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Abstract

A concurrent data-structure implementation is considened-
blockingif it meets one of three following liveness criteriaait-
freedomlock-freedomor obstruction-freedonDevelopers of non-
blocking algorithms aim to meet these criteria. Howeverdate
their proofs for non-trivial algorithms have been only mahu
pencil-and-paper semi-formal proofs. This paper proptsedirst
fully automatic tool that allows developers to ensure thairtalgo-
rithms are indeed non-blocking. Our tool uses rely-gu@@amea-
soning while overcoming the technical challenge of sourdoa-
ing in the presence of interdependent liveness properties.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.L¢gics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Formal Verification, Concurrent Programming, Live-
ness, Termination

1. Introduction

Non-blocking synchronisatiois a style of multithreaded program-
ming that avoids the blocking inherent to lock-based muaxal
clusion. Instead, alternative synchronisation techréqaee used,
which aim to provide certain progress guarantees even ifesom
threads are delayed for arbitrarily long. These techniguespri-
marily employed by concurrent implementations of datacstmes,
such as stacks, queues, linked lists, and hash tables (seex-f
ample, thejava.util.concurrent library). Non-blocking data
structures are generally much more complex than their haded
counterparts, but can provide better performance in theepiee of
high contention between threads [38].

An algorithm implementing operations on a concurrent data
structure is consideredon-blockingif it meets one of three com-
monly accepted liveness criteria that ensure terminatfaheoop-
erations under various conditions:

Wait-freedom [15]: Every running thread is guaranteed to com-
plete its operation, regardless of the execution speedbeof t
other threads. Wait-freedom ensures the absence of lkalud
starvation.
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Lock-freedom [23]: From any point in a program’s execution,
some thread is guaranteed to complete its operation. Lock-
freedom ensures the absence of livelock, but not starvation

Obstruction-freedom [16]: Every thread is guaranteed to com-
plete its operation provided it eventually executes ingtoh.
In other words, if at some point in a program’s execution we
suspend all threads except one, then this thread’s openatiio
terminate.

The design of a non-blocking algorithm largely depends oitlvh
of the above three criteria it satisfies. Thus, algorithmettgpers
aim to meet one of these criteria and correspondingly dlatise
algorithms as wait-free, lock-free, or obstruction-freey(, [14, 16,
25]). To date, proofs of the liveness properties for novidticases
have been only manual pencil-and-paper semi-formal prddfis
paper proposes the first fully automatic tool that allowsetigpers
to ensure that their algorithms are indeed non-blocking.

Reasoning about concurrent programs is difficult becautigeof
need to consider all possible interactions between coentlyrexe-
cuting threads. This is especially true for non-blockingpoaithms,
in which threads interact in subtle ways through dynamyeall
allocated data structures. To combat this difficulty, weeblasur
tool on rely-guarantee reasoning [18, 29], which considwery
thread in isolation under some assumptions on its envirohared
thus avoids reasoning about thread interactions direletiich of
rely-guarantee’s power comes from cyclic proof rules fdesa
straightforward generalisations of such proof rules terigss prop-
erties are unsound [1]. Unfortunately, in our applicatiee,have to
deal with interdependencies among liveness propertigs@dtls in
the program: validity of liveness properties of a thread depend
on liveness properties of another thread and vice versaegddve
this apparent circularity by showing that (at least for dltle al-
gorithms that we have examined) proofs can found that lagef n
circular liveness reasoning on top of weak circular reasgpabout
safety. We propose a method for performing such proofs bgatep
edly strengthening threads’ guarantees using non-circakeson-
ing until they imply the required liveness property (Sectit). We
develop a logic that allows us to easily express these ldymaofs
for heap-manipulating programs (Sections 3 and 4) and pitove
sound with respect to an interleaving semantics (Section 6)

In addition, we have found that the rely and guarantee condi-
tions needed for proving algorithms non-blocking can be of-a
stricted form: they need only require that certain eventeatdap-
pen infinitely often. This allows us to automate proving tkiedess
properties by a procedure that systematically searchgsdofs in
our logic with relies and guarantees of this form (Sectian 5)

Using our tool, we have automatically proved a number of the
published algorithms to be formally non-blocking, inclogichal-
lenging examples such as the HSY stack [14] and Michaeketin
list algorithm [25]. Proofs for some of the verified algorith re-
quire complex termination arguments and supporting safetp-
erties that are best constructed by automatic tools.



2. Informal development

We start by informally describing our method for verifyirigdness
properties and surveying the main results of the paper.

Example. Figure 1 contains a simple non-blocking implemen-
tation of a concurrent stack due to Treiber [33], written iICa

like language. A client using the implementation can calesal
push or pop operations concurrently. To ensure the correctness of
the algorithm, we assume that it is executed in the presehae o
garbage collector (see [17, Section 10.6] for justificatidde also
assume that single word reads and writes are executed atitymic
The stack is stored as a linked list, and is updated by corrgoaate
swap (CAS) instructions. CAS takes three arguments: a memor
address, an expected value and a new value. It atomicallg tbe
memory address and updates it with the new value when the ad-
dress contains the expected value; otherwise, it doesngpthi C
syntax this might be written as follows:

int CAS(WORD *addr, WORD vi1, WORD v2) {
atomic {
if (*addr == v1) { *addr
else { return 0; }
}
}

In most architectures an efficient CAS (or an equivalent aljen)
is provided natively by the processor.

The operations on the stack are implemented as follows. The
functioninit initialises the data structure. Thash operation {)
allocates a new node (i) reads the current value of the top-of-the-
stack pointes; (iii ) makes thexext field of the newly created node
point to the read value «f; and {v) atomically updates the top-of-
the-stack pointer with the new value If the pointer has changed
betweeni{) and {v) and has not been restored to its initial value,
the CAS fails and the operation is restarted. Fbe operation is
implemented in a similar way.

v2; return 1; }

Liveness properties of non-blocking algorithms.Notice that a
push or pop operation of Treiber's stack may not terminate if
other threads are continually modifyirgy in this case the CAS
instruction may always fail, which will cause the operatitm
restart continually. Thus, the algorithm is not wait-frelewever, it
is lock-free: ifpush andpop operations execute concurrently, some
operation will always terminate.

We note that an additional requirement in the definitionshef t
liveness properties given in Section 1 is that the propetiave
to be satisfied under any scheduler, including an unfair bae t
suspends some threads and never resumes them again: iagéis c
the remaining threads still have to satisfy the livenesperiies.
The properties form a hierarchy [10]: if an algorithm is wiaée,
it is also lock-free, and if it is lock-free, it is also obsttion-
free. Note also that even the weakest property, obstruftesdom,
prevents the use of spinlocks, because if a thread has adoair
lock and is then suspended, another thread may loop fongiegt
to acquire that lock.

We first describe our approach for verifying lock-freedom.

Reducing lock-freedom to termination. We show that the check-
ing of lock-freedom can be reduced to the checking of termina
tion in the spirit of [36]. Consider a non-blocking data sture
with operationsop,, ..., op,,. Let op be the command that non-
deterministically executes one of the operations on tha siatic-
ture with arbitrary parameters:

op =

if (nondet()) op;; else if (nondet()) op,; ... else op,;

2.1)

void init() {
S = NULL;
¥

struct Node {
value_t data;
Node *next;

)

Node *S; value_t pop() {
Node *t, *x;
void push(value_t v) { do {
Node *t, *x; t = 8S;
x = new Node(); if (t == NULL) {
x->data = v; return EMPTY;
do { }
t =8S; X = t->next;

} while(!'CAS(&S,t,x));
return t->data;

}

x->next = t;
} while(!CAS(&S,t,x));
}

Figurel. Treiber’'s non-blocking stack

We denote non-deterministic choice witbndet (). The definition
of lock-freedom of the data structure requires that fomalih any
(infinite) execution of the data structure’s most geneiiahttC'(m)
defined below, some operation returns infinitely often:
C(m) = | while (true) { op }
=1

We now show that this is the case if and only if for &llthe
following programC’ (k) terminates:

k
C'(k) = | op
=1
The proof in the “only if” direction is by contrapositive: aon-
terminating execution af’ (k) can be straightforwardly mapped to
an execution of”' (k) violating lock-freedom in which thehile
loops make at most one iteration executing the same opesatio
with the same parameters asGti(k). For the “if” direction note
that any infinite execution of(m) violating lock-freedom has
only finitely many (sayk) operations started: those that complete
successfully, those that are suspended by the schedulereaed
resumed again, and those that do not terminate. Such antiexecu
can then be mapped to a non-terminating executio@®'gk), in
which the operations are completed, suspended or nonrtatimg
as above.
Thus, to check lock-freedom of an algorithm, we have to check
the termination of an arbitrary number of its operationsing in
parallel.

2.2)

Rely-guarantee reasoning and interference specificationd\Ve
prove termination of the prograd@’ (k) using rely-guarantee rea-
soning [18, 29]. Rely-guarantee avoids direct reasonirauiahll
possible thread interactions in a concurrent program byifeg
arelation (theyuaranteecondition) for every thread restricting how
it can change the program state. For any given thread, tlom wfi
the guarantee conditions of all the other threads in therprodits
rely condition) restricts how those threads can interfere vijtarid
hence, allows reasoning about this thread in isolation.

The logic we develop in this paper uses a variant of rely-
guarantee reasoning proposed in RGSep [35]—a logic fobreas
ing about safety properties of concurrent heap-manimgdagiro-
grams, which combines rely-guarantee reasoning with aépar
logic. RGSep partitions the program heap into several thteeal
parts (each of which can only be accessed by a given threddhan
shared part (which can be accessed by all threads). Theiqradti
ing is defined by proofs in the logic: an assertion in the code o
thread restricts its local state and the shared state. iaddlty, the



partitioning is dynamic, meaning that we can use ownerghimst
fer to move some part of the local state into the shared state a
vice versa. Rely and guarantee conditions are then spewiftbd
sets of actions, which are relationa the shared statdetermin-
ing how the threads change it. This is in contrast with thgipail
rely-guarantee method, in which rely and guarantee canditare
relationson the whole program stat&@hus, while reasoning about
a thread, we do not have to consider local states of othemdkre

two contendingpush andpop operations can eliminate each other
without modifying the stack ipop returns the value thatush is
trying to insert. An operation determines the existencenaftizer
operation it could eliminate itself with by selecting a randslot
pos in thecollision array, and atomically reading that slot and
overwriting it with its thread identifienYID. The identifier of an-
other thread read from the array can be subsequently usest+o p
form elimination. The corresponding code does not affeziadok-

For example, using RGSep we can prove memory safety (no freedom of the algorithm and is therefore elided in Figur&ize

invalid pointer dereferences) and data structure comsigtéthe
linked list is well-formed) of Treiber’s stack [34]. The mfcon-
siders the linked list with the head pointed to by the vagatib be
in the shared state. Wherpash operation allocates a new nogdge
it is initially in its local state. The node is transferredthe shared
state once itis linked into the list with a successful CASrimstion.
The proof specifies interference between threads in thedistate
with three actionsPush, Pop, andld, with the following informal

algorithm implements the atomic read-and-write operatinrthe
collision array in a lock-free fashion using CASThis illus-
trates a common pattern, when one lock-free data structwrsed
inside another.

An RGSep safety proof of the HSY stack would consider the
data structures of the elimination scheme shared and desicr
terference on the shared state using the actions introdfmed
Treiber's stack and two additional actior’schg (which denotes

meaning:Push corresponds to pushing an element onto the stack the effect of the successful operation on & lision array de-

(a successful CAS ipush); Pop to removing an element from the
stack (a successful CAS pop); andld represents the identity ac-
tion that does not change the shared state (a failed CAS htiebal
other commands in the code of the threads).

Proving lock-freedom. Using the splitting of the heap into local
and shared parts and the interference specification fobdirsi
stack described above, we can establish its lock-freeddollaws.

As we showed above, it is sufficient to prove termination okedi
but arbitrary number of threads each executing a sipgkh or
pop operation with an arbitrary parameter. The informal probf o
this (formalised in Section 4) is as follows:

I. No thread executeBush or Pop actions infinitely often.
This is because Bush or Pop action corresponds to a success-
ful CAS, and once a CAS succeeds, the correspontiige
loop terminates.

Il. Thewhile loop in an operation terminates if no other thread
execute®ush or Pop actions infinitely often.
This is because the operation does not terminate only when it
CAS always fails, which requires the environment to execute
Push or Pop actions infinitely often.

Hence, every thread terminates.

The above proof uses rely-guarantee reasoning: it consists
proving severathread-localjudgements, each of which establishes
a property of a thread under an assumption about the interfer
ence from the environment. Properties of a parallel contiposof
threads are then derived from the thread-local judgemé&his.is
done by first establishing the guarantee provided by Stateinaed
then using it to prove termination of the operations. Thisgra—
establishing initial guarantees and then deriving new antaes
from them—is typical for proofs of lock-freedom. We now con-
sider a more complicated example in which the proof consikts
more steps of this form.

Hendler, Shavit, and Yerushalmi [14] have presented an im-
proved version of Treiber’s stack that performs better endhse of
higher contention between threads. Figure 2 shows an atlapte
abridged version of their algorithm. The implementatiombines
two algorithms: Treiber’s stack and a so-called eliminasoheme
(partially elided). Apush or apop operation first tries to modify
the stack as in Treiber’s algorithm, by doing a CAS to chamge t
shared top-of-the-stack pointer. If the CAS is successfehtthe
operation terminates. If the CAS fails (because of interiee from
another thread), the operation backs off to the eliminagicreme.

If this scheme fails, the whole operation is restarted.

The elimination scheme works on data structures that a@ sep

rate from the list implementing the stack. The idea behirsitihat

scribed above) an@thers (which includes all the operations on
the other data structures of the elimination scheme). Givisnin-
terference specification, the informal proof of lock-fregdof the
algorithm is as follows: in a parallel composition of seVéhaeads
each executing ongush or pop operation,

I. No thread executeRBush or Pop actions infinitely often

Il. push andpop do not execute th¥chg action infinitely often if
no other thread executdfush or Pop actions infinitely often
This is because a thread can only exechtag infinitely
often if its outerwhile loop does not terminate. This can only
happen if some other thread execuBash or Pop infinitely
often.

Il. push and pop terminate if no other thread execut&ush,
Pop, or Xchg actions infinitely often
This is because in this case both inner and owikérl e loops
eventually terminate.

From Statements | and Il, we get that no thread execBtes,
Pop, or Xchg actions infinitely often. Hence, by Statement lll every
thread terminates.

The above proof is done in a layered style, i.e., startingftioe
weak guarantee provided by Statement | and strengthenirsinigy
already established guarantees until it implies termimati his is
informally illustrated in Figure 3 for the case of two opévas (op1
andop2) running in parallel. The validity of the property of Thread
1 in the middle layer depends on the validity of the counterpa
property of Thread 2 and vice versa. However, it is unsound to
remove the upper layer of Figure 3 and justify the guarantahe
middle layer by circular reasoning, i.e., by observing th#tiread
satisfies the guarantee if the other thread does.

We have found that the proof method described above was
applicable in all of the examples of lock-free algorithmattive
have considered. In the next two sections we develop a lagic f
formalising proofs following the method.

Automating lock-freedom proofs. The above informal proofs of
lock-freedom use guarantee conditions of a restricted ftvat
specifies two sets of actions: those that a thread can exandte
those that it cannot execute infinitely often. We have foumat t
guarantee conditions of this form were sufficient to provekio
freedom for all the examples we considered. This obsenvatio
lows us to automate proving lock-freedom of an algorithm ysr s
tematically searching for termination proofs for a progreonsist-

1Such an operation could be implemented with an atomic exghisrstruc-
tion. The reason for implementing it with CAS is that in somehéectures
the atomic exchange instruction is either not availabldaw.s



struct Node {
value_t data;
Node *next;

};

Node *S;

int collision[SIZE];

void push(value_t v) {

Node *t, *x;

x = new Node();

x->data = v;

while (1) {
t =8S;
x->next = t;
if (CAS(&S,t,x)) { return; }
// Elimination scheme

value_t pop() {

Node *t, *x;
while (1) {
t = 8S;

if (t == NULL) {
return EMPTY;

}

X = t->next;

if (CAS(&S,t,x)) {
return t->data;

¥

// Elimination scheme

/.

int pos = GetPosition();

/). // 0 < pos < SIZE-1
int pos = GetPosition(); int hisId = collisionl[pos];
// 0 < pos < SIZE-1 while (!CAS(&collision[pos],hisId,MYID)) {
int hisId = collision[pos]; hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID)) { ¥
hisId = collision[pos]; /7 ..
} }
Y/ }
}
}
Figure2. The HSY non-blocking stack
op op, Consider a program consisting of an arbitrary number of the a

Thread 2 does not
executePush or
Pop infinitely often

Thread 1 does not
executePush or
Pop infinitely often

Thread 2 does not
executePush, Pop, or
Xchg infinitely often

Thread 1 does not
executePush, Pop, or
Xchg infinitely often

Thread 1 terminates Thread 2 terminates

Figure 3. An informal proof argument where an arrow from state-
ment A to statementB means thatd is used as a rely condition
while establishing the guarantéz

ing of an arbitrary number of the algorithm’s operationsning
in parallel: we search for proofs that follow the patternatied
above and use rely and guarantee conditions of the restfiote.
Our proof search procedure performs a forward search, mmtst
ing proof graphs like the one in Figure 3 top-down. Itis abledn-
struct proofs that the prograngs’ (k) terminate for allk at once,
because our guarantee conditions are such that if seveeadh
satisfy a guarantee, then so does their parallel composite now
informally describe the procedure using the HSY stack asithe
ning example (the details are provided in Section 5).

gorithm’s operations running in parallel. First, usingstixig tools
for verifying safety properties of non-blocking algorithrf6], we
can infer a splitting of the program state into local and star
parts and a set of actions describing how the operationgethitue
shared state{Push, Pop, Xchg, Others, Id} for the HSY stack).
The set defines the initial guarantee provided by every dipara
in the program that ensures that the operation changes #nedsh
state only according to one of the actions. Note that if searera-
tions satisfy this guarantee, then so does their paraltaposition.
Hence, while checking a property of an operation in the @ogr
we can rely on its environment satisfying the guarantee.duze-
antee, however, is too weak to establish termination of {her-o
ations. We therefore try to strengthen it by consideringeee-
tion in turn and attempting to prove that no operation exextie
action infinitely often in an environment satisfying the artee.
In our running example, we will be able to establish that the o
erations do not execute the actidhgsh and Pop infinitely often
(but notXchg andOthers). Again, if several operations satisfy the
guarantee strengthened in this way, then so does theitglamain-
position. Hence, we can check properties of the operatiorkd
program assuming that their environment satisfies the gtega
An attempt to prove their termination in this way fails agaand
we have to strengthen the guarantee one more time. Namely, we
try to prove that the operations do not execute the remaiatg
tions Xchg and Others infinitely often. In this case, the available
guarantee is strong enough to prove thatfhkg action is not exe-
cuted infinitely often. Finally, the strengthened guarargkows us
to establish termination of the operations.

Proving obstruction-freedom and wait-freedom.Obstruction-
freedom of an operation ensures its termination in an enviro
ment that eventually stops executing. Therefore, when ipgov
obstruction-freedom, infinite behaviours of the environtrere ir-
relevant and the necessary environment guarantee cansalveay



Values = {...,-1,0,1,...}
Vars = {z,y,...,&x, &y, ..

Locs = {1,2,...}
.} | Stores = Vars — Values

Heaps = Locs —a, Values Y = Stores X Heaps

Figure4. Program stateX

represented by a safety property. For example, the opesatid
Treiber’s stack guarantee that they modify the shared ataterd-
ing to one of the actionBush, Pop, andld. To prove obstruction-
freedom of apush or pop operatioR, it is thus sufficient to prove
its termination in an environment that executes only figitaany
such actions. This is true because, as in the proof of lcegdom,
in such an environment the CAS in the code of the operation
will eventually succeed. In general, we can automaticaligak
obstruction-freedom by checking termination of every agien
in the environment satisfying the safety guarantee infetne the
safety verification tool and the additional assumption thaie-
cutes only finitely many actions. We describe this in moreidiét
Section 5.

To the best of our knowledge, loops in all practical waitfre
non-blocking algorithms have constant upper bounds on tine-n
ber of their iterations. For example, Simpson’s algoritt¥2][con-
sists of straight-line code only, and the number of loopaiiens
in the wait-freef ind operation of a non-blocking linked list [37] is
bounded by the number of distinct keys that can be storectiligh
For this reason, termination of operations in wait-freenatbms
can be justified by considering only safety properties guteked by
operations’ environment. The automatic check for waiefiem is
similar to the one for obstruction-freedom (see Section 5).

3. Specifying liveness properties

Our logic for reasoning about liveness properties is a Hetyie
logic, which combines ideas from rely-guarantee reasoming
separation logic. It generalises a recent logic for reagpabout
safety properties of non-blocking algorithms, RGSep [2&].any
Hoare logic, ours consists of two formal systems: an asserti
language and a proof system for Hoare triples. In this secti@
describe the assertion language, define the form of judgesnien
our logic, and show how to specify wait-freedom, lock-freed
and obstruction-freedom in it. The next section preserdapic’s
proof system.

Programming language. We consider heap-manipulating pro-
grams written in the following simple programming language
Commandg” are given by the grammar

C == C1;Cs | if (e) C1 else C2 | while (e) C' | x =

*eq | *xep =

new()

|x =e|x = es | delete e | atomic C

where e ranges over arithmetic expressions, including non-
deterministic choicenondet (). The commandatomic C' exe-
cutesC' in one indivisible step. Programs consist of initialisa-
tion code followed by a top-level parallel composition ofethds:
Co; (C1]] ... ||Cn).

To avoid side conditions in our proof rules, we treat each pro
gram variablex as a memory cell at the constant address Thus,
any use ok in the code is just a shorthand fef&x). Similarly, we
interpret field expressions->next as*(x+ offset_of next). In
our examples, we also use other pieces of C syntax.

Assertion language. Letp, ¢ andr be separation logic assertions:

p,q, 7 i=emp|ei—e2|pxqg|false|p=gq|Jzp]...

2This example is used here for illustrative purposes onlystroiation-
freedom of Treiber’s stack follows from its lock-freedom.

Separation logic assertions denote sets of program statepre-
sented by store-heap pairs (Figure 4). A store is a functiom f
variables to values; a heap is a finite partial function frooations

to values. We omit the standard formal semantics for mos$teofs-
sertions [30]. Informallyemp describes the states where the heap
is empty;e1 — es describes the states where the heap contains a
single allocated location at the addressvith contents:s; pxq de-
scribes the states where the heap is the union of two didjeaps,
one satisfying and the other satisfying The formal semantics of
the assertion x ¢ is defined using a partial operation > such
that for all (¢1, h1), (t2, he) € 2

(t1,ha) - (t2, h2) = (t1, h1 W h2)

if t1 = t2 andhi Why is defined, andt1, h1) - (t2, h2) is undefined
otherwise. Then

uw € [p*xq] & Jur,us. u=wu1 -u2 Aus € [p] Auz € [¢]

As we argued in Section 2, while reasoning about concurrent
heap-manipulating programs it is useful to partition thegoam
state into thread-local and shared parts. Therefore,tassem our
logic denote sets of pairs of states fréin The two components
represent the statecal to the thread in whose code the assertion
is located and theharedstate. We use the assertion language of
RGSep [35], which describes the local and shared componéithis
separation logic assertions and is defined by following gnam

P,Q:=p|[p]| P+Q |true|false | PVQ|PAQ|3z.P

An assertiornp denotes the local-shared state pairs with the local
state satisfyingp; [p| the pairs with the shared state satisfying
p and the local state satisfyingnp; P * Q the pairs in which
the local state can be divided into two substates such that on
of them together with the shared state satisficand the other
together with the shared state satisfigsThe formal semantics
of P « Q is defined using a partial operatieron 22 such that for

all (l17 :3»’1)7 (lz7 82) S 22

(I1,81) * (2, 52) = (I1 - l2, 1)

if s1 = s2 andly - Iz is defined, andl1, s1) * (I2, s2) is undefined
otherwise. Thus,

o €[P*xQ] < Jo1,02.0 =01 x02 Ao € [P] Aoz € [Q]

Note that by abuse of notation we denote the connectives- inte
preted by andx with the same symbal. It should be always clear
from the structure of the assertion which of the two conwestis
being used. We denote global states franwith small Latin let-
ters (u, [, s), and local-shared state pairs framh with small Greek
letters ¢).

Judgements. The judgements in our logic include rely and guar-
antee conditions determining how a command or its enviraime
change the shared state. These represent languages ofafidite
infinite words over the alphabét? of relations on shared states
and are denoted with capital calligraphic letteRs G, . . .). A word

in any of the languages describes the sequences of chantfes to
shared state. Thus, relies and guarantees can define kveroger-
ties. This generalises the RGSep logic, in which rely andantae
conditions define safety properties and are therefore septed
with relations on the shared state. Our proof system has imdsk
of judgements:

e R,G F {P} C {Q}: if the initial state satisfied? and the
environment changes the shared state accordin® tdhen
the program is safe (i.e., it does not dereference any dhvali
pointers), changes the shared state accordigy &nd the final
state (if the program terminates) satisfigs



* R,(G1,G2) F {P} C1||C2 {Q}: if the initial state satisfie®
and the environment changes the shared state accordiRg to
then the progrant; ||C: is safe,C; changes the shared state
according tog;, C> changes the shared state according4p
and the final state (if both threads terminate) satigfje®is-
tinguishing the guarantee of each thread is crucial fonkas
proofs done according to the method described in Section 2.

The informal definition of judgements’ validity given aboes-
sumes a semantics of programs that distinguishes betwedn-th

or a guarantee all its prefixes also belong to it. Additionalie
require that relies and guarantees represent nonemptydges.

Splitting states into local and shared parts.We now informally
describe thesplit-statesemantics of programs that splits the pro-
gram state into local and shared parts (formalised in Seéjo

We partition all the atomic commands in the program into ¢hos
that access only local state of the thread they are execytedd
those that can additionally access the shared state. Bention,
the only commands of the latter kind asgomic blocks. For

cal and the shared state. We sketch how such a semantics can bexample, in the operations of Treiber’s stack, all the comuisa

defined later in this section. In Section 6 we give formal defins
of the semantics and the notion of validity, and relate therthé
standard ones, which consider the program state as a whole.

Specifying rely and guarantee conditions.As noted above, arely

except for CASes access only the local state. Further, wetaran
eachatomic block with an actionp ~» ¢ determining how it
treats the shared state, writtefomic,.., C. These annotations
are a part of proofs in our logic. For the logic to be sound, all
the judgements used in a proof of a program have to agree on

or a guarantee condition defines sequences of atomic chamges the treatment of the shared state. We therefore requirethieat
the shared state. We describe each such change with the aid okame annotation be used for any fixeebmic block throughout

actions[35] of the formp ~ ¢, wherep andq are separation logic
assertions. Informally, this action changes the part ofsthared
state that satisfieginto one that satisfieg, while leaving the rest
of the shared state unchanged. Formally, its meaning is arbin
relation on shared states:

[p~ al = {(s1- 50,52 50) | 51 € [p] A 52 € [q]}

It relates some initial state; satisfying the preconditiop to a
final states, satisfying the postconditiog. In addition, there may
be some disjoint stat® that is not affected by the action.

For example, we can define the three actions used in the pfroof o
lock-freedom of Treiber’s stack mentioned in Section 2 devics:

&S—y ~ &Sz * z—Node(v,y) (Push)
(Pop)
(I1d)

Here xz—Node(v, y) is a shortcut forx—wv * (x 4+ 1)—y. Recall
that the algorithm is assumed to be executed in the presdrace o
garbage collector. Hence, the node removed from the lidedyy
stays in the shared state as garbage.

In our examples, we syntactically define rely and guararee c
ditions using linear temporal logic (LTL) with actions a®maic
propositions. LetFalse and True be the actions denoting the re-
lations ® and ©? respectively. We denote temporal operators “al-
ways”, “eventually”, and “next” witho, ¢, and O, respectively.
Their semantics on infinite words is standard [22]. The séit&n
on finite words is defined as follows [20]: fat > 0

01..0mEOY & Viil<i<m=0d...0mEV
01..0m EQOY & Fi.1<i<mA§...0n T
0..0mEOY & m>2=0..0nEVY

Note that hereD is the weaknext operator: it is true if there is
no next state to interpret its argument over. For exampl®,
where R C ¥2, denotes the language of words in which every
letter is fromR (including the empty word);0< R denotes words
which contain only finitely many letters frol (including all finite
words), and>OFalse denotes exactly all finite words. We specify
termination of a command by requiring that it satisfy thergnéee
OOFalse, i.e., we interpret termination as the absence of infinite
computations. This is adequate for programs in the langirge
duced above, since they cannot deadlock.

The semantics of triples in our logic makes no assumptions
about the scheduler. In particular, it can be unfair withpess
to the command in the triple: the guarantee condition inesud

&S—x * x—Node(v,y) ~ &Sy * z—Node(v, y)

emp ~ emp

words corresponding to the command being suspended and neve

executed again. For this reason, all rely and guaranteatamslin
this paper are prefix-closed, i.e., for any word belonging tely

the proof.

In the split-state semantics the commaatbmic,.., C' exe-
cutes as follows: it combines the local state of the thre&ldke-
cuted by and the part of the shared state satisfyjrmgnd runsC on
this combination. It then splits the single resulting siate local
and shared parts, determining the shared part as the onsatisat
fiesq. The new shared state is thus this part together with the part
of the shared state untouched ®yFor the splittings to be defined
uniquely (and for our logic to be sound), we require thandgq in
all annotations be precise assertions [28]. An assertismprecise
if for any stateu there exists at most one substsde. (u) satisfy-
ing r: u = sat,(u) - rest,(u) for somerest, (u). The assertions in
all the actions used in this paper are precise.

Let CASa(addr, v1, v2) be defined as follows:

if (nondet())
atomica {

assume (*addr == v1); *addr = v2; return 1;
}
else
atomiciy { assume (*addr !'= v1); return 0; }

where theassume command acts as a filter on the state space of
programs—e is assumed to evaluate to 1 aftetsume(e) is ex-
ecuted. The above definition of CAS is semantically equivale
to the definition in Section 2, but allows different actionnan
tations for the successful and the failure cases. We amnttat
CAS commands in thpush andpop operations of Treiber’s stack
asCASpush (&S, t, x) andCASp., (&8, t, x), respectively. Similarly,

we annotate the CAS in the inner loop of the HSY stack as
CASxchg (&collision[pos], hisId, MYID).

Specifying wait-freedom, lock-freedom, and obstructifmeedom.

A non-blocking data structure is given by an initialisatimutine
init and operationsp,, . . ., op,, on the data structure. We require
that the initialisation routine satisfy the triple

old, OTrue - {} init {Inv}

for some data structure invariaiv restricting only the shared
state: the routine creates an instance of the data struictutes
shared state when run in isolation (i.e., in the environnbat
does not change the shared state). For Treiber's stack aniant
maintained by all the operations on the data structure is 3ha
points to the head of a linked list. We can express this in our
assertion language using an inductive predicate asséstgix, y)

of separation logic that represents the least predicatsay

Iseg(z,y) < (¢ = y A emp)
V (Fz. = # y A z—Node(, z) * Iseg(z,y))



Thus, Iseg(x, NULL) represents all of the states in which the heap
has the shape of a (possibly empty) linked list starting flacation
x and ending WitlNULL. The invariant can then be expressed as

(3.1)

In our logic, we can express the liveness properties of non-
blocking algorithms we introduced before as follows. Wait-
freedom of an operatiosp; is captured by the triple

R, OOFalse - {Inv} op, {true} (3.2)

which ensures termination of the operation under the iaterf
ence from the environment allowed by the rely conditi@n
Obstruction-freedom of an operatioep; can be expressed as

R A OOFalse, OOFalse - {Inv} op, {true} (3.3)

Here R describes the allowed interference from the operation’s
environment, and the conjun¢tOFalse ensures that eventually all
the threads in the environment will be suspended. As we sthawe
Section 2, lock-freedom can be reduced to proving ternonati
several operations run in isolation, which is ensured byétielity

of the triples

Inv = [Jz. &S — = * Iseg(z, NULL) * true]

ald, ©OFalse F {Inv} C’ (k) {true}

for all k, where the prograr6’ (k) is defined by (2.2).

Note that obstruction-freedom and wait-freedom are diyect
compositional properties and can thus be specified for evpry
eration separately. The specification of lock-freedom ictams all
operations at once, however, as we show in the next sectsmoaw
still reason about lock-freedom in a compositional way.

(3.4)

4. Compositional proof system for livenessand
heaps

To reason about judgements of the form introduced in theiprev
ous section we nee@d) a method for proving thread-local triples
(i.e., those giving a specification to a single thread) @inc proof
system for combining thread-local triples into triples abparal-

lel compositions. We describe an automatic method for pigvi
thread-local triples in Section 5 (theHREADLOCAL procedure
and Figure 7). In this section, we present the second conmperee
compositional proof system for reasoning about livenespgities

of heap-manipulating programs, shown in Figure 5. We eriftze
proof rules by example of formalising the informal proofdatk-
freedom from Section 2. In Section 5 we show how to construct
such proofs automatically, and in Section 6 we prove thefprdes
sound with respect to an interleaving semantics.

We first introduce two operations on languages used by the

rules. LetL(A) denote the language of all finite and infinite words
over an alphabetl. We denote the concatenation of a finite word
a € L(A) and a word (either finite or infinite} € L£(A) with
af. The safety closur€L(G) of a language C L(A) is the
smallest language defining a safety property that contgifi].

In the setting of this paper, where all the languages corsidare
prefix-closedCL(G) can be defined as the set of wordsuch that
every prefix ofa is in G:

CL(G) ={a e L(A)|VB,y.a=py = BEG}

For two wordsa, 3 € L(A), we denote the set of their fair
interleavings witha|3 (we omit the standard definition [4]). We
lift this to language$ii, G2 C L(A) as follows:

G1l1G2 = (J{allB | a € G1 A B € G2}

4.1 Proving lock-freedom of Treiber’s non-blocking stack

We start by proving termination of any two operations withiar
trary parameters (which we denote with,; andop,,) running in

R|ICL(G2),G1 F {P1} C1 {Q1}
R|ICL(G1),G2 F {P2} C2 {Q2}

PAR-C
R.(G1,Ga) - {Pyx Pa} Ca][Ca {Qr % Qa}
R,G+ {rPrc{Q}
P =P /RHIQR lggg / Q=Q CONSEQ
R, G H{P'}C{Q"}
R,(G1,G2) F {P1 * P2} C1]|Cs {true}
RIG2,G1 = {P1} C1 {Q:1}
: Rnghgé F{P:} C: {Q2} PAR-NC
R,(G1,G2) F {P1* P2} C1|C2 {Q1 % Q2}
R, (G1,G2) F{P} C1]|C2 {Q} PAR-MERGE

R,G1[|G2 = {P} C1C2 {Q}
R'.G' -{P} C{Q'}
R//,g" - {P"} C {Q//}
R/ ﬂR//,gl N g'// = {P/ A P”} C {Q/ A Q”}

CoONJ

Figure 5. Proof rules for reasoning about liveness properties of
heap-manipulating programé. denotes eitheg or (G1,G2) de-
pending on whether the triple distinguishes between theagiees
provided by the different threads. In the latter case opmraton
(G1, G2) are done componentwise.

parallel and consider the general case later. To provetieidiave
to derive the triple

old, GOFalse = {Inv} op,, [lop,, {true} (4.2)

for the data structure invariaiv defined by (3.1).

Statement |. Formally, the statement says that every thread has to
satisfy the guarantee

G = 0O(Push Vv Pop V Id) A =0 (Push Vv Pop)

where the actionBush, Pop, andld are defined in Section 3. The
first conjunct specifies the actions that the thread can éxeand
the second ensures that it cannot execute the adéiestsandPop
infinitely often. In order to establish this guarantee, wexdbhave
to make any liveness assumptions on the behaviour of otreadk;
just knowing the actions they can execuRugh, Pop, andld) is
enough. We therefore use the rulerRRC to establishg. It is a
circular rely guarantee rule [1] adapted for reasoning ttheaps.
It allows two threads to establish their guarantees simattasly,
while relying on the safety closure of the other thread'srgotee
that is being established. Note that without the safetyurtoshe
circular rules like this are unsound for liveness propertid. Note
also that pre- and postconditions of threads in the prenusése
rule arex-conjoined in the conclusion: according to the semantics
of the assertion language, this takes the disjoint comipositf the
local states of the threads and enforces that the threadsthav
same view of the shared state. It is this feature of our prolefsr
that allows us to reason modularly in the presence of heap.
Applying PAR-C with G = G2 = G andR = CL(G), we get:

CL(G)|ICL(G), G F {Inv} op,; {true}
CL(G)|ICL(G), G F {Inv} op,, {true}
CL(G), (G,G) - {Inv« Inv} op,, |op,, {true * true}

Taking the safety closure ¢f removes the second conjunct repre-
senting the liveness part 6f

CL(G) = 0(Push V Pop V Id)

(4.2)




Additionally, CL(G)||CL(G) = CL(G), so that the premises sim-
plify to triples

CL(G9),G F {Inv} op; {true}, j € {il,i2} (4.3)

which ensure that the thread does not exeButh andPop actions
infinitely often, provided the environment executes onlyicarts
Push, Pop, and Id. We show how to discharge such triples in
Section 5. Their proof would formalise the informal just#ion
of Statement | given in Section 2 and would use the annota@bn
atomic blocks introduced in Section 3 to determine the splitting of
states into local and shared parts.

Sincelnv restricts only the shared statay * Inv < Inv, hence,
the conclusion of (4.2) is equivalent to

CL(9),(G,9) - {Inv} op,,[lop,, {true} (4.4)

SinceG C CL(G), we can then apply a variation on the rule of con-
sequence of Hoare logic,dliSEQ which allows us to strengthen
the rely condition ta7:

G,(G,9) F {Inv} op;, [lop;, {true}

Statement Il. Termination is captured by the guarante@False,
which says that eventually the program does not executerany t
sitions. To prove this guarantee, we use the non-circulbr re
guarantee rule AR-NC, which allows the first thread to replace
its guarantee with a new one based on the already establishe
guarantee of the other thread, and vice versa. Note thatrdte fi
premise need only establish the postconditieae, since the post-
condition Q1 * Q2 of the conclusion is implied by the other two
premises. Applying RR-NC with R = G = G2 = G and

g1 = G5 = OOFalse, we get:

G,(9,G) F {Inv} op,, [lop;, {true}
G||G, ©OFalse - {Inv} op,, {true}
G||G, ©OFalse - {Inv} op,, {true}
G, (©OFalse, ©OFalse) F {Inv} op,,||op,, {true}

(4.5)

(4.6)

We have already derived the first premise. SiGt¢ = G, we need
to discharge the following thread-local triples (againtposed to

Section 5):
G, OOFalse I {Inv} op; {true}, j € {il,i2} (4.7)

We no longer need to distinguish between the guaranteeg of th
two threads in the conclusion of (4.6). Hence, we use theRaie

MERGE, which merges the guarantees provided by the threads into

a single guarantee provided by their parallel composition:

G, (COFalse, OOFalse) + {Inv} op,,||op,, {true}
G, (COFalse)||(COFalse) F {Inv} op,, |lop,, {true}
The conclusion is equivalent to
G, OOFalse - {Inv} op,, ||op,, {true} (4.8)

from which (4.1) follows by @NSEQ This proves termination of
the two operations.

Arbitrary number of operations. We can generalise our proof
to an arbitrary number of operations as follows. First, ribigt
applying RR-MERGEON (4.4), we get:

CL(9),G F {Inv} op;, [lop,, {true} (4.9)

Hence, the proof for two operations establishes (4.9) an8) (4
given (4.3) and (4.7), i.e., it shows that the parallel cosiipan

op,; ||op,, preserves the properties (4.3) and (4.7) of its constituent
operations. Note that this derivation is independent optmticular
definitions ofop,; andop,, satisfying (4.3) and (4.7).

d

This allows us to prove by induction dnthat

CL(G),G F {Inv} op;y||. .. [[op;; {true}
G, OOFalse F {Inv} op,, || - . . ||lop,; {true} (4.10)

is derivable in our proof system for anfy > 1. Fork = 1
the triples are established by (4.3) and (4.7). For the itidoic
step, we just repeat the previous derivation wifh), replaced by
0p;1 || - - - [lop;;, @andop;, replaced byop; . 1)

Applying CoNsSEQto (4.10), we get (3.4), which entails lock-
freedom of Treiber’s stack.

Note that instead of doing induction on the number of threads
we could have formulated our proof rules fothreads. To simplify
the presentation, we chose the minimalistic proof system.

4.2 Proving lock-freedom of the HSY non-blocking stack

The actionXchg used in the informal proof of lock-freedom of the
HSY stack (Section 2) can be formally defined as follows:

0 <4¢ < SIZE—1Acollision[iJ—_- ~ collision[i]—_
(Xchg)

The abridged data structure invariant is:

Jz. &S +— x x Iseg(z, NULL) * true
SIZE—1

* @i
(We elided some of the data structures of the eliminatioeseh)

We now formalise the informal proof from Section 2 for two
operationsp,; andop,, running in parallel.

Inv =

collision[i] — _*...

Statement |. The statement requires us to establish the guarantee
G = O(Push V Pop V Xchg V Others V Id) A =0 (Push V Pop)

whereOthers describes the interference caused by the elimination
scheme (elided). As before, we can do this using . Given the
thread-local triples (4.3) with the newly definegl;,, op,,. G, and

Inv, we can again derive (4.5) and (4.9), where

CL(G) = O(Push V Pop V Xchg V Others V Id)

Statement Il. Now, provided that a thread satisfies the guarantee
G, we have to prove that the other thread satisfies the guarante

G’ = 0(Push Vv Pop V Xchg V Others V Id) A ~0OXchg
To this end, we use the non-circular rely-guarantee rak-RC:
G,(G,9) - {Inv} op,, lop;, {true}
GllG, g’ + {Inv} op,; {true}
G|G,G" + {Inv} op,, {true}
G,(¢',6") - {Inv} op;, [lop;, {true}
We thus have to establish the following thread-local teple
G,G"F {Inv} op; {true}, j € {il,42} (4.12)

We can now use the conjunction rulepfy, to combine the guar-
anteeg; andg’ into a single guaranteg’:

G,(G,9) F {Inv} op,, ||op,, {true}
G,(g',G') - {Inv} op,, [|op,, {true}
G,(¢",G") - {Inv} op,, [[op;, {true}

(4.12)

where

g//

G AG' = 0O(Push V Pop V Xchg V Others V Id)
A =0 (Push v Pop V Xchg)

This combines Statements | and Il. Applyin@SSEQ we get:
G",(G",G") - {Inv} op;, ||op,, {true}



procedure LOCKFREE(init, op)
(Inv, G1) := SAFETYGUARANTEE(init, op)
Go =10
do
G = 0G1 A O00G2
if THREADLOCAL(G, OOFalse + {Inv} op {true})
return “Lock-free”
Gg = Gz
for each A € (G1 \ G3) do
if THREADLOCAL(G, -O<CA  {Inv} op {true})
Gy :=G2U{A}
while GS # Go
return “Don’t know”

Figure 6. Proof search procedure for lock-freedom

Thus, we have strengthened the guaradgied Statement | to the
guarantee;” .

Statement Ill.  Finally, we can formalise Statement Il by apply-
ing the rule RR-NC to establish termination:

G",(9",G") - {Inv} op;, [|op,, {true}
G"||G", OOFalse - {Inv} op,; {true}
G"||g", ©OFalse F {Inv} op,, {true}

G", (COFalse, ©OFalse) F {Inv} op,, ||op;, {true}

provided we can establish the thread-local triples

G" OOFalse F {Inv} op; {true}, j € {il,i2} (4.13)
By PAR-MERGEWe then get:
G", ©OFalse - {Inv} op,; |lop,, {true} (4.14)

which proves the termination of the two operations.

Arbitrary number of operations. From the conclusion of (4.12),
by PAR-MERGEWe get:

G.G" F{Inv} op;, [lop,, {true} (4.15)

Thus, the above derivation establishes (4.9), (4.15), @nti4)
given (4.3), (4.11), and (4.13). As before, this allows uprtove
by induction onk that the following triples are derivable in our
logic for anyk > 1:

CL(9),G = {Inv} op;y || - .. [lop; {true}
G,G" - {IV} opy | .- lopyy {bruc}
G",OOFalse - {Inv} op,, || ... ||op,, {true}

The last one implies lock-freedom of the HSY stack.

5. Automation

In this section we describe our automatic prover for liven@®p-
erties of non-blocking concurrent algorithms. Our tooliput is

a liveness property to be proved and a program in a C-like lan-
guage consisting of the code of operatieps, . . ., op,, of a non-
blocking algorithm, together with a piece of initialisaticode
init. We remind the reader that we denote withthe command,
defined by (2.1), that non-deterministically executes drteeop-
erationsop, on the data structure. We first describe how our tool
handles lock-freedom.

Proving lock-freedom via proof search.Recall that to prove
lock-freedom, we have to prove termination of the progr@hk)

defined by (2.2) for an arbitrark. All rely and guarantee condi-
tions used in the examples of such proofs in Section 4 had a re-
stricted formoA; A -0 Az, whereA, and A, are sets (disjunc-
tions) of actions andl. C A;. Here A; is the set of all actions
that a thread can perform, whereds is the set of actions that the
thread performs only finitely often. In fact, for all the nbfecking
algorithms we have studied, it was sufficient to considey agld
guarantee conditions of this form to prove lock-freedom.

We prove termination ofC’(k) by searching for proofs of
triple (3.4) in our proof system in the style of those presdrin
Section 4 with relies and guarantees of the fan; A -0 As.
There are several ways in which one can organise such a proof
search. The strategy we use here is to perform forward search
explained informally in Section 2.

Figure 6 contains our procedureotKFREE for proving lock-
freedom. It is parameterised with two auxiliary procedurésose
implementation is described later:

e SAFETYGUARANTEE(init,op) computes supporting safety
properties for our liveness proofs, namely, a data stredmur
variantinv such that

old, OTrue - {} init {Inv}

and an initial safety guarantee provided by every operation
which is defined by a set of actiod$; = {A1,...,A,} such
that

(5.1)

0G1,0G: + {Inv} op {Inv} (5.2)

THREADLOCAL(R, G F {Inv} op {true}) attempts to prove
the thread-local tripl&R, G F {Inv} op {true} valid. The no-
tion of validity of thread-local triples used byHREADL OCAL
corresponds to the informal explanation given in Section® a
is formalised in Section 6.

LocKFREE first calls S\FETYGUARANTEE to compute the
data structure invariaritv and the safety guaranteaG,. In our
proofs of liveness properties, rely and guarantee conditiare
then represented using LTL formulae with action€inas atomic
propositions. A side-effect of 8&ETYGUARANTEE is that it an-
notatesatomic blocks inop with actions fromG; as explained in
Section 3. These annotations are used by the subsequentaall
THREADL OCAL, which ensures that all thread-local reasoning in
the proof of lock-freedom uses the same splitting of the g
state into local and shared parts.

Having computed the safety guarantee, we enter into a loop,
where on every iteration we first attempt to prove termimatd
op using the available guarantee. If this succeeds, we havegro
lock-freedom. Otherwise, we try to strengthen the guaesnt&; A
—-0<G2 by considering each action @, \ G2 and trying to prove
that it is executed only finitely often using the current gudiee as
a rely condition. If we succeed, we update the guarantee éiygd
the action to the set of finitely executed actidgis. If we cannot
prove that any action fror#; \ G2 is executed only finitely often,
we give up the search and exit the loop.

This procedure scales because in practice the set of actipns
computed by 8FETYGUARANTEEIs small. This is due to the fact
that actiong ~ ¢ are local in the sense thatandq describe only
the parts of the shared state modified by atomic blocks.

It is possible to show that a successful run @fdkFREE con-
structs proofs of triples (3.4) for all. We can construct the proofs
for any number of threads uniformly because the guaraigiessd
in them are such thaf||G = G. The construction follows the
method of Section 4. The only difference is that the proofs-co
structed by lockFREEfirst apply the rule RR-C to triples (5.2)
with G1 = G2 = 0OG;. SinceCL(OG:1) = OGH, this establishes
the initial safety guaranteeG., which is then strengthened using



R,G + {Inv} op {true}

C

Automata-theoretic framework [36] )

Fair termination of(op||asyndR ) ||sync—G
v
( SMALLFOOTRG [6] )

v

Abstract transition system

( Translation to arithmetic programs [3, Z:Eb
v

Equiterminating arithmetic program

( TERMINATOR with fairness [8] )

v
Valid/Don't know

Figure 7. The high-level structure of theHREADLOCAL proce-
dure for discharging thread-local triples

the rule RR-NC. In the proofs of Section 4, these two steps were
performed with one application of the rule®-C.

We now describe the two auxiliary procedures used byrk-
FREE—SAFETYGUARANTEE and THREADL OCAL.

The SAFETYGUARANTEE procedure. We implement the proce-
dure using the 8ALLFOOTRG tool for verifying safety properties
of non-blocking algorithms [6]. 8ALLFOOTRG computes a data
structure invariant and an interference specification bjopming
abstract interpretation of the codefit andop over an abstract
domain constructed from RGSep formulae. This abstractprge
tation is thread-modular, i.e., it repeatedly analyseaisgp threads
without enumerating interleavings using an algorithm Entb the
one described in [12]. For the invariant and interferenaxiica-
tions computed by 8ALLFOOTRG to be strong enough for use in
liveness proofs, its abstract domain has to be modified tp ttaek
of the lengths of linked lists as described in [21].

RGSep judgements can be expressed in our logic by triplds wit
rely and guarantee conditions of the form®, where A is a set of
actions. MALLFOOTRG proves the validity of RGSep judgements
that, when translated to our logic in this way, yield (5.1) €5.2).

The THREADL OCAL procedure. We prove a thread-local triple
R,G + {Inv} op {true} using a combination of several existing
methods and tools, as shown in Figure 7. For technical reason
in this procedure we assume tH&t and G consist of only infi-
nite words andp has only infinite computations. This can always
be ensured by padding the finite wordsRnandG with a special
dummy action and inserting an infinite loop at the endpfexe-
cuting the action. To prove the triple, G - {Inv} op {true}:

o We first represenR and -G as Biichi automata, whose tran-
sitions are labelled with actions from the €&t computed by
SAFETYGUARANTEE and apply the automata-theoretic frame-
work for program verification [36]. This reduces proving the
triple to proving that the prograrfop||asyndR)|lsync™G termi-
nates when run from states satisfying the preconditierun-
der the fairness assumptions extracted from the accepbing c
ditions of the automata foR and —G. Hereop||asyndR is the
asynchronous parallel composition interleaving the etiecs
of op and the automatorR in all possible ways. The pro-
gram (op||asyndR) ||sync—G is the synchronous parallel compo-

sition of op||asyndR @nd the automatonG synchronising on ac-
tions of op. Intuitively, fair infinite executions of the program
(op|lasyndR) ||syncmG correspond to the executions ep in an
environment satisfying the relig that violate the guaranteg.
Its fair termination implies that there are no such exeaigtio

To check fair termination ofop||asyndR)||syncmG, We analyse
it with the abstract interpreter of MALLFOOTRG [6], which
produces an abstract transition system over-approxigédiia
program’s behaviour. The interpreter uses the annotatitns
atomic blocks computed by ABETYGUARANTEE to choose
the splitting of the heap into local and shared parts.

e Using the techniques of [3, 21], from this transition system
we then extract an arithmetic program (i.e., a program with-
out the heap with only integer variables), whose fair teanin
tion implies fair termination ofop||asyndR) ||syncG. The arith-
metic program makes explicit the implicit arithmetic infor
mation present in the heap-manipulating program that can be
used by termination provers to construct ranking functiéios
example, it contains integer variables tracking the length
linked lists in the original program.

Finally, we run a termination prover ERMINATOR with fair-
ness [8]) to prove fair termination of the arithmetic progra

We note that proofs of thread-local statements may be more
complicated then the ones in the examples of Section 2, winch
based on control-flow arguments. For example, for Michawelis-
blocking linked list algorithm [25] they involve reasoniragpout
lengths of parts of the shared data structure. Furtherntbee,
proofs may rely on complex supporting safety properties ¢ma
sures that the data structure is well-formed. Automatitgapport
is indispensable in constructing such proofs.

Proving obstruction-freedom and wait-freedom.As we showed
in Section 2, proving obstruction-freedom or wait-freedofran
operation in a non-blocking algorithm usually requiresycsdfety
guarantees provided by the operation’s environment. Iriamiy we
use the guaranteeG, inferred by S\FETYGUARANTEE. Namely,
we prove obstruction-freedom of an operatign by establishing
triple (3.3) withR = OG; via a call to

THREADLOCAL(OG1 AOOFalse, OOFalse - {Inv} op, {true})

We can prove wait-freedom of an operatiop; by establishing
triple (3.2) withR = OG; via a call to

THREADLOCAL(OG1, ¢OFalse F {Inv} op, {true})

Experiments. Using our tool, we have proved a humber of non-
blocking algorithms lock-free and have found counterexasp
demonstrating that they are not wait-free. The examplesnaé a
ysed include a DCAS-based stack, Treiber’s stack [33], tB& H
stack [14], a non-blocking queue due to Michael and Scoft4a6
its optimised version due to Doherty et al. [9], a restriadedble-
compare single-swap operation (RDCSS) [13], and Michaelis
blocking linked list [25]. In all cases except Michael's atghm
the tool found a proof of lock-freedom in less then 10 minutes
Verification of Michael's algorithm takes approximately 8uns,
which is due to the unoptimised arithmetic program generaa
the inefficient version of the termination prover that wereuntly
use.

We have also tested our tool by proving the obstructioneioe®
of the above lock-free algorithms. (Obstruction-free atipons that
are not lock-free typically traverse arrays, handling \hig be-
yond the scope of the shape analysis that we use.) Addilyomnad
have checked that the deletion operation of a linked lisbrétlgm
by Vechev and Yahav [37, Figure 2] is not obstruction-freedh-
served by the authors), even though it does not use locks.



We do not report any results for wait-free algorithms in this
paper. Operations consisting of straight-line code ongytavially
wait-free. Proving termination of wait-frefand operations in non-
blocking linked lists mentioned in Section 2 requires tiagkthe
keys stored in the list, which is not handled by our shapeyaizal

6. Semanticsand soundness

We give semantics to programs with respect to labelled itrans
tion systems with states representing the whole programp. fidee
proof of soundness of our logic with respect to this globahae-
tics is done in two steps. We first show that, given a transiigs-
tem denoting a program, we can construct another transijistem
operating on states that distinguish between local ancdhagap,
according to the informal description given in Section 3etpre-
tation of judgements in this split-state semantics is ghrdédrward.
We then relate the validity of judgements in the split-stman-
tics to the standard global notion of validity. The resuttghis sec-
tion do not follow straightforwardly from existing ones,vhever,
the techniques used to formulate the split-state semaanit prove
the soundness theorems are the same as for the RGSep Idgic [35

6.1 Global semantics

We represent denotations of programs as a variant of labete-
sition systems (LTS).

DEFINITION 1 (LTS). A labelled transition system (LTS) is a
quadrupleS = (X, T, ®,T), where

¢ Y is the set of non-erroneous states of the transition system,

e T ¢ Xisadistinguished error state (arising, for example, when
a program dereferences an invalid pointer),

e & C Y isthe set of final states, and

e T is the set of transitions such that everye T is associated
with a transition functionf; : ¥ — P(Z) U{T}, whereP(X)
is the powerset of.

DEFINITION 2 (Computation of an LTS)A computation of an
LTS(X, T, ®,T) starting from an initial stateuy € X is a maxi-
mal sequenceo, u1, . . . of statesu; € ¥ U {T} such that for alki
there exists a transition € T such thatu;41 = T if fr(u;)) =T
andu;y1 € fr(u;) otherwise.

Given a thread” in the programming language of Section 3,
we can construct the corresponding LT&] in the following
way. Let us assume for the purposes of this constructiontlieat
program counter of the thread is a memory cell at a distirgas
address&pc, implicitly modified by every primitive command.
As the set of stateXx of the LTS we take the one defined in
Figure 4. The final states are those in which the program eount
has a distinguished final value. Every atomic command in the
thread, includingatomic blocks, corresponds to a transition in the
LTS. Conditions inif andwhile commands are translated in the
standard way usingssume commands. The transition functions
are then just the standard postcondition transformersg30,

The denotation of a parallel composition of threads is thralpa
lel composition of their denotations, defined as follows.

DEeFINITION 3 (Parallel composition of LTSesThe paral-
lel composition of two LTSesS: (X, T,®:,71) and
So = (X, T, o, Ts), whereTy N'T> = (), is defined as the LTS
5'1”52 = (Z, T, o1 NP, T W Tz).

As follows from Definitions 2 and 3, the parallel composition
interleaves transitions from two LTSes on the same menory
without any fairness constraints. Note that we can alwayisfga
Ty N'T» = ( by renaming transitions appropriately.

6.2 Split-state semantics

We now show that given an LTS we can construspét LTSthat
distinguishes between the local and the shared state. Jeitid,
we assume a labelling function that maps each transition in an
LTS to eitherLocal for operations that only access the local state,
or Shared(p ~ ¢q) for operations that access both the local and
the shared state. Note that for a progr@mwe can construct such a
labellingm< from the annotations we introduced in Section 3: com-
mands outsidetomic blocks are mapped toocal and annotations
atatomic blocks give the parameters Shared.

Given a labellingr for an LTS(X, T, ®, T'), we can define the
corresponding split LTS a&?, T, ® x X, T”), whereT” consists
of fresh copies of transitions’ for every transitionr ¢ 7. The
program counter of a thread is always in its local state, @éenc
the set of states of the split LTS in which it has the final vakie
® x X. The transition functions for the split LTS are defined as
follows. If 7(7) = Local, thent’ executes on the local state and
preserves the shared stafei(l,s) = f- (1) x {s}if f-(I) # T,
andf,/(l,s) = T otherwise. Ifr(7) = Shared(p ~ ¢), then the
execution ofr’ follows the informal description of the execution of
atomic blocks in Section 3:

f7/'/ (l,s) =
LJ{(restq(u)7 satq(u) - restp(s)) | u € fr(1-satp(s))}

if saty(s) is defined,f- (I - satp(s)) # T, andsatq(u) is defined
forallu € f-(I-saty(s)); otherwises’ faults: f,. (I, s) = T.

6.3 Validity in the split-state semantics

To define validity of triples in the split-state semantice have

to define the meaning of interleaving computations of a I8
(X2, T,® x X, T) with actions of an environment changing the
shared state according to a rely conditiBnC £(X?). We repre-
sent these computations wittacesa € £(X? x (22 U {T}) x
({e} UT)). The first two components of every letter in a trace de-
fine how the state of the LTS changes. The third componentatefin
if the change was made by a transition of the LFSH T') or the
environment ¢). We require that the environment does not change
the local state and does not fault, i.e.,elletters in a trace are of
the form((l, s), (1, s'), e).

We often need to project a traeewithout error states to a word
that records how the shared state is changed by a partiailaf s
transitionsU C {e} U T. We define such a projection]y €
L(X?) as the image ofr under the following homomorphism

h:¥? x ¥ x ({e}UT) — L(E?)

(s,8),

€,

’ / T e U;
h((lvs)v (l y S )’T) = { otherwise

wheree is the empty word. We writer| o if « is @ nonempty trace
and its last letter is of the forrfv’, o, 7) for somes’ andr.

DEFINITION 4 (Traces).For a rely conditionR C £(X?) and a
split LTSS = (22, T,® x X, T), the setr(S, R, 0p) of traces of
S executed in an environment satisfyiRgstarting from an initial
statecy € X2 is defined as the set of tracese £(X? x (2% U

{T}) x ({e} UT)) of the following two forms:

o finite or infinite tracesy = (00, 01,70)(01,02,71) . .., Where
0: # T,aliey € R, and ifr; # e, theno; 1 € fr,(0:); and

o finite tracesa = [B(on, T,7) for somes = (oo,01,70)
(01,02,71)...(On—1,0n,Tn—1) Such that 8]y € R,
fra(on) = T,andifr; # efori < n, thenciy1 € fr,(04).

The first case in this definition corresponds to safe traced, a
the second to unsafe traces, i.e., those in which both trgramo



and its environment stop executing after the program commit
memory fault (the treatment of the later case reliesfomeing
prefix-closed). Note that, since we assume that the schedule
possibly unfair, the set of traces in this definition inclsdhose

Theorem 2 and Corollary 1 show that the provability of
triple (3.4) from valid thread-local triples in the proofstgm of
Section 4 implies that the progra@f (k) terminates, and hence,
the corresponding algorithm is lock-free. Similar soursfnesults

in which S is preempted and is never executed again. Hence, the can be formulated for obstruction-freedom and wait-freedo

set of projections:| r of tracesx € tr(S, R, oo) on the transitions
of the LTSS, representing the guarantee condition providedbby
is prefix-closed.

Let Fo(C), respectivelyFy(C'), be thex-conjunction over all
the threads in a prograd of formulae&pc — pc,, respectively
&pc — pcg, Wherepc is the program counter of the threast,
is its initial value, andbc, is the final one. Note thak,(C') and
F¢(C) do not restrict the shared state.

DEFINITION 5 (Validity).

R,GEA{P}C{Q} &
VYoo € [[P * Fo(C)]] Ya € tr(S, R, 0’0). Vo.
(alo=0#T)A (safety)
(aloNo e (PxX)=0€[Qx*F:(C)]) A (correctness)
(a]T € G) (guarantee)

whereS = (X2, T,® x %, T) is the split LTS constructed out of
the LTS[C] using the labellingrc.

R, (G1,G2) E {P} C1[|C2 {Q} &

Yoo € [[P * Fo(Cl||Cz)]] Ya € tl’(51||52,727 0’0). Vo.
(alo=0#T)A (safety)
(aloNo € ((P1NDP2) X X) = 0 € [Q = Fe(CL||C2)]) A

(correctness)
(alm, € Gi) A (], € G2) (guarantee)

whereS; = (22, T,®; x £,71) and Sz = (X2, T, ®2 x X, T%)
are the split LTSes constructed out of the LTRes] and [C-]
using the labellingsrc, and ¢, , respectively.

THEOREM1. The proof rules in Figure 5 preserve validity.

COROLLARY 1. If R,G + {P} C {Q} is derived from valid
thread-local triples using the rules in Figure 5, théR,G =

{rro{Q}.
6.4 Soundness

We now relate the notion of validity with respect to a split3.10
validity with respect to the global LTS used to construct sipét
one. For a closed program (i.e., a program executing intisolg
we can formulate a global notion of validity of triples withtarely
and guarantee conditions as follows.

DEFINITION 6 (Validity with respect to a global LTSYor p,q C

¥ and a command” such that[C] = (2, T,®,T) we define
= {p} C {q} iffor all uo € p and for any computationo, u1, ...
of [C] we haveu; # T, and if the computation is finite and
ending with a state, € ®, thenu € ¢. We defing= [p] C [q]

if = {p} C {¢} and every computation diC] starting from a
state inp is finite.

THEOREM2. Let [C] = (%, T,®,7) and S’ = (X%, T,® x
3, T’) be a corresponding split LTS with respect to any labelling
7c. Then

e R,G E{P}C{Q} implies
= ([P Fo(O)])} € {v([Q * Fr(C)D},
o If R, OOFalse = {P} C {Q} implies
([P« Fo(O)D] € ([Q + Fx (O],

wherey(P) = {l- s | (I,s) € P} for any assertiorP.

7. Related work

Our proof system draws on the classical circular and narulEr
rely-guarantee rules for shared-variable concurrency 288 1]

to achieve compositionality, and on separation logic (gzady,
RGSep—a combination of rely-guarantee and separation [856i

11, 34]) to achieve modular reasoning in the presence of.heap
Its technical novelty over previous rely-guarantee proaftems
lies in our method of combining applications of circular anah-
circular rules using judgements that distinguish betwesrantees
provided by different threads in a parallel composition.

Colvin and Dongol [7] have recently proved the most basic non
blocking algorithm, Treiber’s stack [33], to be lock-fréhey did
this by manually constructing a global well-founded ordgrover
program counters and local variables of all the threads énath
gorithm’s most general client. Unfortunately, their methiequires
each operation to have at most one lock-free loop, whiclsrols
more modern non-blocking algorithms, such as the HSY stadk a
Michael’s list algorithm. Moreover, because their wellsfaled or-
dering is over the whole program, their method is non-madanhal
does not scale to the more realistic examples of the kind we co
sider in Section 5. In contrast, our method is modular, botthe
treatment of threads and heaps. We can reason about eveag thr
separately under simple assumptions about its environthanto
not consider parts of the heap local to other threads. Fumibre,
our method is fully automatic.

Kobayashi and Sangiorgi [19] have recently proposed a type-
based method for checking lock-freedomvircalculus. Their pro-
gramming model and the notion of lock-freedom are different
from the ones used for non-blocking data structures, whiakes
their results incomparable to ours. Moore [27] presentsoafpof
a progress property for a non-blocking counter algorithnthia
ACL2 proof assistant. His proof is thread-modular, but tigna
rithm considered is extremely simple. McMillan [24] addves the
issue of circular dependencies among a class of livenegeries
in the context of finite-state hardware model checking. Htegaa
different approach from ours to resolving the circulasti®y doing
induction over time.

8. Conclusion

Wait-freedom, lock-freedom, and obstruction-freedom taeees-
sential properties that make “non-blocking algorithnztually
non-blocking. We have proposed the first fully automatid tbat
allows their developers to verify these properties. Oucess was
due to choosing a logical formalism in which it was easy to ex-
press proofs about non-blocking algorithms and then obsgthat
proofs of the liveness properties in it follow a particulattern.

We conclude by noting some limitations of our tool; lifting
these presents interesting avenues for future work. Fiesprove
the soundness of our logic with respect to an interleavimgase
tics, which is inadequate for modern multiprocessors witkakyv
memory models. It happens that even proving safety prazedi
programs with respect to a weak memory model is currently an
open problem. Moreover, the published versions of conatiiak
gorithmsassumea sequentially consistent memory model. In fact,
most of non-blocking algorithms are incorrect when run or-mu
tiprocessors with weak memory models as published: onedas t
insert additional fences or (on x86) locked instructions tieem
to run correctly. In the future, we hope to address this gnobl



building on a recent formalisation of weak memory model sema
tics [31]. Second, our tool can currently handle only liaséd algo-
rithms, because we use an off-the-shelf shape analysis eiéé
that the methods described in this paper should be appicabl
more complicated data structures as well, provided thessace
shape analysis infrastructure is available.

The above-mentioned limitations notwithstanding, thipgra
presents the first successful attempt to give modular probfs
liveness properties to complex heap-manipulating coecinpro-
grams.
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