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Abstract
A concurrent data-structure implementation is considerednon-
blocking if it meets one of three following liveness criteria:wait-
freedom, lock-freedom, or obstruction-freedom. Developers of non-
blocking algorithms aim to meet these criteria. However, todate
their proofs for non-trivial algorithms have been only manual
pencil-and-paper semi-formal proofs. This paper proposesthe first
fully automatic tool that allows developers to ensure that their algo-
rithms are indeed non-blocking. Our tool uses rely-guarantee rea-
soning while overcoming the technical challenge of sound reason-
ing in the presence of interdependent liveness properties.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Formal Verification, Concurrent Programming, Live-
ness, Termination

1. Introduction
Non-blocking synchronisationis a style of multithreaded program-
ming that avoids the blocking inherent to lock-based mutualex-
clusion. Instead, alternative synchronisation techniques are used,
which aim to provide certain progress guarantees even if some
threads are delayed for arbitrarily long. These techniquesare pri-
marily employed by concurrent implementations of data structures,
such as stacks, queues, linked lists, and hash tables (see, for ex-
ample, thejava.util.concurrent library). Non-blocking data
structures are generally much more complex than their lock-based
counterparts, but can provide better performance in the presence of
high contention between threads [38].

An algorithm implementing operations on a concurrent data
structure is considerednon-blockingif it meets one of three com-
monly accepted liveness criteria that ensure termination of the op-
erations under various conditions:

Wait-freedom [15]: Every running thread is guaranteed to com-
plete its operation, regardless of the execution speeds of the
other threads. Wait-freedom ensures the absence of livelock and
starvation.
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Lock-freedom [23]: From any point in a program’s execution,
some thread is guaranteed to complete its operation. Lock-
freedom ensures the absence of livelock, but not starvation.

Obstruction-freedom [16]: Every thread is guaranteed to com-
plete its operation provided it eventually executes in isolation.
In other words, if at some point in a program’s execution we
suspend all threads except one, then this thread’s operation will
terminate.

The design of a non-blocking algorithm largely depends on which
of the above three criteria it satisfies. Thus, algorithm developers
aim to meet one of these criteria and correspondingly classify the
algorithms as wait-free, lock-free, or obstruction-free (e.g., [14, 16,
25]). To date, proofs of the liveness properties for non-trivial cases
have been only manual pencil-and-paper semi-formal proofs. This
paper proposes the first fully automatic tool that allows developers
to ensure that their algorithms are indeed non-blocking.

Reasoning about concurrent programs is difficult because ofthe
need to consider all possible interactions between concurrently exe-
cuting threads. This is especially true for non-blocking algorithms,
in which threads interact in subtle ways through dynamically-
allocated data structures. To combat this difficulty, we based our
tool on rely-guarantee reasoning [18, 29], which considersevery
thread in isolation under some assumptions on its environment and
thus avoids reasoning about thread interactions directly.Much of
rely-guarantee’s power comes from cyclic proof rules for safety;
straightforward generalisations of such proof rules to liveness prop-
erties are unsound [1]. Unfortunately, in our application,we have to
deal with interdependencies among liveness properties of threads in
the program: validity of liveness properties of a thread candepend
on liveness properties of another thread and vice versa. We resolve
this apparent circularity by showing that (at least for all of the al-
gorithms that we have examined) proofs can found that layer non-
circular liveness reasoning on top of weak circular reasoning about
safety. We propose a method for performing such proofs by repeat-
edly strengthening threads’ guarantees using non-circular reason-
ing until they imply the required liveness property (Section 2). We
develop a logic that allows us to easily express these layered proofs
for heap-manipulating programs (Sections 3 and 4) and proveit
sound with respect to an interleaving semantics (Section 6).

In addition, we have found that the rely and guarantee condi-
tions needed for proving algorithms non-blocking can be of are-
stricted form: they need only require that certain events donot hap-
pen infinitely often. This allows us to automate proving the liveness
properties by a procedure that systematically searches forproofs in
our logic with relies and guarantees of this form (Section 5).

Using our tool, we have automatically proved a number of the
published algorithms to be formally non-blocking, including chal-
lenging examples such as the HSY stack [14] and Michael’s linked
list algorithm [25]. Proofs for some of the verified algorithms re-
quire complex termination arguments and supporting safetyprop-
erties that are best constructed by automatic tools.



2. Informal development
We start by informally describing our method for verifying liveness
properties and surveying the main results of the paper.

Example. Figure 1 contains a simple non-blocking implemen-
tation of a concurrent stack due to Treiber [33], written in aC-
like language. A client using the implementation can call several
push or pop operations concurrently. To ensure the correctness of
the algorithm, we assume that it is executed in the presence of a
garbage collector (see [17, Section 10.6] for justification). We also
assume that single word reads and writes are executed atomically.
The stack is stored as a linked list, and is updated by compare-and-
swap (CAS) instructions. CAS takes three arguments: a memory
address, an expected value and a new value. It atomically reads the
memory address and updates it with the new value when the ad-
dress contains the expected value; otherwise, it does nothing. In C
syntax this might be written as follows:

int CAS(WORD *addr, WORD v1, WORD v2) {
atomic {
if (*addr == v1) { *addr = v2; return 1; }
else { return 0; }

}
}

In most architectures an efficient CAS (or an equivalent operation)
is provided natively by the processor.

The operations on the stack are implemented as follows. The
functioninit initialises the data structure. Thepush operation (i)
allocates a new nodex; (ii ) reads the current value of the top-of-the-
stack pointerS; (iii ) makes thenext field of the newly created node
point to the read value ofS; and (iv) atomically updates the top-of-
the-stack pointer with the new valuex. If the pointer has changed
between (ii ) and (iv) and has not been restored to its initial value,
the CAS fails and the operation is restarted. Thepop operation is
implemented in a similar way.

Liveness properties of non-blocking algorithms.Notice that a
push or pop operation of Treiber’s stack may not terminate if
other threads are continually modifyingS: in this case the CAS
instruction may always fail, which will cause the operationto
restart continually. Thus, the algorithm is not wait-free.However, it
is lock-free: ifpush andpop operations execute concurrently, some
operation will always terminate.

We note that an additional requirement in the definitions of the
liveness properties given in Section 1 is that the properties have
to be satisfied under any scheduler, including an unfair one that
suspends some threads and never resumes them again: in this case
the remaining threads still have to satisfy the liveness properties.
The properties form a hierarchy [10]: if an algorithm is wait-free,
it is also lock-free, and if it is lock-free, it is also obstruction-
free. Note also that even the weakest property, obstruction-freedom,
prevents the use of spinlocks, because if a thread has acquired a
lock and is then suspended, another thread may loop forever trying
to acquire that lock.

We first describe our approach for verifying lock-freedom.

Reducing lock-freedom to termination. We show that the check-
ing of lock-freedom can be reduced to the checking of termina-
tion in the spirit of [36]. Consider a non-blocking data structure
with operationsop1, . . . , opn. Let op be the command that non-
deterministically executes one of the operations on the data struc-
ture with arbitrary parameters:

op =

if (nondet()) op1; else if (nondet()) op2; . . . else opn;
(2.1)

struct Node {
value_t data;
Node *next;

};
Node *S;

void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
do {
t = S;
x->next = t;

} while(!CAS(&S,t,x));
}

void init() {
S = NULL;

}

value_t pop() {
Node *t, *x;
do {
t = S;
if (t == NULL) {
return EMPTY;

}
x = t->next;

} while(!CAS(&S,t,x));
return t->data;

}

Figure 1. Treiber’s non-blocking stack

We denote non-deterministic choice withnondet(). The definition
of lock-freedom of the data structure requires that for allm in any
(infinite) execution of the data structure’s most general clientC(m)
defined below, some operation returns infinitely often:

C(m) =
m
∥

∥

i=1

while (true) { op }

We now show that this is the case if and only if for allk the
following programC′(k) terminates:

C′(k) =
k
∥

∥

i=1

op (2.2)

The proof in the “only if” direction is by contrapositive: a non-
terminating execution ofC′(k) can be straightforwardly mapped to
an execution ofC(k) violating lock-freedom in which thewhile
loops make at most one iteration executing the same operations
with the same parameters as inC′(k). For the “if” direction note
that any infinite execution ofC(m) violating lock-freedom has
only finitely many (say,k) operations started: those that complete
successfully, those that are suspended by the scheduler andnever
resumed again, and those that do not terminate. Such an execution
can then be mapped to a non-terminating execution ofC′(k), in
which the operations are completed, suspended or non-terminating
as above.

Thus, to check lock-freedom of an algorithm, we have to check
the termination of an arbitrary number of its operations running in
parallel.

Rely-guarantee reasoning and interference specifications. We
prove termination of the programC′(k) using rely-guarantee rea-
soning [18, 29]. Rely-guarantee avoids direct reasoning about all
possible thread interactions in a concurrent program by specifying
a relation (theguaranteecondition) for every thread restricting how
it can change the program state. For any given thread, the union of
the guarantee conditions of all the other threads in the program (its
rely condition) restricts how those threads can interfere with it, and
hence, allows reasoning about this thread in isolation.

The logic we develop in this paper uses a variant of rely-
guarantee reasoning proposed in RGSep [35]—a logic for reason-
ing about safety properties of concurrent heap-manipulating pro-
grams, which combines rely-guarantee reasoning with separation
logic. RGSep partitions the program heap into several thread-local
parts (each of which can only be accessed by a given thread) and the
shared part (which can be accessed by all threads). The partition-
ing is defined by proofs in the logic: an assertion in the code of a
thread restricts its local state and the shared state. Additionally, the



partitioning is dynamic, meaning that we can use ownership trans-
fer to move some part of the local state into the shared state and
vice versa. Rely and guarantee conditions are then specifiedwith
sets of actions, which are relationson the shared statedetermin-
ing how the threads change it. This is in contrast with the original
rely-guarantee method, in which rely and guarantee conditions are
relationson the whole program state. Thus, while reasoning about
a thread, we do not have to consider local states of other threads.

For example, using RGSep we can prove memory safety (no
invalid pointer dereferences) and data structure consistency (the
linked list is well-formed) of Treiber’s stack [34]. The proof con-
siders the linked list with the head pointed to by the variableS to be
in the shared state. When apush operation allocates a new nodex,
it is initially in its local state. The node is transferred tothe shared
state once it is linked into the list with a successful CAS instruction.
The proof specifies interference between threads in the shared state
with three actions,Push, Pop, andId, with the following informal
meaning:Push corresponds to pushing an element onto the stack
(a successful CAS inpush); Pop to removing an element from the
stack (a successful CAS inpop); andId represents the identity ac-
tion that does not change the shared state (a failed CAS and all the
other commands in the code of the threads).

Proving lock-freedom. Using the splitting of the heap into local
and shared parts and the interference specification for Treiber’s
stack described above, we can establish its lock-freedom asfollows.
As we showed above, it is sufficient to prove termination of a fixed
but arbitrary number of threads each executing a singlepush or
pop operation with an arbitrary parameter. The informal proof of
this (formalised in Section 4) is as follows:

I. No thread executesPush or Pop actions infinitely often.
This is because aPush orPop action corresponds to a success-
ful CAS, and once a CAS succeeds, the correspondingwhile
loop terminates.

II. Thewhile loop in an operation terminates if no other thread
executesPush or Pop actions infinitely often.
This is because the operation does not terminate only when its
CAS always fails, which requires the environment to execute
Push or Pop actions infinitely often.

Hence, every thread terminates.
The above proof uses rely-guarantee reasoning: it consistsof

proving severalthread-localjudgements, each of which establishes
a property of a thread under an assumption about the interfer-
ence from the environment. Properties of a parallel composition of
threads are then derived from the thread-local judgements.This is
done by first establishing the guarantee provided by Statement I and
then using it to prove termination of the operations. This pattern—
establishing initial guarantees and then deriving new guarantees
from them—is typical for proofs of lock-freedom. We now con-
sider a more complicated example in which the proof consistsof
more steps of this form.

Hendler, Shavit, and Yerushalmi [14] have presented an im-
proved version of Treiber’s stack that performs better in the case of
higher contention between threads. Figure 2 shows an adapted and
abridged version of their algorithm. The implementation combines
two algorithms: Treiber’s stack and a so-called elimination scheme
(partially elided). Apush or apop operation first tries to modify
the stack as in Treiber’s algorithm, by doing a CAS to change the
shared top-of-the-stack pointer. If the CAS is successful then the
operation terminates. If the CAS fails (because of interference from
another thread), the operation backs off to the eliminationscheme.
If this scheme fails, the whole operation is restarted.

The elimination scheme works on data structures that are sepa-
rate from the list implementing the stack. The idea behind itis that

two contendingpush andpop operations can eliminate each other
without modifying the stack ifpop returns the value thatpush is
trying to insert. An operation determines the existence of another
operation it could eliminate itself with by selecting a random slot
pos in thecollision array, and atomically reading that slot and
overwriting it with its thread identifierMYID. The identifier of an-
other thread read from the array can be subsequently used to per-
form elimination. The corresponding code does not affect the lock-
freedom of the algorithm and is therefore elided in Figure 2.The
algorithm implements the atomic read-and-write operationon the
collision array in a lock-free fashion using CAS1. This illus-
trates a common pattern, when one lock-free data structure is used
inside another.

An RGSep safety proof of the HSY stack would consider the
data structures of the elimination scheme shared and describe in-
terference on the shared state using the actions introducedfor
Treiber’s stack and two additional actions:Xchg (which denotes
the effect of the successful operation on thecollision array de-
scribed above) andOthers (which includes all the operations on
the other data structures of the elimination scheme). Giventhis in-
terference specification, the informal proof of lock-freedom of the
algorithm is as follows: in a parallel composition of several threads
each executing onepush or pop operation,

I. No thread executesPush or Pop actions infinitely often.

II. push andpop do not execute theXchg action infinitely often if
no other thread executesPush or Pop actions infinitely often.
This is because a thread can only executeXchg infinitely
often if its outerwhile loop does not terminate. This can only
happen if some other thread executesPush or Pop infinitely
often.

III. push and pop terminate if no other thread executesPush,
Pop, or Xchg actions infinitely often.
This is because in this case both inner and outerwhile loops
eventually terminate.

From Statements I and II, we get that no thread executesPush,
Pop, orXchg actions infinitely often. Hence, by Statement III every
thread terminates.

The above proof is done in a layered style, i.e., starting from the
weak guarantee provided by Statement I and strengthening itusing
already established guarantees until it implies termination. This is
informally illustrated in Figure 3 for the case of two operations (op1

andop2) running in parallel. The validity of the property of Thread
1 in the middle layer depends on the validity of the counterpart
property of Thread 2 and vice versa. However, it is unsound to
remove the upper layer of Figure 3 and justify the guarantee in the
middle layer by circular reasoning, i.e., by observing thata thread
satisfies the guarantee if the other thread does.

We have found that the proof method described above was
applicable in all of the examples of lock-free algorithms that we
have considered. In the next two sections we develop a logic for
formalising proofs following the method.

Automating lock-freedom proofs. The above informal proofs of
lock-freedom use guarantee conditions of a restricted formthat
specifies two sets of actions: those that a thread can executeand
those that it cannot execute infinitely often. We have found that
guarantee conditions of this form were sufficient to prove lock-
freedom for all the examples we considered. This observation al-
lows us to automate proving lock-freedom of an algorithm by sys-
tematically searching for termination proofs for a programconsist-

1 Such an operation could be implemented with an atomic exchange instruc-
tion. The reason for implementing it with CAS is that in some architectures
the atomic exchange instruction is either not available or slow.



struct Node {
value_t data;
Node *next;

};
Node *S;
int collision[SIZE];

void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
while (1) {
t = S;
x->next = t;
if (CAS(&S,t,x)) { return; }
// Elimination scheme
// ...
int pos = GetPosition();
// 0 ≤ pos ≤ SIZE-1
int hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID)) {
hisId = collision[pos];

}
// ...

}
}

value_t pop() {
Node *t, *x;
while (1) {
t = S;
if (t == NULL) {
return EMPTY;

}
x = t->next;
if (CAS(&S,t,x)) {
return t->data;

}
// Elimination scheme
// ...
int pos = GetPosition();
// 0 ≤ pos ≤ SIZE-1
int hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID)) {
hisId = collision[pos];

}
// ...

}
}

Figure 2. The HSY non-blocking stack
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Figure 3. An informal proof argument where an arrow from state-
mentA to statementB means thatA is used as a rely condition
while establishing the guaranteeB.

ing of an arbitrary number of the algorithm’s operations running
in parallel: we search for proofs that follow the pattern described
above and use rely and guarantee conditions of the restricted form.
Our proof search procedure performs a forward search, construct-
ing proof graphs like the one in Figure 3 top-down. It is able to con-
struct proofs that the programsC′(k) terminate for allk at once,
because our guarantee conditions are such that if several threads
satisfy a guarantee, then so does their parallel composition. We now
informally describe the procedure using the HSY stack as therun-
ning example (the details are provided in Section 5).

Consider a program consisting of an arbitrary number of the al-
gorithm’s operations running in parallel. First, using existing tools
for verifying safety properties of non-blocking algorithms [6], we
can infer a splitting of the program state into local and shared
parts and a set of actions describing how the operations change the
shared state ({Push, Pop, Xchg, Others, Id} for the HSY stack).
The set defines the initial guarantee provided by every operation
in the program that ensures that the operation changes the shared
state only according to one of the actions. Note that if several opera-
tions satisfy this guarantee, then so does their parallel composition.
Hence, while checking a property of an operation in the program,
we can rely on its environment satisfying the guarantee. Theguar-
antee, however, is too weak to establish termination of the oper-
ations. We therefore try to strengthen it by considering every ac-
tion in turn and attempting to prove that no operation executes the
action infinitely often in an environment satisfying the guarantee.
In our running example, we will be able to establish that the op-
erations do not execute the actionsPush andPop infinitely often
(but notXchg andOthers). Again, if several operations satisfy the
guarantee strengthened in this way, then so does their parallel com-
position. Hence, we can check properties of the operations in the
program assuming that their environment satisfies the guarantee.
An attempt to prove their termination in this way fails again, and
we have to strengthen the guarantee one more time. Namely, we
try to prove that the operations do not execute the remainingac-
tionsXchg andOthers infinitely often. In this case, the available
guarantee is strong enough to prove that theXchg action is not exe-
cuted infinitely often. Finally, the strengthened guarantee allows us
to establish termination of the operations.

Proving obstruction-freedom and wait-freedom.Obstruction-
freedom of an operation ensures its termination in an environ-
ment that eventually stops executing. Therefore, when proving
obstruction-freedom, infinite behaviours of the environment are ir-
relevant and the necessary environment guarantee can always be



Values = {. . . ,−1, 0, 1, . . .} Locs = {1, 2, . . .}

Vars = {x, y, . . . , &x, &y, . . .} Stores = Vars → Values

Heaps = Locs ⇀fin Values Σ = Stores × Heaps

Figure 4. Program statesΣ

represented by a safety property. For example, the operations of
Treiber’s stack guarantee that they modify the shared stateaccord-
ing to one of the actionsPush, Pop, andId. To prove obstruction-
freedom of apush or pop operation2, it is thus sufficient to prove
its termination in an environment that executes only finitely many
such actions. This is true because, as in the proof of lock-freedom,
in such an environment the CAS in the code of the operation
will eventually succeed. In general, we can automatically check
obstruction-freedom by checking termination of every operation
in the environment satisfying the safety guarantee inferred by the
safety verification tool and the additional assumption thatit exe-
cutes only finitely many actions. We describe this in more detail in
Section 5.

To the best of our knowledge, loops in all practical wait-free
non-blocking algorithms have constant upper bounds on the num-
ber of their iterations. For example, Simpson’s algorithm [32] con-
sists of straight-line code only, and the number of loop iterations
in the wait-freefind operation of a non-blocking linked list [37] is
bounded by the number of distinct keys that can be stored in the list.
For this reason, termination of operations in wait-free algorithms
can be justified by considering only safety properties guaranteed by
operations’ environment. The automatic check for wait-freedom is
similar to the one for obstruction-freedom (see Section 5).

3. Specifying liveness properties
Our logic for reasoning about liveness properties is a Hoare-style
logic, which combines ideas from rely-guarantee reasoningand
separation logic. It generalises a recent logic for reasoning about
safety properties of non-blocking algorithms, RGSep [35].As any
Hoare logic, ours consists of two formal systems: an assertion
language and a proof system for Hoare triples. In this section, we
describe the assertion language, define the form of judgements in
our logic, and show how to specify wait-freedom, lock-freedom,
and obstruction-freedom in it. The next section presents the logic’s
proof system.

Programming language. We consider heap-manipulating pro-
grams written in the following simple programming language.
CommandsC are given by the grammar

C ::= C1; C2 | if (e) C1 else C2 | while (e) C | x = new()

| x = e | x = *e1 | *e1 = e2 | delete e | atomic C

where e ranges over arithmetic expressions, including non-
deterministic choicenondet(). The commandatomic C exe-
cutesC in one indivisible step. Programs consist of initialisa-
tion code followed by a top-level parallel composition of threads:
C0; (C1‖ . . . ‖Cn).

To avoid side conditions in our proof rules, we treat each pro-
gram variablex as a memory cell at the constant address&x. Thus,
any use ofx in the code is just a shorthand for*(&x). Similarly, we
interpret field expressionsx->next as*(x+offset of next). In
our examples, we also use other pieces of C syntax.

Assertion language. Letp, q andr be separation logic assertions:

p, q, r ::= emp | e1 7→ e2 | p ∗ q | false | p ⇒ q | ∃x.p | . . .

2 This example is used here for illustrative purposes only: obstruction-
freedom of Treiber’s stack follows from its lock-freedom.

Separation logic assertions denote sets of program statesΣ repre-
sented by store-heap pairs (Figure 4). A store is a function from
variables to values; a heap is a finite partial function from locations
to values. We omit the standard formal semantics for most of the as-
sertions [30]. Informally,emp describes the states where the heap
is empty;e1 7→ e2 describes the states where the heap contains a
single allocated location at the addresse1 with contentse2; p∗q de-
scribes the states where the heap is the union of two disjointheaps,
one satisfyingp and the other satisfyingq. The formal semantics of
the assertionp ∗ q is defined using a partial operation· on Σ such
that for all(t1, h1), (t2, h2) ∈ Σ

(t1, h1) · (t2, h2) = (t1, h1 ⊎ h2)

if t1 = t2 andh1⊎h2 is defined, and(t1, h1) ·(t2, h2) is undefined
otherwise. Then

u ∈ [[p ∗ q]] ⇔ ∃u1, u2. u = u1 · u2 ∧ u1 ∈ [[p]] ∧ u2 ∈ [[q]]

As we argued in Section 2, while reasoning about concurrent
heap-manipulating programs it is useful to partition the program
state into thread-local and shared parts. Therefore, assertions in our
logic denote sets of pairs of states fromΣ. The two components
represent the statelocal to the thread in whose code the assertion
is located and thesharedstate. We use the assertion language of
RGSep [35], which describes the local and shared componentswith
separation logic assertions and is defined by following grammar:

P, Q ::= p | p | P ∗ Q | true | false | P ∨ Q | P ∧ Q | ∃x.P

An assertionp denotes the local-shared state pairs with the local
state satisfyingp; p the pairs with the shared state satisfying
p and the local state satisfyingemp; P ∗ Q the pairs in which
the local state can be divided into two substates such that one
of them together with the shared state satisfiesP and the other
together with the shared state satisfiesQ. The formal semantics
of P ∗ Q is defined using a partial operation⋆ onΣ2 such that for
all (l1, s1), (l2, s2) ∈ Σ2

(l1, s1) ⋆ (l2, s2) = (l1 · l2, s1)

if s1 = s2 andl1 · l2 is defined, and(l1, s1) ⋆ (l2, s2) is undefined
otherwise. Thus,

σ ∈ [[P ∗ Q]] ⇔ ∃σ1, σ2. σ = σ1 ⋆ σ2 ∧ σ1 ∈ [[P ]] ∧ σ2 ∈ [[Q]]

Note that by abuse of notation we denote the connectives inter-
preted by· and⋆ with the same symbol∗. It should be always clear
from the structure of the assertion which of the two connectives is
being used. We denote global states fromΣ with small Latin let-
ters (u, l, s), and local-shared state pairs fromΣ2 with small Greek
letters (σ).

Judgements. The judgements in our logic include rely and guar-
antee conditions determining how a command or its environment
change the shared state. These represent languages of finiteand
infinite words over the alphabetΣ2 of relations on shared states
and are denoted with capital calligraphic letters (R,G, . . .). A word
in any of the languages describes the sequences of changes tothe
shared state. Thus, relies and guarantees can define liveness proper-
ties. This generalises the RGSep logic, in which rely and guarantee
conditions define safety properties and are therefore represented
with relations on the shared state. Our proof system has two kinds
of judgements:

• R,G ⊢ {P} C {Q}: if the initial state satisfiesP and the
environment changes the shared state according toR, then
the program is safe (i.e., it does not dereference any invalid
pointers), changes the shared state according toG, and the final
state (if the program terminates) satisfiesQ.



• R, (G1, G2) ⊢ {P} C1‖C2 {Q}: if the initial state satisfiesP
and the environment changes the shared state according toR,
then the programC1‖C2 is safe,C1 changes the shared state
according toG1, C2 changes the shared state according toG2,
and the final state (if both threads terminate) satisfiesQ. Dis-
tinguishing the guarantee of each thread is crucial for liveness
proofs done according to the method described in Section 2.

The informal definition of judgements’ validity given aboveas-
sumes a semantics of programs that distinguishes between the lo-
cal and the shared state. We sketch how such a semantics can be
defined later in this section. In Section 6 we give formal definitions
of the semantics and the notion of validity, and relate them to the
standard ones, which consider the program state as a whole.

Specifying rely and guarantee conditions.As noted above, a rely
or a guarantee condition defines sequences of atomic changesto
the shared state. We describe each such change with the aid of
actions[35] of the formp ; q, wherep andq are separation logic
assertions. Informally, this action changes the part of theshared
state that satisfiesp into one that satisfiesq, while leaving the rest
of the shared state unchanged. Formally, its meaning is a binary
relation on shared states:

[[p ; q]] = {(s1 · s0, s2 · s0) | s1 ∈ JpK ∧ s2 ∈ JqK}

It relates some initial states1 satisfying the preconditionp to a
final states2 satisfying the postconditionq. In addition, there may
be some disjoint states0 that is not affected by the action.

For example, we can define the three actions used in the proof of
lock-freedom of Treiber’s stack mentioned in Section 2 as follows:

&S7→y ; &S7→x ∗ x 7→Node(v, y) (Push)

&S7→x ∗ x 7→Node(v, y) ; &S7→y ∗ x 7→Node(v, y) (Pop)

emp ; emp (Id)

Herex 7→Node(v, y) is a shortcut forx 7→v ∗ (x + 1) 7→y. Recall
that the algorithm is assumed to be executed in the presence of a
garbage collector. Hence, the node removed from the list byPop
stays in the shared state as garbage.

In our examples, we syntactically define rely and guarantee con-
ditions using linear temporal logic (LTL) with actions as atomic
propositions. LetFalse and True be the actions denoting the re-
lations∅ andΣ2 respectively. We denote temporal operators “al-
ways”, “eventually”, and “next” with2, 3, and#, respectively.
Their semantics on infinite words is standard [22]. The semantics
on finite words is defined as follows [20]: form ≥ 0

δ1 . . . δm |= 2Ψ ⇔ ∀i. 1 ≤ i ≤ m ⇒ δi . . . δm |= Ψ

δ1 . . . δm |= 3Ψ ⇔ ∃i. 1 ≤ i ≤ m ∧ δi . . . δm |= Ψ

δ1 . . . δm |= #Ψ ⇔ m ≥ 2 ⇒ δ2 . . . δm |= Ψ

Note that here# is the weaknext operator: it is true if there is
no next state to interpret its argument over. For example,2R,
whereR ⊆ Σ2, denotes the language of words in which every
letter is fromR (including the empty word),¬23R denotes words
which contain only finitely many letters fromR (including all finite
words), and3#False denotes exactly all finite words. We specify
termination of a command by requiring that it satisfy the guarantee
3#False, i.e., we interpret termination as the absence of infinite
computations. This is adequate for programs in the languageintro-
duced above, since they cannot deadlock.

The semantics of triples in our logic makes no assumptions
about the scheduler. In particular, it can be unfair with respect
to the command in the triple: the guarantee condition includes
words corresponding to the command being suspended and never
executed again. For this reason, all rely and guarantee conditions in
this paper are prefix-closed, i.e., for any word belonging toa rely

or a guarantee all its prefixes also belong to it. Additionally, we
require that relies and guarantees represent nonempty languages.

Splitting states into local and shared parts.We now informally
describe thesplit-statesemantics of programs that splits the pro-
gram state into local and shared parts (formalised in Section 6).

We partition all the atomic commands in the program into those
that access only local state of the thread they are executed by and
those that can additionally access the shared state. By convention,
the only commands of the latter kind areatomic blocks. For
example, in the operations of Treiber’s stack, all the commands
except for CASes access only the local state. Further, we annotate
eachatomic block with an actionp ; q determining how it
treats the shared state, writtenatomicp;q C. These annotations
are a part of proofs in our logic. For the logic to be sound, all
the judgements used in a proof of a program have to agree on
the treatment of the shared state. We therefore require thatthe
same annotation be used for any fixedatomic block throughout
the proof.

In the split-state semantics the commandatomicp;q C exe-
cutes as follows: it combines the local state of the thread itis exe-
cuted by and the part of the shared state satisfyingp, and runsC on
this combination. It then splits the single resulting stateinto local
and shared parts, determining the shared part as the one thatsatis-
fiesq. The new shared state is thus this part together with the part
of the shared state untouched byC. For the splittings to be defined
uniquely (and for our logic to be sound), we require thatp andq in
all annotations be precise assertions [28]. An assertionr is precise
if for any stateu there exists at most one substatesatr(u) satisfy-
ing r: u = satr(u) · restr(u) for somerestr(u). The assertions in
all the actions used in this paper are precise.

Let CASA(addr, v1, v2) be defined as follows:

if (nondet())
atomicA {
assume(*addr == v1); *addr = v2; return 1;

}
else
atomicId { assume (*addr != v1); return 0; }

where theassume command acts as a filter on the state space of
programs—e is assumed to evaluate to 1 afterassume(e) is ex-
ecuted. The above definition of CAS is semantically equivalent
to the definition in Section 2, but allows different action anno-
tations for the successful and the failure cases. We annotate the
CAS commands in thepush andpop operations of Treiber’s stack
asCASPush(&S, t, x) andCASPop(&S, t, x), respectively. Similarly,
we annotate the CAS in the inner loop of the HSY stack as
CASXchg(&collision[pos], hisId, MYID).

Specifying wait-freedom, lock-freedom, and obstruction-freedom.
A non-blocking data structure is given by an initialisationroutine
init and operationsop1, . . . , opn on the data structure. We require
that the initialisation routine satisfy the triple

2Id, 2True ⊢
{

emp
}

init
{

Inv
}

for some data structure invariantInv restricting only the shared
state: the routine creates an instance of the data structurein the
shared state when run in isolation (i.e., in the environmentthat
does not change the shared state). For Treiber’s stack an invariant
maintained by all the operations on the data structure is that S
points to the head of a linked list. We can express this in our
assertion language using an inductive predicate assertionlseg(x, y)
of separation logic that represents the least predicate satisfying

lseg(x, y) ⇔ (x = y ∧ emp)

∨ (∃z. x 6= y ∧ x 7→Node( , z) ∗ lseg(z, y))



Thus, lseg(x, NULL) represents all of the states in which the heap
has the shape of a (possibly empty) linked list starting fromlocation
x and ending withNULL. The invariant can then be expressed as

Inv = ∃x. &S 7→ x ∗ lseg(x, NULL) ∗ true (3.1)

In our logic, we can express the liveness properties of non-
blocking algorithms we introduced before as follows. Wait-
freedom of an operationopi is captured by the triple

R, 3#False ⊢ {Inv} opi {true} (3.2)

which ensures termination of the operation under the interfer-
ence from the environment allowed by the rely conditionR.
Obstruction-freedom of an operationopi can be expressed as

R∧ 3#False, 3#False ⊢ {Inv} opi {true} (3.3)

Here R describes the allowed interference from the operation’s
environment, and the conjunct3#False ensures that eventually all
the threads in the environment will be suspended. As we showed in
Section 2, lock-freedom can be reduced to proving termination of
several operations run in isolation, which is ensured by thevalidity
of the triples

2Id, 3#False ⊢ {Inv} C′(k) {true} (3.4)

for all k, where the programC′(k) is defined by (2.2).
Note that obstruction-freedom and wait-freedom are directly

compositional properties and can thus be specified for everyop-
eration separately. The specification of lock-freedom considers all
operations at once, however, as we show in the next section, we can
still reason about lock-freedom in a compositional way.

4. Compositional proof system for liveness and
heaps

To reason about judgements of the form introduced in the previ-
ous section we need(i) a method for proving thread-local triples
(i.e., those giving a specification to a single thread) and(ii) a proof
system for combining thread-local triples into triples about paral-
lel compositions. We describe an automatic method for proving
thread-local triples in Section 5 (the THREADLOCAL procedure
and Figure 7). In this section, we present the second component—a
compositional proof system for reasoning about liveness properties
of heap-manipulating programs, shown in Figure 5. We explain the
proof rules by example of formalising the informal proofs oflock-
freedom from Section 2. In Section 5 we show how to construct
such proofs automatically, and in Section 6 we prove the proof rules
sound with respect to an interleaving semantics.

We first introduce two operations on languages used by the
rules. LetL(A) denote the language of all finite and infinite words
over an alphabetA. We denote the concatenation of a finite word
α ∈ L(A) and a word (either finite or infinite)β ∈ L(A) with
αβ. The safety closureCL(G) of a languageG ⊆ L(A) is the
smallest language defining a safety property that containsG [2].
In the setting of this paper, where all the languages considered are
prefix-closed,CL(G) can be defined as the set of wordsα such that
every prefix ofα is in G:

CL(G) = {α ∈ L(A) | ∀β, γ. α = βγ ⇒ β ∈ G}

For two wordsα, β ∈ L(A), we denote the set of their fair
interleavings withα‖β (we omit the standard definition [4]). We
lift this to languagesG1,G2 ⊆ L(A) as follows:

G1‖G2 =
⋃

{α‖β | α ∈ G1 ∧ β ∈ G2}

4.1 Proving lock-freedom of Treiber’s non-blocking stack

We start by proving termination of any two operations with arbi-
trary parameters (which we denote withopi1 andopi2) running in

R‖CL(G2),G1 ⊢ {P1} C1 {Q1}

R‖CL(G1),G2 ⊢ {P2} C2 {Q2}

R, (G1,G2) ⊢ {P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}
PAR-C

R, ~G ⊢ {P} C {Q}

P ′ ⇒ P R′ ⊆ R ~G ⊆ ~G′ Q ⇒ Q′

R′, ~G′ ⊢ {P ′} C {Q′}
CONSEQ

R, (G1,G2) ⊢ {P1 ∗ P2} C1‖C2 {true}

R‖G2,G
′
1 ⊢ {P1} C1 {Q1}

R‖G1,G
′
2 ⊢ {P2} C2 {Q2}

R, (G′
1,G

′
2) ⊢ {P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}

PAR-NC

R, (G1, G2) ⊢ {P} C1‖C2 {Q}

R,G1‖G2 ⊢ {P} C1‖C2 {Q}
PAR-MERGE

R′, ~G′ ⊢ {P ′} C {Q′}

R′′, ~G′′ ⊢ {P ′′} C {Q′′}

R′ ∩R′′, ~G′ ∩ ~G′′ ⊢ {P ′ ∧ P ′′} C {Q′ ∧ Q′′}
CONJ

Figure 5. Proof rules for reasoning about liveness properties of
heap-manipulating programs.~G denotes eitherG or (G1,G2) de-
pending on whether the triple distinguishes between the guarantees
provided by the different threads. In the latter case operations on
(G1,G2) are done componentwise.

parallel and consider the general case later. To prove this,we have
to derive the triple

2Id, 3#False ⊢ {Inv} opi1‖opi2 {true} (4.1)

for the data structure invariantInv defined by (3.1).

Statement I. Formally, the statement says that every thread has to
satisfy the guarantee

G = 2(Push ∨ Pop ∨ Id) ∧ ¬23(Push ∨ Pop)

where the actionsPush, Pop, andId are defined in Section 3. The
first conjunct specifies the actions that the thread can execute, and
the second ensures that it cannot execute the actionsPush andPop
infinitely often. In order to establish this guarantee, we donot have
to make any liveness assumptions on the behaviour of other threads;
just knowing the actions they can execute (Push, Pop, and Id) is
enough. We therefore use the rule PAR-C to establishG. It is a
circular rely guarantee rule [1] adapted for reasoning about heaps.
It allows two threads to establish their guarantees simultaneously,
while relying on the safety closure of the other thread’s guarantee
that is being established. Note that without the safety closure the
circular rules like this are unsound for liveness properties [1]. Note
also that pre- and postconditions of threads in the premisesof the
rule are∗-conjoined in the conclusion: according to the semantics
of the assertion language, this takes the disjoint composition of the
local states of the threads and enforces that the threads have the
same view of the shared state. It is this feature of our proof rules
that allows us to reason modularly in the presence of heap.

Applying PAR-C withG1 = G2 = G andR = CL(G), we get:

CL(G)‖CL(G),G ⊢ {Inv} opi1 {true}

CL(G)‖CL(G),G ⊢ {Inv} opi2 {true}

CL(G), (G,G) ⊢ {Inv ∗ Inv} opi1‖opi2 {true ∗ true}

(4.2)

Taking the safety closure ofG removes the second conjunct repre-
senting the liveness part ofG:

CL(G) = 2(Push ∨ Pop ∨ Id)



Additionally, CL(G)‖CL(G) = CL(G), so that the premises sim-
plify to triples

CL(G),G ⊢ {Inv} opj {true}, j ∈ {i1, i2} (4.3)

which ensure that the thread does not executePush andPop actions
infinitely often, provided the environment executes only actions
Push, Pop, and Id. We show how to discharge such triples in
Section 5. Their proof would formalise the informal justification
of Statement I given in Section 2 and would use the annotations at
atomic blocks introduced in Section 3 to determine the splitting of
states into local and shared parts.

SinceInv restricts only the shared state,Inv ∗ Inv ⇔ Inv, hence,
the conclusion of (4.2) is equivalent to

CL(G), (G,G) ⊢ {Inv} opi1‖opi2 {true} (4.4)

SinceG ⊆ CL(G), we can then apply a variation on the rule of con-
sequence of Hoare logic, CONSEQ, which allows us to strengthen
the rely condition toG:

G, (G,G) ⊢ {Inv} opi1‖opi2 {true} (4.5)

Statement II. Termination is captured by the guarantee3#False,
which says that eventually the program does not execute any tran-
sitions. To prove this guarantee, we use the non-circular rely-
guarantee rule PAR-NC, which allows the first thread to replace
its guarantee with a new one based on the already established
guarantee of the other thread, and vice versa. Note that the first
premise need only establish the postconditiontrue, since the post-
conditionQ1 ∗ Q2 of the conclusion is implied by the other two
premises. Applying PAR-NC with R = G1 = G2 = G and
G′

1 = G′
2 = 3#False, we get:

G, (G,G) ⊢ {Inv} opi1‖opi2 {true}

G‖G, 3#False ⊢ {Inv} opi1 {true}

G‖G, 3#False ⊢ {Inv} opi2 {true}

G, (3#False, 3#False) ⊢ {Inv} opi1‖opi2 {true}

(4.6)

We have already derived the first premise. SinceG‖G = G, we need
to discharge the following thread-local triples (again postponed to
Section 5):

G, 3#False ⊢ {Inv} opj {true}, j ∈ {i1, i2} (4.7)

We no longer need to distinguish between the guarantees of the
two threads in the conclusion of (4.6). Hence, we use the rulePAR-
MERGE, which merges the guarantees provided by the threads into
a single guarantee provided by their parallel composition:

G, (3#False, 3#False) ⊢ {Inv} opi1‖opi2 {true}

G, (3#False)‖(3#False) ⊢ {Inv} opi1‖opi2 {true}

The conclusion is equivalent to

G, 3#False ⊢ {Inv} opi1‖opi2 {true} (4.8)

from which (4.1) follows by CONSEQ. This proves termination of
the two operations.

Arbitrary number of operations. We can generalise our proof
to an arbitrary number of operations as follows. First, notethat
applying PAR-MERGEon (4.4), we get:

CL(G),G ⊢ {Inv} opi1‖opi2 {true} (4.9)

Hence, the proof for two operations establishes (4.9) and (4.8)
given (4.3) and (4.7), i.e., it shows that the parallel composition
opi1‖opi2 preserves the properties (4.3) and (4.7) of its constituent
operations. Note that this derivation is independent of theparticular
definitions ofopi1 andopi2 satisfying (4.3) and (4.7).

This allows us to prove by induction onk that

CL(G),G ⊢ {Inv} opi1‖ . . . ‖opik {true}

G, 3#False ⊢ {Inv} opi1‖ . . . ‖opik {true} (4.10)

is derivable in our proof system for anyk ≥ 1. For k = 1
the triples are established by (4.3) and (4.7). For the induction
step, we just repeat the previous derivation withopi1 replaced by
opi1‖ . . . ‖opik andopi2 replaced byopi(k+1).

Applying CONSEQ to (4.10), we get (3.4), which entails lock-
freedom of Treiber’s stack.

Note that instead of doing induction on the number of threads,
we could have formulated our proof rules fork threads. To simplify
the presentation, we chose the minimalistic proof system.

4.2 Proving lock-freedom of the HSY non-blocking stack

The actionXchg used in the informal proof of lock-freedom of the
HSY stack (Section 2) can be formally defined as follows:

0 ≤ i ≤ SIZE−1∧collision[i]7→ ; collision[i]7→
(Xchg)

The abridged data structure invariant is:

Inv =
∃x. &S 7→ x ∗ lseg(x,NULL) ∗ true

∗ ⊛SIZE−1
i=0 collision[i] 7→ ∗ . . .

(We elided some of the data structures of the elimination scheme.)
We now formalise the informal proof from Section 2 for two

operationsopi1 andopi2 running in parallel.

Statement I. The statement requires us to establish the guarantee

G = 2(Push ∨ Pop ∨ Xchg ∨Others ∨ Id)∧ ¬23(Push ∨ Pop)

whereOthers describes the interference caused by the elimination
scheme (elided). As before, we can do this using PAR-C. Given the
thread-local triples (4.3) with the newly definedopi1, opi2, G, and
Inv, we can again derive (4.5) and (4.9), where

CL(G) = 2(Push ∨ Pop ∨ Xchg ∨ Others ∨ Id)

Statement II. Now, provided that a thread satisfies the guarantee
G, we have to prove that the other thread satisfies the guarantee

G′ = 2(Push ∨ Pop ∨ Xchg ∨ Others ∨ Id) ∧ ¬23Xchg

To this end, we use the non-circular rely-guarantee rule PAR-NC:

G, (G,G) ⊢ {Inv} opi1‖opi2 {true}

G‖G, G′ ⊢ {Inv} opi1 {true}

G‖G, G′ ⊢ {Inv} opi2 {true}

G, (G′,G′) ⊢ {Inv} opi1‖opi2 {true}

We thus have to establish the following thread-local triples:

G,G′ ⊢ {Inv} opj {true}, j ∈ {i1, i2} (4.11)

We can now use the conjunction rule, CONJ, to combine the guar-
anteesG andG′ into a single guaranteeG′′:

G, (G,G) ⊢ {Inv} opi1‖opi2 {true}

G, (G′,G′) ⊢ {Inv} opi1‖opi2 {true}

G, (G′′,G′′) ⊢ {Inv} opi1‖opi2 {true}

(4.12)

where

G′′ = G ∧ G′ = 2(Push ∨ Pop ∨ Xchg ∨ Others ∨ Id)

∧ ¬23(Push ∨ Pop ∨ Xchg)

This combines Statements I and II. Applying CONSEQ, we get:

G′′, (G′′,G′′) ⊢ {Inv} opi1‖opi2 {true}



procedure LOCKFREE(init, op)

(Inv, G1) := SAFETYGUARANTEE(init, op)

G2 := ∅

do
G := 2G1 ∧ ¬23G2

if THREADLOCAL(G, 3#False ⊢ {Inv} op {true})

return “Lock-free”
G0

2 := G2

for each A ∈ (G1 \ G0
2) do

if THREADLOCAL(G,¬23A ⊢ {Inv} op {true})

G2 := G2 ∪ {A}

while G0
2 6= G2

return “Don’t know”

Figure 6. Proof search procedure for lock-freedom

Thus, we have strengthened the guaranteeG of Statement I to the
guaranteeG′′.

Statement III. Finally, we can formalise Statement III by apply-
ing the rule PAR-NC to establish termination:

G′′, (G′′,G′′) ⊢ {Inv} opi1‖opi2 {true}

G′′‖G′′, 3#False ⊢ {Inv} opi1 {true}

G′′‖G′′, 3#False ⊢ {Inv} opi2 {true}

G′′, (3#False, 3#False) ⊢ {Inv} opi1‖opi2 {true}

provided we can establish the thread-local triples

G′′, 3#False ⊢ {Inv} opj {true}, j ∈ {i1, i2} (4.13)

By PAR-MERGEwe then get:

G′′, 3#False ⊢ {Inv} opi1‖opi2 {true} (4.14)

which proves the termination of the two operations.

Arbitrary number of operations. From the conclusion of (4.12),
by PAR-MERGEwe get:

G,G′′ ⊢ {Inv} opi1‖opi2 {true} (4.15)

Thus, the above derivation establishes (4.9), (4.15), and (4.14)
given (4.3), (4.11), and (4.13). As before, this allows us toprove
by induction onk that the following triples are derivable in our
logic for anyk ≥ 1:

CL(G),G ⊢ {Inv} opi1‖ . . . ‖opik {true}

G,G′′ ⊢ {Inv} opi1‖ . . . ‖opik {true}

G′′, 3#False ⊢ {Inv} opi1‖ . . . ‖opik {true}

The last one implies lock-freedom of the HSY stack.

5. Automation
In this section we describe our automatic prover for liveness prop-
erties of non-blocking concurrent algorithms. Our tool’s input is
a liveness property to be proved and a program in a C-like lan-
guage consisting of the code of operationsop1, . . . , opn of a non-
blocking algorithm, together with a piece of initialisation code
init. We remind the reader that we denote withop the command,
defined by (2.1), that non-deterministically executes one of the op-
erationsopi on the data structure. We first describe how our tool
handles lock-freedom.

Proving lock-freedom via proof search.Recall that to prove
lock-freedom, we have to prove termination of the programC′(k)

defined by (2.2) for an arbitraryk. All rely and guarantee condi-
tions used in the examples of such proofs in Section 4 had a re-
stricted form2A1 ∧ ¬23A2, whereA1 andA2 are sets (disjunc-
tions) of actions andA2 ⊆ A1. HereA1 is the set of all actions
that a thread can perform, whereasA2 is the set of actions that the
thread performs only finitely often. In fact, for all the non-blocking
algorithms we have studied, it was sufficient to consider rely and
guarantee conditions of this form to prove lock-freedom.

We prove termination ofC′(k) by searching for proofs of
triple (3.4) in our proof system in the style of those presented in
Section 4 with relies and guarantees of the form2A1 ∧ ¬23A2.
There are several ways in which one can organise such a proof
search. The strategy we use here is to perform forward searchas
explained informally in Section 2.

Figure 6 contains our procedure LOCKFREE for proving lock-
freedom. It is parameterised with two auxiliary procedures, whose
implementation is described later:

• SAFETYGUARANTEE(init, op) computes supporting safety
properties for our liveness proofs, namely, a data structure in-
variantInv such that

2Id, 2True ⊢
{

emp
}

init
{

Inv
}

(5.1)

and an initial safety guarantee provided by every operation,
which is defined by a set of actionsG1 = {A1, . . . , An} such
that

2G1, 2G1 ⊢ {Inv} op {Inv} (5.2)

• THREADLOCAL(R, G ⊢ {Inv} op {true}) attempts to prove
the thread-local tripleR,G ⊢ {Inv} op {true} valid. The no-
tion of validity of thread-local triples used by THREADLOCAL
corresponds to the informal explanation given in Section 3 and
is formalised in Section 6.

LOCKFREE first calls SAFETYGUARANTEE to compute the
data structure invariantInv and the safety guarantee2G1. In our
proofs of liveness properties, rely and guarantee conditions are
then represented using LTL formulae with actions inG1 as atomic
propositions. A side-effect of SAFETYGUARANTEE is that it an-
notatesatomic blocks inop with actions fromG1 as explained in
Section 3. These annotations are used by the subsequent calls to
THREADLOCAL, which ensures that all thread-local reasoning in
the proof of lock-freedom uses the same splitting of the program
state into local and shared parts.

Having computed the safety guarantee, we enter into a loop,
where on every iteration we first attempt to prove termination of
op using the available guarantee. If this succeeds, we have proved
lock-freedom. Otherwise, we try to strengthen the guarantee2G1∧
¬23G2 by considering each action inG1 \G2 and trying to prove
that it is executed only finitely often using the current guarantee as
a rely condition. If we succeed, we update the guarantee by adding
the action to the set of finitely executed actionsG2. If we cannot
prove that any action fromG1 \ G2 is executed only finitely often,
we give up the search and exit the loop.

This procedure scales because in practice the set of actionsG1

computed by SAFETYGUARANTEE is small. This is due to the fact
that actionsp ; q are local in the sense thatp andq describe only
the parts of the shared state modified by atomic blocks.

It is possible to show that a successful run of LOCKFREE con-
structs proofs of triples (3.4) for allk. We can construct the proofs
for any number of threads uniformly because the guaranteesG used
in them are such thatG‖G = G. The construction follows the
method of Section 4. The only difference is that the proofs con-
structed by LOCKFREE first apply the rule PAR-C to triples (5.2)
with G1 = G2 = 2G1. SinceCL(2G1) = 2G1, this establishes
the initial safety guarantee2G1, which is then strengthened using
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Figure 7. The high-level structure of the THREADLOCAL proce-
dure for discharging thread-local triples

the rule PAR-NC. In the proofs of Section 4, these two steps were
performed with one application of the rule PAR-C.

We now describe the two auxiliary procedures used by LOCK-
FREE—SAFETYGUARANTEE and THREADLOCAL.

TheSAFETYGUARANTEE procedure. We implement the proce-
dure using the SMALLFOOTRG tool for verifying safety properties
of non-blocking algorithms [6]. SMALLFOOTRG computes a data
structure invariant and an interference specification by performing
abstract interpretation of the code ofinit andop over an abstract
domain constructed from RGSep formulae. This abstract interpre-
tation is thread-modular, i.e., it repeatedly analyses separate threads
without enumerating interleavings using an algorithm similar to the
one described in [12]. For the invariant and interference specifica-
tions computed by SMALLFOOTRG to be strong enough for use in
liveness proofs, its abstract domain has to be modified to keep track
of the lengths of linked lists as described in [21].

RGSep judgements can be expressed in our logic by triples with
rely and guarantee conditions of the form2A, whereA is a set of
actions. SMALLFOOTRG proves the validity of RGSep judgements
that, when translated to our logic in this way, yield (5.1) and (5.2).

The THREADLOCAL procedure. We prove a thread-local triple
R,G ⊢ {Inv} op {true} using a combination of several existing
methods and tools, as shown in Figure 7. For technical reasons,
in this procedure we assume thatR and G consist of only infi-
nite words andop has only infinite computations. This can always
be ensured by padding the finite words inR andG with a special
dummy action and inserting an infinite loop at the end ofop exe-
cuting the action. To prove the tripleR, G ⊢ {Inv} op {true}:

• We first representR and¬G as Büchi automata, whose tran-
sitions are labelled with actions from the setG1 computed by
SAFETYGUARANTEE and apply the automata-theoretic frame-
work for program verification [36]. This reduces proving the
triple to proving that the program(op‖asyncR)‖sync¬G termi-
nates when run from states satisfying the preconditionInv un-
der the fairness assumptions extracted from the accepting con-
ditions of the automata forR and¬G. Hereop‖asyncR is the
asynchronous parallel composition interleaving the executions
of op and the automatonR in all possible ways. The pro-
gram (op‖asyncR)‖sync¬G is the synchronous parallel compo-

sition ofop‖asyncR and the automaton¬G synchronising on ac-
tions of op. Intuitively, fair infinite executions of the program
(op‖asyncR)‖sync¬G correspond to the executions ofop in an
environment satisfying the relyR that violate the guaranteeG.
Its fair termination implies that there are no such executions.

• To check fair termination of(op‖asyncR)‖sync¬G, we analyse
it with the abstract interpreter of SMALLFOOTRG [6], which
produces an abstract transition system over-approximating the
program’s behaviour. The interpreter uses the annotationsat
atomic blocks computed by SAFETYGUARANTEE to choose
the splitting of the heap into local and shared parts.

• Using the techniques of [3, 21], from this transition system
we then extract an arithmetic program (i.e., a program with-
out the heap with only integer variables), whose fair termina-
tion implies fair termination of(op‖asyncR)‖sync¬G. The arith-
metic program makes explicit the implicit arithmetic infor-
mation present in the heap-manipulating program that can be
used by termination provers to construct ranking functions. For
example, it contains integer variables tracking the lengths of
linked lists in the original program.

• Finally, we run a termination prover (TERMINATOR with fair-
ness [8]) to prove fair termination of the arithmetic program.

We note that proofs of thread-local statements may be more
complicated then the ones in the examples of Section 2, whichwere
based on control-flow arguments. For example, for Michael’snon-
blocking linked list algorithm [25] they involve reasoningabout
lengths of parts of the shared data structure. Furthermore,the
proofs may rely on complex supporting safety properties that en-
sures that the data structure is well-formed. Automatic tool support
is indispensable in constructing such proofs.

Proving obstruction-freedom and wait-freedom.As we showed
in Section 2, proving obstruction-freedom or wait-freedomof an
operation in a non-blocking algorithm usually requires only safety
guarantees provided by the operation’s environment. In ourtool, we
use the guarantee2G1 inferred by SAFETYGUARANTEE. Namely,
we prove obstruction-freedom of an operationopi by establishing
triple (3.3) withR = 2G1 via a call to

THREADLOCAL(2G1∧3#False, 3#False ⊢ {Inv} opi {true})

We can prove wait-freedom of an operationopi by establishing
triple (3.2) withR = 2G1 via a call to

THREADLOCAL(2G1, 3#False ⊢ {Inv} opi {true})

Experiments. Using our tool, we have proved a number of non-
blocking algorithms lock-free and have found counterexamples
demonstrating that they are not wait-free. The examples we anal-
ysed include a DCAS-based stack, Treiber’s stack [33], the HSY
stack [14], a non-blocking queue due to Michael and Scott [26] and
its optimised version due to Doherty et al. [9], a restricteddouble-
compare single-swap operation (RDCSS) [13], and Michael’snon-
blocking linked list [25]. In all cases except Michael’s algorithm
the tool found a proof of lock-freedom in less then 10 minutes.
Verification of Michael’s algorithm takes approximately 8 hours,
which is due to the unoptimised arithmetic program generator and
the inefficient version of the termination prover that we currently
use.

We have also tested our tool by proving the obstruction-freedom
of the above lock-free algorithms. (Obstruction-free algorithms that
are not lock-free typically traverse arrays, handling which is be-
yond the scope of the shape analysis that we use.) Additionally, we
have checked that the deletion operation of a linked list algorithm
by Vechev and Yahav [37, Figure 2] is not obstruction-free (as ob-
served by the authors), even though it does not use locks.



We do not report any results for wait-free algorithms in this
paper. Operations consisting of straight-line code only are trivially
wait-free. Proving termination of wait-freefind operations in non-
blocking linked lists mentioned in Section 2 requires tracking the
keys stored in the list, which is not handled by our shape analysis.

6. Semantics and soundness
We give semantics to programs with respect to labelled transi-
tion systems with states representing the whole program heap. The
proof of soundness of our logic with respect to this global seman-
tics is done in two steps. We first show that, given a transition sys-
tem denoting a program, we can construct another transitionsystem
operating on states that distinguish between local and shared heap,
according to the informal description given in Section 3. Interpre-
tation of judgements in this split-state semantics is straightforward.
We then relate the validity of judgements in the split-stateseman-
tics to the standard global notion of validity. The results in this sec-
tion do not follow straightforwardly from existing ones, however,
the techniques used to formulate the split-state semanticsand prove
the soundness theorems are the same as for the RGSep logic [35].

6.1 Global semantics

We represent denotations of programs as a variant of labelled tran-
sition systems (LTS).

DEFINITION 1 (LTS). A labelled transition system (LTS) is a
quadrupleS = (Σ,⊤, Φ, T ), where

• Σ is the set of non-erroneous states of the transition system,
• ⊤ /∈ Σ is a distinguished error state (arising, for example, when

a program dereferences an invalid pointer),
• Φ ⊆ Σ is the set of final states, and
• T is the set of transitions such that everyτ ∈ T is associated

with a transition functionfτ : Σ → P(Σ)∪{⊤}, whereP(Σ)
is the powerset ofΣ.

DEFINITION 2 (Computation of an LTS).A computation of an
LTS(Σ,⊤,Φ, T ) starting from an initial stateu0 ∈ Σ is a maxi-
mal sequenceu0, u1, . . . of statesui ∈ Σ∪ {⊤} such that for alli
there exists a transitionτ ∈ T such thatui+1 = ⊤ if fτ (ui) = ⊤
andui+1 ∈ fτ (ui) otherwise.

Given a threadC in the programming language of Section 3,
we can construct the corresponding LTSJCK in the following
way. Let us assume for the purposes of this construction thatthe
program counter of the thread is a memory cell at a distinguished
address&pc, implicitly modified by every primitive command.
As the set of statesΣ of the LTS we take the one defined in
Figure 4. The final states are those in which the program counter
has a distinguished final value. Every atomic command in the
thread, includingatomic blocks, corresponds to a transition in the
LTS. Conditions inif andwhile commands are translated in the
standard way usingassume commands. The transition functions
are then just the standard postcondition transformers [30,5].

The denotation of a parallel composition of threads is the paral-
lel composition of their denotations, defined as follows.

DEFINITION 3 (Parallel composition of LTSes).The paral-
lel composition of two LTSesS1 = (Σ,⊤, Φ1, T1) and
S2 = (Σ,⊤, Φ2, T2), whereT1 ∩ T2 = ∅, is defined as the LTS
S1‖S2 = (Σ,⊤, Φ1 ∩ Φ2, T1 ⊎ T2).

As follows from Definitions 2 and 3, the parallel composition
interleaves transitions from two LTSes on the same memoryΣ
without any fairness constraints. Note that we can always satisfy
T1 ∩ T2 = ∅ by renaming transitions appropriately.

6.2 Split-state semantics

We now show that given an LTS we can construct asplit LTSthat
distinguishes between the local and the shared state. To this end,
we assume a labelling functionπ that maps each transition in an
LTS to eitherLocal for operations that only access the local state,
or Shared(p ; q) for operations that access both the local and
the shared state. Note that for a programC we can construct such a
labellingπC from the annotations we introduced in Section 3: com-
mands outsideatomic blocks are mapped toLocal and annotations
atatomic blocks give the parameters ofShared.

Given a labellingπ for an LTS(Σ,⊤, Φ, T ), we can define the
corresponding split LTS as(Σ2,⊤, Φ × Σ, T ′), whereT ′ consists
of fresh copies of transitionsτ ′ for every transitionτ ∈ T . The
program counter of a thread is always in its local state, hence,
the set of states of the split LTS in which it has the final valueis
Φ × Σ. The transition functions for the split LTS are defined as
follows. If π(τ ) = Local, thenτ ′ executesτ on the local state and
preserves the shared state:fτ ′(l, s) = fτ (l) × {s} if fτ (l) 6= ⊤,
andfτ ′(l, s) = ⊤ otherwise. Ifπ(τ ) = Shared(p ; q), then the
execution ofτ ′ follows the informal description of the execution of
atomic blocks in Section 3:

f ′
τ ′(l, s) =

⋃

{(restq(u), satq(u) · restp(s)) | u ∈ fτ (l · satp(s))}

if satp(s) is defined,fτ (l · satp(s)) 6= ⊤, andsatq(u) is defined
for all u ∈ fτ (l · satp(s)); otherwise,τ ′ faults:fτ ′(l, s) = ⊤.

6.3 Validity in the split-state semantics

To define validity of triples in the split-state semantics, we have
to define the meaning of interleaving computations of a splitLTS
(Σ2,⊤, Φ × Σ, T ) with actions of an environment changing the
shared state according to a rely conditionR ⊆ L(Σ2). We repre-
sent these computations withtracesα ∈ L(Σ2 × (Σ2 ∪ {⊤}) ×
({e} ∪ T )). The first two components of every letter in a trace de-
fine how the state of the LTS changes. The third component defines
if the change was made by a transition of the LTS (τ ∈ T ) or the
environment (e). We require that the environment does not change
the local state and does not fault, i.e., alle-letters in a trace are of
the form((l, s), (l, s′), e).

We often need to project a traceα without error states to a word
that records how the shared state is changed by a particular set of
transitionsU ⊆ {e} ∪ T . We define such a projectionα⇃U ∈
L(Σ2) as the image ofα under the following homomorphism

h : Σ2 × Σ2 × ({e} ∪ T ) → L(Σ2)

h((l, s), (l′, s′), τ ) =

{

(s, s′), τ ∈ U ;

ε, otherwise

whereε is the empty word. We writeα↓σ if α is a nonempty trace
and its last letter is of the form(σ′, σ, τ ) for someσ′ andτ .

DEFINITION 4 (Traces).For a rely conditionR ⊆ L(Σ2) and a
split LTSS = (Σ2,⊤, Φ × Σ, T ), the settr(S,R, σ0) of traces of
S executed in an environment satisfyingR starting from an initial
stateσ0 ∈ Σ2 is defined as the set of tracesα ∈ L(Σ2 × (Σ2 ∪
{⊤}) × ({e} ∪ T )) of the following two forms:

• finite or infinite tracesα = (σ0, σ1, τ0)(σ1, σ2, τ1) . . ., where
σi 6= ⊤, α⇃{e} ∈ R, and ifτi 6= e, thenσi+1 ∈ fτi

(σi); and
• finite tracesα = β(σn,⊤, τn) for someβ = (σ0, σ1, τ0)

(σ1, σ2, τ1) . . . (σn−1, σn, τn−1) such that β⇃{e} ∈ R,
fτn

(σn) = ⊤, and ifτi 6= e for i < n, thenσi+1 ∈ fτi
(σi).

The first case in this definition corresponds to safe traces, and
the second to unsafe traces, i.e., those in which both the program



and its environment stop executing after the program commits a
memory fault (the treatment of the later case relies onR being
prefix-closed). Note that, since we assume that the scheduler is
possibly unfair, the set of traces in this definition includes those
in which S is preempted and is never executed again. Hence, the
set of projectionsα⇃T of tracesα ∈ tr(S,R, σ0) on the transitions
of the LTSS, representing the guarantee condition provided byS,
is prefix-closed.

Let F0(C), respectivelyFf (C), be the∗-conjunction over all
the threads in a programC of formulae&pc 7→ pc0, respectively
&pc 7→ pc

f
, wherepc is the program counter of the thread,pc0

is its initial value, andpc
f

is the final one. Note thatF0(C) and
Ff (C) do not restrict the shared state.

DEFINITION 5 (Validity).

R,G |= {P} C {Q} ⇔

∀σ0 ∈ [[P ∗ F0(C)]]. ∀α ∈ tr(S,R, σ0). ∀σ.

(α↓σ ⇒ σ 6= ⊤) ∧ (safety)
(α↓σ ∧ σ ∈ (Φ × Σ) ⇒ σ ∈ [[Q ∗ Ff (C)]]) ∧ (correctness)
(α⇃T ∈ G) (guarantee)

whereS = (Σ2,⊤, Φ × Σ, T ) is the split LTS constructed out of
the LTSJCK using the labellingπC .

R, (G1,G2) |= {P} C1‖C2 {Q} ⇔

∀σ0 ∈ [[P ∗ F0(C1‖C2)]]. ∀α ∈ tr(S1‖S2,R, σ0). ∀σ.

(α↓σ ⇒ σ 6= ⊤) ∧ (safety)
(α↓σ ∧ σ ∈ ((Φ1 ∩ Φ2) × Σ) ⇒ σ ∈ [[Q ∗ Ff (C1‖C2)]]) ∧

(correctness)
(α⇃T1

∈ G1) ∧ (α⇃T2
∈ G2) (guarantee)

whereS1 = (Σ2,⊤, Φ1 × Σ, T1) andS2 = (Σ2,⊤, Φ2 × Σ, T2)
are the split LTSes constructed out of the LTSesJC1K and JC2K
using the labellingsπC1

andπC2
, respectively.

THEOREM 1. The proof rules in Figure 5 preserve validity.

COROLLARY 1. If R, G ⊢ {P} C {Q} is derived from valid
thread-local triples using the rules in Figure 5, thenR, G |=
{P} C {Q}.

6.4 Soundness

We now relate the notion of validity with respect to a split LTS to
validity with respect to the global LTS used to construct thesplit
one. For a closed program (i.e., a program executing in isolation),
we can formulate a global notion of validity of triples without rely
and guarantee conditions as follows.

DEFINITION 6 (Validity with respect to a global LTS).For p, q ⊆
Σ and a commandC such thatJCK = (Σ,⊤, Φ, T ) we define
|= {p} C {q} if for all u0 ∈ p and for any computationu0, u1, . . .
of JCK we haveui 6= ⊤, and if the computation is finite and
ending with a stateu ∈ Φ, thenu ∈ q. We define|= [p] C [q]
if |= {p} C {q} and every computation ofJCK starting from a
state inp is finite.

THEOREM 2. Let JCK = (Σ,⊤, Φ, T ) and S′ = (Σ2,⊤, Φ ×
Σ, T ′) be a corresponding split LTS with respect to any labelling
πC . Then

• R,G |= {P} C {Q} implies
|= {γ([[P ∗ F0(C)]])} C {γ([[Q ∗ Ff (C)]])},

• If R, 3#False |= {P} C {Q} implies
|= [γ([[P ∗ F0(C)]])] C [γ([[Q ∗ Ff (C)]])],

whereγ(P ) = {l · s | (l, s) ∈ P} for any assertionP .

Theorem 2 and Corollary 1 show that the provability of
triple (3.4) from valid thread-local triples in the proof system of
Section 4 implies that the programC′(k) terminates, and hence,
the corresponding algorithm is lock-free. Similar soundness results
can be formulated for obstruction-freedom and wait-freedom.

7. Related work
Our proof system draws on the classical circular and non-circular
rely-guarantee rules for shared-variable concurrency [18, 29, 1]
to achieve compositionality, and on separation logic (specifically,
RGSep—a combination of rely-guarantee and separation logic [35,
11, 34]) to achieve modular reasoning in the presence of heap.
Its technical novelty over previous rely-guarantee proof systems
lies in our method of combining applications of circular andnon-
circular rules using judgements that distinguish between guarantees
provided by different threads in a parallel composition.

Colvin and Dongol [7] have recently proved the most basic non-
blocking algorithm, Treiber’s stack [33], to be lock-free.They did
this by manually constructing a global well-founded ordering over
program counters and local variables of all the threads in the al-
gorithm’s most general client. Unfortunately, their method requires
each operation to have at most one lock-free loop, which rules out
more modern non-blocking algorithms, such as the HSY stack and
Michael’s list algorithm. Moreover, because their well-founded or-
dering is over the whole program, their method is non-modular and
does not scale to the more realistic examples of the kind we con-
sider in Section 5. In contrast, our method is modular, both in the
treatment of threads and heaps. We can reason about every thread
separately under simple assumptions about its environmentthat do
not consider parts of the heap local to other threads. Furthermore,
our method is fully automatic.

Kobayashi and Sangiorgi [19] have recently proposed a type-
based method for checking lock-freedom inπ-calculus. Their pro-
gramming model and the notion of lock-freedom are different
from the ones used for non-blocking data structures, which makes
their results incomparable to ours. Moore [27] presents a proof of
a progress property for a non-blocking counter algorithm inthe
ACL2 proof assistant. His proof is thread-modular, but the algo-
rithm considered is extremely simple. McMillan [24] addresses the
issue of circular dependencies among a class of liveness properties
in the context of finite-state hardware model checking. He takes a
different approach from ours to resolving the circularities by doing
induction over time.

8. Conclusion
Wait-freedom, lock-freedom, and obstruction-freedom arethe es-
sential properties that make “non-blocking algorithms”actually
non-blocking. We have proposed the first fully automatic tool that
allows their developers to verify these properties. Our success was
due to choosing a logical formalism in which it was easy to ex-
press proofs about non-blocking algorithms and then observing that
proofs of the liveness properties in it follow a particular pattern.

We conclude by noting some limitations of our tool; lifting
these presents interesting avenues for future work. First,we prove
the soundness of our logic with respect to an interleaving seman-
tics, which is inadequate for modern multiprocessors with weak
memory models. It happens that even proving safety properties of
programs with respect to a weak memory model is currently an
open problem. Moreover, the published versions of concurrent al-
gorithmsassumea sequentially consistent memory model. In fact,
most of non-blocking algorithms are incorrect when run on mul-
tiprocessors with weak memory models as published: one has to
insert additional fences or (on x86) locked instructions for them
to run correctly. In the future, we hope to address this problem,



building on a recent formalisation of weak memory model seman-
tics [31]. Second, our tool can currently handle only list-based algo-
rithms, because we use an off-the-shelf shape analysis. We believe
that the methods described in this paper should be applicable to
more complicated data structures as well, provided the necessary
shape analysis infrastructure is available.

The above-mentioned limitations notwithstanding, this paper
presents the first successful attempt to give modular proofsof
liveness properties to complex heap-manipulating concurrent pro-
grams.
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