
[21] do {
[22] t = S->Top; // @2
[23] if (t == NULL)
[24] return EMPTY;
[25] x = t->next;
[26] } while (¬CAS(&S->Top,t,x)); // @3
[27] return t->data;
[28] }

Fig. 1. Treiber’s non-blocking stack algorithm.

α and pushed on the stack. Hence, the stack can reach a configuration consisting
of the nodes α, γ, and β. If T is rescheduled at this point, the CAS at line 26
will succeed, but will remove two nodes from the stack instead of one. This is
known as the ‘ABA’ problem in the literature.

Linearization points. The linearization points are annotated with comments at
the right-hand side. All of them are conditional: @1 and @3 are linearization
points if and only if the respective CAS succeeds; @2 is a linearization point if
and only if the value stored to t is NULL. (@2 is the linearization point of a failed
pop operation: at this point we know that the stack is empty.) To carry out the
verification, we expect the programmer to annotate these points with auxiliary
code asserting that they are linearization points.

Actions. In order to verify the given algorithm, we also require the user to
specify a set of precondition-postcondition pairs (a.k.a. actions) that summarize
the possible atomic effects of the algorithm. For Treiber’s stack, we need:

action APush() [S�→Top:n ∗ ABS�→val:A]
[S �→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:�e�·A]

action APop() [S�→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:�e�·A]
[S �→Top:n ∗ y �→data:e,next:n ∗ ABS�→val:A]

These actions use separation logic notation1 and (ignoring the ABS part) describe
the effect of a successful CAS at lines 16 and 26 respectively. The italicized
1 S �→Top:n denotes that S is a pointer to a structure whose Top field contains n. The
∗ operator is similar to conjunction, but P ∗ Q also asserts that P and Q describe
disjoint parts of the memory.



variables (e.g. n) are logical variables and are implicitly quantified over both
assertions of an action. The other lines, as well as failed CASes do not change
any state visible to other threads.

ABS is an auxiliary variable representing the abstract stack that the algorithm
supposedly implements. This is formalized as a mathematical sequence. We write
� for the empty sequence, �e� for the singleton sequence consisting of e, and · for
sequence concatenation. Action APush adds e to the beginning of the abstract
stack. Conversely, APop removes e from the beginning of the abstract stack. If
we initialise ABS->val to � in the constructor init(), our tool is able to infer
the following invariant:

J
def= ∃nv. S�→Top:n ∗ lseg(n, NULL, v) ∗ ABS�→val:v,

which says that the concrete singly linked list represents the same value as
is stored in the auxiliary variable ABS. (The predicate lseg(n, NULL, v) asserts
that there is a singly list segment starting from n and ending with NULL that
represents the sequence value v.) This invariant, also known as the abstraction
map, is crucial for the linearizability proof, and is used as the precondition of
push and pop.

3 Verifying Linearizability

Proving linearizability can be reduced to proving that one transition system
simulates another transition system (e.g. [2, 4]). The reduction is straightforward,
but expensive: it converts a difficult problem into an even harder problem. Proofs
done this way have involved significant human labour, especially in constructing
the appropriate simulation relations between the two automata. In one case,
Colvin et al. [4] even had to invent an intermediate automaton and construct
two simulation relations.

Instead, we employ a simpler –but equally general– proof technique based
on auxiliary code annotations. We assume that the programmer knows the lin-
earization point of each method and he annotates this point in the source code.
For simple algorithms, such as Treiber’s stack, this task is straightforward and
could perhaps be automated. More complicated algorithms generally require
more annotations, but these are still manageable and, in any case, simpler than
the corresponding simulation relations. For such examples, see [13, Chapter 5].

In order to prove that a method is linearizable, we need a specification de-
scribing the intended atomic effect of the method. In our examples, this spec-
ification is supplied by the user. If, however, the user does not provide such a
specification explicitly, we can extract it from the code itself: we just symbolically
execute the code in an isolated (sequential) environment. Usually this simplifies
the source code quite dramatically. For example, the two CASes in Fig. 1 always
succeed in an isolated environment.

Hence, we can assume that the concrete program is annotated with its lin-
earization points and its specification given as abstract code. To verify lineariz-



ability: we infer an abstraction map, J ; we inline the specification at the anno-
tated linearization points; and check the following four properties:

1. J is an invariant of the system: the concrete and the abstract data structures
are always related by J .
We satisfy this property by construction. When inferring J , we start with
the inferred postcondition of the constructor init() and do a fixpoint calcu-
lation to compute a weaker assertion that is stable under interference from
the given actions. This fixpoint calculation is also known as stabilization.
For more details about how stabilization is done, see [14]. As the actions
soundly overapproximate the system, this implies that the inferred assertion
is an invariant of the system.

2. In every trace representing the execution (whether terminating or not) of a
method, there is at most one linearization point of that method call.

3. Every terminating execution trace of a method has at least one linearization
point.

4. Whenever a method terminates, it returns the same result as the specification
embedded at the linearization point.

Putting (2) and (3) together means that terminating executions must have
exactly one linearization point. In cases where the abstract code specifying a
method has no side-effects (e.g. when pop returns EMPTY), we can drop condition
(2). Dropping (2) typically reduces the annotation overhead for read-only meth-
ods because we do not need to ensure that the abstract effect of the method was
executed exactly once.

Checking conditions (2) and (3) may seem trivial for Treiber’s stack, but can
be quite difficult in general because the linearization point along some execution
paths of a method may be within code performed by another concurrently exe-
cuting thread. This case arises frequently in methods that have no side-effects,
and in algorithms that use ‘helping.’

We verify conditions (2), (3), and (4) with a simple intentional encoding.
For each method call, we create an auxiliary descriptor record with one field
containing the name of the method, one field for each argument of the method,
and one additional field, ABS RESULT, which is assigned at the linearization point.
At the beginning of each method, we add auxiliary code that allocates a new
such record in the heap and initializes its fields. To check that the linearization
point happens at most once, we initialize ABS RESULT with a certain reserved
value UNDEF. At the linearization points we check that ABS RESULT still contains
this special value and update it with the result of the abstract operation. At
the method’s return point, we check that the value returned is the same as
the one stored in ABS RESULT (and different than UNDEF). This ensures that the
linearization point occurred exactly once.

As the auxiliary record is stored in the heap, it can be shared, and hence,
a different thread can execute the auxiliary code that updates the ABS RESULT
field. Thus, we are able to handle methods whose linearization points along some
executions are in a different thread.



Our use of the reserved value UNDEF encodes whether the linearization point
has occurred or not. Alternatively, the same information can be recorded by a
boolean variable. Gao et al. [3] instead keep a counter initially set to 0, incre-
mented at each linearization point, and prove that it contains 1 at the end of
the method. Besides using more state than necessary, their approach does not
imply property (2) for non-terminating executions.

4 Shape-Value Abstraction

Most shape analyses abstract away the values stored in the data structures.
This renders them practically useless for proving linearizability because the cru-
cial invariant needed in order to prove linearizability is that the concrete data
structure represents the same value as the abstract state.

A possible solution to this problem is to develop a specialized abstract domain
that can express this invariant. This approach was followed by Amit et al. [6],
who presented an abstract domain tracking graph isomorphism. Here, we will
consider a different, possibly more general, solution.

Our abstraction follows a two step approach. First we abstract the shapes
of the data structures, and then we abstract the values stored in those data
structures. These two steps are independent to each other, and hence we can
combine any suitable shape abstraction with any suitable value abstraction.
Formally, our abstraction function is the composition of two abstractions:

αtotal = αvalue ◦ αshape

The function αshape handles shape-related issues, whereas the function αvalue

handles value-related issues. Correspondingly, the concretization function is the
composition of the two corresponding concretization functions:

γtotal = γshape ◦ γvalue

This setup simplifies proving correctness of the analysis: we can prove separately
that the two abstraction functions are correct.

In the following, the abstract domains are just subsets of the concrete do-
main; hence, the γ-functions are the corresponding inclusion (i.e. the identity)
functions.

4.1 Shape Abstraction

Given a shape analysis based on separation logic, deriving the shape abstrac-
tion (αshape) is straightforward. The shape analysis’s abstraction function can be
decomposed in two more primitive functions: one that abstracts shape informa-
tion, but treats values precisely, and a second one that abstracts all value-related
information.

We proceed with a concrete example. We derive a value-remembering shape
abstraction from the shape analysis of Distefano et al. [15]. Distefano’s anal-
ysis is based on separation logic, and handles singly linked data structures.



Node(y, z, b) =⇒ junk
Node(x, y, a) ∗ Node(y, z, b) =⇒ lsegnew(x, z, �a�·�b�)

lsegnew(x, y, a) ∗ Node(y, z, b) =⇒ lsegnew(x, z, a·�b�)
lsegnew(y, z, b) =⇒ junk

Node(x, y, a) ∗ lsegnew(y, z, b) =⇒ lsegnew(x, z, �a�·b)
lsegnew(x, y, a) ∗ lsegnew(y, z, b) =⇒ lsegnew(x, z, a·b)

Fig. 2. Shape abstraction rules.

Their abstract domain is a subset of separation logic assertions that includes
∗-conjunction, disjunction, �→, emp, junk, lseg, equalities and disequalities. The
assertion emp denotes the empty heap (in which nothing is allocated); junk is
true for any heap, whether empty or consisting of some allocated nodes. Finally,
the predicate lseg(x, y) denotes a singly linked list segment starting at address x
and ending at y. For technical reasons (see [14] for details), we prefer a slightly
different version of the list segment predicate, whose inductive definition is given
below:

lseg(x, y) def= (x = y ∧ emp) ∨ (∃bz. Node(x, z, b) ∗ lseg(z, y))

where Node(x, y, v) def= x �→ {.next = y, .data = v}.
We can extend the list segment predicate with an additional argument record-

ing the sequence of values represented by the list.

lsegnew(x, y, a) def= (x = y ∧ a = � ∧ emp)
∨ ∃bcz. a = �b�·c ∗ Node(x, z, b) ∗ lsegnew(z, y, c)

Distefano’s abstraction function consists of applying a set of rewrite rules as
much as possible. Each rewrite rule is a valid separation logic implication, and
eliminates one existentially quantified variable from the input assertion. This
ensures that the abstraction function is sound and always terminates. Distefano
also proves that his abstract domain is finite; hence, fixpoints in the abstract
domain converge.

Our abstraction has the same structure, but we have modified the rewrite
rules to record value-related information accurately (see Fig. 2). For example, our
last rule is a direct adaptation of Distefano’s rule for merging two list segments:

lseg(x, y) ∗ lseg(y, z) =⇒ lseg(x, z).

Abstraction applies these rules aggressively whenever y is an existentially quan-
tified variable that does not appear in the rest of the formula. Abstraction is
sound, because each rewrite rule is a valid separation logic implication.

In essence, we have decomposed Distefano’s abstraction function αDistefano

into two steps, αDistefano = αforget values ◦ αshape, where αforget values maps every
lsegnew(x, y, v) into lseg(x, y). Shape-value abstraction will keep the αshape part,
but replace the αforget values function with something more appropriate.



4.2 Value Abstraction

Now we turn to the abstraction of values appearing in a formula. Recall that the
basic invariant in a linearizability proof is that two data structures represent the
same value. Therefore, we want an abstraction that remembers some correlations
between equal values. To be concrete, consider we want to abstract the values
in the following assertion:

lseg(k, 0, b·c·d·e) ∗ lseg(l, 0, a·b) ∗ lseg(m, 0, a·b) ∗ lseg(n, 0, e).

There are three natural choices as to what abstraction should do:

A. Keep track of the equalities between top-level expressions (such as a·b):

∃uvw. lseg(k, 0, u) ∗ lseg(l, 0, v) ∗ lseg(m, 0, v) ∗ lseg(n, 0, w)

B. Also keep track of the correlations between a top-level expression and subex-
pressions of another expression (such as e).

∃uvw. lseg(k, 0, u·w) ∗ lseg(l, 0, v) ∗ lseg(m, 0, v) ∗ lseg(n, 0, w)

C. Also keep track between any two subexpressions (such as b).

∃tuvw. lseg(k, 0, u·v·w) ∗ lseg(l, 0, t·u) ∗ lseg(m, 0, t·u) ∗ lseg(n, 0, w)

It turns out that choice A is too weak for linearizability proofs, and that we need
one of the other two choices. In particular, choice A can prove the linearizability
of push, but not of pop. In the proof outline of pop, one of the disjuncts of the
assertion between lines 15 and 16 of pop is

∃αβ. S �→Top:t ∗ t�→data:α,next:x ∗ lseg(x, 0, β) ∗ ABS�→val:�α�·β

In this case, the first choice would forget the correlation between the value be-
tween the concrete data structure and ABS->val, which would make it impossible
to prove that the concrete pop returns the same result as the abstract pop.

In our example programs, choice B was sufficient for proving linearizability.
Choice C also works, but as it distinguishes more abstract states, it is potentially
slower. A benefit of choice C is that it is more robust against more aggressive
shape abstractions. Considering syntactic subexpressions is not sufficient, but
one has to take the properties (such as associativity and commutativity) of the
value constructors into account.

Our general approach for performing value abstraction works as follows. First,
we collect the set T of all values appearing in the formula. From that set, we
deduce a set of values, S, that we will ‘forget’ (i.e. existentially quantify over).
For each value vi in S, we introduce a fresh existentially quantified variable xi,
and we (back-)substitute xi for vi in the assertion. This abstraction is sound
irrespective of S, because P (v1, . . . , vn) =⇒ ∃x1, . . . , xn. P (x1, . . . , xn).

The way we select S is crucial for the precision of the analysis. To get choice
A, simply choose S = T . To get the other two choices, more work is necessary.
Below, we consider this additional work for two kinds of values: (i) sets and
multisets, and (ii) strings/sequences.



Sets & Multisets. Consider expressions denoting sets or multisets constructed us-
ing the operations: empty set/multiset, singleton set/multiset, and set/multiset
union. (We shall ignore intersection and difference operators.) To take care of the
associativity and commutativity of ∪, we represent set expressions canonically
as a union of a set of expressions and we have a special constructor for singleton
sets. For example, the set expression {1, 2} ∪ (x ∪ y) would be represented as
{singleton(1), singleton(2), x, y}. Then, in order to get choice C, we compute the
set S of set expressions according to the following algorithm:

S := T \ {∅};
while ∃x, y ∈ S. x �= y ∧ x ∩ y �= ∅ do

S := (S \ {x, y}) ∪ ({x \ y, x ∩ y, y \ x} \ {∅})

We start with T , the set of all (set) values appearing in the formula. In the loop,
while there exist overlapping sets in S, we remove them from S and add the
three partitions. At the end, all the elements S will be disjoint, and any element
of T denoting a set will be expressible as a union of elements in S. Notice that
these rewrites are confluent: the choice of x and y at each loop iteration does
not affect the final result.

Here is our algorithm as applied to a small example:

Initial configuration: {1, 2, 3}, {1, 4, 5}, {2, 3, 6}.
Choosing x = {1, 2, 3} and y = {1, 4, 5} yields {1}, {2, 3}, {4, 5}, {2, 3, 6}.
Choosing x = {2, 3} and y = {2, 3, 6} yields {1}, {2, 3}, {4, 5}, {6}.
No further loop iterations are possible.

To get choice B, we also require that either x ⊆ y or y ⊆ x.

Sequences. Sequences are strings over the alphabet of expressions. They are
built out of three operations: the empty sequence (�), the singleton sequence
(which we write �x�) and concatenation (denoted x·y). Analogously to sets, the
analysis represents sequence expressions as a sequence of expressions that are
concatenated together. To get choice C, we compute S as follows:

S := T \ {�};

while
�
∃x ∈ S, y ∈ S. ∃z, x1, x2, y1, y2.

x �= y ∧ z �= � ∧ x = x1·z·x2 ∧ y = y1·z·y2

�
do

S := (S \ {x, y}) ∪ ({x1, x2, y1, y2, z} \ {�})

We start with T , the set of all values in the formula. In the loop, while there
exists a non-empty common subsequence (z) in two elements of S, we remove
those elements from S, and replace them with the partitions x1, x2, y1, y2, and
z. To get choice B, we also require that either x � y or y � x, where x � y holds
if and only if there exist w1 and w2 such that y = w1·x·w2. Equivalently, to get
choice B, we require that either x1 = x2 = � or y1 = y2 = �.

Unlike the set/multiset algorithm, different instantiations of the existential
variables can lead to different final results. This is problematic because some
results are better than others (we want to minimize the cardinality of the final S



so that we do not accidentally miss any abstraction opportunites). Fortunately,
a simple condition ensures that the best result is found: the z selected must be a
(local) maximum. Formally, for all z�, if z � z�, then z� �� x or z� �� y. Ensuring
this condition is an easy programming task.

5 Extensions to RGSep

We have implemented our abstraction function in a static analyzer based on
RGSep [13, 14]. In this section, we will briefly go over the key concepts of RGSep,
and show how we modified its atomic rule to deal with instructions such as CAS.

In RGSep, the state of the program is logically divided into a static number
of (disjoint) partitions, which are called regions. Each thread of the system owns
one region for its local data, and there are also regions containing data that is
shared among threads.

The program logic permits each thread to access local state directly, and
restricts shared state accesses to use some form of synchronisation (e.g. mutexes,
atomic reads, CAS). At synchronisation points, the thread can re-adjust the
boundaries between local and shared state. Whenever a thread modifies the
shared state (or the partitioning of the shared state), the logic ensures that the
correctness of the other threads is resistant to the modification. This is achieved
with rely/guarantee reasoning.

In particular, the concurrent behaviour of each thread is abstracted by a set
of precondition-postcondition pairs, known as actions. These actions summarise
what modifications the atomic statements of a thread can perfom on the shared
state.

For each atomic statement of a thread, Calcagno et al. [14] check that there
is an action abstracting its entire effect. This is sufficient if all the atomic blocks
consist of a single memory access, but is awkward for larger atomic statements
such as CAS. CAS has a conditional effect: if it reads the expected value, then it
modifies the state; else it does nothing. We can write an action that captures this
complex effect, but it will be quite complex itself. For instance, the Apush action
from Sect. 2 would have to use a postcondition with a disjunction, encoding the
two possibilities of the CAS:

x==0 ∗ S �→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:�e�·A
|| x!=0 ∗ S �→Top:n ∗ ABS�→val:A

Not only is the action unnecessarily long (and therefore difficult to specify or to
infer), but it also slows down stabilization. Stabilization is an expensive compu-
tation that is executed after the symbolic execution of every atomic command.
Given an assertion, it does a fixpoint calculation to compute a weaker asser-
tion that it stable under the set of given actions. Its execution time is roughly
proportional to the size of the action definitions.

Instead we allow actions to specify parts of an atomic statement. For example,
the actions of Section 2 describe only the effects of successful CASes. We change
the input language of Calcagno et al. [14] by dropping action annotations from



atomic statements and adding a new form of statement for action annotation
(the ‘do...as’ block). We impose a syntactic restriction that these ‘do...as’
blocks can appear only inside atomic blocks.

In the proof rules below, the judgement {P0 | P1} C {Q0 | Q1} says that the
program C has local precondition P0, shared precondition P1 local postcondition
Q0 and shared postcondition Q1. (In reality, we have an indexed family of shared
preconditions and shared postconditions, but we will describe our rules as if
there was only one for simplicity.) Symbolic execution takes P0, P1, and C as
arguments and computes (strongest) Q0 and Q1. Normally, commands can access
only the local state P0. As an exception, memory reads inside an atomic block
can also access the shared state:

{P | e �→ field:e� ∗Q} x = e->field; {x = e� ∗ P | e �→ field:e� ∗Q}

Unlike Calcagno et al., our symbolic execution does nothing at entries to atomic
blocks. At exits, it computes a weaker shared postcondition that is resistant to
interference from other threads.

{P0 | P1} C {Q0 | Q1}
{P0 | P1} atomic C {Q0 | stabilize(Q1)}

When symbolic execution encounters an action annotation, it has more work to
do. At the beginning of the block, it removes the precondition P of the action
from the shared state, and adds it to the local state. Correspondingly, at the end
of the block it removes the postcondition Q of the action from the local state
and adds it to the shared state.

{P0 ∗ P | P2} C {Q0 ∗Q | Q2}
{P0 | P ∗ P2} do C asP�Q {Q0 | Q ∗Q2}

This ensures that the annotated action accounts for any change that C makes
to the shared state. Therefore, as the shared state can be changed only within
do...as blocks, the set of annotated actions covers every possible shared state
change that the program can make.

Experience suggests that writing these action annotations is straightforward
and that the process of figuring out the correct actions has a very local, syntactic
nature. It is possible that in many simple cases these annotations can be inferred
automatically, but we have not investigated this possibility yet.

6 Evaluation

Table 1 presents our experimental results. We verify a number of concurrent
algorithms from the literature.

The first four algorithms do not leak memory. The DCAS stack is similar to
Treiber’s stack (presented in Section 2), but pop uses a double compare-and-swap
instruction instead of a single CAS. The two-slot buffer is an obstruction-free
implementation of an atomic register with a single reader and a single writer.



Data structure Shape analysis Linearizability Berdine et al. [8]

DCAS stack 0.2s 0.2s –
Two-slot buffer 0.4s 1.2s –
Two-lock queue [16] 0.5s 0.6s 17s
Lock-coupling list [5] 0.3s 0.5s –

Treiber stack [12] 0.2s 0.3s 7s
Non-blocking queue [16] 2.6s 5.1s –
Non-blocking queue [2] 2.6s 4.8s 252s
RDCSS [17] 1.6s 87.7s –

Table 1. Verification times for a collection of concurrent algorithms.

The two-lock queue is due to Michael and Scott [16] and uses two locks: one
for protecting the head of the list, and one for the tail of the list. The lock-
coupling list [5] represents a set of integers as a sorted linked list with one
lock per node. When traversing the list, locks are acquired in a hand-over-hand
fashion. The available operations are single element addition, removal, and test
of membership. As we have not implemented an abstraction for sorted lists, we
currently verify that when these operations succeed, they are the correct multiset
operations.

The next four algorithms have memory leaks and depend on a garbage col-
lector for correctness. Treiber’s stack was presented in Sect. 2. The first non-
blocking queue algorithm is the well-known Michael and Scott’s queue [16]. The
second non-blocking queue algorithm is a slight variation which was verified by
Doherty et al. [2]. Finally, RDCSS [17] is a lock-free implementation of restricted
double-compare single-swap primitive. Proving linearizability of RDCSS is chal-
lenging because some of its linearization points are executed by different threads,
and specifying them requires an auxiliary prophecy variable.

Each column records verification time in seconds. Our tests were conducted
on a 3.4GHz Pentium 4 processor running Windows Vista. In all cases, memory
consumption was under 5 megabytes. The first column measures the time re-
quired by the underlying shape analysis. This infers the shape of the data struc-
tures used in the heap and checks that there are no memory errors (e.g. null
pointer dereferences). For the first four algorithms, it also checks that there are
also no memory leaks. The second column measures the total time required to
prove linearizability using the techniques described in this paper. The difference
between these two columns represents the additional amount of work that is
needed in order to prove linearizability.

Finally, the last column displays the results of Berdine et al. [8]. Comparison
with this work is purely indicative; direct comparison is unfair because the tools
are quite different. We used the same shape abstraction for all the examples, but
require actions to be annotated. In contrast, Berdine et al. do not require any
action annotations, but use slightly different abstractions for each algorithm and
require an user-supplied heap decomposition.



We have also performed tests where we inserted errors in the algorithms. In
all these cases, our tool failed to prove linearizability.

7 Related Work

Automatic Verification. Wang and Stoller [18] present a static analysis that veri-
fies linearizability for an unbounded number of threads. Their analysis essentially
detects certain coding patterns, which are known to be atomic irrespective of
the environment. Algorithms such as Michael and Scott’s non-blocking queue
that do not follow these coding patterns have to be rewritten.

Amit et al. [6] presented a shape difference abstraction that tracks the differ-
ence between two heaps. This approach works well if the concrete heap and the
abstract heap have almost identical shapes during the entire algorithm. If, how-
ever, we are verifying a concurrent tree algorithm that rebalances the tree every
so often, then the concrete heap and the abstract heap may differ dramatically
regarding their shape, but not the values stored. In such cases, any abstraction
requiring that the two heaps are isomorphic will fail completely. More recently,
Manevich et al. [7] and Berdine et al. [8] have presented some improvements to
this analysis, which are orthogonal to the task of verifying linearizability.

Finally, Yahav and Sagiv [19] and Calcagno et al. [14] use shape analysis to
check simple safety properties of list-based concurrent algorithms, but cannot
verify linearizability.

Semi-automatic Verification. In [2–4], the PVS theorem prover was used to
check hand-crafted linearizability proofs. These papers prove linearizability using
different techniques than the one used here. See Sect. 3 for details.

8 Conclusion

We have demonstrated that RGSep and shape-value abstraction enable effective
automatic linearizability proofs. The examples verified are typical of the research
literature 5–10 years ago. The techniques can also cope with more complex al-
gorithms, but the shape analyses must be powerful enough to describe the data
structures used in the algorithms. As shape analyses based on separation logic
are relatively new, they are still restricted to linked-list data structures.

We believe that both further instances of shape-value abstraction as well as
the presented value abstractions apply equally to other verification problems,
but we have not investigated this possibility yet.

In the future, we plan to improve the underlying shape analyses to han-
dle other kinds of data structures such as arrays, and to attempt to infer the
necessary action annotations automatically.

Acknowledgments. We would like to thank Alan Mycroft, Hongseok Yang
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