
Relinche: Automatically Checking Linearizability under
Relaxed Memory Consistency
PAVEL GOLOVIN,MPI-SWS, Germany
MICHALIS KOKOLOGIANNAKIS, ETH Zurich, Switzerland
VIKTOR VAFEIADIS,MPI-SWS, Germany

Concurrent libraries implement standard data structures, such as stacks and queues, in a thread-safe manner,
typically providing an atomic interface to the data structure. They serve as building blocks for concurrent
programs, and incorporate advanced synchronization mechanisms to achieve good performance.

In this paper, we are concerned with the problem of verifying correctness of such libraries under weak
memory consistency in a fully automated fashion. To this end, we develop Relinche, a model checker that
verifies atomicity and functional correctness of a concurrent library implementation in any client program that
invokes the library methods up to some bounded number of times. Our tool establishes refinement between
the concurrent library implementation and its atomic specification in a fully parallel client, which it then
strengthens to capture all possible other (more constrained) clients of the library.

Relinche scales sufficiently to verify correctness of standard concurrent library benchmarks for all client
programs with up to 7–9 library method invocations, and finds minimal counterexamples with 4–7 method
calls of non-trivial linearizability bugs due to weak memory consistency.

CCS Concepts: • Theory of computation→ Concurrency; Verification by model checking.

Additional Key Words and Phrases: Model Checking, Weak Memory Consistency, Linearizability

ACM Reference Format:
Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis. 2025. Relinche: Automatically Checking Lin-
earizability under Relaxed Memory Consistency. Proc. ACM Program. Lang. 9, POPL, Article 70 (January 2025),
28 pages. https://doi.org/10.1145/3704906

1 Introduction
Despite the abundant opportunities for parallel execution in modern computing platforms, exploit-
ing them correctly and efficiently remains a big challenge for programmers. A partial answer to
this challenge is given by concurrent libraries, such as java.util.concurrent [Lea 2005], oneTBB
[Reinders 2007], libcds [Khizhinsky n.d.], and ckit [Bahra n.d.]. These libraries implement stan-
dard data structures like stacks and queues in a “thread-safe” manner, encapsulating most of the
intricacies of inter-thread synchronization, and enabling ordinary programmers to write correct
concurrent programs without having to worry about such details. Achieving correct and efficient
synchronization is left to the expert implementers of these libraries, who may use a collection of
sophisticated mechanisms for
• fine-grained synchronization (e.g., optimistic traversals, lazy updates, helping [Herlihy and
Shavit 2008]),

Authors’ Contact Information: Pavel Golovin, MPI-SWS, Kaiserslautern, Germany, pgolovin@mpi-sws.org; Michalis
Kokologiannakis, ETH Zurich, Zurich, Switzerland, michalis.kokologiannakis@inf.ethz.ch; Viktor Vafeiadis, MPI-SWS,
Kaiserslautern, Germany, viktor@mpi-sws.org.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART70
https://doi.org/10.1145/3704906

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0009-3990-1651
HTTPS://ORCID.ORG/0000-0002-7905-9739
HTTPS://ORCID.ORG/0000-0001-8436-0334
https://doi.org/10.1145/3704906
https://orcid.org/0009-0009-3990-1651
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.1145/3704906
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704906&domain=pdf&date_stamp=2025-01-09

70:2 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

• contention reduction (e.g., elimination [Hendler et al. 2004]), and
• memory reclamation (e.g., hazard pointers [Michael 2004], RCU [Desnoyers et al. 2012]),

and often even optimize the code for a specific architecture.
As these libraries are essential building blocks for concurrent programs, verifying their correct-

ness has been an active area of research over the past 20-30 years. Most research has assumed the
context of sequential consistency (SC) [Lamport 1979], where the threads execute in an interleaving
fashion and no out-of-order execution effects are observable. In the SC setting, the correctness of a
concurrent library is given by linearizability [Herlihy and Wing 1990], which requires each library
method to behave as if it were executed in a single atomic step.
In this paper, we focus on verifying correctness of concurrent libraries in a weak memory

consistency setting, where a concurrent program can observe the effects of out-of-order execution.
In this setting, classical linearizability is no longer a suitable correctness condition because efficient
concurrent library implementations do not fully encapsulate the effects of weak memory, and often
expose them at the library interface. For example, the stack and queue libraries of libcds (and
similarly, of libvsync), if used together, can exhibit the following “store buffering” behavior:

T1: 𝑥 .push(1)
𝑎 := 𝑦.dequeue() //returns ⊥

T2: 𝑦.enqueue(2)
𝑏 := 𝑥 .pop() //returns ⊥ (SB)

Consequently, several papers have introduced correctness notions for concurrent libraries in the
weak memory setting. While some authors, e.g., Batty et al. [2013] and Burckhardt et al. [2012],
have defined adaptations of linearizability suitable for specific weak memory consistency models,
we prefer to follow Raad et al. [2019], who provide a generic framework for defining the correctness
of concurrent libraries in a weak memory setting, that can express linearizability.
An important aspect of these works is that a library, besides having to ensure atomicity of its

methods, must also define the synchronization that its operations induce. For example, a queue
library must stipulate that matching enqueue and dequeue operations synchronize in order to
support the “message passing” idiom, where the following weakly consistent behavior is forbidden.

T1: 𝑥 .push(1)
𝑦.enqueue(2)

T2: 𝑎 := 𝑦.dequeue() //returns 2
𝑏 := 𝑥 .pop() //returns ⊥ (MP)

Despite a large body of work on verifying concurrent libraries, however, there exists no fully
automated, sound verification approach for concurrent libraries under weak memory consistency.
Most works are largely manual proof efforts, often with the support of an interactive proof assistant
and/or a program logic. The closest work would be the pioneering work of Burckhardt et al. [2007],
which establishes classical linearizability specifications for specific library client programs, and
thus cannot distinguish between queue implementations that differ in their support of the MP and
SB patterns.

In this paper, we present Relinche, the first widely-applicably, fully-automated, sound relaxed
linearizability checker for verifying concurrent libraries. In Relinche, we avoidmaking assumptions
about the implementations of the libraries subject to verification, such as having fixed linearization
points, because such assumptions would restrict the applicability of our approach. Since the general
verification problem is undecidable, however, we do restrict our attention to bounded linearizability,
namely that the library is correct in all clients that invoke at most 𝐾 library operations, which is a
parameter of our verification approach. Relinche is based on the following three key ideas.

First, following Raad et al. [2019], we represent program executions as a set of consistent execution
graphs with events representing method invocations and responses. The graph representation
enables us to distinguish plain communication edges from synchronization edges, and to thus
specify the synchronization induced by a library execution. Following Singh and Lahav [2023]. we

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:3

write specifications as code using library-local mutexes along with C/C++11 primitives to specify
the desired synchronization.
Second, we use state-of-the-art stateless model checkers [Kokologiannakis et al. 2022, 2019] to

generate the consistent execution graphs of a program. Similar to Burckhardt et al. [2007], for a
given library client, we collect the set of all possible outcomes of the specification and check that
each implementation execution produces an outcome allowed by the specification and induces at
least as much synchronization as required by the specification.

Third, to make our verification applicable to all library clients with up to 𝐾 method invocations
(and not a single client), we introduce the notion of themost parallel client (MPC), which consists of
𝐾 parallel threads, each invoking one library method. While the MPC fully explores the state-space
of the library, on its own, it does not suffice for checking library correctness, as it allows the
methods to be linearized in any order (and so it cannot check e.g., that a queue implementation
follows a FIFO order or that a stack follows LIFO order). As such, along with the possible outcomes
of the specification, for each possible outcome we also calculate and record the set of minimal

happens-before extensions that would render the outcome impossible. Then, for each execution
of the implementation, we check that its outcome is allowed by the specification and that the
corresponding recorded happens-before extensions also render it inconsistent.

We have implemented Relinche as a new verification tool, and show that (a) it scales sufficiently
well for verifying relaxed linearizability of concurrent libraries for all clients with up to 7–9
operations, and (b) it quickly finds errors in incorrect library implementations: Relinche was able
to show for the first time that well-known, SC-linearizable data structures are not linearizable under
weak memory; the minimal linearizability violations are non-trivial and involve 4–7 threads. More
impressively, Relinche was able to find an unknown correctness problem in an implementation of
Michael’s list [Michael 2002] used in libcds [Khizhinsky n.d.], a C++ library of concurrent data
structures that has more than 2.5k stars on Github.

Our contributions can be summarized as follows:
§2 We start with an informal overview of our approach.
§3 We introduce a semantic framework for specifying and verifying concurrent libraries in a

weak memory setting.
§4 We present Relinche in detail.

§5,§6 We discuss Relinche’s implementation, evaluate it thoroughly, and discuss the linearizability
violations found.

We conclude with a discussion of related work §7.

2 Overview
In this section, we present an overview of our verification approach with the help of the Herlihy-
Wing queue [Herlihy and Wing 1990] below. (Our approach of course extends to other data
structures; we use a queue only for demonstrational purposes.)

type HWQueue △
= {

int[] array

int back

}

𝑞.enqueue(𝑣) △
=

𝑖 := fetch_addrel (𝑞.back, 1)
storerel (𝑞.array[𝑖], 𝑣)

𝑞.dequeue() △
=

𝑏 :=loadacq (𝑞.back)
𝑖 := 0; 𝑣 := ⊥
while (𝑣 = ⊥ ∧ 𝑖 < 𝑏)
𝑣 :=xchgacqrel (𝑞.array[𝑖],⊥)
𝑖 := 𝑖 + 1

return 𝑣

The queue is implemented as an index back over an infinite array, denoting the next free
position for an item to be enqueued. The enqueue(𝑣) method atomically reads and increments

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:4 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

back (recording the value read just before the increment into the local variable 𝑖), and stores the
value 𝑣 at index 𝑖 of the array. The dequeue method scans the array from 0 to back until it finds a
non-empty value; once it does, it atomically exchanges the value with ⊥.

Our implementation incorporates the C/C++11 access mode annotations suggested by Raad et al.
[2019]: the enqueue accesses are marked as release (rel), the load of dequeue is marked as acquire
(acq), while the atomic exchange as a combined acquire-release accesses (acqrel). The effect of
these annotations is that whenever an acquire operation reads from a release operation, then the
two operations synchronize and thus everything executed before the release is observed by the
thread performing the acquire. By contrast, if some operation is marked as relaxed (rlx), then it
does not synchronize with other operations and so does not induce any ordering constraints.

Although simple, this example will help us demonstrate several important points.

2.1 Queue Specification
Let us begin by discussing the specification of the Herlihy-Wing queue. To devise a suitable
concurrent specification, we could start with a standard sequential queue implementation, and
then wrap each method in an atomic block, as in the example below.

Example 2.1 (Global-lock queue specification)We implement the queue as a pair of indices
front and back over an infinite array array, and make enqueue and dequeue acquire a mutual
exclusion lock lock.

typeQueue △
= {

int[] array

int front

int back

lock lock

}

𝑞.enqueue(𝑣) △
=

lock(𝑞.lock)
𝑞.array[𝑞.back] := 𝑣
𝑞.back := 𝑞.back + 1
unlock(𝑞.lock)

𝑞.dequeue() △
=

lock(𝑞.lock)
if (𝑞.back ≤ 𝑞.front) 𝑣 := ⊥
else 𝑣 := 𝑞.array[𝑞.front]

𝑞.front := 𝑞.front + 1
unlock(𝑞.lock)
return 𝑣

While holding the lock, enqueue simply appends an item at the back of the array, while dequeue
checks that the queue is non-empty and if so, removes an item from the front. Observe that this
implementation is not really similar to the Herlihy-Wing one, but that should not preclude us from
using it as a basis for a specification.

One may be tempted to use this globally locked queue implementation as a reasonable specifica-
tion of a concurrent queue. Although this works in a sequentially consistent setting, it unfortunately
does not under weak memory consistency. The issue is that the contention on the global lock forces
all operations to synchronize with one another, even if they logically commute. Efficient concur-
rent queue implementations—and the Herlihy-Wing queue in particular—avoid such excessive
synchronization, and thus cannot be shown to refine the aforementioned queue specification.
One therefore needs to specify which queue operations are meant to synchronize with one

another. At the very least, we would need to enforce that the 𝑛th successful dequeue synchronizes
with the 𝑛th enqueue, i.e., with the enqueue whose value it returns. This constraint ensures that
the message passing idiom (the program MP from §1) works as expected. (If the enqueue and the
successful dequeue do not synchronize, then the push might not have been propagated to T2, and
so T2 can observe the stack being empty.)

Stronger specifications may additionally require that all enqueues synchronize (which guarantees
that if a dequeue sees an enqueue, then it is also aware of all previous enqueues) or, symmetrically,
that all dequeues synchronize.
The question now is: How shall we write such a specification? The literature contains two

different approaches for doing so: either to write the specification directly in logic [Dongol et

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:5

al. 2018; Raad et al. 2019] or as code using C/C++11 constructs (and possibly some additional
specification constructs) [Batty et al. 2013; Singh and Lahav 2023]. We prefer the latter approach,
i.e., to specify the desired synchronization directly inside the specification program, because we
think it is more understandable to the developers of concurrent libraries.
Specifying the desired synchronization only using C/C++11 constructs, however, can be a

challenge! As the following example demonstrates, specifying that only matching enqueue and
dequeue operations synchronize requires a fair amount of ingenuity and can be as difficult as
designing an efficient queue implementation.

Example 2.2 (Lock-free queue specification)

typeQueue △
= {

int[] array

int fb

}

𝑞.enqueue(𝑣) △
=

𝑘 := fetch_addrlx (𝑞.fb, 1)
𝑏 := 𝑘 mod 232
storerel (𝑞.array[𝑏], 𝑣)

𝑞.dequeue() △
=

do 𝑘 :=loadrlx (𝑞.fb)
⟨𝑓 , 𝑏⟩ := ⟨𝑘 ÷ 232, 𝑘 mod 232⟩
if (𝑓 ≥ 𝑏) return ⊥

while (¬CASrlx (𝑞.fb, 𝑘, 𝑘 + 232))
do 𝑣 :=loadacq (𝑞.array[𝑏]) while (𝑣 = ⊥)
return 𝑣

This lock-free queue specification uses a single field fb to record both pointers as 232 × front + back.
The enqueue method uses a fetch-and-add instruction to atomically increment the back pointer,
while dequeue consists of a do-while loop that tries to advance front, and another loop that waits
for the enqueued item to appear in array.
The reason why this implementation achieves the desired synchronization is that all accesses

apart from the ones to array are relaxed. Since each index of array can be accessed by at most
one enqueue/dequeue pair, the only synchronization that is ever created takes place during item
dequeueing.

We argue that the lock-free specification is so complex because the code implementing the
sequential data structure semantics is entangled with the code enforcing atomicity and the code
enforcing the appropriate synchronization. To simplify writing specifications, we thus need to
disentangle these three different aspects. To that end, we employ an idea by Singh and Lahav [2023],
and extend the C++ memory model with a special “partial lock” that provides mutual exclusion and
synchronization internally, but whose synchronization is discounted when computing the induced
synchronization of the library specification. With this construct, we can specify a concurrent queue
much more easily as in the example below.

Example 2.3 (Partial-lock queue specification)

typeQueue △
= {

int[] array

int front

int back

plock lock

}

𝑞.enqueue(𝑣) △
=

plock(q.lock)
storerel (𝑞.array[𝑞.back], 𝑣)
𝑞.back := 𝑞.back + 1
punlock(q.lock)

𝑞.dequeue() △
=

plock(q.lock)
if (𝑞.back ≤ 𝑞.front) 𝑣 := ⊥
else 𝑣 :=loadacq (𝑞.array[𝑞.front])

𝑞.front := 𝑞.front + 1
punlock(q.lock)
return 𝑣

Note that, since we discount the synchronization due to the library locks, the only synchronization
left is between matching enqueue and dequeue operations, which is induced by the correspond-
ing write and read of the queue array (these are implemented using release/acquire accesses,
respectively).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:6 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

𝑆1

enq/1 PL W (𝑎[0]) W (𝑏) PU ret enq/2 PL W (𝑎[1]) W (𝑏) PU ret

deq PL R (𝑏) R (𝑓) PU ret/⊥
{

𝑆𝜋1

enq/1 ret enq/2 ret

deq ret/⊥

𝑆2

enq/1 PL W (𝑎[0]) W (𝑏) PU ret enq/2 PL W (𝑎[1]) W (𝑏) PU ret

deq PL R (𝑏) R (𝑓) PU ret/1

so {

𝑆𝜋2

enq/1 ret enq/2 ret

deq ret/1

Fig. 1. Specification graphs for FIFO-client (left) and their projections (right)

This partial-lock queue specification is just a bit more complex than the global-lock queue, and
so we think is easier to write and understand. Our verification methodology is actually orthogonal
to the choice of specification, but for simplicity, we will use the partial-lock queue specification
when discussing the verification of the Herlihy-Wing queue.

2.2 Showing Correctness for One Client
Next, let us consider verifying the correctness of the Herlihy-Wing queue for a single concurrent
client, such as the following:

T1: 𝑞.enqueue(1);
𝑞.enqueue(2);

T2: 𝑎 := 𝑞.dequeue(); (FIFO-client)

A good way of doing this automatically is via model checking. Model checkers with built-in support
for weak memory consistency (e.g., GenMC [Kokologiannakis et al. 2019]), verify a concurrent
program by representing its executions as a set of graphs, and then enumerating this set.
If, while enumerating all the execution graphs of the Herlihy-Wing queue on the FIFO-client,

we find a graph containing the outcome 𝑎 = 2, then we clearly have found a violation of the FIFO
property of the queue specification. But it is worth wondering: Is 𝑎 = 2 the only invalid outcome?

To answer this question, we can use the partial-lock queue specification from §2.1 to generate all
valid outcomes of FIFO-client. Indeed, similarly to how we run a model checker on FIFO-client
applied to the Herlihy-Wing implementation, we can also run it on the client applied to the partial-
lock queue specification. Some graphs generated during the verification of FIFO-client applied to
the partial-lock specification can be seen in Fig. 1 (left), while graphs generated when applying the
Herlihy-Wing implementation can be seen in Fig. 2 (left).
Looking at Fig. 1 more closely, the nodes of these graphs correspond to the instructions of

the queue specification with T2 above and T1 below. The graph edges denote relations among
the instructions: the horizontal edges denote program order (i.e., relate instructions of the same
thread), while the synchronization edges, so, show where reads are reading from in a synchronizing
fashion (from a release write to an acquire read). The remaining dashed edges demonstrate the lock
acquisition order: in 𝑆1 , T2 acquires the partial lock first, and then T1 reads from the unlock of T2.

At this point, we have seen that model checking can be used to enumerate the graphs of a client
applied to the specification and the implementation, respectively. We avoid discussing how the
model checker works internally to achieve this, as the inner workings of the model checker are not
relevant for our approach.

As explained in §1, to show that the Herlihy-Wing implementation is linearizable, we can simply
show refinement between the graphs of the implementation and the specification, i.e., show that

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:7

𝐼1

enq/1 RMW (𝑏, 1) W (a[1], 1) ret enq/2 RMW (𝑏, 2) W (a[2], 2) ret

deq R (b, 0) ret/⊥
{

𝐼𝜋1

enq/1 ret enq/2 ret

deq ret/⊥

𝐼2

enq/1 RMW (𝑏, 1) W (a[1], 1) ret enq/2 RMW (𝑏, 2) W (a[2], 2) ret

deq R (b, 1) XCHG (a[1], 0) ret/1

so so {

𝐼𝜋2

enq/1 ret enq/2 ret

deq ret/1

𝐼3

enq/1 RMW (𝑏, 1) W (a[1], 1) ret enq/2 RMW (𝑏, 2) W (a[2], 2) ret

deq R (b, 2) XCHG (a[1], 0) ret/1

so {

𝐼𝜋3

enq/1 ret enq/2 ret

deq ret/1

Fig. 2. Implementation graphs for FIFO-client (left) and their projections (right)

each implementation graph refines some graph of the specification. But how can we check for
refinement given that the execution graphs of the specification and the implementation are quite
different?
Relinche does this by generating what we call projection graphs. Such graphs are obtained by

erasing events related to queue internals, and only recording stub events for the beginning and
end of each operation. The projection graphs of the specification and implementation graphs of
FIFO-client can be seen in Figures 1 and 2, respectively.
Let us now examine these projection graphs in more detail, focusing on the projections of the

implementation (Fig. 2, right). These graphs do not record rf, as we do not care about where
reads are reading in general, but rather about synchronization among methods. As such, we only
record happens-before paths between these events, where happens-before hb △

= (po ∪ so)+po is
the smallest transitive relation containing po and so edges. Observe that, despite having the same
events, graphs 𝐼2 and 𝐼3 have different projections: the dequeue in graph 𝐼𝜋3 also synchronizes with
enqueue(2) because it reads the updated queue size.
Given a projection graph of the implementation 𝐼𝜋 , we can checks refinement by finding a

corresponding projection graph of the specification 𝑆𝜋 . 𝑆𝜋 might be the same as graph 𝐼𝜋 itself (as
is the case with graphs 𝐼𝜋2 and 𝑆𝜋2), or a graph with less synchronization (as is the case with 𝐼𝜋3
and 𝑆𝜋2).

Allowing the specification projection to induce less synchronization than the implementation pro-
jection is important. Suppose, for example, that we want to show refinement between a naive queue
implementation that acquires a global lock at each method call, and our queue specification. The
method invocations in its projected implementation graphs are totally ordered by synchronization,
unlike the specification ones, which are only partially ordered.

2.3 Showing Correctness for All Bounded Clients
We move on to the more challenging problem of checking correctness of the Herlihy-Wing queue
implementation for all clients of the queuewith atmost𝐾 queuemethod invocations. Themotivation
for this problem stems from the fact that, as the following example demonstrates, it can be quite
challenging to devise client programs that fully check the correctness of a data structure.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:8 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

Example 2.4 (Non-linearizability in Herlihy-Wing) In this example, we consider a variant of
the Herlihy-Wing implementation that uses an “acquire” exchange in the dequeue method instead
of an “acquire-release” exchange. While this variant is correct on FIFO-client, it is incorrect on
the client below that has 4 threads and 8 operations [Raad et al. 2019]. (The comments in the code
below indicate the dequeued values.)

T1: 𝑞.enqueue(1)
𝑞.enqueue(2)

T2: 𝑞.dequeue() //2
𝑞.enqueue(3)

T3: 𝑞.dequeue() //3
𝑞.dequeue() //4

T4: 𝑞.enqueue(4)
𝑞.dequeue() //1

enq/1 ret enq/2 ret

deq ret/2 enq/3 ret

deq ret/3 deq ret/4

enq/4 ret deq ret/1
The projection graph of a non-linearizable behavior

can be seen on the right. For this behavior, it is impossi-
ble to totally order the method invocations in accordance
with the synchronization obtained by the implementation.
Indeed, the hb obtained by the implementation methods
implies that the enqueues are ordered as enqueue(1) →
enqueue(2) → enqueue(3) → enqueue(4): the first pair
due to po, the second due to T2 dequeueing 2 before en-
queueing 2, and the third due to T3 dequeueing first 3 and then 4. The issue is that this order
among the enqueues also implies an ordering among the dequeues (due to FIFO), and in particular
that enqueue(4) is ordered before enqueue(2) (due to T4’s dequeue being FIFO-ordered before
enqueue(2)), which is in turn ordered before enqueue(4) (and hence T4’s dequeue, due to po).

As the example above demonstrates, while FIFO-client does check the FIFO property, it does
not do so completely.
Relinche checks refinement for all clients by considering a most parallel client (MPC) with at

most 𝐾 operations. MPCs consist of 𝐾 threads each one invoking a single method call. For instance,
an MPC with 3 operations (two enqueues and one dequeue), can be seen below.

T1: 𝑞.enqueue(1) T2: 𝑞.enqueue(2) T3: 𝑞.dequeue() (mpc-client)

Applying the method of § 2.2, we can easily show that the Herlihy-Wing queue is correct on
this client. This is unsurprising and not very useful, since all three possible return values for the
dequeue (⊥, 1, and 2) are allowed by the queue specification. What we need to do now is extend
this verification result to arbitrary other clients with two calls to enqueue and one to dequeue.

In turns out we can extend the verification result to arbitrary other clients that use the same type
of method invocations by making the following key observation: the executions of every other
such client are partial linearizations of the executions of mpc-client, where some of the method
invocations are ordered by the client, and may additionally contain some other client events. For
instance, FIFO-client can be thought of as a specialization of mpc-client where the two enqueue
calls are ordered, while MP can be considered a specialization of mpc-client where each execution
further contains events of the stack library.
However, assuming that the return values of the library calls and the induced synchronization

among them fully capture the library semantics, we can safely ignore additional client events: it
suffices to only consider clients that provide additional ordering among library method invocations.
In turn, all such clients are specializations (i.e., partial linearizations) of an MPC. Since there
are finitely many partial linearizations of an MPC, one can, in principle, generate all possible
bounded clients of the queue (each one corresponds to a different linearization), and check that the
Herlihy-Wing queue is correct in each one.
The key idea behind Relinche is that we do not even have to explicitly generate all bounded

clients corresponding to an MPC. Instead, Relinche utilizes the observation that the executions of

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:9

any partially linearized client can be obtained by taking the executions of the MPC, and then adding
hb edges between the appropriate method invocations. To see this, take an arbitrary execution of a
client that specializes the MPC. Since the MPC is less constrained (in terms of synchronization)
than the client, the same execution can be obtained by taking an MPC execution and adding hb
edges to it. As such, Relinche is able to check linearizability of all clients by taking each projection
graph of the MPC applied to the implementation, adding hb edges to it (as long as no hb cycle is
created), and checking that there exists corresponding projection graph of the MPC applied to the
specification that has less synchronization.
The procedure above suffices to verify the correctness of all bounded clients without actually

generating them and re-running the model checker. However, Relinche does not stop there. Given
a projection of the implementation, we observe that blindly checking all hb extensions is inefficient.

First, it suffices to only consider extensions that violate the corresponding specification projection.
So, for example, we will never consider the hb extension enqueue(1) → enqueue(2) for implemen-
tation executions where the dequeue returns ⊥ because it does not invalidate the corresponding
specification projection.
Second, due to monotonicity, it suffices to only consider minimal extensions that violate the

corresponding specification projection. For example, we will never consider the hb extension
enqueue(1) → enqueue(2) → dequeue() as a violation of the projection where dequeue returns
⊥ because the smaller extension enqueue(1) → dequeue() also violates the same projection.
Finally, by the principle of symmetry reduction [Clarke et al. 1996], we can avoid exploring

multiple minimal extensions that are symmetric to one another by declaring one of the symmetric
extensions as the representative, and only considering symmetric linearizations. With this final
optimization, we also need not consider the extension enqueue(2) → dequeue() because it is
symmetric to the extension enqueue(1) → dequeue().
As such, our final algorithm works in two phases. First, Relinche calculates all specification

outcomes, as well as the minimal hb extensions that violate each one. Then, for each projection
graph of the implementation, it checks that (1) the projection is allowed by the specification and
(2) that every minimal hb extension that violates the corresponding specification projection, also
renders the implementation execution inconsistent. We mention in passing that such extensions can
be generated and checked in a very compact way, but defer the presentation of our full algorithm
to §4.

3 Contextual Refinement for Execution Graphs
In this section, we introduce execution graphs (§3.1) as a representation of program executions. We
then define library specifications (§3.2), library implementations (§3.3), along with the semantics
of programs (§3.4), and the correctness of a library implementation in terms of refinement (§3.5).

3.1 Executions
We assume domains of values (Val) and method names (Method), ranged over by 𝑣 and𝑚 respec-
tively. We further assume that each method expects a fixed number of arguments and that there is a
function, arity : Method→ N, that maps each method to the number of arguments that it expects.

A library interface, A ⊆ Method, is a set of method names belonging to the library.
We define four important semantic domains:

• Events, 𝑒 ∈ Event, which represent either a single method invocation or the return of such an
invocation.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:10 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

• Plain executions (Pexec), which are partially ordered sets of events with the partial order po
representing the program order, i.e., the order of events according to the program control
flow.
• Full executions (Exec) extend plain executions with a synchronization order so, due to orderings
by individual libraries.
• Library executions (LexecA) over a library interface, which are sets of events corresponding
to methods in A along two kinds of orderings among them: synchronization orderings due to
the library itself (so), and due to its environment (hbC).

We use 𝐺 to range over all types of executions, since the type of execution will be clear from the
context.

Definition 3.1 (Events and labels). An event 𝑒 ∈ Event △
= N × Lab is a tuple ⟨𝑛, 𝑙⟩, where 𝑛 ∈ N is

an event identifier and 𝑙 is an event label. Event labels are of the form Cm (𝑣1, ... , 𝑣𝑛) and Rm (𝑣), and
represent a method invocation with arguments 𝑣1, ... , 𝑣𝑛 and a method response with return value
𝑣 , respectively.

Definition 3.2 (Plain Executions). A plain execution, 𝐺 ∈ Pexec, is a tuple 𝐺 = ⟨𝐸, po⟩, where:
• 𝐸 =𝐶 ⊎ 𝑅 is a set of events comprising a set 𝐶 of invocation events with distinct identifiers
and a set 𝑅 of matching response events with the same identifiers; and
• po ⊆ 𝐸 × 𝐸 is a strict partial order denoting the program order relation, such that each
invocation event is po-before its matching response.

Definition 3.3 (Full Executions). A full execution,𝐺 ∈ Exec, is a tuple𝐺 = ⟨𝐸, po, so⟩, where ⟨𝐸, po⟩
is a plain execution and so ⊆ 𝐸 × 𝐸 is the synchronization order, relating invocation events and
response events of the same library.

Definition 3.4 (Library Executions). A library execution 𝐺 of a library interface A is a tuple
⟨𝐸, rf , so, hbC⟩:
• 𝐸 =𝐶 ⊎𝑅 is a set of events consisting of invocation events (𝐶) of methods in A and matching
responses (𝑅);
• so ⊆ 𝐶 × 𝑅 is the library synchronization order, denoting ordering induced by the library; and
• hbC ⊆ 𝐸×𝐸 is the client happens-before order, denoting ordering induced by the environment
of the library.

We use dot notation (e.g., 𝐺.E,𝐺 .so, etc) to project the various components of an execution 𝐺 .

3.2 Library Specifications
A specification of a library interface, A, is a set of consistent library executions that is closed under
prefixes, induced-ordering strengthenings, and client ordering relaxations.

Definition 3.5 (Library specification). A specification of a library interface A is a set S ⊆ LexecA
that is closed in two ways:
Prefixes: If ⟨𝐸, so, hbC⟩ ∈ S and 𝐸′ ⊆ 𝐸 such that dom((hbC ∪ so); [𝐸′]) ⊆ 𝐸′, then

⟨𝐸′, so ∩ (𝐸′ × 𝐸′), hbC ∩ (𝐸′ × 𝐸′)⟩ ∈ S.
Ordering: If ⟨𝐸, so, hbC⟩ ∈ S and so

′ ⊇ so and hbC
′ ⊆ hbC, then ⟨𝐸, so′, hbC′⟩ ∈ S.

A library L
△
= ⟨A, S⟩ is a pair of a library interface and a specification for that interface. Given a

library L, we write L.A and L.S to project to its components. We say that two libraries L1 and L2
are compatible if their interfaces are disjoint (L1.A ∩ L2.A = ∅). We write L for a set of pairwise
compatible libraries.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:11

The notion of libraries provided above does not assume any pre-existing libraries in the program.
Indeed, even fundamental operations like reads and writes can be formulated as libraries in the
framework above, and we make use of that fact when defining client executions below. As examples,
we present three register libraries: one inducing no synchronization (relaxed register), one inducing
synchronization along the information flow from a write to a read (release-acquire register), and
one inducing synchronization for all non-commuting operations (SC register).

Example 3.1 (Relaxed Register) The relaxed register interface, Arlx, two comprises two methods:
storerlx and loadrlx, the former taking a value argument and returning always ⊥ and the latter
taking no arguments but returning a value.
The relaxed register specification contains all executions ⟨𝐸, so, hbC⟩ of Arlx such that there

exists a total order <𝑇 over 𝐸 extending hbC with the following properties:
• Every invocation event in 𝐸 immediately precedes its matching response in <𝑇 .
• Every load response event 𝑟 returns the value written by the last write invocation event𝑤
that precedes it in <𝑇 , or 0 if there is no previous store invocation event.

(Note that so is unconstrained because a relaxed register does not induce any synchronization.)

Example 3.2 (Release-Acquire Register) A release-acquire register is defined analogously with
the additional constraint about the total order <𝑇 that:
• so contains all the ⟨𝑤, 𝑟 ⟩ pairs, such that𝑤 is a write-invocation, 𝑟 is a read-response that
appears later in <𝑇 and there are no other write-invocation events between𝑤 and 𝑟 in <𝑇 .

Example 3.3 (SC Register) A sequentially consistent register further constrains so and <𝑇 so
that:
• so contains all the ⟨𝑒, 𝑒′⟩ pairs, such that 𝑒 <𝑇 𝑒

′, 𝑒 is an invocation event, 𝑒′ is a response
event, and they are both read events.

3.3 Client Programs and Library Implementations
We define a simple language for implementing libraries and their clients. Expressions, e ∈ Exp,
comprise values 𝑣 ∈ Val, variables 𝑥 ∈ Var, and arithmetic and logical operations (without any
side-effects), whereas programs P ∈ Prog can also define and invoke library methods and contain
control-flow constructs (conditionals, sequencing, and parallel composition):

e ::= 𝑣 | 𝑥 | e1 ⊕ e2 for ⊕ ∈ {+,−,×,÷,=,≠, <,≤, >,≥, ...}
P ::= e | 𝑚(e1, ... , earity(𝑚)) | if e then P1 else P2 | let 𝑥 = P1 in P2 | P1 ∥ P2
| let𝑚(𝑥1, ... , 𝑥arity(𝑚)) = 𝑃1 in 𝑃2

A closed program, C △
= (L ⊢ P), is a program together with the set of libraries that it uses.

A client program, C △
= (L ⊢ P), of a library interface A, is a program together with the set of

libraries that it uses other than A. We write C ⊲ S for the closed program L ∪ {⟨A, S⟩} ⊢ P , resulting
from composing a client program C of A with a specification S of A.

An implementation of a library interface provides definitions for all the methods of the interface.

Definition 3.6. An implementation, I , of a library interface A, comprises a set of pairwise com-
patible libraries Linternal and a method definition m(®𝑥) = P for all methods m ∈ A, such that all
the method names appearing in P belong to Linternal, the free variables of P are included in ®𝑥 , and
| ®𝑥 | = arity(m).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:12 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

JeK(𝜂, 𝜃) △
= {⟨𝜂 (e),𝐺∅⟩}

J𝑚(®𝑒)K(𝜂, 𝜃) △
=

{{⟨𝑣,𝐺𝑐 ;𝐺 ;𝐺𝑟 ⟩ ⟨𝑣,𝐺⟩ ∈ 𝜃 (𝑚) (𝜂 (®𝑒)), 𝑛 ∈ N
}

if𝑚 ∈ dom(𝜃){
⟨𝑣,𝐺𝑐 ;𝐺𝑟 ⟩ 𝑣 ∈ Val, 𝑛 ∈ N

}
if𝑚 ∉ dom(𝜃)

where 𝑐 = ⟨𝑛, Cm (𝜂 (e1), ... , 𝜂 (e𝑛))⟩
𝑟 = ⟨𝑛, Rm (𝑣)⟩

Jlet𝑚(®𝑥) = 𝑃1 in 𝑃2K(𝜂, 𝜃) △
= J𝑃2K(𝜂, 𝜃 [𝑚 ↦→ 𝜆®𝑣 . J𝑃1K(𝜂 [®𝑥 ↦→ ®𝑣], 𝜃)])

Jif e then P1 else P2K(𝜂, 𝜃) △
=

{
JP1K(𝜂, 𝜃) if 𝜂 (e) ≠ 0
JP2K(𝜂, 𝜃) if 𝜂 (e) = 0

Jlet 𝑥 = P1 in P2K(𝜂, 𝜃) △
=
{
⟨𝑣2,𝐺1 ;𝐺2⟩ ⟨𝑣1,𝐺1⟩ ∈ JP1K(𝜂, 𝜃) ∧ ⟨𝑣2,𝐺2⟩ ∈ JP2K(𝜂 [𝑥 ↦→𝑣1], 𝜃)

}
JP1 ∥ P2K(𝜂, 𝜃) △

=
{
⟨0,𝐺1 ∥ 𝐺2⟩ ⟨𝑣1,𝐺1⟩ ∈ JP1K(𝜂, 𝜃) ∧ ⟨𝑣2,𝐺2⟩ ∈ JP2K(𝜂, 𝜃)

}
Fig. 3. Mapping of programs to plain execution graphs, J_K : Prog→ Lenv→ Menv→ P(Val × Pexec).

Definition 3.7. The composition of a client program C = (L ⊢ P) and an implementation I of a
library interface A = ⟨Linternal,m1 (®𝑥) = P1, ... ,m𝑛 (®𝑥) = P𝑛⟩, written C ⊲ I , is the client program:

(Linternal ⊎ {L ∈ L | L.A ≠ A}) ⊢ let m1 (®𝑥) = P1 in
...

let m𝑛 (®𝑥) = P𝑛 in P

3.4 Semantics of Client Programs and Library Implementations
We next describe the semantics of programs. The semantics of expressions is determined by a
variable environment, 𝜂 ∈ Lenv △

= Var→ Val, which maps variables to their values, and a method

environment, 𝜃 ∈ Menv, which maps method names to their semantic representations (which
will be defined shortly). By abusing notation, we extend the domain of variable environments to
expressions so that 𝜂 (𝑣) = 𝑣 and 𝜂 (e1 ⊕ e2) = 𝜂 (e1) ⊕ 𝜂 (e2).
The semantics of programs is given in two steps. In the first step, we define a function J.K that

maps programs into sets of executions. Then, we check that the projection of these executions to
the methods of each library satisfies the specification of that library.

In more detail, in the first step, the mapping of programs is given with respect to environments
𝜂, 𝜃 and returns a set of tuples ⟨𝑣,𝐺⟩, where 𝑣 is the value returned by the program and𝐺 is the cor-
responding plain execution, recording the methods invoked by the program. Method environments
have the following type:

𝜃 ∈ Menv △
= (𝑚 : Method) ⇀ Valarity(𝑚) → P(Val × Pexec)

To define the program mapping, we introduce some constructions on plain executions. We write
𝐺∅

△
= ⟨∅, ∅⟩ for the empty execution and 𝐺𝑎 △

= ⟨{𝑎}, ∅⟩ for the execution with a single event 𝑎.
Given two executions, 𝐺1 = ⟨𝐸1, po1⟩ and 𝐺2 = ⟨𝐸2, po2⟩, with disjoint sets of events, we define:
• their sequential composition, 𝐺1 ;𝐺2

△
= ⟨𝐸1 ∪ 𝐸2, po1 ∪ po2 ∪ (𝐸1 × 𝐸2)⟩, by ordering all 𝐺1

events before those of 𝐺2, and
• their parallel composition, 𝐺1 ∥ 𝐺2

△
= ⟨𝐸1 ∪ 𝐸2, po1 ∪ po2⟩, by placing no additional order

between events of 𝐺1 and 𝐺2.
With these constructions, we can now define the mapping JPK by structural induction in Fig. 3.

An expression returns the empty execution graph, 𝐺∅ . A method call m(e1, ... , e𝑛) creates two
events with labels Cm (𝑣1, ... , 𝑣𝑛) and Rm (𝑣), denoting a call to method m with arguments 𝑣1, ... , 𝑣𝑛
(where 𝑣𝑖 = 𝜂 (e𝑖)) and its return with value 𝑣 , respectively. In the case where the implementation of

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:13

m is known (part of 𝜃), it generates the events of the implementation as well. The interpretation of
a method definition extends 𝜃 by mapping the method name to the interpretation of its body. The
interpretation of a conditional, if e then P1 else P2, returns JP1K or JP2K depending on the value
of the condition. The interpretation of a let-expression, let 𝑥 = P1 in P2, composes the execution
graphs corresponding to P1 and to P2 sequentially, whereas that of a parallel command, P1 ∥ P2
composes them in parallel. The interpretation of a top-level program is performed with 𝜂 = ∅.
We move on to the second step. The consistent executions of a closed program are the set of all

full executions generated by the program that satisfy the specifications of all the libraries it uses.

Definition 3.8 (Consistent executions). A full execution 𝐺 is a consistent execution of a closed
program C = (L ⊢ P) if
• ⟨𝑣, ⟨𝐺.E,𝐺 .po⟩⟩ ∈ JPK for some value 𝑣 , and
• for each L ∈ L, it is ⟨𝐺.E|L.A,𝐺 .so|L.A, (𝐺.po ∪𝐺.so)+ |L.A⟩ ∈ L.S.

where 𝑆 |A restricts a set 𝑆 to events concerning methods in A, and similarly 𝑟 |A similarly restricts a
relation 𝑟 .

We write Execs(C) for the set all consistent executions of a closed program C.

3.5 Library Implementation Correctness
We define the correctness of a library implementation as a refinement of its specification. To do so,
we first need to define the observations for a library interface as the set of library events of that
interface along with the ordering between those events.

Definition 3.9 (Observations). The observation of a full execution 𝐺 for a library interface A is
ObsA (𝐺) △

= ⟨𝐺.E|A,𝐺 .so|A⟩. The observations of a closed program C for a library interface A are
ObsA (C) △

= {ObsA (𝐺) | 𝐺 ∈ Execs(C)}, i.e., the set of all observations of all consistent executions
of C.

A bound is a function 𝐾 : Method ⇀ N that maps some methods to a number, indicating that at
most that many invocations of the method are allowed. A client program L ⊢ P respects a bound 𝐾
if for all ⟨𝑣,𝐺⟩ ∈ JPK, and all m ∈ dom(𝐾), 𝐺.E contains at most 𝐾 (m) invocations of m. (𝐺 can
contain any number of invocations to methods m ∉ dom(𝐾).)

With these definitions, we can then define (bounded) contextual refinement in a standard fashion.

Definition 3.10. Let A be a library interface, I be an implementation of A and S be a specification
of A. Then:
• I refines S for a client program C over A if ObsA (C ⊲ I) ⊆ ObsA (C ⊲ S).
• I refines S up to a bound 𝐾 if it refines S for all client programs C of A that respect the bound
𝐾 .

4 Checking Library Implementation Correctness
We move on the problem of checking that a library implementation I of a library interface A =

{m1, ... ,m𝑛} refines a library specification S up to some bound 𝐾 .
To simplify the presentation, we assume that all the methods of A do not take any arguments.

Methods that take arguments from a finite domain can always be transformed to multiple methods
with no arguments, while methods that draw their arguments from an infinite domain but use
them in a (partially) data-independent fashion are handled explicitly in §4.5.
Relinche consists of two phases: the first analyzes the specification and the second checks

conformance of the implementation. We start by defining the most parallel client (§4.1), and then
describe the two phases of Relinche (§4.2, §4.3) and establish its correctness (§4.4).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:14 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

4.1 Most Parallel Client
The key idea behind Relinche is that we can show that I refines S by employing the most parallel
client of A with bound 𝐾 .

Definition 4.1 (Most parallel client). The most parallel client of a library interfaceA = {m1, ... ,m𝑛}
with bound 𝐾 : A→ N is the program:

MPC𝐾
△
=m1 () ∥ ... ∥ m1 ()︸ ︷︷ ︸

𝐾 (m1) times

∥ m2 () ∥ ... ∥ m2 ()︸ ︷︷ ︸
𝐾 (m2) times

∥ ... ∥ m𝑛 () ∥ ... ∥ m𝑛 ()︸ ︷︷ ︸
𝐾 (m𝑛) times

To see why we can employ MPC𝐾 to check refinement, consider an arbitrary execution of a
𝐾-bounded client of A. By construction, its projection to the events of A will have at most 𝐾 (m𝑖)
invocations of method m𝑖 and 𝐾 (m𝑖) matching response events, and will be a (prefix) execution of
MPC𝐾 with some additional client happens-before edges. We can thus obtain all such projections by
generating all executions ofMPC𝐾 and considering all consistent happens-before strengthenings
of these executions.

In turn, given a consistent execution 𝐺 of MPC𝐾 ⊲ I , we can check whether its A-observation is
valid by comparing it with the A-observations ofMPC𝐾 ⊲S. If the observation is allowed, we further
need to consider any strengthenings of MPC𝐾 that render the observation invalid according to the
specification. If no such strengthenings invalidate the observation, then we are done. If, however,
there is some more constrained client C such that C ⊲ S forbids the observation, we also need to
make sure that C ⊲ I also forbids the observation, or else we have found an error. Therefore for
all the minimal hb-strengthenings ofMPC𝐾 that render the observation invalid according to the
specification, we need to check that these hb-extensions also make the implementation execution
inconsistent.

4.2 Phase 1: Specification Analysis
We next describe the first phase of our verification procedure: Relinche’s specification analysis

(Algorithm 1). This phase uses a model checker to enumerate all specification graphs arising
from the most parallel client applied to the library specification, collects the set of allowed library
observations, and for each observation generates a set of happens-before extensions for it.
This first phase takes as input only the library interface A, the bound 𝐾 , and the specification

code Spec. As such, it can run “offline”, since there are typically only a few specifications of interest
for each type of data structure.
In more detail, Relinche first generates all the executions of the most parallel client MPC𝐾

applied to the specification, and groups them according to their observations. To that end, it
initializes a map Lins (Line 2) that maps each observation to the set of linearizations of the atomic
library methods resulting in this observation. The library observation is simply the projection of
a given graph 𝐺 to the events of the library and the associated synchronization order. Here, we
take as the induced synchronization order of the specification the happens-before order of the
specification code without any edges due to the partial lock library.
Then, for each library observation, Relinche calculates the set of minimal additional happens-

before edges, which contradict all the linearizations generating that outcome. As such, it initializes
(Line 2) and populates (Line 6) another map, HBexts, which maps each allowed observation to the
set of all minimal hb-extensions that render the observation invalid.
Calculating such extensions is done via CalcExts. Given an hb-extension ℎ, a set of edges

𝑆 ⊆ E×E, and a set L of linearizations, a call to CalcExts(ℎ, 𝑆,L) recursively calculates all possible
minimal edge additions from 𝑆 toℎ that render each graph inL invalid. Initially (at Line 6),CalcExts
is called with ℎ = ∅, 𝑆 containing all possible edges from A-response events to A-invocation events,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:15

Algorithm 1 Relinche: Specification analysis
1: function AnalyzeSpec(A, 𝐾, Spec)
2: local (Lins,HBexts) ← (∅, ∅)
3: for all 𝐺 ∈ Execs(MPC𝐾 ⊲ Spec) do ⊲ Collect specification executions
4: Lins[⟨𝐺.E|A,𝐺 .hb𝑎𝑏𝑠 |A⟩] ← Lins[⟨𝐺.E|A,𝐺 .hb𝑎𝑏𝑠 |A⟩] ∪ {𝐺.hb|A}
5: for all 𝑂 ∈ dom(Lins) do ⊲ Compute happens-before extensions
6: HBexts[𝑂] ← CalcExts(∅,𝑂.E ×𝑂.E,⋃{Lins[𝑂 ′] | 𝑂 ′ .E =𝑂.E ∧𝑂 ′ .so ⊆ 𝑂.so})
7: return HBexts

8: function CalcExts(ℎ, 𝑆,L) ⊲ Return minimal extensions of ℎ invalidating L
9: if L = ∅ then return {ℎ}
10: 𝑆 ← {⟨𝑒, 𝑒′⟩ ∈ 𝑆 | ⟨𝑒, 𝑒′⟩ ∉ ℎ+ ∧ ⟨𝑒′, 𝑒⟩ ∉ ℎ+}
11: 𝑆 ← {⟨𝑒, 𝑒′⟩ ∈ 𝑆 | ∃𝑙 ∈ L. ⟨𝑒′, 𝑒⟩ ∈ 𝑙}
12: local Res← ∅
13: for all ⟨𝑒, 𝑒′⟩ ∈ 𝑆 do Res← Res ∪ CalcExts(ℎ ∪ {⟨𝑒, 𝑒′⟩}, 𝑆, {𝑙 ∈ L | ⟨𝑒′, 𝑒⟩ ∉ 𝑙})
14: return Res

and L containing all recorded linearizations with weaker observations: the same set events and
possible less induced synchronization.

Let us now see how CalcExts(ℎ, 𝑆,L) works in more detail. If L is empty, then CalcExts simply
returns {ℎ} (Line 9). Otherwise, it first removes from 𝑆 all edges that are either already included in
ℎ or contradict it (Line 10). It also removes from 𝑆 all edges that do not eliminate any linearization
in L (Line 11). Then, for each remaining edge in 𝑆 , CalcExts calls itself recursively adding the
edge to ℎ and removing from L all linearizations eliminated by the edge (Line 13). Observe that the
edge will be discounted in the recursive call, and that at each recursive call the set L decreases.

4.3 Phase 2: Implementation Conformance Checking
We move on to the second phase of Relinche, which checks for implementation conformance with
respect to the computed set of allowed outcomes and their associated happens-before extensions
(Algorithm 2).

Algorithm 2 Relinche: Implementation conformance
1: procedure CheckConformance(A, 𝐾, I ,HBexts)
2: for all 𝐺 ∈ Execs(MPC𝐾 ⊲ I) do ⊲ Analyze implementation executions
3: O← {𝑂 ∈ dom(HBexts) | 𝑂.E =𝐺.E|A ∧𝑂.so ⊆ 𝐺.hb|A}
4: if O = ∅ then ReportError()
5: 𝐻 ← {∅} ⊲ Calculate relevant happens-before extensions
6: for all 𝑂 ∈ O such that �𝑂 ′ ∈ O. 𝑂 ⊂ 𝑂 ′ do
7: 𝐻 ← {ℎ ∪ ℎ′ | ℎ ∈ 𝐻,ℎ′ ∈ HBexts[𝑂]}
8: if ∃ℎ ∈ 𝐻.Consistent(⟨𝐺.E,𝐺 .po ∪ ℎ,𝐺.so⟩) then ReportError()

The conformance phase largely follows the description of §4.1. For each execution of the most
parallel client applied to the library implementation, Relinche calculates in O the set of recorded
specification observations that match the implementation execution, namely those that have the
same library events and require one to induce less or equal synchronization than the implementation
provides (Line 3). If this set is empty, Relinche reports a refinement violation (Line 4). Otherwise,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:16 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

Relinche looks up the set of recorded happens-before extensions that need to be considered. In the
common cases, O is a singleton set, and so we can just read off the appropriate entry from HBexts.
In the general case, however, O could contain multiple elements, say {𝑂1, ... ,𝑂𝑛}. If so, we

need to pick extensions that violate all the observations in O. A simple choice is to let 𝐻 =

{ℎ1 ∪ ... ∪ ℎ𝑛 | ℎ1 ∈ HBexts[𝑂1], ... , ℎ𝑛 ∈ HBexts[𝑂𝑛]}, which is what the loop on Lines 6 and 7
achieves. The loop contains a small optimization: we can ignore any observation 𝑂 ∈ O that is
strictly weaker than some other observation 𝑂 ′ ∈ O because the linearizations leading to 𝑂 were
taken into account when computing the hb-extensions of 𝑂 ′ in the specification analysis phase.

Finally, for each happens-before extension in 𝐻 , Relinche checks that it violates consistency. If
any of them do not, it reports a refinement violation (Line 8).

Remark 4.2 (Employing Symmetry Reduction). We note that symmetry reduction [Clarke et al.
1996] can easily be applied to make conformance checking faster (by a factorial factor in the bound
𝐾). On Line 2, instead of returning all consistent executions of MPC𝐾 ⊲ I , it is sound to use an
approach such as Spore [Kokologiannakis et al. 2024] to return all consistent executions up to
symmetry. Moreover, if we use a fixed way of resolving symmetries (as, e.g., in the Spore algorithm),
then we can also optimize the set of generated happens-before extensions to remove ones that
would contradict the resolution of symmetries.

We can also employ symmetry reduction to speed up the specification analysis. We can treat
observations up to symmetry by sorting the threads invoking the same method according to their
return values. We can then only calculate hb-extensions for these equivalence classes, and make
sure that the conformance checking phase sorts the threads of the 𝐺 in the same way before
checking for its relevant hb-extensions.

4.4 Correctness
We next state and prove the correctness of Relinche.

Theorem 4.3. CheckConformance(A, 𝐾, I ,AnalyzeSpec(A, 𝐾, S)) reports an error if and only if

there is a library client C that respects 𝐾 such that I does not refine S for C.

Proof sketch. In the forward direction, if Relinche reports an error at Line 4, then the execution
𝐺 witnesses a A-observation ofMPC𝐾 ⊲ I that is not allowed byMPC𝐾 ⊲ S. If it reports an error
at Line 8, then consider the client C obtained by sequencing the method invocations in MPC𝐾
following the edges of ℎ. Then, ⟨𝐺.E,𝐺 .po ∪ ℎ,𝐺.so⟩ witnesses a A-observation of C ⊲ I that is not
allowed by C ⊲ S.

In the backward direction, let𝐺 be an execution of C ⊲ I , whose A-observation𝑂 is not allowed by
C ⊲ S. By definition, ⟨𝐺.E, ∅,𝐺 .so⟩ is an execution of MPC𝐾 ⊲ I with the same observation 𝑂 . Since
C ⊲ S does not allow𝑂 , there has to be a minimal ℎ′ ⊆ ℎ such that such that C′ ⊲ S does not allow𝑂 ,
where C′ is obtained by adding ℎ′ po-edges toMPC𝐾 . If ℎ′ = ∅, then𝑂 is not allowed byMPC𝐾 ⊲ I

and so an error will be reported at Line 4. Otherwise, ∃𝑂 ′ ∈ dom(HBexts) and ℎ′′ ∈ HBexts[𝑂 ′]
such that 𝑂 ′ ⊆ 𝑂 and ℎ′′ ⊆ ℎ′, and so Relinche will report an error at Line 8. □

4.5 Handling Methods with Arguments Using Data Independence
We now extend the basic approach to handle methods with arguments drawn from an infinite
domain, assuming that the library implementation uses these arguments in a data-independent
fashion. We consider three degrees of data independence in increasing level of complexity.

Libraries with Full Data Independence. The library implementation treats the arguments to the
various methods as completely abstract: it does not inspect nor perform any computation on the
passed arguments. For a library implementation with full data independence and a multiset of

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:17

method names m1,m2, ... ,m𝑁 (i.e., a sorted sequence of method names that can contain duplicates),
we construct the most parallel client as the program that calls each method in a separate thread
with a fresh argument: m1 (𝑎𝑟𝑔1) ∥ ... ∥ m𝑁 (𝑎𝑟𝑔𝑁) where 𝑎𝑟𝑔 𝑗 △

= 𝑗 if𝑀 𝑗 takes an argument and ⊥
otherwise.

Equality-checking Library Implementations. Whenever the library implementation may check
for equality between two arguments to its methods, we additionally need to consider executions
that have multiple method invocations with the same argument. Starting with the most parallel
client for the fully data-independent case, where each method is invoked with a different argument,
we further consider all partitions of the arguments into equivalence classes. For each partitioning,
we generate one most parallel client replacing each argument value with its equivalence class
representative.

Ordering-checking Implementations. Some library implementation may also check for ordering
(<) between method arguments, e.g., to insert an element into a binary tree. For such ordering-
checking libraries, we additionally have to consider all orderings between the different equivalence
classes. Thus, for every partitioning and for every total ordering among the partitions, we generate
a most parallel client that invokes each method 𝑀 𝑗 that takes an argument on the index of the
equivalence class of 𝑗 in the total order.

5 Implementation
We have implemented Relinche as an extension of the open-sourceGenMC stateless model checker
[Kokologiannakis and Vafeiadis 2021]. Our tool supports two modes of operation corresponding to
the two phases of Relinche (Algorithms 1 and 2):

Specification analysis: The tool generates all specification graphs of a program (the most parallel
client applied to the library specification), groups them according to outcome, calculates the
relevant happens-before extensions, and stores the generated HBexts map into a file.

Conformance checking: The tool generates all implementation graphs of a program (the most
parallel client applied to the library implementation), and checks them against the HBexts
map, which is provided as an additional input.

Note that since the invoked library operations are determined by the client program, Relinche
represents specification graphs in a very compressed fashion. Concretely, we only need to store:
(1) the results of the library methods that return results, and (2) the induced synchronization edges
between the library events. To enable quick access to all matching outcomes in HBexts modulo
synchronization, we represent HBexts as a hashtable using as the key the method results (and not
the induced synchronization edges).

6 Evaluation
In this section, we evaluate Relinche aiming to answer the following questions:

Q1: How well does Relinche scale (in terms of maximum MPC size)?
Q2: How do different specifications affect its performance?
Q3: Can Relinche verify library implementations that lie beyond the state of the art (even of

manual verification techniques), or find linearizability bugs for which it may be difficult to
devise suitable clients?

To answer these questions, we conducted three case studies on a set of challenging concurrent
data structures.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:18 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

To answer Q1, assuming that the specification analysis has been performed offline, we measure
the maximum MPC size for which Relinche can establish bounded linearizability within a given
time budget, for various benchmarks and specification types.

To answer Q2, we measure how the performance of Relinche’s specification analysis is affected
by the specification size and type. In line with §2, we use three different types of specifications:

R: a specification where the only synchronizing operation is reading a value,
RI: a specification where, in addition to (R), all insertions synchronize with each other, and

RID: a specification where, in addition to (RI), all deletions that return an element synchronize
with each other.

To answer Q3, we evaluate Relinche on a set of concurrent data structures injected with bugs
that are difficult to express as memory or assertion violations (i.e., they need elaborate clients to
manifest).

Our experimental results suggest that
(1) Relinche is fast enough to be used in practice, and scales to MPCs that use up to 7–9

operations,
(2) Relinche is faster for stronger specifications than for weaker ones (as weaker specifications

have more linearizations),
(3) Relinche is able to find subtle linearizability bugs for which constructing a suitable client is

challenging.
Notably, Relinche was able to prove for the first time that well-known data structures that are
linearizable under SC are not linearizable under weak memory, even if we use the strongest non-SC
access modes, and even under the weakest specification (R).

Experimental Setup. We conducted all experiments on a Dell PowerEdge R6525 system running a
custom Debian-based distribution with 2 AMD EPYC 7702 CPUs (256 cores @ 2.80 GHz) and 2TB
of RAM. We set the timeout limit to 30 minutes for the conformance checking phase, and to 60
minutes for the specification analysis phase (denoted by � in tables). All times are in seconds.

6.1 Implementation Conformance
Starting with the implementation conformance phase, the time Relinche takes to verify (bounded)
linearizability for various lock-free concurrent data structures can be seen in Figures 4 and 5. For all
benchmarks, we used a “50-50” workload where ⌈𝑁 /2⌉ threads insert an item to the data structure,
and ⌊𝑁 /2⌋ threads read an item1, and all benchmarks were implemented using the weakest access
modes for which we could prove refinement of the corresponding specifications. (We discuss
benchmarks that are not linearizable under weak memory in §6.3.)

Starting with Fig. 4, an observation we can make right off the bat about is that the time Relinche
needs to enumerate the executions of a given implementation does not vary among different
specifications. This is of course expected since enumerating the executions of an implementation
only depends on the characteristics of the implementation itself (and not on the specification
checked).

Enumeration time aside, we can draw three major conclusions from Fig. 4.
First, the time spent in checking whether an implementation outcome refines the specification

is typically much less than the time spent by the model checker enumerating executions. This
is due to the fact that the cost per execution is typically much higher than the cost of checking
one hb-extension, since enumerating a single execution involves running the program. As such,

1Relinche would scale much better with a “100-0” workload as it would leverage the full symmetry among threads, but
such a workload is uninteresting for proving linearizability.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:19

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
treiber/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
treiber/RI

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
treiber/RID

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
msqueue/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
msqueue/RI

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
msqueue/RID

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
optqueue/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
optqueue/RI

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
optqueue/RID

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
dglm-queue/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
dglm-queue/RI

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
dglm-queue/RID

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
folqueue/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
folqueue/RI

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
folqueue/RID

Fig. 4. Implementation conformance: enumeration/refinement time (Y-axis) per input parameter (X-axis)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:20 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
baskets/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
hwqueue/R

2 3 4 5 6 7 8 9

10−1

100

101

102

103

104

105
hwfbqueue/R

Fig. 5. Implementation conformance: benchmarks linearizable only under a single specification

the total time spent checking hb-extensions is less than the time spent enumerating executions,
even in cases where the number of extensions is much greater than the number of executions: in
msqueue/RI(9), for instance, Relinche is able to check 358560 extensions in less time than what
it takes it to enumerate 15120 executions.
Second, Relinche scales gracefully to 7–9 method invocations. The scalability bottleneck is

largely the model checking time to enumerate all executions of the given benchmark, and we can
see that this time varies from benchmark to benchmark. For optqueue, Relinche scales only to
7 threads, whereas for the other benchmarks it scales at least until 9 threads. The reason why
scalability stops at 8 threads for the weakest specification type (R) is that the specification analysis
phase for 9 threads timed out, and so we did not run the implementation conformance phase for 9
threads. (We could have used a larger timeout for specification analysis since it is performed offline,
but, as we explain in §6.2, we preferred to set a similar timeout for both phases to see how well
Relinche scales within a small time frame.)

Third, Relinche typically spends a bit more time checking refinement for weaker specifications
than for stronger specifications. This is because weaker specifications can be invalidated in more
ways than stronger specifications, and so specification analysis phase (Algorithm 1) generates
more hb-extensions for weaker specification, which in turn makes refinement checking slower. As
an example, Relinche checks 60234 hb-extensions for the (R) spec of msqueue(8), as opposed to
31488 and 30384 extensions for the (RI) and (RID) versions of the same benchmark, respectively.

Moving on to Fig. 5, we see benchmarks that are linearizable under one specification only. Indeed,
since these benchmarks are only “loosely” synchronized when using release-acquire accesses, such
implementations do not satisfy the guarantees required by the stronger specifications (RI) and
(RID). As with Fig. 4, we report scalability up to 8 threads because we do not have hb-extensions
for 9 threads. Similar to optqueue, the baskets benchmark has a large state space and scales only
to 7 threads. By contrast, the Herlihy-Wing queue (hwqueue) and the lock-free queue specification
from §2 (hwfbqueue) have a much smaller state space and scale very well. Their scalability can be
largely attributed to these benchmarks representing the queue as an array (and thus having very
little sharing among the threads), which makes their model checking very efficient.

6.2 Specification Analysis
Moving on to the specification analysis phase, the time Relinche needs to analyze the respec-
tive queue, stack and set specifications can be seen in Fig. 6. The workload used for analyzing
specifications is the same as the one of §6.1.

Similarly to the implementation conformance phase, the enumeration time does not vary among
different specifications and grows exponentially with the number of method invocations, and

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:21

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
stack/R

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
stack/RI

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
stack/RID

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
queue/R

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
queue/RI

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
queue/RID

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
set/R

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
set/RI

2 3 4 5 6 7 8 910−2

10−1

100

101

102

103

104

105
set/RID

Fig. 6. Specification analysis: enumeration/analysis time (Y-axis) per input parameter (X-axis)

Relinche needs more time to analyze weaker specifications because such specifications generate
more happens-before extensions.
In contrast to the implementation conformance phase, however, the time Relinche needs to

analyze a specification can be greater than the time it needs to enumerate its executions. The reason
for that is that generating hb-extensions has exponential complexity. A naive calculation requires
𝑂 (2𝑁) steps (where 𝑁 is the maximum size) and, even though CalcExts does drastically reduce this
number, the generation still consumes a significant portion of Relinche’s runtime. This number
could further be reduced by taking symmetry into account, but our current implementation does
not do so. That said, we do not consider this phase to be a bottleneck, as it is typically performed
offline, and only once for each specification.

6.3 Non-linearizable Data Structures

MPC size Conf. check time

timestamped-stack/R 5 0.22
lf-lazy-list/R 5 2.2
harris-list/R 5 109
libcds-michael/R 5 42
baskets-queue/RI 4 0.1
hwqueue/R 7 0.09
hwfbqueue-buggy 4 0.07

Fig. 7. Linearizability violations found

So far, we have only discussed how Relinche can be used
to establish bounded linearizability. During our develop-
ment, however, we also found that Relinche is quite
useful in detecting subtle linearizability violations.
One such violation concerned timestamped-stack

[Dodds et al. 2015]. timestamped-stack is a lock-free
data structure that is based on the observation that en-
forcing a total ordering on the memory layout of a data

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:22 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

structure is inefficient and unnecessary, and a partial ordering on the layout is sufficient to estab-
lish linearizability. While this is indeed the case under SC, we demonstrate timestamped-stack
implemented solely using non-SC accesses is not linearizable, even under our weakest specification
(R). The counterexample produced by Relinche is quite complex, as it involves an MPC with 5
operations.
In total, we were able to show that 6 well-known data structures [Dodds et al. 2015; Harris

2001; Herlihy and Shavit 2008; Herlihy and Wing 1990; Hoffman et al. 2007; Michael 2002] are not
linearizable when using non-SC atomics; our results are summarized in Fig. 7. The table shows
the weakest specification and the minimum MPC size for which a violation was found. The time
reported is the time that Relinche’s conformance phase (both enumeration and refinement time)
required to expose the violation. Note that the tests do not employ relaxed accesses at all; apart from
hwqueue (which requires a weakening of an exchange to “acquire” for the violation to manifest), all
benchmarks have been implemented using the strongest non-SC access modes everywhere.

The counterexamples reported by Relinche are quite interesting. For Herlihy-Wing, Relinche
was able to find a (minimal) linearizability counterexample that is smaller than the previously
proposed one by Raad et al. [2019]. The counterexample can be seen below.

Example 6.1 (Non-linearizability in Herlihy-Wing) Recall from §2 that the Herlihy-Wing queue
is not linearizable under weak memory if we use an “acquire” exchange in the dequeue method
instead of an “acquire-release” exchange. The counterexample below is obtained by analyzing the
most parallel client with 4 enqueues and 3 dequeues applied to the Herlihy-Wing queue: we group
the method calls to threads following the reported happens-before extension that witnesses the
refinement violation.

𝑞.enqueue(1)
𝑞.enqueue(2)

𝑞.enqueue(3)
𝑞.dequeue() //returns 1

𝑞.dequeue() //returns 2
𝑞.enqueue(4) 𝑞.dequeue() //returns 4

enq/1 ret enq/2 ret

enq/3 ret deq ret/1

deq ret/2 enq/4 ret

deq ret/4

The projection graph of a non-linearizable behavior with
7 operations can be seen on the right. As was the case
with the counterexample in §2, it is impossible to totally
order the method invocations in accordance with the
synchronization obtained by the implementation. The hb
obtained by the implementation methods implies that the
enqueues are ordered as enqueue (1)→ enqueue (2)→
enqueue (4)→ enqueue (3): the first pair due to po, the
second pair due to T3 dequeueing 2 before enqueueing
4, and the third pair due to 3 not being dequeued. The
corresponding dequeue order that respects FIFO (dequeue (1) → dequeue (2) → dequeue (4))
creates a cycle, since dequeue (1)→ dequeue (2), and enqueue (4)→ enqueue (3).

More interestingly, Relinche also finds counterexamples for various lock-free list implementa-
tions, thereby indicating that release-acquire accesses are insufficient for implementing linearizable
versions of these data structures. Relinche’s counterexample for lf-lazy-list can be seen below
(the counterexamples for others are similar).

Example 6.2 (Non-linearizability in lock-free lazy list) The counterexample consists of three
threads and has a similar flavor to SB: T1 and T3 both attempt to remove an item after inserting one,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:23

and both are unsuccessful.

insert(1)
remove(3) //returns ⊥ insert(2) insert(3)

remove(1) //returns ⊥

Intuitively, this behavior can arise because operations involving different elements 1 operate on
different parts of the list and so their lock acquisitions and their updates do not synchronize.
Without SC accesses and fences, the program naturally exhibits “store buffering” behaviors.

We conclude our evaluation with some notes regarding the violation found for libcds-michael.
The code for this benchmarkwas ported from the popular C++ concurrency library libcds [Khizhin-
sky n.d.], which in turns implements Michael’s list [Michael 2002] using weak atomics.

Relinchewas able to find two different errors for that implementation. The first error manifested
as a memory issue (access to uninitialized, dynamically allocated memory), which was a result of a
compare-and-exchange (CAS) instruction being performed with an “acquire” mode (instead of an
“acquire/release” mode). This CAS was used to “publish” certain changes performed to the data
structure, but an “acquire” mode does not provide synchronization guarantees to threads reading
from the CAS, leading to consumers not seeing the results being published.

The second error manifested after strengthening the implementation’s access modes. Similarly
to lf-lazy-list, release-acquire synchronization was insufficient to guarantee linearizability, and
Relinche was able to find a minimal counterexample involving 5 threads2.
All in all, this last example demonstrates the usefulness of tools like Relinche: even though

some linearizability bugs readily manifest as memory/assertion violations (and therefore can be
detected by model checking tools by having a simple client calling the library methods without
any additional assertions), others are much more subtle, and require the use of more sophisticated
techniques to be detected.

7 Related Work
We classify related work into three categories: (1) library correctness notions for weak memory
consistency, (2) verification works for linearizability, and (3) model checking for weak memory
models.

Relaxed Linearizability Definitions. Various extensions of linearizability [Herlihy and Wing 1990]
have been proposed: some of them directly handle specific memory models like TSO [Owens et al.
2009] and (R)C11 [Batty et al. 2011; Lahav et al. 2017], while others apply to a range of models. In
the first category, Burckhardt et al. [2012] develop a notion of linearizability for TSO, by extending
traces with markers denoting notions specific to TSO (namely, the begin and end of store-buffer
flushing). Batty et al. [2013] propose a notion for library abstraction under C/C++11 that generalizes
linearizability based on atomic blocks that have transactional semantics. Singh and Lahav [2023]
develop an operational account of RC11 along with a correctness criterion for concurrent libraries.
From this work, we adopt the idea of “partial locks” as a means to write atomic library specifications
in a weak memory setting.
In the second category, most papers follow a declarative semantics. Dongol et al. [2018] and

Emmi and Enea [2019b] propose relaxations of linearizability that use total orders to specify valid
call sequences of library methods, while Raad et al. [2019] present a more general framework that
allows for even weaker specifications, where such total orders might not even exist. Our model of
concurrent libraries largely follows that of Raad et al. [2019] with a key difference/simplication: we

2The counterexample is the same as for lf-lazy-list.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

70:24 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

split each method call event into two events—one for the invocation and one for the response—
which enables us to avoid rf-cycles in execution graphs, and streamlines the development of the
refinements.

Linearizability Verification Approaches. There are many different approaches to verifying lineariz-
ability in the literature. On the one end of the spectrum, there are several manual techniques based
on program logics, such as [Khyzha et al. 2016; Liang and Feng 2013], which require labor-intensive
proof efforts and are prone to human error. Some of the more recent works encode their proofs in a
proof assistant thereby ruling out the possibility of error in the proofs, but significantly increasing
the cost of carrying out those proofs.
On the other end of the spectrum, there are linearizability checkers, such as [Koval et al. 2023;

Lowe 2017; Ou and Demsky 2017], that can check particular executions for linearizability but
require the user to write an appropriate client invoking the library methods and do not provide any
coverage guarantees, and tools like Violat [Emmi and Enea 2019a] that generate tests exposing
ADT-violations.

Somewhere in the middle lie heuristic techniques for proving linearizability either fully auto-
matically [Vafeiadis 2010] or with some user input to annotate the linearization points of methods
[Amit et al. 2007; Vafeiadis 2009]. These techniques are based on a “shape analysis” (a type of static
analysis that describes dynamically allocated data structures with pointers). They typically apply
only to SC, and cannot handle implementations such as the Herlihy-Wing queue [Herlihy and
Wing 1990], which have non-fixed linearization points.

Later works have extended the applicability of these techniques to handle some common cases
of non-fixed linearization points. For example, O’Hearn et al. [2010] introduce a “hindsight” lemma
for verifying optimistic traversals of linked list data structures, Feldman et al. [2020] present a more
general approach for verifying optimistic traversals of search data structures, while Dragoi et al.
[2013] reduce cooperating updates in algorithms like the elimination stack of Hendler et al. [2004]
by rewriting the program. Other works develop verification techniques for specific data structures.
For example, Henzinger et al. [2013] show that a concurrent queue is linearizable if and only if it
does not contain certain patterns of violations, which can be checked with standard verification
tools. Abdulla et al. [2013] extend this result to stacks.
On the more automated side, CheckFence [Burckhardt et al. 2007] uses a SAT solver to verify

linearizability of concurrent libraries under a very weak relaxed memory model for a specific
concurrent client program. This approach provides completeness guarantees albeit only for the
provided client program. Thus, to provide confidence for the correctness of a library, the user has
to devise multiple client programs. which is by no means an easy task. In fact, although the authors
provide multiple such clients, none would be sufficient to expose the bug of the Herlihy-Wing
queue discussed earlier. In a precursor to CheckFence, Burckhardt et al. [2006] develop a similar
tool that additionally requires linearization point annotations.

Line-Up [Burckhardt et al. 2010] verifies linearizability for all clients of a bounded size by
enumerating all such clients and calling a stateless model checker for carrying out the verification.
This simpler approach, sadly, does not scale and so the authors resolve to random sampling of
executions instead of exhaustive verification.

Model Checking for Weak Memory Models. As far as (bounded) model checking for weak mem-
ory consistency is concerned, we can broadly classify existing approaches into enumerative (e.g.,
[Abdulla et al. 2015; Bui et al. 2021; Burckhardt andMusuvathi 2008; Chalupa et al. 2017; Kokologian-
nakis et al. 2017, 2019; Norris and Demsky 2013]), SAT-based (e.g., [Clarke et al. 2004; Gavrilenko
et al. 2019]), and combinations thereof (e.g., [Demsky and Lam 2015]). Most approaches in either

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:25

category only support one or a few closely related memory models; the only tools that are para-
metric in the choice of the memory model are GenMC [Kokologiannakis and Vafeiadis 2021] and
Dartagnan [Gavrilenko et al. 2019]. None of these tools, however, supports the verification of
safety properties across all possible program clients, like linearizability.
There has been a lot of work in optimizing the model checking algorithms in the last few

years. In particular, the most recent version of GenMC that we call from Relinche incorporates
optimizations from multiple works, e.g., to ensure polynomial space complexity [Kokologiannakis
et al. 2022], to reduce the number of blocked executions [Kokologiannakis et al. 2023], and to
support symmetry reduction [Kokologiannakis et al. 2024], which translate to better scalability of
the model checking. To a large extent, the scalability of Relinche can be attributed to these works.

8 Conclusion
We have presented the first fully automated technique for verifying lineariability of concurrent
libraries under weak memory models for all clients with a bounded number of library invocations,
and have demonstrated that our Relinche implementation scales well enough to verify standard
concurrent data structures with 7–9 operations.
We note that Relinche can also be used in combination with randomized testing or context-

bounded model checking to test implementations, whose full verification is infeasible, by checking
for refinement of a subset of the executions of the most parallel client program applied to the
library implementation. We leave the exploration of the tradeoffs between soundness and scalability
as future work. Similarly, Relinche could be used as the verification component of higher-level
tools like VSync [Oberhauser et al. 2021] that relax barriers in a sound way to potentially increase
performance.
A second item for future work is to consider the automated verification of concurrent libraries

containing methods that can only be invoked in certain contexts, and so our most parallel client
does not constitute a valid client. For example, the client thread of a locking library may invoke
the unlock operation only if it holds the lock, while a client thread of a transactional library may
invoke transactional accesses only within a scope of a transaction.
Finally, Relinche can also be used to inform users of overly strong specifications in cases

where a library can have two outcomes with the same results of the operations but with different
synchronization. The extent to which such warnings would be useful remains to be seen.

Acknowledgments
We thank the anonymous reviewers for their feedback. This work was supported by a European
Research Council (ERC) Consolidator Grant for the project “PERSIST” under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 101003349).

Data-Availability Statement
The benchmarks and tools used to produce the results of this paper can be found at [Golovin et al.
2024].

References
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015. “Stateless model checking for TSO and PSO.” In: TACAS 2015 (LNCS). Vol. 9035. Springer, Berlin, Heidelberg,
353–367. https://doi.org/10.1007/978-3-662-46681-0_28.

Parosh Aziz Abdulla, Frédéric Haziza, Lukáš Holík, Bengt Jonsson, and Ahmed Rezine. 2013. “An integrated specification
and verification technique for highly concurrent data structures.” In: TACAS 2013 (LNCS). Ed. by Nir Piterman and
Scott A. Smolka. Vol. 7795. Springer, 324–338.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

https://doi.org/10.1007/978-3-662-46681-0_28

70:26 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

Daphna Amit, Noam Rinetzky, Tom Reps, Mooly Sagiv, and Eran Yahav. 2007. “Comparison under abstraction for verifying
linearizability.” In: CAV 2007 (LNCS). Ed. by Werner Damm and Holger Hermanns. Vol. 4590. Springer, 477–490. https://d
oi.org/10.1007/978-3-540-73368-3_49.

Samy Al Bahra. N.d. Concurrency Kit. (). https://github.com/concurrencykit/ck.
Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. “Library abstraction for C/C++ concurrency.” In: POPL 2013. ACM,

235–248. https://doi.org/10.1145/2429069.2429099.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. “Mathematizing C++ concurrency.” In: POPL

2011. ACM, Austin, Texas, USA, 55–66. https://doi.org/10.1145/1926385.1926394.
Truc Lam Bui, Krishnendu Chatterjee, Tushar Gautam, Andreas Pavlogiannis, and Viktor Toman. Oct. 2021. “The Reads-from

Equivalence for the TSO and PSO Memory Models.” Proc. ACM Program. Lang., 5, OOPSLA, (Oct. 2021). https://doi.org/1
0.1145/3485541.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2006. “Bounded Model Checking of Concurrent Data Types
on Relaxed Memory Models: A Case Study.” In: CAV 2006 (LNCS). Ed. by Thomas Ball and Robert B. Jones. Vol. 4144.
Springer, 489–502. https://doi.org/10.1007/11817963_45.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. “CheckFence: Checking consistency of concurrent data
types on relaxed memory models.” In: PLDI 2007. Ed. by Jeanne Ferrante and Kathryn S. McKinley. ACM, New York, NY,
USA, 12–21. https://doi.org/10.1145/1250734.1250737.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. “Line-Up: A complete and automatic lineariz-
ability checker.” In: PLDI 2010. Ed. by Benjamin G. Zorn and Alexander Aiken. ACM, 330–340. https://doi.org/10.1145/18
06596.1806634.

Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012. “Concurrent Library Correctness
on the TSO Memory Model.” In: ESOP 2012 (LNCS). Ed. by Helmut Seidl. Vol. 7211. Springer, 87–107. https://doi.org/10.1
007/978-3-642-28869-2_5.

Sebastian Burckhardt and Madanlal Musuvathi. 2008. “Effective Program Verification for Relaxed Memory Models.” In: CAV
2008 (LNCS). Ed. by Aarti Gupta and Sharad Malik. Vol. 5123. Springer, 107–120. https://doi.org/10.1007/978-3-540-70545
-1_12.

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. Dec. 2017. “Data-centric
dynamic partial order reduction.” Proc. ACM Program. Lang., 2, POPL, (Dec. 2017), 31:1–31:30. https://doi.org/10.1145/315
8119.

Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas Filkorn. 1996. “Exploiting symmetry in temporal logic model
checking.” Form. Meth. Syst. Des., 9, 1/2, 77–104. https://doi.org/10.1007/BF00625969.

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. “A tool for checking ANSI-C programs.” In: TACAS 2004 (LNCS).
Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Springer, Berlin, Heidelberg, 168–176. https://doi.org/10.1007/978-3-
540-24730-2_15.

Brian Demsky and Patrick Lam. 2015. “SATCheck: SAT-directed stateless model checking for SC and TSO.” In: OOPSLA 2015.
ACM, Pittsburgh, PA, USA, 20–36. https://doi.org/10.1145/2814270.2814297.

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and Jonathan Walpole. 2012. “User-Level
Implementations of Read-Copy Update.” IEEE Trans. Parallel Distrib. Syst., 23, 2, 375–382. https://doi.org/10.1109/TPDS.20
11.159.

Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. “A Scalable, Correct Time-Stamped Stack.” In: POPL 2015. ACM,
Mumbai, India, 233–246. isbn: 9781450333009. https://doi.org/10.1145/2676726.2676963.

Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Armstrong. 2018. “On abstraction and compositionality for
weak-memory linearisability.” In: VMCAI 2018 (LNCS). Ed. by Isil Dillig and Jens Palsberg. Vol. 10747. Springer, 183–204.
https://doi.org/10.1007/978-3-319-73721-8_9.

Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. 2013. “Automatic Linearizability Proofs of Concurrent Objects
with Cooperating Updates.” In: CAV 2013 (LNCS). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Springer,
174–190.

Michael Emmi and Constantin Enea. 2019a. “Violat: Generating Tests of Observational Refinement for Concurrent Objects.”
In: CAV 2019 (LNCS). Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562. Springer, 534–546. https://doi.org/10.1007/978-3-03
0-25543-5_30.

Michael Emmi and Constantin Enea. 2019b. “Weak-consistency specification via visibility relaxation.” Proc. ACM Program.

Lang., 3, POPL, 60:1–60:28. https://doi.org/10.1145/3290373.
Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and Sharon

Shoham. 2020. “Proving highly-concurrent traversals correct.” Proc. ACM Program. Lang., 4, OOPSLA, 128:1–128:29.
https://doi.org/10.1145/3428196.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-73368-3_49
https://github.com/concurrencykit/ck
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3485541
https://doi.org/10.1145/3485541
https://doi.org/10.1007/11817963_45
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-030-25543-5_30
https://doi.org/10.1007/978-3-030-25543-5_30
https://doi.org/10.1145/3290373
https://doi.org/10.1145/3428196

Relinche : Automatically Checking Linearizability under Relaxed Memory Consistency 70:27

Natalia Gavrilenko, Hernán Ponce-de-León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2019. “BMC for weak
memory models: Relation analysis for compact SMT encodings.” In: CAV 2019. Ed. by Isil Dillig and Serdar Tasiran.
Springer, Cham, 355–365. https://doi.org/10.1007/978-3-030-25540-4_19.

Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis. Oct. 2024. RELINCHE: Automatically Checking Linearizability

under Relaxed Memory Consistency (Replication Package). (Oct. 2024). https://doi.org/10.5281/zenodo.13992580.
Timothy L. Harris. 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists.” In: DISC 2001. Springer-Verlag, Berlin,

Heidelberg, 300–314. isbn: 3540426051. https://doi.org/10.5555/645958.676105.
Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. “A Scalable Lock-Free Stack Algorithm.” In: SPAA 2004. ACM,

Barcelona, Spain, 206–215. https://doi.org/10.1145/1007912.1007944.
Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013. “Aspect-Oriented Linearizability Proofs.” In: CONCUR 2013

(LNCS). Ed. by Pedro R. D’Argenio and Hernán C. Melgratti. Vol. 8052. Springer, 242–256.
Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming.
Maurice Herlihy and Jeannette M. Wing. 1990. “Linearizability: A Correctness Condition for Concurrent Objects.” ACM

Trans. Program. Lang. Syst., 12, 3, 463–492. https://doi.org/10.1145/78969.78972.
Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. “The Baskets Queue.” In: OPODIS 2007. Springer Berlin Heidelberg, Berlin,

Heidelberg, 401–414. https://doi.org/10.1007/978-3-540-77096-1_29.
Max Khizhinsky. N.d. CDS C++ library. (). https://github.com/khizmax/libcds.
Artem Khyzha, Alexey Gotsman, and Matthew J. Parkinson. 2016. “A Generic Logic for Proving Linearizability.” In: FM

2016 (LNCS). Ed. by John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou. Vol. 9995. Springer,
426–443. https://doi.org/10.1007/978-3-319-48989-6_26.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. Dec. 2017. “Effective stateless model
checking for C/C++ concurrency.” Proc. ACM Program. Lang., 2, POPL, (Dec. 2017), 17:1–17:32. https://doi.org/10.1145/31
58105.

Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. Jan. 2022. “Truly stateless, optimal
dynamic partial order reduction.” Proc. ACM Program. Lang., 6, POPL, (Jan. 2022). https://doi.org/10.1145/3498711.

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. June 2024. “SPORE: Combining Symmetry and Partial
Order Reduction.” Proc. ACM Program. Lang., 8, PLDI, (June 2024). https://doi.org/10.1145/3656449.

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. 2023. “Unblocking Dynamic Partial Order Reduction.” In:
CAV 2023 (LNCS). Ed. by Constantin Enea and Akash Lal. Vol. 13964. Springer, 230–250. https://doi.org/10.1007/978-3-03
1-37706-8_12.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. “Model checking for weakly consistent libraries.” In:
PLDI 2019. ACM, New York, NY, USA. https://doi.org/10.1145/3314221.3314609.

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. “GenMC: A model checker for weak memory models.” In: CAV 2021

(LNCS). Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12759. Springer, 427–440. https://doi.org/10.1007/978-3-030-
81685-8_20.

Nikita Koval, Alexander Fedorov, Maria Sokolova, Dmitry Tsitelov, and Dan Alistarh. 2023. “Lincheck: A Practical Framework
for Testing Concurrent Data Structures on JVM.” In: CAV 2023. Ed. by Constantin Enea and Akash Lal. Springer, Cham,
156–169. https://doi.org/10.1007/978-3-031-37706-8_8.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. “Repairing sequential consistency in
C/C++11.” In: PLDI 2017. ACM, Barcelona, Spain, 618–632. https://doi.org/10.1145/3062341.3062352.

Leslie Lamport. Sept. 1979. “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs.”
IEEE Trans. Computers, 28, 9, (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439.

Doug Lea. 2005. “The java.util.concurrent synchronizer framework.” Sci. Comput. Program., 58, 3, 293–309. Special Issue on
Concurrency and synchonization in Java programs. https://doi.org/10.1016/j.scico.2005.03.007.

Hongjin Liang and Xinyu Feng. 2013. “Modular verification of linearizability with non-fixed linearization points.” In: PLDI
2013. Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM, 459–470. https://doi.org/10.1145/2491956.2462189.

Gavin Lowe. 2017. “Testing for linearizability.” Concurr. Comput. Pract. Exp., 29, 4. https://doi.org/10.1002/CPE.3928.
Maged M. Michael. June 2004. “Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.” IEEE Trans. Parallel

Distrib. Syst., 15, 6, (June 2004), 491–504. https://doi.org/10.1109/TPDS.2004.8.
Maged M. Michael. 2002. “High performance dynamic lock-free hash tables and list-based sets.” In: SPAA 2002. ACM,

Winnipeg, Manitoba, Canada, 73–82. isbn: 1581135297. https://doi.org/10.1145/564870.564881.
Brian Norris and Brian Demsky. 2013. “CDSChecker: Checking concurrent data structures written with C/C++ atomics.” In:

OOPSLA 2013. ACM, 131–150. https://doi.org/10.1145/2509136.2509514.
Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. “Verifying linearizability with

hindsight.” In: PODC 2010. Ed. by Andréa W. Richa and Rachid Guerraoui. ACM, 85–94.
Jonas Oberhauser et al.. 2021. “VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak

Memory Models.” In: ASPLOS 2021. ACM, Virtual, USA, 530–545. https://doi.org/10.1145/3445814.3446748.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.5281/zenodo.13992580
https://doi.org/10.5555/645958.676105
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-540-77096-1_29
https://github.com/khizmax/libcds
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3656449
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-031-37706-8_8
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1016/j.scico.2005.03.007
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1002/CPE.3928
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/3445814.3446748

70:28 Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis

Peizhao Ou and Brian Demsky. 2017. “Checking Concurrent Data Structures Under the C/C++11 Memory Model.” In: PPoPP
2017. ACM, 45–59. https://doi.org/10.1145/3018743.3018749.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. “A better x86 memory model: x86-TSO.” In: TPHOLs 2009. Springer,
Munich, Germany, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27.

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. “On library correctness under weak memory
consistency: Specifying and verifying concurrent libraries under declarative consistency models.” Proc. ACM Program.

Lang., 3, POPL, 68:1–68:31. https://doi.org/10.1145/3290381.
James Reinders. 2007. Intel Threading Building Blocks.
Abhishek Kr Singh and Ori Lahav. Jan. 2023. “An Operational Approach to Library Abstraction under Relaxed Memory

Concurrency.” Proc. ACM Program. Lang., 7, POPL, (Jan. 2023). https://doi.org/10.1145/3571246.
Viktor Vafeiadis. 2010. “Automatically Proving Linearizability.” In: CAV 2010 (LNCS). Ed. by Tayssir Touili, Byron Cook, and

Paul Jackson. Vol. 6174. Springer, 450–464.
Viktor Vafeiadis. 2009. “Shape-Value Abstraction for Verifying Linearizability.” In: VMCAI 2009 (LNCS). Ed. by Neil D. Jones

and Markus Müller-Olm. Vol. 5403. Springer, 335–348. https://doi.org/10.1007/978-3-540-93900-9_27.

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 70. Publication date: January 2025.

https://doi.org/10.1145/3018743.3018749
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3571246
https://doi.org/10.1007/978-3-540-93900-9_27

	Abstract
	1 Introduction
	2 Overview
	2.1 Queue Specification
	2.2 Showing Correctness for One Client
	2.3 Showing Correctness for All Bounded Clients

	3 Contextual Refinement for Execution Graphs
	3.1 Executions
	3.2 Library Specifications
	3.3 Client Programs and Library Implementations
	3.4 Semantics of Client Programs and Library Implementations
	3.5 Library Implementation Correctness

	4 Checking Library Implementation Correctness
	4.1 Most Parallel Client
	4.2 Phase 1: Specification Analysis
	4.3 Phase 2: Implementation Conformance Checking
	4.4 Correctness
	4.5 Handling Methods with Arguments Using Data Independence

	5 Implementation
	6 Evaluation
	6.1 Implementation Conformance
	6.2 Specification Analysis
	6.3 Non-linearizable Data Structures

	7 Related Work
	8 Conclusion
	Acknowledgments

