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Abstract. GenMC is a state-of-the-art stateless model checker that
can verify safety properties of concurrent C/C++ programs under a wide
range of memory consistency models, such as SC, TSO, RC11, and IMM.
In this paper, we improve the performance and usability of GenMC:
we provide a probabilistic estimate of the expected verification cost, we
automate the porting of new memory models, and employ caching and
other data structure optimazations to improve the tool’s performance.

1 Introduction

GenMC [32, 27] is a state-of-the-art stateless model checker that verifies asser-
tion safety of concurrent C/C++ programs in a fully automated (“push-button”)
fashion. In its core, it implements the TruSt dynamic partial order reduction
(DPOR) algorithm [27], which has polynomial space complexity and optimal
time complexity: it explores only the consistent executions of the given program
and never repeats any work. GenMC also incorporates custom techniques for
verifying programs with constructs such as synchronization barriers [31] and
loops [30, 28] more effectively.

Despite its solid theoretical foundations, certain parts of GenMC’s imple-
mentation were somewhat neglected, and are addressed as part of this work.

Time Unpredictability (§3): Non-expert users of GenMC were finding it
difficult to estimate how long verification will take, and whether it is worth
waiting for the verification result or give up. To address this problem, we
implement a procedure that produces a probabilistic estimate of the size of
the state space so that users can anticipate the total verification cost, and
perhaps revise their code as necessary.

Customization Difficulty (§4): Although the TruSt algorithm is parametric
in the choice of the underlyingmemory consistency model (MCM) [9], adding
support for new MCMs to GenMC was arduous and required human effort.
To make the tool more easily customizable, we extend an already existing
domain specific language so that users can port new MCMs into the tool
completely automatically.

Overall Performance (§5): GenMC used to spend a lot of time repeatedly
simulating the execution of LLVM bytecode with an interpreter, which led
to non-trivial performance overhead. We improve the tool’s performance by
caching interpreter results and optimizing other internal data structures.
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Fig. 1. mp: Three consistent and one inconsistent execution graphs under SC and RA.
We omit co edges for variable y to avoid cluttering the presentation.

2 Background

We begin with a brief tour of declarative MCM semantics (§ 2.1) and proceed
with a description of GenMC’s core model checking algorithm (§ 2.2).

2.1 Semantics of Memory Consistency Models

When dealing with multiple MCMs, it is convenient to use declarative semantics
to represent program executions as execution graphs. An execution graph com-
prises a set of nodes corresponding to program instructions (e.g., loads or stores
to shared memory), and a set of edges corresponding to various relations among
the instructions. Examples of primitive relations used by most MCMs are: the
program order (po), which orders the instructions of each thread, the reads-from
(rf) relation, which maps each read to the write it gets its value from, and the
coherence order (co), which totally orders writes to the same memory location.

The semantics of a program P under a model M is expressed as a set of
“consistent” execution graphs, representing an abstract set of program execu-
tions that the model allows. Consistency for a given MCM entails satisfying the
MCM’s consistency predicate.

Consistency predicates are typically expressed in relational algebra. For in-
stance, sequential consistency (SC) [36], a standard MCM where threads take
turns executing their instructions, demands that (po ∪ rf ∪ co ∪ fr) be acyclic,
where fr

△
= rf−1; co. Release-acquire (RA) [34] is a weaker MCM, which de-

mands that (po ∪ rf)+; (co ∪ fr)? be irreflexive.
To illustrate these concepts, consider the mp example below along with the

annotated outcome, which corresponds to graph 4 in Fig. 1 and is forbidden
under both SC and RA.1

x := 1
y := 1

a := y //1
b := x //0

(mp)

Graph 4 is inconsistent according to both SC and RA because of the po; rf; po; fr
cyclic path from W(x, 1). Intuitively, thread II cannot read a stale value for x af-
ter having read thread I’s write to y. The other three depicted execution graphs
1 , 2 , 3 are consistent and correspond to the outcomes where a = 0 ∨ b = 1.

1 In all our examples, x, y, z are shared variables, while a, b, c, ... are local.
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Algorithm 1 An optimal graph-based DPOR algorithm

1: procedure Verify(P)
2: VisitP (G∅)

3: procedure VisitP (G)
4: a← AddNextEventP (G)
5: if a = ⊥ then return “Execution complete”

6: if IsErroneousM(G) then exit(“error”)
7: if a ∈ R then
8: VisitRFsP (G, a)
9: else if a ∈ W then
10: VisitCOsP (G, a)
11: for r ∈ G.Rloc(a) \ cprefix(a) do
12: if ¬DuplicateRevisit(G, ⟨r, a⟩) then
13: Deleted ← {e ∈ G.E | r <G e <G a} \ cprefix(a)
14: VisitCOsP (SetRF(G \Deleted , r, a), a)

15: elseVisitP (G)

16: procedure VisitRFsP (G, a)
17: for w ∈ G.Wloc(a) do
18: G′ ← SetRF(G, a,w)
19: if consistentM(G

′) then VisitP (G
′)

20: procedure VisitCOsP (G, a)
21: for wp ∈ G.Wloc(a) do
22: G′ ← SetCO(G,wp, a)
23: if consistentM(G

′) then VisitP (G
′)

2.2 Dynamic Partial Order Reduction and GenMC

Declarative semantics enable effective automated verification with the “TruSt”
model checking algorithm [27]. TruSt is a graph-based dynamic partial order
reduction (DPOR) algorithm that takes as parameters a program P and a mem-
ory consistency model M. It verifies the program by generating all M-consistent
graphs of P and checking that they do not contain any errors. For this purpose,
we assume the MCM M defines three components:

1. a causal order, corder ⊆ (po∪rf)+, prescribing causal dependencies among
the instructions;

2. the consistentM(G) predicate prescribing when a graph G is consistent; and
3. the IsErroneousM(G) predicate prescribing whether the graph contains an

error (e.g., an assertion violation or a data race).

The core structure of GenMC’s DPOR algorithm can be seen in Algorithm 1.
In what follows, we provide a high-level overview of the algorithm and refer
readers to Kokologiannakis et al. [27] for a more detailed presentation.

Verify generates all possible execution graphs of P by calling Visit on the
initial graph G∅ containing only the initialization event init.
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In turn, Visit generates all program executions incrementally by extending
a given graph with one event at a time by calling AddNextEvent(Line 4),
which selects some unfinished program thread and runs an interpreter to run
the code of that thread until its next event.

Visit returns successfully if no further events can be added (Line 5, i.e.,
if all threads are finished or stuck) or when an error is encountered (Line 6).
Otherwise, the next action that Visit takes depends on the type of a.

If a is a read event (Line 7), Visit recursively explores all its possible rf

options by calling VisitRFs. The latter iterates over all same-location writes
(Line 17) and recursively explores the ones that preserve consistency (Line 19).

If a is a write event (Line 9), similarly to the read case, Visit recursively
explores all possible co options for it by calling VisitCOs (Line 10). In addition,
Visit revisits existing same-location reads in G, since they did not have the
chance to read from a when they were added. Specifically, for each read r that
does not causally precede a (Line 11), Visit checks (Line 12) whether a should
revisit r (i.e., that the revisit has not taken place in some other exploration),
and if so calls VisitCOs on an appropriately restricted graph G′ (Line 14).

Restricting the graph is necessary because the value read by r might affect
e.g., the control flow of the corresponding thread. In GenMC, the restricted
graph only contains the events that were added before the revisited read r, as
well as the ones causally preceding a, effectively creating a graph that models
a scenario where a and its prefix were present when r was added. (The way a
graph is restricted is important when estimating the program state space in §3.)

Finally, if a has any other event type (Line 15), Visit recursively calls itself.
To conclude our brief presentation of GenMC’s algorithm, we reiterate its

core properties. Algorithm 1 is optimal (i.e., it explores each consistent execution
graph of P exactly once and never embarks into futile explorations), has poly-
nomial memory consumption, and can accommodate arbitrary MCMs subject
to the following constraints:

Well-formedness: Consistency does not depend on the order in which events
are added to the graph, and, in consistent graphs, corder should be acyclic
(i.e., an event cannot circularly depend on itself).

Prefix-closedness: Restricting a consistent graph to any corder-prefix-closed
subset of its events yields a consistent graph.

Extensibility: Adding a corder-maximal event to a consistent graph preserves
consistency for some choice of rf/co. Intuitively, for the case that corder

△
=

(po ∪ rf)+, executing a program should never get stuck if a thread has
more statements to execute: each read can read from the most recent, same-
location write, and each write can be added last in co.

3 Estimating the Program State Space

The execution time of Algorithm 1 is difficult to predict because it depends on
the number of consistent execution graphs of the program P , which in turn is
challenging to estimate without actually generating the consistent graphs. In
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Fig. 2. r+w+w: three consistent execution graphs under SC

particular, the number of possible rfs/cos for a given read/write is not fixed
beforehand, and depends on the exploration choices made so far. Moreover,
since the state space is often asymmetric, we cannot estimate the remaining
exploration options merely by assuming that untaken exploration options (i.e.,
unexplored rfs or cos) will yield the same number of exploration options as their
taken counterparts.

3.1 The Basic Approach

One solution for the problem above is to use a Monte Carlo simulation [23]. In
Monte Carlo methods, one generates a number of random samples from a given
input domain, performs some computation on each sample, and then aggregates
the results. As long as the sampling process is unbiased, the law of large numbers
guarantees that the empirical mean of the obtained samples will approximate
the expected value of the corresponding random variable.

Applying this idea to our problem, we construct a randomized version of
Algorithm 1 that generates a single consistent program execution by adapting
VisitRFsand VisitCOsto explore a random rf/co choice for each read/write
(picked uniformly at random) instead of all consistent choices. For one execu-
tion, we can estimate the size of the search tree by taking the product of the
exploration options encountered for each read/write (effectively assuming a sym-
metric state space). We can then run the modified Visit on G∅ a fixed number of
times, and take the mean of the individual estimates as our state-space estimate.

Let us examine how such a method would work with the example below,
where there are three graphs to be generated (shown in Fig. 2).

x := 1 y := 1
if (x = 1)
b := y

(w+w+rr)

Assuming the algorithm adds events from left to right, the state-space size will
be estimated to be either 2 · 2 = 4 (in samples where the algorithm makes the
read of x read 1 and the read of y also appears), or 2 (in samples where the
algorithms makes the read of x read 0, and the read of y does not appear). In
fact, since the algorithm picks among the rf choices for x uniformly at random,
each of these estimations occurs with a similar frequency, thereby yielding an
estimated mean that approximates 3 (given a sufficiently large sample).
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3.2 Problems with Revisits

The challenge of applying Monte Carlo method to our setting is achieving an
unbiased sampling in the presence of revisits. (Recall from §2 that if a write w
is added after a same-location read r, GenMC will also examine the scenario
where w revisits r, but only if a certain revisiting condition C holds.)

Blindly applying this revisiting condition when estimating, however, does not
work. Since its purpose is to avoid duplication, the probability that C holds for a
sequence of random rfs/cos choices is tiny, thereby yielding a biased simulation.

Similarly, one cannot ignore the revisiting condition C and perform revisits
with some probability p because this can lead to very long runs. A given revisit R
may delete part of the execution graph, which when subsequently re-added might
invoke another revisit R′, which may in turn delete the write that performed R,
and this process can be repeated again and again. To see this, consider the
r+w+w program below and the graphs that occur as a result of each of the
writes revisiting the read of x, depicted in Fig. 3.

a := x x := 1 x := 2 (r+w+w)

As can be seen, if W(x, 1) revisits R(x) then W(x, 2) is deleted, and vice versa.
An obvious solution to this issue would be to preclude multiple revisits and

e.g., only allow one revisit per sample. Even in this case, however, it is quite
difficult to find the probability p with which revisits should take place. Indeed,
suppose that once a revisit is performed, the revisiting write and its causal
prefix can never be deleted from the execution graph. Alas, in such an approach,
the probability that some read r gets revisited by a given write w decreases
exponentially as the number of writes that are added after r (but before w)
increases, and we again obtain a biased simulation. In the r+w+w above, R(x)
will be revisited by W(x, 1) with probability p and by W(x, 2) with probability
(1 − p)p. (Observe that, even if p is not fixed, the probability that later writes
get to revisit a given read r decreases exponentially.)

Finally, precluding revisits altogether is not a viable solution either. Even
though such an approach would yield an unbiased simulation, the simulation
would only cover a subset of the input domain, as revisits would not be accounted
for. In the r+w+w example, precluding revisits means that the state-space size
would always be erroneously estimated to be 1.

3.3 Our Solution

Our solution to make the sampling process as unbiased as possible is twofold.
First, we keep a choice map for each encountered event representing its possible
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exploration alternatives (e.g., rf or co options). The reason a map is used is
to be able to account for revisiting: as possible rf options for a read r might
appear after r has been added, we cannot calculate the product of all available
explorations options on-the-fly. Instead, we populate the available rf options for
each read dynamically, as more rf options become available, and calculate the
product at the end of each complete execution.

Second, as far as revisiting is concerned, in order to maintain an unbiased
estimation, we do preclude revisits, but mitigate the negative effects of this
decision by employing a custom scheduler that prioritizes the addition of writes
over that of reads (so that reads have as many rfs as possible available when they
are added), and chooses uniformly at random when only reads can be added.

Intuitively, the reason this approach works well is that each of the graphs
in a program’s declarative semantics can be generated incrementally, following
corder (see §2). What this means is that we can, in principle, generate all
graphs in a program’s declarative semantics without any backward revisiting.
Of course, it can still be the case that a read is added before some of its possible
rfs (e.g., if the next available event of all threads is a read), but picking at
random among reads guarantees that all rf options will eventually be considered
(though, perhaps, some of them not often enough).

A modification of Verify that implements the above approach can be seen
in Algorithm 2. The Estimate function obtains a number of samples2 by calling
GetSample (Line 4), and calculates the mean of all estimations (Line 6).

GetSample closely resembles Visit, with the addition of a choice map C
that stores consistent exploration options for each event of an execution graph.
At each step, GetSample extends the current graph with an event a obtained
by our custom scheduler (Line 8), and then performs a case analysis on a’s type.

If a is a read, PickRF populates C[a] with all consistent rfs for a (Line 18),
and then picks an rf for a uniformly at random (Line 19).

If a is a write, PickCO performs actions similar to the ones taken by PickRF
in the read case (Line 14), and upon returning, GetSample also updates the
entries of all revisitable reads, recording a as a possible rf. (Observe that no
revisiting is performed during the estimation process.)

Finally, at the end of each sample (Line 9), GetSample returns the current
estimation

∏
e∈G |C[e]|.

3.4 Stopping the Sampling Process

Before concluding the presentation of our estimation procedure, let us discuss
when that estimation procedure should stop, i.e., when an adequate number of
samples has been taken.

While ShouldKeepSampling in Algorithm 2 could in principle return false
after a fixed number of samples, doing so is often undesirable. For programs
with a very small state space, it does not make sense to obtain more samples
than the number of consistent executions because that would unnecessarily delay

2 See § 3.4 for how this number is calculated.



8 M. Kokologiannakis et al.

Algorithm 2 Estimating the DPOR state space

1: procedure Estimate(P)
2: T ← 0, Samples← 0
3: while ShouldKeepSampling(T, Samples) do
4: T ← T +GetSampleP (G∅, C∅)
5: Samples← Samples+ 1

6: print T/Samples

7: procedure GetSampleP (G,C)
8: a← AddNextEventP (G)
9: if a = ⊥ then return

∏
e∈G |C[e]|

10: if IsErroneousM(G) then exit(“error”)
11: if a ∈ R then
12: PickRFP (G,C, a)
13: else if a ∈ W then
14: PickCOP (G,C, a)
15: for r ∈ G.Rloc(a) \ cprefix(a) do C[r]← C[r] ⊎ {a}
16: else GetSampleP (G,C)

17: procedure PickRFP (G,C, a)
18: C[a]←

{
w ∈ G consistent(SetRF(G,w, a))

}
19: randomly choose some w ∈ C[a]
20: GetSampleP (SetRF(G,w, a), C)

21: procedure PickCOP (G,C, a)
22: C[a]←

{
wp ∈ G consistent(SetCO(G,wp, w))

}
23: randomly choose some wp ∈ C[a]
24: GetSampleP (SetCO(G,wp, a), C)

verification. Similarly, for programs whose state space is completely symmetric,
a near-perfect estimate can be achieved with only a few samples.

To deal with such issues, we make ShouldKeepSampling dynamic. After
a minimum (fixed) number of samples has been taken, ShouldKeepSampling
returns false if any of the following holds:

– the standard deviation of the current estimated mean M is less than some
fixed percentage of M

– the number of executions explored exceeds M
– a maximum (fixed) number of samples has been taken.

While users are free to override and tune the above heuristics, we found them sat-
isfactory in practice, and they did not seem to affect the quality of the produced
estimation.

3.5 Evaluation

To evaluate the accuracy of our approach, we estimated the state-space size of
various benchmarks, and measured how close the estimation was to the actual
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Fig. 4. Estimation accuracy for various benchmarks� �
let sc = po ∪ rf ∪ co ∪ fr
acyclic sc� �

Fig. 5. SC expressed in KAT

size. When selecting tests, we opted for non-symmetric benchmarks (as these
are more challenging to estimate), though with a manageable state-space size
(so that we can measure how accurate the estimation is). The results we obtained
for some representative benchmarks (and a varying sample size) are shown in
Fig. 4. The actual state-space size is shown in red.

As it can be seen, the state-space estimation is quite useful. It is always
within one order of magnitude from the correct number of executions (sometimes
under- and sometimes over-approximating the correct value), and converges very
quickly: even with only 20 samples we get a fairly accurate estimate of the state
space. Finally, estimation is very fast: for instance, it takes about 3 seconds to
obtain 2000 samples of ms-queue, while verification needs about 1470 seconds.

4 Automatically Porting New MCMs

To port a new MCM into GenMC, one has to define the corder relation and im-
plement the consistency checking routine consistentM(G) and the MCM-specific
error-checking code of IsErroneousM(G).

Until recently, these routines had to be written manually directly in C++. To
some extent, porting new MCMs was automated with Kater [25], a framework
for proving metatheoretic properties about MCMs, which can also generate code
for checking acyclicity constraints.
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// Calculation of synchronizes -with

let relseq = [REL] ; ([F] ; po) ? ; (rf ; rmw)*
let sw_to_r = relseq ; rf ; [ACQ]
let sw_to_f = relseq ; rf ; po ; [F] ; [ACQ]
let sw = sw_to_r ∪ sw_to_f

// Optimized calculation of happens -before.
// Save the part of ‘hb ‘ that does not finish with a reads -from edge
view hb_stable = (po-imm ∪ sw_to_r ; po-imm ∪ sw_to_f) +

let hb = (hb_stable ∪ hb_stable ? ; sw_to_r)
assert hb = (po ∪ sw) +

// Coherence : Optimize the checking of irreflexive (hb ; eco)
coherence (hb_stable)

// Sequential consistency order
let eco = (rf ∪ mo ∪ fr) +

let scb = po ∪ rf ∪ mo ∪ fr
let psc = [SC] ; po ; hb ; po ; [SC]

∪ [SC] ; ([F] ; hb) ? ; scb ; (hb ; [F]) ? ; [SC]
∪ [F∩SC] ; hb ; [F∩SC]
∪ [F∩SC] ; hb ; eco ; hb ; [F∩SC]
∪ [SC] ; po ; [SC]

acyclic psc

// RC1 1 error detection
let ww_conflict = [W] ; loc -overlap ; [W]
let wr_conflict = [W] ; loc -overlap ; [R] ∪ [R] ; loc -overlap ; [W]
let conflicting = ww_conflict ∪ wr_conflict
let na_conflict = [NA] ; conflicting ∪ conflicting ; [NA]

// [...]

error RaceNotAtomic unless na_conflict ⊆ hb_stable
warning WWRace unless [W]; ww_conflict; [W] ⊆ hb_stable� �

Fig. 6. Handling irreflexivity, emptiness, and inclusion constraints

Given an acyclicity constraint of a relation expressible in Kleene Algebra
with Tests (KAT) [33] (e.g., the sc relation of Fig. 5), we can check whether
an execution graph G satisfies the acyclicity constraint by taking the product
of G with an automaton accepting the (rotational closure of) the language of
corresponding to the acyclicity constraint and performing a depth-first search
over it. Kater generates code performing such acyclicity checks in linear time
in the size of G.

4.1 Beyond Acyclicity Constraints

Although the consistency predicate of SC can be defined as a single acyclicity
constraint, more advanced models also check other kinds of constraints, for which
Kater could not generate consistency checking code out of the box.

One such model employing different types of constraints is RC11 [35], a
fragment of which expressed in KAT can be seen in Fig. 6. It contains three
other kinds of constraints, which we discuss below.

First, the assert introduces a static constraint about the MCM that is
checked at compile-time: it checks that the rewriting of the model that defines
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Error: Non-atomic race!

Event (2, 4) conflicts with event (1, 3) in graph:

<0, 1> thread_p:

[...]

(1, 4): Wrel (deq.bottom, 1) deque.h:26

[...]

(1, 22): Wrlx (deq.bottom, 4) deque.h:33

[...]

<0, 2> thread_s:

[...]

(2, 3): Racq (deq.bottom, 4) [(1, 22)] deque.h:65

[...]

Fig. 7. A GenMC error for a Chase-Lev deque [13]. Events (1, 4) and (2, 3) do not
synchronize under C/C++17

hb in terms of the hb stable relation is equivalent to the original model which
defines hb directly. As this constraint can be checked completely statically by
Kater, there is no need to generate any code for it.

Second, there is the coherence constraint about hb stable dictating that
hb stable; (rf ∪ co ∪ fr)+ be irreflexive. Such irreflexivity constraints are very
common in MCMs and can typically be checked in a very efficient manner. The
idea is to represent the hb_stable relation using a vector clock. Then, for a

read r and a candidate store s
rf−→ r in VisitRFs, we check that no other store

s′ that is co-after s is included in r’s vector clock3. (This would mean that r is
aware of a “more recent” store than s.) The total complexity of the generated
checks is O(N) in the size of the graph.

Finally, there are two inclusion constraints introduced by the error/unless
and the warning/unless constructs. Even though these constraints are not tech-
nically part of consistency checking but rather of the IsErroneousM function,
they can still be MCM-specific and so the code checking them has to be me-
chanically generated.

Generally, for inclusion constraints of the form a ⊆ b, we have extended
Kater to generate code that calculates the reachable states of a and b, and then
checks that the reachable states of a are included in those of b. In the special
case where b is represented as a vector clock (as is the case with hb stable), the
calculation of b’s reachable states is spared, and the generated code only checks
whether a’s reachable states are contained in b’s vector clock.

4.2 Experimenting with MCMs

The above extensions to Kater and GenMC made it possible to fully automate
the porting of models like SC [36], RA [34], RC11 [35] and IMM [40]. They also

3 The procedure for VisitCOs is similar and thus omitted for brevity.
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made it easier to experiment with changes in these MCMs, often leading to
interesting observations.

One such observation occurred when we “upgraded” GenMC’s RC11 model
to use the slightly different sw definition of C/C++17 (see Fig. 6), a change
that was not supposed to have any impact for most benchmarks. Surprisingly,
we found that certain data-structure implementations inadvertently relied on
the old definition, and were deemed incorrect (due to improper synchronization)
when using the new one (see Fig. 7 for an example). Subtle issues like this
underline the need for tools that support automatic porting of MCMs.

5 Performance Improvements

Let us now turn our attention to GenMC’s performance. For a program P
with E consistent executions under a model M, the actual verification cost is
E × C, where C is the average cost of generating and checking consistency of
one program execution. Even if we keep E fixed, engineering optimizations can
significantly reduce the cost C and improve the overall performance.

GenMC’s infrastructure is split into two (largely independent) components:
the runtime environment, which executes the program under test, and the model
checker, which undertakes the construction of consistent execution graphs. The
cost per execution, C, can thus be attributed either to the runtime environment
(especially in cases where the program code is large or contains some expensive
computation) or to the execution graph construction and consistency checking.

In what follows, we address these bottlenecks by presenting two engineering
optimizations: one on the runtime environment front (§ 5.1), and one on the
model checking front (§ 5.2).

5.1 Reducing Runtime Reliance

Recall that Algorithm 1 repeatedly simulates the execution of the program P to
generate all its execution graphs. When the number of shared-memory accesses
(which are the ones recorded in an execution graph) are only a small percentage
of the program code, the execution time is dominated by code unnecessary for
verification.

Obviously, it would be really helpful to reduce reliance on the runtime envi-
ronment. The key insight in doing so is that we can cache the events following
a given sequence of read values. To make this concrete, consider the following
program where N threads employ a single lock (implemented as a CAS loop) to
access a hash table HT :

while (¬CAS(lock, 0, 1)) ;
HT [i] := ...
lock := 0

...
while (¬CAS(lock, 0, 1)) ;
HT [i] := ...
lock := 0

Observe that the program above has N ! (non-blocked) executions, correspond-
ing to all the ways the threads can access the hash table. However, each CAS
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Table 1. Performance impact of label caching on data structures

GenMC/no-cache GenMC

Executions Time Time

treiber-stack(6) 720 2.26 1.32
treiber-stack(7) 5040 57.20 29.37
treiber-stack(8) 40 320 1032.09 581.20

ms-queue(5) 120 0.91 0.64
ms-queue(6) 720 20.98 13.18
ms-queue(7) 5040 445.76 294.51

buf-ring(2) 20 0.06 0.03
buf-ring(3) 1218 0.65 0.48
buf-ring(4) 193 280 353.27 253.35

ttas-lock(5) 120 0.20 0.14
ttas-lock(6) 720 2.47 1.75
ttas-lock(7) 5040 62.17 44.24

operation can read one out of two possible values: 0, indicating that the CAS
will succeed, the thread will enter its critical section, and release the lock, or 1,
indicating that the CAS acquisition failed, and that the thread will try again.

More generally, the value domain used in concurrent programs is small, and it
is thus straightforward to record the encountered values (and the corresponding
event sequences) for each thread in a trie structure. Then, whenever the model
checker e.g., changes a read’s rf, it gets the sequence of events that will be added
after the read (up until the next read) by checking whether the values that the
thread read so far have been cached in the trie.

Besides read events, there are other events with read semantics, and thus need
to be treated similarly in the trie. One such case are memory allocation events,
which are undertaken by GenMC, as opposed to the runtime environment.
If the allocated addresses are not recorded in the trie and distributed anew
by the model checker, the cache might end up being inconsistent (e.g., if the
addresses of later events depend on the allocated address). A better solution is
to ensure a deterministic semantics of memory allocation, where the memory
address returned depends only the thread identifier and the previous allocations
of the same thread.

Caching interacts with the concurrent nature of GenMC itself.GenMCmay
use multiple worker threads to parallelize the exploration procedure [27], each of
which explores a different (unique) execution graph. To avoid contention between
worker threads, we equip each GenMC thread with its own (thread-local) cache.

Evaluation As shown in Table 1, caching the encountered events can yield
significant performance benefits: depending on the benchmark, GenMC can
be 1.4 to 1.8 times faster when caching is employed. In fact, when caching is



14 M. Kokologiannakis et al.

employed, 90-99% of the calls to the runtime environment are spared for the
benchmarks of Table 1, as the respective value sequences are cached.

The reason these savings do not directly translate to runtime gains is that the
benchmarks of Table 1 are standard concurrent data structures, which consist al-
most exclusively of shared-memory accesses. The only gains in these benchmarks
stem from the faster access times the trie provides compared to the runtime en-
vironment.

5.2 Optimizing Consistency Checking

Runtime aside, most of the remaining time is spent checking consistency of the
constructed graph. When it comes to consistency checks, there are two major
performance hindrances: (a) the fact that such checks run always, regardless
of the program under test and the constructed execution graph, and (b) the
consistency checking code itself.

For the first performance issue, we can observe that the nature of the program
might render checking full consistency of a graph unnecessary. Let us consider
RC11 (Fig. 6) as an example. A large part of the model is devoted to the handling
of SC accesses, via the psc relation. However, for a program P that does not
contain any SC accesses, checking for psc acyclicity is unnecessary, and reducing
to the Release-Acquire (RA) [34] fragment would suffice. Analogously, if P solely
contains SC accesses, we can reduce the verification problem to the SC one.

Leveraging this insight, we employ GenMC with a model simplification cri-
terion: if GenMC can statically determine that a particular program P only
uses SC/RA accesses, it will try to verify P under SC/RA.

In a somewhat similar manner, we optimize GenMC to try and re-use rela-
tions already calculated in an execution graph, rather than recalculating them
from scratch. Relations stored in vector clocks (see §4) readily offer such a prime
optimization opportunity. When a relation r to be saved in a vector clock is
transitive, instead of recalculating it every time we add an event e, we modify
GenMC to only calculate the difference between e and its predecessor in r.

For the second performance issue, we observed that that a lot of time was
spent allocating memory and indexing into arrays. We therefore optimized the
consistency checking code in the following ways.

– To make access to the graph’s primitive relations (rf, co, po and fr) faster,
we rewrote a large part of the existing GenMC infrastructure to use point-
ers to fetch relation successors/predecessors (instead of array indices), thus
sparing one level of indirection.

– To avoid using extra memory when saving relations, we converted all corre-
sponding data structures to intrusive ones, thus significantly reducing access
times and memory allocation calls.

– To avoid re-allocating memory for auxiliary data necessary for intermediate
computations (e.g., for storing reachable states during inclusion checks), we
provided each GenMC thread with a thread-local copy, thereby minimizing
memory allocations.
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Table 2. Consistency-intensive benchmarks

Time/SC Time/TSO Time/RC11

Executions Old New Old New Old New

szymanski(2) 78 0.12 0.09 0.14 0.11 0.31 0.17
szymanski(3) 1068 2.33 1.36 2.90 1.89 6.90 3.34

peterson(3) 588 0.14 0.08 0.16 0.10 0.45 0.18
peterson(4) 7360 2.11 0.97 2.51 1.40 7.81 2.80

parker(1) 54 0.02 0.02 0.02 0.02 0.04 0.04
parker(2) 6701 1.99 1.21 2.51 1.41 6.76 4.13

dekker f(3) 1344 0.51 0.27 0.62 0.39 2.53 0.62
dekker f(4) 26 797 10.39 6.78 15.25 10.23 38.39 16.74

fib bench(5) 218 243 2.14 1.97 3.06 2.45 7.48 4.08
fib bench(6) 2 363 803 23.54 21.38 33.43 26.59 90.57 46.27

lamport(2) 16 0.01 0.01 0.01 0.02 0.01 0.02
lamport(3) 9216 2.23 1.35 2.67 1.74 7.15 3.26

Evaluation To see how the optimized consistency checks perform, we compared
GenMC with its previous version4. The results are shown in Table 2. As it can
be seen, these performance optimizations greatly improved the performance of
GenMC on a set of benchmarks requiring intensive consistency checks.

6 Related Work

Even though there is a plethora of works in stateless model checking [20, 37, 17,
2, 4, 12, 14, 5, 6, 7, 10, 16, 38, 41], few tools can deal with weak MCMs [1, 3,
39, 43, 11, 24]. The only tool among them that supports more than one MCMs
is Nidhugg [1], although it is not parametric in the choice of the MCM, and
employs a different algorithm for each supported MCM.

As far as other model checking techniques are concerned, SAT/SMT-based
bounded model checking (BMC) techniques have been extended to handle weak
MCMs [15, 8, 18]. Among these, Dartagnan [18, 22] stands out, as it is also
parametric in the choice of the MCM, and porting new MCMs is also automated.

We are not aware of any other (enumerative) model checker that provides
an estimation of the state-space size. Even though there are tools that provide
a progress report (as opposed to a state space estimation), progress reports are
typically not as helpful as a size estimation. Java Pathfinder [42] provides a
progress bar by assuming that the state space is symmetric (i.e., nodes at the
same level in the exploration tree will have same-size subtrees). While the bar
grows monotonically, it may not advance at a steady pace, and be ”stuck” at

4 For this comparison, we disabled the cache (§ 5.1) and the model simplification
criterion (§ 5.2), so as to not unfairly penalize the previous GenMC version.
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e.g., 99%. DPOR tools like Concuerror [21] and Nidhugg [1] provide a progress
report based on how many backtracking options have still to be explored. This
number does not monotonically decrease, and is thus of limited use.

7 Summary

In this paper, we enhanced the usability of GenMC (and DPOR in general)
by: (a) providing a completion estimate based on a Monte Carlo simulation, and
(b) completely automating the porting of new MCMs into the tool. In addition,
we improved the tool performance using caching and engineering optimizations.
We hope that similar techniques will be leveraged by other researchers and de-
velopers working on DPOR tools.

Data-Availability Statement The paper replication package is available at
[26]. GenMC is available at [19].
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