
Model Checking C/C++ with Mixed-Size Accesses

IASON MARMANIS,MPI-SWS, Germany
MICHALIS KOKOLOGIANNAKIS, ETH Zurich, Switzerland
VIKTOR VAFEIADIS,MPI-SWS, Germany

State-of-the-art model checkers employing dynamic partial order reduction (DPOR) can verify concurrent
programs under a wide range of memory models such as sequential consistency (SC), total store order (TSO),
release-acquire (RA), and the repaired C11 memory model (RC11) in an optimal and memory-efficient fashion.
Unfortunately, these DPOR techniques cannot be applied in an optimal fashion to programs with mixed-sized

accesses (MSA), where atomic instructions access different (sets of) bytes belonging to the same word. Such
patterns naturally arise in real life code with C/C++ union types, and are even used in a concurrent setting.

In this paper, we introduce Mixer, an optimal DPOR algorithm for MSA programs that allows (multi-byte)
reads to be revisited by multiple writes together. We have implemented Mixer in the GenMC model checker,
enabling (for the first time) the automatic verification of C/C++ code with mixed-size accesses. Our results also
extend to the more general case of transactional programs provided that the set of read accesses performed by
a transaction can be dynamically overapproximated at the beginning of the transaction.

CCS Concepts: • Theory of computation→ Concurrency; Verification by model checking.

Additional Key Words and Phrases: Model Checking, Dynamic Partial Order Reduction, Mixed-Sized Accesses

ACM Reference Format:
Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. 2025. Model Checking C/C++ with Mixed-
Size Accesses. Proc. ACM Program. Lang. 9, POPL, Article 75 (January 2025), 21 pages. https://doi.org/10.1145/
3704911

1 Introduction

Stateless model checking with dynamic partial order reduction (DPOR) is a state-of-the-art technique
for verifying safety properties of concurrent programs that are guaranteed to terminate. Given a
concurrent program, a memory consistency model (which determines the semantics of concurrent
memory accesses) and a suitable equivalence over program executions, DPOR generates all con-
sistent program executions modulo the equivalence relation, and checks that all these executions
satisfy the given safety specification. An optimal DPOR algorithm never generates two equivalent
executions nor wastes time on partial explorations that do not lead to a new full program execution.
A space-efficient (a.k.a. truly stateless) DPOR algorithm does so using memory proportional to the
size of a single program execution.
While under sequential consistency (SC), program executions can be represented as traces of

individual memory accesses, for weak memory models, such as TSO [Owens et al. 2009], release-
acquire (RA) [Lahav et al. 2016], and RC11 [Lahav et al. 2017], they are best represented as execution
graphs—a generalization of traces where the individual memory accesses are related by a bunch of
partial orders.

Authors’ Contact Information: Iason Marmanis, MPI-SWS, Kaiserslautern, Germany, imarmanis@mpi-sws.org; Michalis
Kokologiannakis, ETH Zurich, Switzerland, michalis.kokologiannakis@inf.ethz.ch; Viktor Vafeiadis, MPI-SWS, Kaiser-
slautern, Germany, viktor@mpi-sws.org.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART75
https://doi.org/10.1145/3704911

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-5077-5275
HTTPS://ORCID.ORG/0000-0002-7905-9739
HTTPS://ORCID.ORG/0000-0001-8436-0334
https://doi.org/10.1145/3704911
https://doi.org/10.1145/3704911
https://orcid.org/0000-0001-5077-5275
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.1145/3704911
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704911&domain=pdf&date_stamp=2025-01-09

75:2 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

In this paper, we will consider the most common equivalence notion on execution graphs:
Shasha-Snir equivalence [Shasha and Snir 1988], which is a generalization of Mazurkiewicz trace
equivalence [Mazurkiewicz 1987], and relates two execution graphs if they agree on the set of
memory accesses and on the relative order of non-commuting accesses (e.g., a read and a write to
the same location).
State-of-the-art DPOR algorithms, such as TruSt [Kokologiannakis et al. 2022], achieve both

optimality and space-efficiency, for a wide range of memory consistency models, by building
execution graphs incrementally and enforcing consistency at each point, and revisiting existing
read events in a graph whenever a new write event is added. To achieve this, TruSt requires that
the memory model be extensible [Kokologiannakis et al. 2019b]: namely, there exists a way to
extend a consistent execution with a memory access and preserve consistency.

Although memory consistency models readily satisfy extensibility, this is not the case for models
that support any kind of transactional semantics, where multiple accesses/operations are executed
in an atomic fashion (see §2).

For verifying a transactional program 𝑃 under a (non-extensible) consistencymodel𝑀 , prior work
[Bouajjani et al. 2023] therefore uses a suboptimal strategy: it generates all consistent executions of
𝑃 under a weaker model that satisfies extensibility, and simply suppresses the reporting of errors
on executions that are inconsistent according to 𝑀 . As we discuss in §4.5, such approaches can
scale very poorly because 𝑃 may have many more inconsistent executions than consistent ones.

In this paper, we focus on mixed-sized accesses (MSA), a specific class of transactions that occurs
in low-level systems code. These are instructions that atomically access different sets of bytes that
belong to the same word (e.g., an 8-bit store and 32-bit load at the same address). They arise from a
familiar C/C++ coding pattern where a union is accessed through its different members.

Example 1.1 A typical use of MSA appears in the lockref [Corbet 2013] data structure in the
Linux Kernel, which manipulates a shared reference count efficiently by reducing contention on
the associated lock. The core data structure is shown below.

struct lockref {

union {

u64 lock_count;

struct {

u32 lock;

u32 count;

};

};

};

void lockref_get(struct lockref *lockref) {

struct lockref old;

old.lock_count = READ_ONCE(lockref->lock_count);

while (old.lock == 0) {

struct lockref new = old;

new.count++;

if (CAS(&lockref->lock_count, &old.lock_count, new.lock_count))
return;

}
spin_lock(&lockref->lock)

lockref->count++;

spin_unlock(&lockref->lock)

}

When attempting to increase the reference count (lockref_get), the whole structure is first read in
one 8-byte instruction (lock_count access). If the lock is not held, a CAS (compare-and-swap)
operation attempts to atomically increment the reference count, without taking the lock. Since the
CAS can fail, this attempt is repeated as long as the lock is not taken. If the lock gets taken, the
operation falls back to obtaining the lock (4-byte access to lock), incrementing the counter (two
4-byte accesses to count), and releasing the lock (4-byte access to lock).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:3

In §2 , we observe that even though MSA-compatible consistency models [Alglave et al. 2021;
Flur et al. 2017] are not extensible at the level of individual memory accesses, they are extensible
at the level of whole transactions (MSA instructions). In other words, a consistent program execu-
tion containing only fully executed MSA instructions can always be extended with an arbitrary
instruction in a consistent way.
In §3 and §4, we thus devise an optimal DPOR algorithm, calledMixer, that handles MSA pro-

grams by changing the granularity at which revisits happen—from individual (byte-sized) memory
accesses to entire transactions. To do so, we introduce the novel notion of multi-write revisits, to
support the case where a (multi-byte) read instruction reads from multiple write instructions, one
or more of which may have been added to the execution graph after the read.
Contrary, however, to DPOR algorithms like TruSt,Mixer fails to validate a stronger notion

of optimality [Bouajjani et al. 2023; Kokologiannakis et al. 2022] where the algorithm avoids any
wasteful exploration. Nevertheless, we provide a bound on the depth of such wasteful explorations
(i.e., the depth of the exploration tree), which is constant for MSA programs.

In §5, we note that apart from the bound on wasteful explorations, our remaining results extend
to transactional programs, as long as the individual memory accesses performed by a transaction
can be overapproximated at the beginning of the transaction. At the expense of slowing down
the verification algorithm, this condition can be trivially fulfilled by saying that a transaction can
access every memory location.

In §6, we implement our algorithm in the context of the GenMCmodel checker [Kokologiannakis
and Vafeiadis 2021]. In §7, we evaluateMixer on challenging benchmarks involving mixed-size
accesses, showing that our algorithm is substantially more efficient than applying TruSt and
disregarding the atomicity semantics of MSA instructions until the end of the exploration, where
the inconsistent ones are filtered out.

2 Background

In this section, we will provide a high-level overview of how DPOR algorithms work, discuss the
underlying correctness assumptions, and show how MSA programs invalidate these assumptions.

2.1 Execution Graphs

DPOR algorithms systematically explore all the non-equivalent behaviors of a concurrent program,
without storing the set of explored behaviors. Instead of exploring the behaviors in the form of
traces (modulo the equivalence-relation), many recent DPOR algorithms [Kokologiannakis et al.
2017, 2022, 2019b] explore execution graphs, a structure that only partially orders the program’s
instructions and captures an equivalence class of traces.
An execution graph comprises a set of nodes E (also called events), including the set of read

events R and write events W, and a few relations on these nodes, including the program order po, the
reads-from order rf, and the coherence order co. Each program instruction corresponds to a node in
the graph, and the relations capture ordering requirements among them. Concretely, po captures
the intra-thread order of execution, rf captures the data flow from write events to read events, and
co totally orders the writes to the same location.

Example 2.1 For example, the program below gives rise to four execution graphs, which correspond
to the different possible combinations of values that the first two threads can read.

T1: 𝑎 := 𝑥 T2: 𝑏 := 𝑦 T3: 𝑦 := 1
𝑥 := 1 (r+r+ww)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:4 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

1

init

R (𝑥) R (𝑦) W (𝑦, 1)

W (𝑥, 1)

2

init

R (𝑥) R (𝑦) W (𝑦, 1)

W (𝑥, 1)

3

init

R (𝑥) R (𝑦) W (𝑦, 1)

W (𝑥, 1)

4

init

R (𝑥) R (𝑦) W (𝑦, 1)

W (𝑥, 1)

As one can see, the execution graphs above only differ in their rf component, i.e., in which
writes the reads are reading from.

Naturally, not all execution graphs make sense: they have to correspond to the program and also
satisfy the constraints imposed by the given memory consistency model. The strongest such model
is sequential consistency (SC), which requires the relation po ∪ rf ∪ co ∪ rb to be acyclic, where
rb △

= rf−1 ; co is the reads-before relation that orders each read event before its subsequent writes.

2.2 DPOR: Basics and Assumptions

DPOR algorithms explore all possible consistent execution graphs by following a fixed schedule
among the program’s threads and building an execution graph incrementally. For simplicity, we
assume a left-to-right order on the threads. As the graph is constructed, independent events (i.e.,
accesses to different locations or two read events) remain unordered, but conflicting events are
ordered on the fly by co, rf, or rb.

Concretely, when a read event is added, multiple subexplorations are initiated, each exploring a
different consistent read-from option (rf) for the read. More interestingly, when a write event is
added, besides exploring its possible placements in the co order, DPOR also explores the scenario
where an existing read reads from the new write. Such race reversal scenarios are also referred to
as revisiting: the later write revisits the read. During a revisit, all events that are added after the
read but are not causally-before the write are removed from the execution, and the read is made to
read from the write. In the context of an execution graph, an event is causally-before another one
if there is a path of po and rf edges from the first to the second event.

Example 2.1 (Cont.). Consider how a DPOR algorithm would reach the execution 4 of r+r+ww,
where both reads read 1, assuming a left-to-right scheduling. DPOR would first need to reach one
of C or D to then add the W (𝑥, 1) and revisit the T1 read, leading to execution E , before finally
reaching 4 .

Init

init
A

init

R (𝑥)

B

init

R (𝑥) R (𝑦) D

init

R (𝑥) R (𝑦) W (𝑦, 1)

2

E

init

R (𝑥) W (𝑦, 1)

W (𝑥, 1)

4

3

C

init

R (𝑥) R (𝑦) W (𝑦, 1)
1

revisit revisit

Observe that both executions are an extension of the execution that only has the write access to 𝑦
(the execution E without the revisited read and the revisiting write). It is reasonable to assume that
this execution is consistent, since it is a "sub-execution" of the consistent execution 4 . Without

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:5

additional assumptions about the memory consistency model, there is, however, no reason to
assume that C or D are consistent, which is necessary for DPOR to reach 4 .

DPOR algorithms solve this by requiring an extensibility property: given a consistent execution
and an event that corresponds to the next instruction picked by the scheduler, there is a way to add
the event to the execution and preserve consistency.

Memory models readily satisfy this assumption by guaranteeing that adding the eventmaximally

in the coherence order (i.e., writes are added at the end of co, and reads read from co-latest
writes) preserves consistency. This corresponds to the reasonable expectation that the operational
semantics of the memory model do not get "stuck".
Algorithms like TruSt leverage this insight, and among all the possible extensions pick the

maximal one as the only extension where the revisit is performed: the revisit is only allowed from
the execution C , and not from D . Alternative approaches avoid the duplication by instead storing
part of the execution, leading, however, to possible memory consumption blow-up [Abdulla et al.
2014; Kokologiannakis et al. 2019b].

Picking the maximal extension as the one to allow the revisit is not required for the algorithm’s
correctness, as long as the allowed extension is consistent and unique. There is, however, one
general condition that it should obey: among the events affected by the revisit (the events removed
from the execution and the read that is being revisited), a read cannot read from a write that was
added later. This is to ensure that there is no infinite repetition of revisits that would make the
algorithm diverge. Both GenMC [Kokologiannakis et al. 2019b] and TruSt enforce an equivalent
condition, which guarantees this invariant.

Example 2.2 As an example, consider the program below. Without enforcing this restriction, the
two writes can initiate an infinite sequence of revisits to the read event: each write revisits the read,
before being deleted during a revisit by the other write.

T1: 𝑎 := 𝑥 T2: 𝑥 := 1 T3: 𝑥 := 2 (r+w+w)

A

init

R (𝑥)

B

init

R (𝑥) W (𝑥, 1)

C

init

R (𝑥) W (𝑥, 2)

B

init

R (𝑥) W (𝑥, 1)
· · ·

2.3 Mixed-Sized Accesses and Extensibility

When trying to extend DPOR to support programs with mixed-sized accesses, a seemingly easy
approach would be to break down accesses to their byte-level constituent accesses and apply
DPOR as before. However, this solution is flawed because the resulting memory model is no longer
extensible: after consistently executing part of the byte-level accesses that correspond to a larger
access, there is no guarantee that the remaining byte-level accesses can be consistently executed as
well.

To illustrate, we fix for now our memory model to Sequential Consistency: the consistent behav-
iors can be explained by a linearization of the byte-level accesses, such that accesses corresponding
to the same instruction are adjacent in the linearization order.

Example 2.3 As a first illustrative example of how extensibility can fail to hold, consider the
program below, where the shared location 𝑥 contains (at least) two bytes; T1 writes to byte 1 and
then reads byte 0, while T2 performs one 16-bit store, writing 1 to both bytes comprising 𝑥 . We use

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:6 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

a range of numbers as subscripts to specify which bytes of a word an instruction accesses, and
similarly use this notation in the execution graphs.

T1: 𝑥0 := 2
𝑎 := 𝑥1

T2: 𝑥0:1 := 0x101

P

init

W (𝑥0, 2)

R (𝑥1)

W (𝑥0, 1) {

I

init

W (𝑥0, 2)

R (𝑥1)

W (𝑥0, 1)

W (𝑥1, 1)

The partial execution P , where the write of T2 is co-ordered before the write of T1, is consistent
but cannot be extended in a consistent way: the execution I is inconsistent. To see this, observe
that the co ordering forces the instruction of T2 to be ordered before the read of T1, and therefore
if the write to the second byte (𝑥1) is also present, it must be ordered before the read of T1, i.e., it
must be read.

Let us now see how this issue can actually arise in practice and crucially affect DPOR’s exploration.
This is easier understood in the presence of read-modify-write (RMW) instructions, where the read
and write accesses happen atomically (i.e., the accesses are adjacent in the linearization order).

Example 2.4 Consider the program below, and assume a DPOR run with a left-to-right scheduling.
An algorithm that follows the principle of not removing from the execution a write that revisited
cannot obtain the consistent execution R2L on the right, where the threads are executed from
right to left, irrespective of which revisits it allows.

T1: 𝑥0 := 2
𝑎 := 𝑥2

T2: fetch_add (𝑥0:3, 0𝑥1010101) T3: 𝑥1 := 1

R2L

init

W (𝑥0, 2)

R (𝑥2)

R (𝑥0)

R (𝑥1)

R (𝑥2)

R (𝑥3)

W (𝑥0, 1)

W (𝑥1, 2)

W (𝑥2, 1)

W (𝑥3, 1)

W (𝑥1, 1)

After adding the events of T1, T2 is scheduled. In order to eventually have byte 𝑥0 read 0, it must
initially read 0 as well, since it cannot be removed later. Similar to before, this forces an ordering
between T2’s RMW and the read to 𝑥2 of T1, and therefore the later write to 𝑥2 cannot be added. On
the other hand, it also cannot revisit the read to 𝑥2 since this would effectively block T2’s read to 𝑥1
to be revisited. Thus, the execution R2L will not be explored.

2.4 A Simple Workaround

A simple way to bypass the lack of extensibility is to invoke DPOR with a weaker consistency
model that satisfies the extensibility property, and only check for full consistency before reporting
an error. The simplest way to obtain a weaker consistency model for exploration purposes is to
disregard the parts of the consistency model enforcing atomicity of multi-byte accesses and treat
each byte access as completely independent from the other byte accesses of the same instruction.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:7

While this approach is correct, it does explore many inconsistent executions wasting time and
resources: a program can have unboundedly more executions that are consistent under the weaker
that the ones that are consistent according to the stronger one. In §4.5 we discuss a stronger notion
of optimality that precludes such solutions.

3 Mixer: Overview of our Solution

In this section, we introduce a direct way to support programs with mixed-sized accesses. We
present the key ideas of Mixer in an informal fashion, and relegate the formal definitions to §4.

3.1 Performing DPOR at the Instruction Level

The key observation underlyingMixer is that transactional consistencymodels—andMSA-compatible
memory models, in particular—are extensible at the level of entire transactions (MSA instructions),
not at the level of individual memory accesses. That is, given a consistent execution containing no
events due to partially executed transactions, we can extend it in a consistent way by adding all
the events corresponding to an additional transaction. In particular, we can add its events so that
every read access reads from the last, in the coherence order, same-location write access, and every
write access is placed at the end of the coherence order.

Mixer leverages this observation and picks at each point one instruction and adds, in one step,
every access that corresponds to the instruction, exploring all possible rf and co placements for
each of the constituent accesses. (The read and write parts of an RMW can be split, for simplicity,
but the scheduler must always follow the read part with the corresponding write part.) Additionally,
—and more importantly, since this could so far be simulated in the original DPOR scheme— a whole
instruction revisits another one: this guarantees that no execution is generated where some, but
not all, the accesses of an instruction are present, satisfying our extensibility constraint.

As the following example demonstrates, this instruction-level treatment, however, is not enough.

Example 3.1 Consider the program below, and focus on how we could obtain the execution 11

where both accesses of the read instruction read 1.

T1: 𝑎 := 𝑥0:1 T2: 𝑥0 := 1 T3: 𝑥1 := 1
11

init

R (𝑥0:1) W (𝑥0, 1) W (𝑥1, 1)

After adding T1 (A), DPOR can either simply execute T2 (B) or execute it and revisit the read of
T1 (C). In either case, the write of T3 should also revisit the read. In the first case, this would lead
to execution D , where DPOR can only add T2 without a revisit (because revisiting would delete
T3). In the second case (C), the revisit from T3 is similarly not allowed because it would delete T2.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:8 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

Init

init

A

init

R (𝑥0:1)

C

init

R (𝑥0:1) W (𝑥0)
✗

10

init

R (𝑥0:1) W (𝑥0) W (𝑥1)

B

init

R (𝑥0:1) W (𝑥0)
D

init

R (𝑥0:1) W (𝑥1)
✗

01

init

R (𝑥0:1) W (𝑥0) W (𝑥1)

00

init

R (𝑥0:1) W (𝑥0) W (𝑥1)

revisit

revisit

revisit

revisit

The desired execution 11 is therefore missed. We need to allow one of the revisits from either C

or D .

3.2 Multi-Write Revisits

We resolve this problem by introducing the concept of a multi-write revisit, where multiple instruc-
tions together revisit a previous instruction. Mixer implements this idea by allowing an (optional)
set of instructions, which we refer to as a keep set, that would be normally deleted during a revisit,
to remain in the execution and to perform the revisit together with the write accesses of the newly
added instruction.

Concretely, in the execution C and D , we consider both the case where the missing write tries
to revisit the read, and fails since the other write cannot be removed, as well as the case where the
other write is kept, allowing the read to read from both writes.

Multi-write revisits are sufficient to ensure completeness of the model checking algorithm, namely
that it explores all consistent program executions. Unless suitably restricted, however, the extra
choice that DPOR can make can easily lead to duplication. To guarantee that no exploration is
explored twice, we therefore need to impose a set of conditions on the keep sets to consider them
valid.

Tie-breaking. First, we need to address the problem arising in the example that we have just seen:
either C and D should perform a revisit while keeping the other write, but not both. Otherwise
11 would be explored twice.
For this, we perform a tie-break on the write instruction that performs the final revisit: we pick

the rightmost one, and enforce that the scheduler picks threads in a left-to-right fashion. This
scheduling constraint is crucial for correctness: when the predetermined write that should perform
the revisit is added, the rest of the writes that need to perform the revisit together must already be
in the execution.
Therefore, we enforce that keep sets can now only include instructions whose thread is to the

left of the instruction’s thread that performs the revisit.
For example, in the execution D , T2 is not allowed to revisit by keeping T3, since the kept write

would be to the write of the new write. This way, execution 11 is reached exactly once, from the
execution C .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:9

Independence. Another constraint on the instructions of the keep set is that they are independent,
i.e., the are not causally related (in a po or rf sense) to each other, or to the newly added instruction.
This is to avoid having the exactly same revisit being performed with a different keep set.

Example 3.2 As an example, consider the program below. After reaching the execution T where
the read reads from the write to 𝑥0, and the write to 𝑥1 is about to be added, revisiting with either
an empty keep set, or with keeping the write to 𝑥0, would result in the same execution F .

T1: 𝑎 := 𝑥0:1 T2: 𝑥0 := 1
𝑥1 := 1

T

init

R (𝑥0:1) W (𝑥0, 1)
𝐾=∅
{

𝐾={W (𝑥0,1) }

F

init

R (𝑥0:1) W (𝑥0, 1)

W (𝑥1, 1)

Relevance. All of the instructions in the keep set during a revisit must be relevant after the revisit:
at least one byte-level access must be read by the revisited read instruction. This ensures that the
revisit with the specific keep set was necessary, and the resulting execution could not be recovered
in another way.

Example 3.3 As an example, consider the program below and focus on the incomplete execution
A where the instruction of T3 is not yet added.

T1: 𝑎 := 𝑥0:1 T2: 𝑥0 := 1 T3: 𝑥1 := 1

A

init

R (𝑥0:1) W (𝑥0, 1)
11

init

R (𝑥0:1) W (𝑥0, 1) W (𝑥, 1)

B

init

R (𝑥0:1) W (𝑥, 1)

✗

K={W (𝑥0 , 1) }

K=∅

When the write of T3 is added and revisits are considered, keeping the write of T2without reading
from it should not be considered.Mixerwill recover execution 11 from the execution B obtained
from revisiting A with an empty keep set, by adding the now missing write instruction of T2
thread again.

3.3 Mixer: Reconsidering Unconstrained Reads

Apart from the multi-write revisits, there is one last change necessary to recover a complete and
optimal DPOR algorithm, which again pertains to the revisit mechanism.
Specifically, when revisiting a read instruction, relevance forces (some of) the read accesses to

read (parts of) the kept write instructions and the revisiting write instruction. However, it can be
that parts of the read instruction are left unconstrained. These unconstrained accesses must be
reconsidered: every possible read-from option is considered again, allowing them to read from a
different write instruction than before the revisit.

Example 3.4 To see why this is necessary, consider the following program and the depicted target
execution 1111 where every byte of the read instruction reads 1, and the access of T1 to 𝑥0 is co

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:10 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

after the one of T3.

T1: 𝑥0 := 2 T2: 𝑎 := 𝑥0:3 T3: 𝑥0:1 := 0x101 T4: 𝑥2:3 := 0x101

1111

init

W (𝑥0) R (𝑥0:3) W (𝑥0:1) W (𝑥2:3)

To reach this execution, the instruction of T4 should be eventually added and revisit the read
instruction, while keeping the instruction of T3.
Notice, however, that this cannot happen from an execution where the read to 𝑥0 reads 1: the

read instruction is not reading maximal (and, in principle, there is no reason why such an execution
would be consistent). To reach the desired execution, our algorithm will reach the execution where
it reads 2 for 𝑥0, and during the revisit from T4 (keeping T3) the option of reading 1 instead will also
be explored.

4 Mixer: Formal Definition, Correctness, and Optimality

In this section, (i) we define how executions are represented as executions graphs, (ii) we present
our assumptions on the underlying memory model, (iii) we presentMixer, our DPOR algorithm
for MSA programs, (iv) we explain Mixer’s correctness arguments, and (v) we discuss its standing
w.r.t. stronger notions of optimality.

4.1 Execution Graphs

An execution graph comprises a set of events (nodes), and a few relations on these events (edges).
We assume that each location comprises 𝐵 bytes and denote as Byte the set of natural numbers

from 0 to 𝐵 − 1. We refer as footprint to the set of bytes accessed by a memory instruction, and
assume a valid set F of footprints. Usually, footprints are contiguous, but our formalism does not
depend on this assumption.

Definition 4.1. An event, e ∈ Event, is either the initialization event init, or a thread event
⟨t, i, f , lab⟩ where t ∈ Tid is a thread identifier, i ∈ Idx is a serial number (denoting the index of
an event within a thread), f ∈ F is the footprint of the corresponding access, if applicable, and
lab ∈ Lab is a label that takes (at least) one of the following forms:
• Write label: Wk (l, v) ∈ W, where k records the write attributes, l ∈ Loc the location accessed,
and v ∈ Val the value written.
• Read label: Rk (l) ∈ R, where k records the read attributes and l ∈ Loc the location accessed.

Read and write attributes include the exclusivity flag excl for RMWs, and the access mode for RC11-
style models. (Additional kinds of events exist for memory allocations, deallocations, assertion
violations, etc., but these do not affect the model checking algorithm in any meaningful way.)

We refer to as plain events those who have a footprint of a single byte access b ∈ f . Each (memory
access) event 𝑒 = ⟨t, i, f , lab⟩1 induces a set of plain labels plain(𝑒) △

=
{
⟨t, i, 𝑏, lab⟩ 𝑏 ∈ f

}
, by

breaking down the access to its byte-level constituents. We subscript with 𝑃 to refer to the set of
plain events that corresponds to a set of events, i.e., we write W𝑃 to refer to the set of plain write
events.

Having defined events, we define execution graphs as follows.

Definition 4.2. An execution graph 𝐺 comprises the following components:
(1) a set of events 𝐸 that includes init and does not contain multiple events with the same

thread identifier and serial number;
1We assume that programs give rise to accesses whose values fit into the respective footprint.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:11

(2) rf : E ∩ R𝑃 → E ∩ W𝑃 , called the reads-from function, mapping each plain read event to the
plain write where it gets its value for the specified byte;

(3) co ⊆ ⋃
l∈Loc,b∈Byte Wl,b × Wl,b (where Wl,b △

= {init} ∪ {⟨t, i, b, lab⟩ ∈ 𝐸 | lab = W− (l, _)}) called
the coherence order, a strict partial order that is total on Wl,b for every location l ∈ Loc and
byte b ∈ Byte; and

(4) ≤, a total order on 𝐸 that represents the order in which events were incrementally added to
the graph.

We write 𝐺.E, 𝐺.rf, 𝐺.co and ≤𝐺 to project the various components of an execution graph. Given
two events 𝑒1, 𝑒2 ∈ 𝐺.E, we write 𝑒1 <𝐺 𝑒2 if 𝑒1 ≤𝐺 𝑒2 and 𝑒1 ≠ 𝑒2.
In relational algebra expressions, we abuse notation and also use 𝐺.rf to denote the relation
{⟨𝐺.rf(𝑟), 𝑟 ⟩ | 𝑟 ∈ 𝐺.R}, which relates a write event to the read events that read from it.
We assume that init ∈ W, and omit the ∅ for read/write labels with no attributes.
The functions tid, idx, footp, loc, and mod respectively return the thread identifier, serial

number, footprint, location, and access mode, when applicable.
We write 𝐺.W for 𝐺.E ∩ W (and similarly for other sets), and use superscript and subscripts to

restrict label sets (e.g., Wl △
= {init} ∪ {𝑤 ∈ W | loc(𝑤) = l}).

An execution graph does not explicitly track the program order (po) via another component,
since it can deduced by the thread identifiers and serial numbers of its events. The initialization
event is ordered before every other event in the po order.
We define the causal relation 𝐺.porf △

= (𝐺.po ∪ 𝐺.rf)+, where underlining lifts a relation 𝐴
relating plain events to a relation that relates whole (non-plain) events

𝐴
△
=
{
⟨𝑒1, 𝑒2⟩ ⟨𝑏1, 𝑏2⟩ ∈ 𝐴,𝑏𝑖 ∈ plain(𝑒𝑖)

}
4.2 Conditions on the Memory Consistency Model

The memory consistency model (or memory model, for short) is a predicate consistent(·) on
execution graphs, specifying which executions are consistent.

Similar to existing DPOR algorithms [Kokologiannakis et al. 2022, 2024, 2019b], we do not assume
a specific memory model; Mixer is parametric in the choice of the memory model, provided it
satisfies the following basic assumptions.

(1) prefix-closed w.r.t. to the causal relation (i.e., for every consistent execution𝐺 and set𝐷 ⊆ 𝐺.E
s.t. dom(𝐺.porf;𝐷) ⊆ 𝐷 , the restriction 𝐺𝐷 of 𝐺 to the events of 𝐷 is consistent),

(2) porf-acyclic (i.e., if 𝐺 is consistent, then 𝐺.porf is acyclic), and
(3) extensible, i.e., we can preserve consistency of an execution 𝐺 when extending it with the

events of an instruction by adding them maximally: a read instruction will read from co-
maximal plain write, and a write instruction’s plain writes will be placed at the end of
co.

These conditions are readily satisfied by most memory models: (1) any model s.t. removing
edges does not invalidate consistency is prefix-closed, (2) any model whose operational semantics
disallow instructions being executed out of their program order, and loads being executed before
the stores they read from, is porf-acyclic, and (3) any model whose operational semantics does not
get "stuck", is extensible. For a more thorough discussion we refer the reader to [Kokologiannakis
et al. 2022]

Memory models such as SC and its direct lifting to MSA, RC11 [Lahav et al. 2017], Relase-Acquire
(RA), x86-TSO [Owens et al. 2009], as well as a suggested MSA extension of x86-TSO [Alglave et al.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:12 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

Algorithm 1Mixer: DPOR for MSA programs
1: procedure ExploreP(𝐺)
2: if IsErroneous then exit(“Error”)
3: 𝑎 ← AddNextEventP (𝐺)
4: if 𝑎 ∈ R then
5: 𝑏, ... , 𝑏 + 𝑙 − 1← footp(𝑎)
6: for 𝐵𝑠 ∈ 𝐺.Wloc(𝑎),𝑏 × ... ×𝐺.Wloc(𝑎),𝑏+𝑙−1 do
7: ExploreIfConsistentP (SetRF(𝐺, 𝑎, 𝐵𝑠))
8: else if 𝑎 ∈ W then
9: ExploreCOsP (𝐺, 𝑎)
10: 𝑏, ... , 𝑏 + 𝑙 − 1← footp(𝑎)
11: for 𝐾 ⊆ 𝐺.Wloc(𝑎) such that TieBreak(𝐾, 𝑎) ∧ Independent(𝐺,𝐾 ∪ {𝑎}) do
12: for 𝑟 ∈ 𝐺.Rloc(𝑎) such that ⟨𝑟, 𝑎⟩ ∉ 𝐺.porf do
13: Deleted ← {𝑒 ∈ 𝐺.E \ {𝑎} | 𝑟 <𝐺 𝑒 ∧ ∀𝑤 ∈ 𝐾 ∪ {𝑎}. ⟨𝑒,𝑤⟩ ∉ 𝐺.porf}
14: if MaximalExtension(𝐺, {𝑟 } ∪ Deleted) then
15: for 𝐵𝑠 ∈ 𝐺.Wloc(𝑎),𝑏 × ... ×𝐺.Wloc(𝑎),𝑏+𝑙−1 do
16: if Relevant(𝐾 ∪ {𝑎}, 𝐵𝑠) then
17: ExploreCOsP (SetRF(𝐺 \ Deleted, 𝑟 , 𝐵𝑠), 𝑎)
18: else if 𝑎 ≠ ⊥ then
19: ExploreP (𝐺)

20: procedure ExploreIfConsistentP(𝐺)
21: if consistentM (𝐺) then ExploreP (𝐺)

22: procedure ExploreCOsP(𝐺, 𝑎)
23: 𝑏, ... , 𝑏 + 𝑙 − 1← footp(𝑎)
24: for 𝐵𝑠 ∈ 𝐺.Wloc(𝑎),𝑏 × ... ×𝐺.Wloc(𝑎),𝑏+𝑙−1 do
25: ExploreIfConsistentP (SetCO(𝐺, 𝑎, 𝐵𝑠))

2021], directly satisfy these conditions2. Models such as POWER and ARM [Alglave et al. 2014], as
well as ARM’s MSA extension [Alglave et al. 2021], allow load buffering behaviors, and therefore
porf-cyclic behaviors. However, they satisfy similar criteria, with the only difference being that
they use a weakening of the program order po. Supporting such models is achieved by effectively
lifting the DPOR to use this weakened relation instead of po [Kokologiannakis and Vafeiadis 2020].
The same approach[Kokologiannakis and Vafeiadis 2021] applies for the Linux Kernel Memory
Model, although the semantics of mixed-size accesses are not defined [Alglave et al. 2018]. Our
work is orthogonal to these differences, and extends to such models as well by following the same
approach.

4.3 The Mixer Exploration Algorithm

Let us now proceed by showing how Mixer enumerates all consistent execution graphs of a MSA
program P. The algorithm is shown in Algorithm 1.

2To see this for the MSA extension of x86-TSO, observe that (1) removing po ∪ rf-maximal events does not add any edge
and cannot affect consistency, (2) any porf cycle can be rewritten to use rf edges between different threads and po edges
from a read (rf entering the thread) to a write (rf edge exiting the thread), both of which are included in a relation which is
postulated to be acyclic, and (3) any instruction added maximally in coherence cannot introduce a cycle since it has no
co ∪ rb ∪ rf-successors.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:13

Mixer enumerates all consistent execution of a MSA program P by incrementally adding one
event at a time. Exploration is initiated by calling ExploreP with the empty execution graph 𝐺∅ .
The AddNextEvent returns the event corresponding to the leftmost thread that has not fully

executed, if such an event exists, otherwise it returns ⊥.
If the new event is a read (§4.3),Mixer considers all sets of plain writes that the new read can

read from, sets the rf component of the graph to reflect this choice (§4.3), and recursively calls
ExploreP with the new graph, if it is consistent (§4.3).
If the new event is a write (§ 4.3), Mixer considers all co placements for the new write by

enumerating the possible co-predecessors, for each byte in the write’s footprint (§4.3), sets the co
component of the graph to reflect this choice (§4.3), and recursively calls ExploreP with the new
graph, if it is consistent (§4.3).
Additionally, in the case of a write event 𝑎,Mixer considers revisiting a previously added read

event. For this, it enumerates all valid keep set options (§4.3), i.e., a set of writes 𝐾 accessing the
same location such that they are in a thread to the left of 𝑎’s thread (TieBreak(𝐾, 𝑎)), and, together
with the new write 𝑎, they form a porf-independent set 𝐾 ′ (Independent(𝐺,𝐾 ′)).

TieBreak(𝐾, 𝑎) △
= ∀𝑤 ∈ 𝐾.𝑤 <next 𝑎

Independent(𝐺,𝐾 ′) △
= ∀𝑤1,𝑤2 ∈ 𝐾 ′ .𝑤1 =𝑤2 ∨ ⟨𝑤1,𝑤2⟩ ∉ 𝐺.porf

For each such keep set and each previously added read event that accesses the same location and
is not porf-before the write 𝑎 (§4.3),Mixer considers revisiting the read event, by deleting all events
that are are added after the read and are not porf-before the new write or a write in 𝐾 . Similar to
TruSt, Mixer employs a maximality condition to check if the revisit should be considered, which
is crucial to guarantee that no duplicate executions are explored [Kokologiannakis et al. 2022].

Concretely, the condition checks that all the events 𝐴 affected by the revisit, i.e., the read 𝑟 and
the deleted events, form a maximal extension w.r.t. the execution without the events of 𝐴, in the
order ≤𝐺 that they were added.

MaximalExtension(𝐺,𝐴) △
= ∀𝑎 ∈ 𝐴. IsMaximal(𝐺, 𝑎,

{
𝑒 ∈ 𝐺.E 𝑒 ∉ 𝐴 ∨ 𝑒 ≤𝐺 𝑎

}
)

IsMaximal(𝐺, 𝑟 ∈ R, 𝑆) △
= rng([𝑟];𝐺.rb; [𝑆]) = ∅

IsMaximal(𝐺,𝑤 ∈ W, 𝑆) △
= rng([𝑤];𝐺.co; [𝑆]) = ∅

If this check succeeds, Mixer considers again all set of plain writes 𝐵𝑠 that the read can read
from, provided that each choice makes the keep set relevant, i.e., each write in 𝐾 ∪ {𝑎} is, at least
partly, read (Relevant(𝐾 ′, 𝐵𝑠)), and then proceeds to consider the possible co placements of the
new write, and explore the resulting graph, if consistent (§4.3).

Relevant(𝐾 ′, 𝐵𝑠) △
= ∀𝑤 ∈ 𝐾 ′ . ∃𝑏 ∈ 𝐵𝑠. 𝑏 ∈ plain(𝑤)

4.4 Termination, Soundness, Completeness, and Optimality

Under any memory model satisfying the assumptions of § 4.2, Mixer terminates and is sound,
complete, and optimal.

Theorem 4.3 (Correctness).
(1) ExploreP (𝐺∅) terminates.

(2) ExploreP (𝐺∅) only explores consistent executions.

(3) ExploreP (𝐺∅) explores every consistent execution.

(4) ExploreP (𝐺∅) never explores the same 𝐺 twice.

Soundness is trivial, since consistency of the explored execution is checked at each step (§4.3).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:14 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

Completeness, i.e., every consistent execution is explored, and optimality, i.e., no execution is
explored twice, are more involved. Our proof partially follows the proof of Awamoche [Kokolo-
giannakis et al. 2023b] and drove most of the design of our algorithm.
Concretely, the restrictions on the keep sets enable a key property for the correctness of the

algorithm: given a partial execution and a read instruction that needs to read from a set of write
instructions not yet present in the execution, there is a predetermined write instruction among
them and a unique keep set that will revisit the read instruction in order to reach the desired
execution.

4.5 Strong Optimality

Apart from the regular notion of optimality, there exists a stronger version of optimality enjoyed by
DPOR algorithms [Kokologiannakis et al. 2022, 2023b], which states that no wasteful exploration
takes place.

Intuitively, exploring a (partial) execution 𝐺 , i.e., initiating a call to ExploreP (𝐺), is wasteful if
it does not eventually lead to call to ExploreP (𝐺𝑐), for a consistent and complete execution𝐺𝑐 . We
refer to such executions are fruitless.

Strong optimality states that any explored fruitless execution is blocked: it does not initiate any
further exploration. Unfortunately, our algorithm does not satisfy this condition, but a weaker,
generalized version of it.

Fruitless executions in TruSt. Let us first explain why a fruitless execution is encountered in the
first place in algorithms like TruSt, why it is guaranteed to be blocked, and why this fails to hold
for our algorithm.

Example 4.1 Consider the program below and how TruSt would obtain its two executions O

and T .
T1: fetch_add (𝑥, 1) T2: fetch_add (𝑥, 1) (u+u)

A

init

Rexcl (𝑥)

Wexcl (𝑥, 1)

C

init

Rexcl (𝑥)

Wexcl (𝑥, 1)

Rexcl (𝑥)

O

init

Rexcl (𝑥)

Wexcl (𝑥, 1)

Rexcl (𝑥)

Wexcl (𝑥, 2)

B

init

Rexcl (𝑥)

Wexcl (𝑥, 1)

Rexcl (𝑥)

P

init

Rexcl (𝑥) Rexcl (𝑥)

Wexcl (𝑥, 1)

T

init

Rexcl (𝑥)

Wexcl (𝑥, 2)

Rexcl (𝑥)

Wexcl (𝑥, 1)

I

init

Rexcl (𝑥)

Wexcl (𝑥, 1)

Rexcl (𝑥)

Wexcl (𝑥, 1)

✗

K=
∅

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:15

Since RMW instructions perform both a read and a write access, it is convenient to treat them as
two events that are added in succession (with the appropriate exclusivity attribute excl, to capture
the atomicity semantics). TruSt would first add the two events corresponding to the first RMW
in the unique consistent way (A). Afterwards, it needs to consider two options B and C for
the read event of the second RMW: reading from the first leads to O , while reading from the
initialization write will lead to T . In the latter case, the read event will read from the initialization
write, and adding the following write event of the RMW, and revisiting the first read (P) leads to
the desired execution. Notice, however, that adding the write and not performing the revisit leads
to an inconsistent execution: in I , both RMWs read from the same write.

Extensibility holds for the events corresponding to the RMW only when considered together.
If the read event is added already in an arbitrary way, there is no guarantee that the write event
can also be added, as it happened it the previous example. Moreover, it can be the case that the
revisit step is also not allowed, e.g., due to the maximality check, rendering the execution with
the pending RMW wasteful. TruSt, however, guarantees that this wasteful exploration can only
lasts for one "step": as soon as a fruitless execution is reached, it is blocked, i.e., it does not lead to
another recursive call (which would further increase the size of the wasteful exploration).

Mixer: Depth-Bounded Fruitless Exploration. Mixer can initiate fruitless explorations that are
not immediately blocked, and therefore is not strongly optimal. It does, however, satisfy a more
generalized version of this property. Concretely, given that an instruction can access at most 𝐵
bytes, Mixer can do at most 𝐵 consecutive fruitless steps, i.e., successive calls to ExploreP (·),
before stopping the exploration3.
Formally, we say that an execution 𝐺 is 𝑁 -fruitless if it is fruitless (ExploreP (𝐺) does not

lead to a call ExploreP (𝐺𝑐), for complete execution 𝐺𝑐) and there exists a sequence of at least 𝑁
consecutive calls to ExploreP (·) starting from ExploreP (𝐺). Mixer guarantees that there exist no
(𝐵 + 1)-fruitless execution, which allows us to bound the overhead of the wasteful executions to a
polynomial factor w.r.t. the size of the executions (i.e., the number of threads and events).

Theorem 4.4 (Bounded Waste). For any 𝐾-fruitless execution explored by ExploreP (𝐺∅),
𝐾 ≤ 𝐵.

Proof sketch. To see this, let 𝐺 be a 𝐾-fruitless execution. Then, the 𝐾 calls to ExploreP all
perform revisits from and to events of 𝐾 + 1 RMW instructions. Due to the maximality condition,
it is easy to see that when an exclusive write𝑤 (the write part of an RMW) revisits an exclusive
read 𝑟 (the read part of an RMW) and forces 𝑟 to read byte 𝑖 of location 𝑥 from𝑤 , then 𝑟 is the only
event in the resulting execution that reads 𝑥𝑖 maximally. Therefore no other RMW accessing 𝑥𝑖 can
later be revisited, i.e., the rest RMWs in the revisit chain must access different bytes (of the same
location). This bounds the number of the 𝐾 RMW instructions (not counting the initial one) to the
maximum number of distinct footprints that instructions can access. □

5 Extension for Transactions

As we discussed in §2, the main issue that renders traditional DPOR algorithm inappropriate for
MSA programs is the lack of extensibility. However, there is a larger class of programs that suffers
from the same issue: transactional programs.

Similar to a program with MSA, given a transactional program where a transaction has been par-
tially executed, there is no guarantee that there exists a consistent way to complete the transaction.
All the examples presented in §2 and §3 can be trivially translated to the equivalent transactional
3Similar to TruSt, these fruitless executions can only arise in the presence of RMW instructions

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:16 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

variants with each MSA instruction being replaced with the equivalent byte-size accesses in a
transactions assuming Serialization semantics (i.e., the allowed behaviors are interleavings of
transactions), and all our observations still hold.

In fact,Mixer as well can be easily extended to cover transactional programs. To see this, observe
how a transaction’s accesses can be represented by a set of read accesses, followed by a set of write
accesses: due to the minimal guarantees under a transactional program, a read that is preceded by
a write to the same location must read from this write, while read and write accesses to different
locations inside a transaction can be reordered.

To handle transactional programs,Mixer can assume an AddNextEventP function that treats a
transactional program as two successive placeholder events, a read and a write. A read event 𝑟 ,
however, no longer tracks locations, since they cannot be known in advance. Instead, the locations
are discovered by executing the transaction: for each encountered read access, a subexploration is
initiated for each possible rf option, in order to discover the rest of the accesses in the transaction.
In the end, all co choices for the encountered write accesses are considered, similar to Algorithm 1.

For the fragment of transactional programs where the read accesses do not depend on each other,
the modifications discussed so far are sufficient. Otherwise, a more liberal revisiting condition
is needed that considers revisits even if there are (currently) no conflicting read accesses to the
transaction to be revisited.

Example 5.1 To see why, consider the program below where the first thread comprises two trans-
actions containing one instruction each, while the other two threads contain a single transaction
each. (We use square brackets to denote the transactions.)

T1: [𝑧 := 1]
[𝑎 := 𝑥]

T2:
if(𝑧 == 0)
if(𝑦 == 0)
𝑥 := 1

T3: [𝑦 := 1]

T

init

W (𝑧, 1)

R (𝑥)

F

init

W (𝑧, 1)

R (𝑥)

R (𝑧)

R (𝑦)

W (𝑦, 1)

In order to reach the right-to-left execution F , Mixer would need to reach the execution T that
has only the first thread, and extend it in a consistent way with the transaction of the second thread,
before executing the third thread’s transaction and revisiting the second thread.
Observe, however, that while it is consistent to maximally extend the second thread to read 1

from 𝑧, the access to 𝑦 does not appear in this case and therefore the conflict with the third thread
is not present. On the other hand, extending the second thread to read 0 from 𝑦 is not consistent,
since the write to 𝑥 cannot be added: the first thread’s read to 𝑥 would need to read from it.

To overcome this,Mixer would need to conservatively revisit any transaction that might have
read from the locations that the current transaction is writing to, and drop the post-revisit execution
if no conflict actually occurred, in line with the relevance restriction of §3.2.
While the modifications discussed in this section do not impact our main correctness results

(Theorem 4.3), the bound on wasteful explorations presented in §4.5 no longer holds: one cannot
assume a bounded set of locations accessed by transactions. Instead, the depth of the fruitless
exploration can be bounded by the number of threads, if we assume a maximum number of threads
𝑇 for the program to be verified. To see this, observe that after all 𝑇 threads include a transaction
(write) that has revisited (and therefore it is the last transaction in the thread), any other revisit is
blocked since it would delete such a write.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:17

6 Implementation

6.1 Tool

We implemented Mixer as a tool for C/C++ programs based on the LLVM Intermediate Represen-
tation (IR) [Lattner and Adve 2004].
Mixer is implemented on top of the GenMC [Kokologiannakis et al. 2019b] tool and required

significant changes, mainly on the data-structures used to capture the execution’s rf and co
components. Read events no longer have a single rf edge, but instead track a set of edges to write
events, annotated with the footprint accessed.
To minimize the intrusive changes to the implementation, coherence co is still stored as a set

of per-word co𝑤 coherence lists. However, each such co𝑤 list no longer represents a total order,
since some same-word writes access disjoint sets of bytes. Instead, this list is just a linearization of
a partial order of (conflicting) writes to the same word.
A downside of this treatment is that one needs to calculate the possible ways a new write can

be inserted in coherence by exploring permutations of these orderings: only exploring possible
placements of the new write is not enough. To see why, consider a coherence list with two disjoint
write accesses, and a new write that conflicts with both of them. We need to consider all three
placements of the new write, as well as permuting the two old writes, and adding the new write in
the middle (since it transitively induces an ordering between the disjoint writes).

6.2 𝑅𝐴𝑀𝑆𝐴: An Example Memory Model

While our algorithm is parametric to the memory model, our implementation currently only
supports 𝑅𝐴𝑀𝑆𝐴, a simple lifting of the relaxed and acquire/release fragment of the repaired
C/C++11 memory model to MSA accesses.

Given the usual happens before relation hb defined by this fragment of RC11[Lahav et al. 2017],
an execution𝐺 is consistent under 𝑅𝐴𝑀𝑆𝐴 if (1)𝐺.porf is acyclic, (2)𝐺.hb;𝐺.eco is irreflexive, and
(3)𝐺.rmw ∩ (𝐺.rb;𝐺.co) = ∅, where𝐺.eco △

= ((co ∪ rb); rf? ∪ rf)+ and𝐺.rmw relates a plain read
to a plain write belonging to the same RMW instruction. It is easy to see that 𝑅𝐴𝑀𝑆𝐴 satisfies the
conditions of §4.2.

7 Evaluation

We now evaluateMixer’s performance on a set of synthetic and non-synthetic benchmarks. Our
evaluation aims to establish the following points:

§7.1 Mixer is exponentially faster than approaches that do not directly tackle mixed-size accesses
§7.2 Mixer only incurs a moderate overhead on non-mixed-size-accesses benchmarks
§7.3 Mixer can handle realistic code with mixed-size accesses employed in production

To accomplish this, we perform the following case studies. First, we compare Mixer with
TrustMSA, a naive DPOR that treats mixed-size accesses as byte sequences and achieves correctness
by enforcing atomicity at the end of each execution. Then, we measure the overhead of Mixer
over TruSt (implemented in the GenMC tool[Kokologiannakis and Vafeiadis 2021]) on GenMC’s
standard test suite. Finally, we runMixer on some mixed-size-accesses code extracted from the
Linux kernel.

Experimental Setup. We conducted all experiments on a Dell PowerEdge R6525 system running a
custom Debian-based distribution with 2 AMD EPYC 7702 CPUs (256 cores @ 2.80 GHz) and 2TB
of RAM. We set the timeout limit to 30 minutes (denoted by �). All times are in seconds.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:18 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

100 101 102 103 104 105
100

101

102

103

104

105

TrustMSA executions

M
ix
er

ex
ec
ut
io
ns

10−1 100 101
10−1

100

101

TruSt time (s)

M
ix
er

tim
e
(s
)

Overhead:
mean: 1.98
max: 7.09

Fig. 1. Performance comparison TrustMSA/Mixer (left) andMixer overhead over TruSt (right)

7.1 TrustMSA vsMixer

We compare Mixer and TrustMSA on a set of synthetic benchmarks. Although these benchmarks
are small, they suffice to demonstrate that naive approaches do not scale since even a small number
of mixed-size accessed (e.g., 3-7) are enough to make TrustMSA explore a huge number of redundant
executions.

The results can be seen on the left in Fig. 1. (For TrustMSA, the number of executions reported
is the total number of executions considered, before filtering out the ones that are inconsistent.)
As can be seen, naive approaches are clearly impractical, and do not scale even for very simple
benchmarks.Mixer, on the other hand, only considers a very small number of executions as it is
able to check full consistency at each step, thereby ruling out a large number of infeasible behaviors.

7.2 Mixer’s Overhead

We compareMixer and GenMC on a set of benchmarks that do not have mixed-size accesses to
evaluate the overhead thatMixer imposes on the implementation of GenMC. We removed from
our tests the small benchmarks where both tools terminate immediately (less that 0.1s).
The results can be seen on the right in Fig. 1. Mixer only imposes a moderate overhead (on

average takes a bit less than twice the execution time). In the worst case, the overhead is around
7 times, but this is due to the fact that the currentMixer’s implementation does not support an
optimization related to the handling of locks.

Amore methodical implementation can, in principle, almost fully negate the overhead imposed by
the MSA implementation. The only inherent exception is the restriction imposed on the scheduler
(§3.2) to follow a left-to-right scheduling. This precludes a common heuristic strategy to always
prioritize write instructions, since it reduces the number of revisits (and therefore reinterpretation
of the program) performed. However, we expect that non-MSA programs can be easily detected
(either manually, or with a conservative static pass), disabling the MSA flag of our tool, which
would revert to the default heuristics of GenMC.

7.3 Realistic Benchmarks

We runMixer on lockref [Corbet 2013], a data-structure extracted from the Linux kernel. As we
have already discussed in §1, lockref uses a union to pack a number of fields in a single word.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

Model Checking C/C++ with Mixed-Size Accesses 75:19

Table 1. Realistic benchmarks

Execs Time

lockref(2) 5 0.03
lockref(3) 142 0.04
lockref(4) 27 192 3.52
lockref(5) � �

The union is either accessed as a whole (effectively atomically exchanging all the fields with new
values), or parts of it (by accessing the specified field).

We use a simple client that is parametric to the number of threads (denoted as lockref(𝑁)). The
first thread acquires and releases the lock, while the other threads try to increase the reference
count.Mixer manages to verify a client of 4 threads, before the timeout, due to the large number
of behaviors this data-structure can produce. Observe that, even with three threads, there are more
than 100 different possible executions, and adding one more thread quickly blows up the number
of executions.

8 Related Work

Abdulla et al. [2014] first presented an optimal DPOR algorithm which explores all sequentially
consistent behaviours of a program exactly once, while possibly consuming an exponential amount
of memory. In subsequent work, Abdulla et al. [2015] developed DPOR algorithms for weaker
memory models, such as x86-TSO.
In another line of work, Kokologiannakis et al. [2017, 2022, 2019a,b] developed graph-based

DPOR algorithms, which culminated in the TruSt algorithm, the first optimal DPOR algorithm
with polynomial space requirements. TruSt is implemented in the genmc model checker [Kokolo-
giannakis and Vafeiadis 2021], and is parametric in the choice of the memory consistency model.
The genmc implementation has builtin support for a bunch of memory models –SC, TSO, RA, RC11,
and IMM– and can easily extended with any declarative model that can be expressed in a restricted
fragment of the relational calculus with the kater tool [Kokologiannakis et al. 2023a].

The work of Bouajjani et al. [2023] explored the application of DPOR on transactional programs.
They define a class of DPOR algorithms and show that there exists no strongly optimal such
algorithm for memory models such as Serializability (SER) and Snapshot Isolation (SI), which do
not satisfy a form of transactional extensibility. Instead, they provide a strongly optimal DPOR
algorithm for the weaker memory models that satisfy their criterion. For the case of SER and SI, they
suggest verifying under a weaker memory model and only performing the SER (or SI) consistency
check when a complete execution in explored.

Regarding the semantics of mixed-sized accesses, Flur et al. [2017] first investigated their behavior
under the Arm (version 8) and POWER hardware architectures, and extended their previous
operational models of these architectures [Flur et al. 2016; Sarkar et al. 2011] to support MSAs.
They also extended the declarative C/C++11 model to support non-atomic MSAs, and established
the correctness of compilation mappings to POWER.
More recently, Alglave et al. [2021] provide a formal declarative memory model for the Arm

architecture that supports MSAs, as well as a proposal for a similar extension to the x86-TSO
declarative model. Both of these models are based on execution graphs and fit within the framework
of this paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

75:20 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

9 Conclusion

We presentMixer, the first DPOR algorithm that supports programs with mixed-sized accesses.
Such programs cannot be handled by a simple encoding where instructions are broken down to
byte-level accesses due to the lack of extensibility in the resulting model.

Mixer operates on the level of whole instructions and introduces the novel notion of multi-write
revisits to obtain a complete and optimal DPOR algorithm for MSA programs. Mixer does initiate
executions that are fruitless, but we provide a constant bound on the depth of such explorations.
Our implementation shows that Mixer is faster than the naive approach based on prior DPOR
algorithms and can verify realistic programs of moderate size that employ mixed-size accesses.
As discussed in §5, our observations and most of our results extend to transactional programs,

a class of programs that subsumes MSA programs. We leave the implementation of Mixer for
transactional programs and the comparison with Bouajjani et al. [2023] for future work.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. This work was supported by a
European Research Council (ERC) Consolidator Grant for the project “PERSIST” under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 101003349).

Data-Availability Statement

The benchmarks and tools used to produce the results of this paper can be found at [Marmanis
et al. 2025].

References

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.
2015. “Stateless model checking for TSO and PSO.” In: TACAS 2015 (LNCS). Vol. 9035. Springer, Berlin, Heidelberg,
353–367. https://doi.org/10.1007/978-3-662-46681-0_28.

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. “Optimal dynamic partial order
reduction.” In: POPL 2014. ACM, New York, NY, USA, 373–384. https://doi.org/10.1145/2535838.2535845.

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. July 2021. “Armed Cats: Formal
Concurrency Modelling at Arm.” ACM Trans. Program. Lang. Syst., 43, 2, (July 2021). https://doi.org/10.1145/3458926.

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. “Frightening small children and
disconcerting grown-ups: Concurrency in the Linux kernel.” In: ASPLOS 2018. ACM, Williamsburg, VA, USA, 405–418.
https://doi.org/10.1145/3173162.3177156.

Jade Alglave, Luc Maranget, and Michael Tautschnig. July 2014. “Herding cats: Modelling, simulation, testing, and data
mining for weak memory.” ACM Trans. Program. Lang. Syst., 36, 2, (July 2014), 7:1–7:74. https://doi.org/10.1145/2627752.

Ahmed Bouajjani, Constantin Enea, and Enrique Román-Calvo. June 2023. “Dynamic Partial Order Reduction for Checking
Correctness against Transaction Isolation Levels.” Proc. ACM Program. Lang., 7, PLDI, (June 2023). https://doi.org/10.1145
/3591243.

Jonathan Corbet. 2013. Introducing lockrefs. (2013). http://lwn.net/Articles/565734/.
Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.

2016. “Modelling the ARMv8 architecture, operationally: Concurrency and ISA.” In: POPL 2016. ACM, St. Petersburg, FL,
USA, 608–621. https://doi.org/10.1145/2837614.2837615.

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty,
and Peter Sewell. 2017. “Mixed-size concurrency: ARM, POWER, C/C++11, and SC.” In: POPL 2017. ACM, Paris, France,
429–442. https://doi.org/10.1145/3009837.3009839.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. Dec. 2017. “Effective stateless model
checking for C/C++ concurrency.” Proc. ACM Program. Lang., 2, POPL, (Dec. 2017), 17:1–17:32. https://doi.org/10.1145/31
58105.

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. Jan. 2023a. “Kater: Automating Weak Memory Model Metatheory
and Consistency Checking.” Proc. ACM Program. Lang., 7, POPL, (Jan. 2023). https://doi.org/10.1145/3571212.

Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. Jan. 2022. “Truly stateless, optimal
dynamic partial order reduction.” Proc. ACM Program. Lang., 6, POPL, (Jan. 2022). https://doi.org/10.1145/3498711.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3591243
https://doi.org/10.1145/3591243
http://lwn.net/Articles/565734/
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3498711

Model Checking C/C++ with Mixed-Size Accesses 75:21

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. June 2024. “SPORE: Combining Symmetry and Partial
Order Reduction.” Proc. ACM Program. Lang., 8, PLDI, (June 2024). https://doi.org/10.1145/3656449.

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. 2023b. “Unblocking Dynamic Partial Order Reduction.” In:
CAV 2023 (LNCS). Ed. by Constantin Enea and Akash Lal. Vol. 13964. Springer, 230–250. https://doi.org/10.1007/978-3-03
1-37706-8_12.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Oct. 2019a. “Effective lock handling in stateless model
checking.” Proc. ACM Program. Lang., 3, OOPSLA, (Oct. 2019). https://doi.org/10.1145/3360599.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019b. “Model checking for weakly consistent libraries.” In:
PLDI 2019. ACM, New York, NY, USA. https://doi.org/10.1145/3314221.3314609.

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. “GenMC: A model checker for weak memory models.” In: CAV 2021

(LNCS). Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12759. Springer, 427–440. https://doi.org/10.1007/978-3-030-
81685-8_20.

Michalis Kokologiannakis and Viktor Vafeiadis. 2020. “HMC: Model checking for hardware memory models.” In: ASPLOS
2020 (ASPLOS ’20). ACM, Lausanne, Switzerland, 1157–1171. https://doi.org/10.1145/3373376.3378480.

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. “Taming Release-acquire Consistency.” In: POPL 2016. ACM, St.
Petersburg, FL, USA, 649–662. https://doi.org/10.1145/2837614.2837643.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. “Repairing sequential consistency in
C/C++11.” In: PLDI 2017. ACM, Barcelona, Spain, 618–632. https://doi.org/10.1145/3062341.3062352.

Chris Lattner and Vikram Adve. 2004. “LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.”
In: CGO 2004. IEEE Computer Society, Palo Alto, California, 75. https://doi.org/10.5555/977395.977673.

Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. Jan. 2025. Model Checking C/C++ with Mixed-Size Accesses

(Replication Package). (Jan. 2025). https://doi.org/10.5281/zenodo.13938750.
Antoni Mazurkiewicz. 1987. “Trace Theory.” In: PNAROMC 1987 (LNCS). Vol. 255. Springer, Berlin, Heidelberg, 279–324.

https://doi.org/10.1007/3-540-17906-2_30.
Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. “A better x86 memory model: x86-TSO.” In: TPHOLs 2009. Springer,

Munich, Germany, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27.
Susmit Sarkar, Peter Sewell, Jade Alglave, LucMaranget, and DerekWilliams. 2011. “Understanding POWERmultiprocessors.”

In: PLDI 2011. ACM, 175–186. https://doi.org/10.1145/1993498.1993520.
Dennis Shasha and Marc Snir. Apr. 1988. “Efficient and correct execution of parallel programs that share memory.” ACM

Trans. Program. Lang. Syst., 10, 2, (Apr. 1988), 282–312. https://doi.org/10.1145/42190.42277.

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 75. Publication date: January 2025.

https://doi.org/10.1145/3656449
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.5555/977395.977673
https://doi.org/10.5281/zenodo.13938750
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/42190.42277

	Abstract
	1 Introduction
	2 Background
	2.1 Execution Graphs
	2.2 DPOR: Basics and Assumptions
	2.3 Mixed-Sized Accesses and Extensibility
	2.4 A Simple Workaround

	3 Mixer: Overview of our Solution
	3.1 Performing DPOR at the Instruction Level
	3.2 Multi-Write Revisits
	3.3 Mixer: Reconsidering Unconstrained Reads

	4 Mixer: Formal Definition, Correctness, and Optimality
	4.1 Execution Graphs
	4.2 Conditions on the Memory Consistency Model
	4.3 The Mixer Exploration Algorithm
	4.4 Termination, Soundness, Completeness, and Optimality
	4.5 Strong Optimality

	5 Extension for Transactions
	6 Implementation
	6.1 Tool
	6.2 RAMSA: An Example Memory Model

	7 Evaluation
	7.1 TrustMSA vs Mixer
	7.2 Mixer's Overhead
	7.3 Realistic Benchmarks

	8 Related Work
	9 Conclusion
	Acknowledgments

