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Abstract

For more than fifteen years, researchers have tried to support

global optimizations in a usable semantics for a concurrent

programming language, yet this task has been proven to be

very difficult because of (1) the infamous “out of thin air”

problem, and (2) the subtle interaction between global and

thread-local optimizations.

In this paper, we present a solution to this problem by

redesigning a key component of the promising semantics
(PS) of Kang et al. Our updated PS 2.0 model supports all

the results known about the original PS model (i.e., thread-
local optimizations, hardware mappings, DRF theorems), but

additionally enables transformations based on global value-

range analysis as well as register promotion (i.e., making

accesses to a shared location local if the location is accessed

by only one thread). PS 2.0 also resolves a problem with the

compilation of relaxed RMWs to ARMv8, which required an

unintended extra fence.

CCSConcepts: •Theory of computation→Concurrency;

Operational semantics; • Software and its engineering

→ Semantics.

Keywords: Relaxed Memory Concurrency; Operational Se-

mantics; Compiler Optimizations
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1 Introduction

A major challenge in programming language semantics has

been to define a weak memory model for a concurrent pro-

gramming language supporting efficient compilation to the

mainstream hardware platforms (i.e., x86, POWER, ARMv7,

ARMv8, RISC-V) including all applicable compiler optimiza-

tions and yet avoiding semantics quirks, such as “out of thin

air” reads [16], that prevent formal reasoning about pro-

grams and break DRF guarantees (the latter provide simpler

semantics to data-race-free programs). In particular, such

a semantics must allow the following annotated outcome

(assuming all variables are initialized to zero and all accesses

are relaxed).

a := x //1
y := 1

b := y //1
x := b

(LB)

This outcome is observable after a compiler transformation

that reorders the (independent) accesses of thread 1, while on

ARM [20] it is even observable without the transformation.

While there are multiple partial solutions to this challenge

[7, 8, 12, 16, 18], none of them properly supports global com-

piler optimizations, namely program transformations whose

validity depends on some global analysis. Examples of such

transformations are (a) removal of null pointer checks based

on global null-pointer analysis; (b) removal of array bounds

checks based on global size analysis; and (c) register pro-
motion, i.e., converting accesses to a shared variable that

happens to be used by only one thread to local accesses. The

latter is very important in languages like Java that have only
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atomic accesses, but is also useful for C/C++. For instance, in

single-threaded programs, it allows the removal of locks, as

well as the promotion to register accesses of inlined function

calls of concurrent data-structures.

The desire to support global optimizations in concurrent

programming languages goes at least as back as 15 years

ago with the Java memory model (JMM) [16]. In fact, the

very first JMM “causality test case” is centered around value-

range analysis. Assuming all variables are initialized to 0,

JMM allows the annotated outcome of the following example:

a := x //1
if a ≥ 0 then

y := 1

b := y //1
x := b

(JMM1)

“Decision: Allowed, since interthread compiler anal-
ysis could determine that x andy are always non-
negative, allowing simplification of a ≥ 0 to true,
and allowing writey := 1 to be moved early.” [10]

Supporting global optimizations, however, is rather chal-

lenging because of their interaction with local transforma-

tions. Global optimizations generally depend on invariants

deduced by some global analysis but these invariants need

not hold in the source program; they might hold after some

local transformations have been applied. In the following

example, (only) after the local elimination of the overwritten

x := 42 assignment, the condition a < 10 becomes a global

invariant, and so can be simplified to true as in JMM1.

a := x //1
if a < 10 then

y := 1

x := 42

b := y //1
x := b

(LB-G)

In more complex cases, a global optimization may enable

a local transformation, which may further enable another

global optimization, which may enable another local opti-

mization, and so on. As a result, supporting both global and

local transformations is very difficult, and none of the so-

lutions so far has managed to fully support global analysis

along with all the expected thread-local transformations.

In this paper, we present the first memory model that

solves this challenge: (i) it allows the aforementioned global

optimizations (value-range analysis and register promotion);

(ii) it validates the thread-local compiler optimizations that

are validated by the C/C++11 model [13] (e.g., roach-mo-

tel reorderings [21]); (iii) it can be efficiently mapped to

the mainstream hardware platforms (x86, POWER, ARMv7,

ARMv8, RISC-V); and (iv) it supports reasoning principles in

the form of DRF guarantees, allowing programmers to resort

to simpler well-behaved models when data races are appro-

priately restricted. In developing our model we mainly use

(i)–(iii) to conclude that some behavior should be allowed;

while (iv) tells us which behaviors must be forbidden.

As a starting point, we take the promising semantics (PS)
of Kang et al. [12], a concurrency semantics that satisfies

almost all our desiderata. It supports almost all C/C++11

features, all expected thread-local compiler optimizations,

and several DRF theorems. In addition, Podkopaev et al. [19]

established the correctness of a mapping from PS to hard-

ware.
1
The main drawback of PS is that it does not support

global optimizations.

PS is an operational semantics which represents shared

memory as a set of messages (i.e., writes). To support out-of-

order execution, PS employs a non-standard step, allowing

a thread to promise to perform a write in the future, which

enables other threads to read from it before the write is

actually executed.

The technical challenge resides in identifying the exact

conditions on such promise steps so that basic guarantees

(like DRF and no “thin-air values”) are maintained.

In PS, these conditions are completely thread-local: the

thread performing the promise must be able to run in iso-

lation from all extensions of the current state and fulfill all

its outstanding promises. While thread-locality is useful,

quantifying over all extensions of the current state prevents

optimizations based on global analysis because some exten-

sions may well not satisfy the invariant produced by the

analysis.

Checking for promise fulfillment only from the current

state without extension enables global analysis, but breaks

the DRF guarantee (see §4). Our solution is therefore to check

promise fulfillment for a carefully crafted extension of the

current state, which we call capped memory. Because capped
memory does not contain any new values, it is consistent

with optimizations based on global value analysis. However,

it still does not allow optimizations like register promotion.

To support register promotion, we introduce reservations,
which allow a thread to secure an exclusive right to per-

form an atomic read-modify-write instruction reading from

a certain message without fixing the value that it will write

(because, for example, that might not have yet been resolved).

In addition, reservations resolve a problem with the compi-

lation of PS to ARMv8, whose intended mapping of RMWs

was unsound and required an extra fence [19].
2

With these two new concepts, we are able to retain the

thread-local nature of PS and yet fully support global opti-

mizations and the intended mapping of RMWs along with

all the results available for PS. Our redesigned PS 2.0 model

is the first weak memory model that achieves these results.

To establish confidence in our model, we have formalized

our key results in the Coq proof assistant.

Outline. In the following, we first review the PS defini-

tion (§2), and why it does not support global optimizations

1
Albeit, the mapping of RMWs to ARMv8 contains one more barrier (“ld

fence”) than intended because the intended mapping is unsound.

2
Our current mechanized proof requires a fake control dependency from

relaxed fetch-and-add instructions, which is currently not added by standard

compilers. We believe that the compilation from our model without this

dependency is sound as well, and leave the formal proof to a future work

(see also Section 6.5).
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(§3). We then present our PS 2.0 model both informally in

an incremental fashion (§4) and formally all together (§5). In

§6, we establish the correctness of mappings from PS 2.0 to
hardware, and show that PS 2.0 supports all the local trans-
formations and reasoning principles known to be allowed

by PS, as well as register promotion, and the introduction

of ‘assert’ statements for invariants derived by global analy-

sis. The mechanization of our main results in Coq, the full

model definitions, and written proofs of additional claims

are available in [1].

2 Introduction to the Promising Semantics

In this section, we introduce the promising semantics (PS)
of Kang et al. [12]. For simplicity, we present only a frag-

ment of PS containing only three kinds of memory accesses:

relaxed (the default mode), release writes (rel), and acquire
reads (acq). Read-modify-write (RMW) instructions, such as

compare-and-swap (CAS) and fetch-and-add (FADD), carry

two access modes—one for the exclusive read and one for the

write. We put aside other access modes, fences, and release

sequences, as they are orthogonal to the contribution of this

paper. We refer the reader to [12] for the full PS model.

Domains. We assume non-empty sets Loc of locations
and Val of values. We also assume a set Time of timestamps,
which is totally and densely ordered by < with 0 as its

minimum. (In our examples, we take non-negative ratio-

nal numbers as timestamps with their usual ordering.) A

view, V ∈ View ≜ Loc → Time, records the largest known
timestamp for each memory location. A timestamp interval
is a pair of timestamps (f , t] with f < t or f = t = 0. It

represents the range of timestamps from (but not including)

f up to and including t .

Memory. In PS, the memory is a set of messages repre-
senting all previously executed writes. A messagem is of

the form ⟨x :v@(f , t],R⟩, where x ∈ Loc is the location,

v ∈ Val is the stored value, (f , t] is a timestamp interval,

and R ∈ View is the message view. The latter is used to

model release-acquire synchronization and will be explained

shortly. Initially, the memory consists of an initialization

message for every location carrying the value 0, the inter-

val (0, 0], and the bottom view ⊥ ≜ λx . 0. We require that

any two messages with the same location in memory have

disjoint timestamp intervals. The timestamp (also called the

“to”-timestamp) of a massage ⟨x :v@(f , t],R⟩ is the upper
bound t of the message’s timestamp interval. The lower

bound f , called the “from”-timestamp, is needed to handle

atomic updates (a.k.a. RMW operations) as explained below.

Machine State. PS is an operational model where threads

execute in an interleaved fashion. Themachine state is a pair
Σ = ⟨TS,M⟩, where TS assigns a thread state TS to every

thread andM is a (global) memory. A thread state is a triple

TS = ⟨σ ,V , P⟩ where σ is the local store recording the values

of its local variables, V ∈ View is the thread view, and P
is a set of messages representing the thread’s outstanding

promises.

Relaxed Reads andWrites. Thread views are instrumen-

tal in providing correct semantics to memory accesses. The

thread view, V , records the “knowledge” of each thread, i.e.,
the timestamp of the most recent message that it has ob-

served for each location. It is used to forbid a thread to read

from a (stale) messagem if the thread is aware of a “newer”

message, i.e., when V (x) is greater than the message’s times-

tamp. Similarly, when a thread adds messages of location x
to the memory, it has to pick a timestamp t for the added
message that is greater than its view of x (V (x) < t ):
read. A thread can read from memory M by simply

observing a message ⟨x :v@(f , t], _⟩ ∈ M provided that

V (x) ≤ t , and updating its view for x to t .
write. A thread adds a newmessagem = ⟨x :v@(f , t],⊥⟩

to the memory where the timestamp t is greater than the

thread’s view of x (V (x) < t ) and there is no other message

with the same location and overlapping timestamp interval

in the memory. Relaxed writes set the message view to ⊥,

which maps each location to timestamp 0.

The following example illustrates how timestamps of mes-

sages and views interact. Note that we assume that both

threads start with the initial thread view that maps x and

y to 0, and that every location is initialized to 0: the ini-

tial memory only contains messages ⟨x : 0@(0, 0],⊥⟩ and
⟨y : 0@(0, 0],⊥⟩.3

x := 1

a := y //0
y := 1

b := x //0 (SB)

Here, both threads are allowed to read from the initialization

messages, 0. When thread 1 performs the write to x , it will
add a message ⟨x : 0@(f , t],⊥⟩ by choosing some t > f ≥ 0.

During this write, thread 1 should increase its view of x to

t , while maintaining V (y) to be 0 as it was. Hence, thread 1

is still allowed to read 0 from y in the subsequent execution.

As thread 2 can be executed in the same way, both threads

are allowed to read 0.

Relaxed Atomic Updates. Atomic updates (a.k.a. RMW

operations) are essentially a pair of accesses to the same

location—a read followed by a write—with an additional

atomicity guarantee: the read reads from a message that

immediately precedes the one added by the write. PS em-

ploys timestamp intervals (rather than single timestamps)

to enforce atomicity.

update. When a thread performs an RMW, it first reads a

message ⟨x :v@(f , t],⊥⟩, and then writes the updated mes-

sage with “from”-timestamp equal to t , i.e., a message of the

form ⟨x :v ′@(t , t ′],⊥⟩. This results in consecutive messages

3
In all our code examples, we assume that all memory accesses are relaxed

(rlx memory order) unless annotated otherwise.

3
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(f , t], (t , t ′], forbidding other writes to be later placed be-

tween the two messages (recall that messages with the same

location must have disjoint timestamp intervals).

This constraint, in particular, means that two competing

RMWs cannot read from the same message, as the following

“parallel increment” example demonstrates.
4

a := FADD(x , 1) //0 b := FADD(x , 1) //0 (Upd)

Without loss of generality, suppose that thread 1 executed

first. As it performs an RMW operation, it must “attach” the

message it adds to an existing message. Since the only exist-

ing message in this stage is the initial one ⟨x : 0@(0, 0],⊥⟩,
thread 1 will first add a messagem = ⟨x : 1@(0, t],⊥⟩ with
some t > 0 to the memory. Then, the RMW of thread 2 can-

not also read from the initial message because its interval

would overlap with the (0, t] interval ofm. Therefore, the

annotated behavior is forbidden. More abstractly speaking,

the timestamps intervals of PS express a dense total order

on messages to the same location together with immediate

adjacency constraints on this order, which are required for

handling RMW operations.

Release and Acquire Accesses. To provide the appropri-

ate semantics to release and acquire accesses, PS uses the

message views. Indeed, a release write should transfer the

current knowledge of the thread to other threads that read

the message by an acquire read. Thus, (i) a release write

operation puts the current thread view in the message view

of the added message; and (ii) an acquire read operation in-

corporates the view of the message being read in the thread

view (by taking the pointwise maximum).

read is defined the same as before, except that when

the thread performs an acquire read, it increases its view to

contain not only the (“to”) timestamp of the message read

but also the view of that message.

write is defined as before, except that release writes

record the thread view in the message being added, whereas

relaxed writes record the ⊥ view.

As a result, the acquiring thread is confined in its future

reads at least as the releasing thread was confined when it

“released” themessage being “acquired”. As a simple example,

consider the following:

x := 1

yrel := 1

a := yacq //1
if a = 1 then

b := x //0
(MP)

Here, if thread 2 reads 1 from y, which is written by thread 1,

both threads are synchronized through release and acquire.

Thus, thread 2 obtains the knowledge of thread 1, namely its

view for x is increased to include the timestamp of x := 1 of

thread 1. Therefore, after reading 1 from y, thread 2 is not

allowed to read the initial value 0 from x .
4
Here and henceforth, we assume that RMW instructions such as FADD and

CAS return the value that was read during the read-modify-write operation

(before the update).

Release/acquire RMWoperations also transfer thread views

via message views as release writes and acquire reads do.

Promises. The main novelty of PS lies in its way to enable
the reordering of a read followed by a write (of different loca-

tions), needed to explain the outcome of the LB program in

§1. Thus, besides step-by-step program execution, PS allows

threads to non-deterministically promise their future writes.
This is done by simply adding a message (whose interval

does not overlap with that of any existing message to the

same location) to the memory. Later, the execution of write

instructions may also fulfill an existing promise (rather than

add a message to the memory). Thread promises are kept in

the thread state, and removed when the promise is fulfilled.

Naturally, at the end of the execution all promises must be

fulfilled.

promise. At any point, a thread can add a message to

both its set of promises and the memory.

fulfill. A thread can fulfill its promise by executing a

(non-release) write instruction, by removing a message from

the thread’s set of promises. PS does not allow release writes

to be promised, i.e., a promise cannot be fulfilled through a

release write instruction.

In the LB program above, thread 1 may promise y := 1 at

first. This allows thread 2 to read 1 from y and write it back

to x . Then, thread 1 can read 1 from x , which was written

by thread 2, and fulfill its promise.

Certification. To ensure that promises do not make the

semantics overly weak, each sequence of steps by a thread

(before “yielding control to the scheduler”) has to be certified:
the thread that took the steps should be able to fulfill all its

promises when executed in isolation. Indeed, revisiting the

LB program above, note that at the point of promising y := 1

(in the very beginning of the run), thread 1 can run and

perform y := 1 without any “help” of other threads.

Certification (i.e., the thread-local run fulfilling all out-

standing promises of the thread) is necessary to avoid “thin-

air reads” as demonstrated by the following variant of LB:

a := x //1
y := a

b := y //1
x := b

(OOTA)

As every thread simply copies the value it reads, both threads

are not supposed to read any other value than 0 from the

memory. However, the annotated behavior, often called out-

of-thin-air, is allowed in C11 [3]. In PS, if a thread could

promise without certification, this behavior would be al-

lowed by the same execution as the one for LB. However,

with the certification requirement, thread 1 cannot promise

y := 1, as, when running in isolation, thread 1 will only write

y := 0.

PS requires a certification to exist for every future memory
(i.e., anymemory that extends the current memory). In §3, we

explain the reason for this condition and its consequences.

4
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Machine Step. A thread configuration ⟨TS,M⟩ can take

one of read,write,update, promise, and fulfill steps,

denoted by ⟨TS,M⟩ −→ ⟨TS′,M ′⟩. In addition, a thread con-

figuration is called consistent if for every future memory

Mfuture ofM , there exist TS′ andM ′ such that (where TS.prm
denotes the set of outstanding promises in thread state TS):

⟨TS,Mfuture⟩ −→
∗ ⟨TS′,M ′⟩ ∧ TS′.prm = ∅

In turn, the machine step is defined as follows:

⟨TS(i),M⟩ −→+ ⟨TS′,M ′⟩
⟨TS′,M ′⟩ is consistent

⟨TS,M⟩ −→ ⟨TS[i 7→ TS′],M ′⟩

We note that the machine step is completely thread-local:
it is only determined by the local state of the executing

thread and the global memory, independently of the other

threads’ states. Thread-locality is a key design principle of

PS. It is what makes PS conceptually well-behaved, and,

technically speaking, it allows one to prove the validity of

various local program transformations, which are performed

by compilers and/or hardware, using standard thread-local

simulation arguments.

To show a concrete example, we list the execution steps

of PS leading to the annotated behavior of the LB program

(items prefixed with "C" represent certification steps):

(1) Thread 1 promises ⟨y : 1@(1, 2],⊥⟩.
(C1) Starting from an arbitrary extension of the current

memory, thread 1 reads ⟨x : 0@(0, 0],⊥⟩, the initial
message of x .

(C2) Thread 1 fulfills its promise ⟨y : 1@(1, 2],⊥⟩.
(2) Thread 2 reads ⟨y : 1@(1, 2],⊥⟩.
(3) Thread 2 writes ⟨x : 1@(1, 2],⊥⟩.
(4) Thread 1 reads ⟨x : 1@(1, 2],⊥⟩.
(C1) Starting from an arbitrary extension of the current

memory, Thread 1 fulfills its promise ⟨y : 1@(1, 2],⊥⟩.
(5) Thread 1 fulfills its promise ⟨y : 1@(1, 2],⊥⟩.

DRF-RA Guarantee. We end this introductory section

by informally describing DRF-RA, one of the main program-

ming guarantees provided by PS. Generally speaking, DRF

guarantees ensure that race-free programs have strong (i.e.,
more restrictive) semantics. To be more applicable and allow

their use without even knowing the weaker semantics, race

freedom is checked assuming the strong semantics.

In particular, DRF-RA is focused on release/acquire se-

mantics (RA), and states that: if under RA semantics some

program P has no data race involving relaxed accesses (i.e.,
all races are on rel/acq accesses), then all behaviors that

PS allows for P are also allowed for P by the RA semantics.

Here, (i) by RA semantics we mean the model obtained from

PS by treating all reads as acq reads, all writes as rel writes,
and all RMWs as acqrel; and (ii) as PS is an operational

model, data-races are naturally defined as states in which

two different threads can access the same location and at

least one of these accesses is writing.

For example, by analyzing the MP example under RA se-

mantics, one can easily observe that the only race is on the

rel/acq accesses to y. (Importantly, such analysis safely

ignores promises, since these are not allowed under RA.)
Then, DRF-RA implies that MP has only RA behaviors. In

contrast, in the LB example, non-RA behaviors are possible,

and, indeed, under RA semantics, there are races on relaxed

accesses (to both x and y).
In the sequel, DRF-RA provides us with the main guideline

for making sure that our semantics is not overly weak (that is,

we exclude any semantics that breaks DRF-RA). DRF-RA also

serves as a main step towards “DRF-Lock”, which states that

properly locked programs have only sequentially consistent

semantics.
5

3 Problem Overview

Aswewill shortly demonstrate, themain challenge in PS is to
come up with an appropriate thread-local condition for cer-

tifying the promises made by a thread. Maintaining thread-

locality is instrumental in proving correctness of many com-

piler transformations, but is difficult to achieve given that

promises of different threads may interact.

As we briefly mentioned above, PS requires a certification

to exist for any memory that extends the current memory.

We start by explaining why certifying promises only from

the current memory (without quantifying over all future

memories) is not good enough. Kang et al. [12] observed that

such model may deadlock: the promising thread may fail to

fulfill its promise since the memory was changed since the

promise wasmade. In this work, we observe that a model that

requires certifying promises only from the current memory

has much more severe consequences. It actually breaks the
DRF-RA guarantee as illustrated below:

a := FADD
acqrel(x , 1) //0

if a = 0 then

y := 1

b := FADD
acqrel(x , 1) //0

if b = 0 then

c := y //1
if c = 1 then

x := 0

(CDRF)

Under RA semantics only one thread can enter the if-branch,

and the only race is between the two FADDs. Hence, to

maintain DRF-RA, we need to disallow the annotated be-

havior where both threads read 0 from x . To prevent this

behavior, we need to disallow thread 1 to promise y := 1 in

the beginning of the run. Indeed, by reading such a promise,

thread 2 can write x := 0, and then, thread 1 can perform

its update to x and fulfill its outstanding promise. However,

if we completely ignore the possible interference by other

5
The more standard DRF-SC, guaranteeing sequentially consistent seman-

tics when all races (assuming SC semantics) are on SC accesses, is not

applicable here since PS lacks SC accesses. The extension of PS with SC

accesses is left to future work.

5
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threads, thread 1 may promise y := 1, as it can be certified

in a local run of thread 1 that starts from the initial memory

and reads the initial message of x .
Abstractly, what went wrong is that two threads compete

on the same resource (i.e., to perform an RMW reading from

the initialization message); one of them makes a promise

assuming it will get the resource first but the other thread

wins the competition in the actual run. This not only causes

deadlock (which is semantically inconsequential), but also

breaks DRF-RA.

To address this, PS followed a simple approach: it required

that threads certify their promises starting from any exten-

sion of the current memory. One such particular extension

is the memory that will arise when the required resource is

acquired by some other thread. Hence, this condition does

not allow threads to promise writes assuming they will win

a competition on some resource.

Revisiting CDRF, PS’s certification condition blocks the

promise of y := 1. For example, when certifying against

Mfuture that, in addition to the initialization messages, con-

sists of a messagem = ⟨x : 42@(0, _], _⟩, thread 1 is forced to
read fromm when performing its FADD, and cannot fulfill

its promise. SinceMfuture is a possible future memory of the

initial memory, thread 1 cannot promise y := 1.

PS’s future memory quantification maintains the thread-

locality principle and suffices for establishing DRF-RA. How-

ever, next, we demonstrate that this very conservative over-

approximation of possible interference is too strong to sup-

port global optimizations, and it is also the source of un-

soundness of the intended compilation scheme to ARMv8.

Value-Range Analysis. PS does not support global opti-

mizations based on value-range analysis. To see this, consider

a variant of the LB-G program above that does not have the

redundant store to x in thread 2 and has a CAS instruction

in thread 1.

a := CAS(x , 0, 1) //1
if a < 10 then

y := 1

b := y //1
x := b

(GA)

In PS, the annotated behavior is disallowed. Indeed, to obtain
this behavior, thread 1 has to promise y := 1. This promise,

however, cannot be certified for every future memoryMfuture.

For example, if, in addition to the initialization messages, the

future memory Mfuture consists of a single message of the

form ⟨x : 57@(0, _], _⟩, then the CAS instruction can only

read 57, and the write y := 1 is not executed. However, by

observing the global invariant x < 10∧y < 10, a global com-

piler analysis may transform this program to the following:

a := CAS(x , 0, 1) //1
y := 1

b := y //1
x := b

Now, the annotated behavior is allowed (the promisey := 1 is

not blocked anymore), rendering the optimization unsound.

This is particularly unsatisfying because PS ensures that

x < 10 is globally valid in this program (via its “invariant

logic” [12, §5.5]), but does not allow an optimizing compiler

to make use of this fact.

Register Promotion. A similar problem arises for a differ-

ent kind of global optimization, namely register promotion:

a := x //1
c := FADD(z,a) //0
y := 1 + c

b := y //1
x := b

(RP)

PS disallows the annotated behavior. Again, thread 1 cannot

promise y := 1, since an arbitrary future memory may not

allow it to read z = 0 when performing the RMW. (Note also

the RMW writing z := 1 cannot be promised before y := 1

since it requires to read x := 1 first.) Nevertheless, a global

compiler analysis may notice that z is a local variable in the

source program, and perform register promotion, replacing

c := FADD(z,a)with c := 0 (since this FADD always returns

0). Now, PS allows the annotated behavior (nothing blocks

the promise y := 1), rendering register promotion unsound.

Unsound Compilation Scheme to ARMv8. A different

problem in PS, found while formally establishing the cor-

rectness of compilation to ARMv8 [19], is that the intended

mapping of RMWs to ARMv8 is broken. In fact, this problem

stems from the exact same reason as the two problems above.

While PS disallows the annotated behavior of the RP

program above, when following the intended mapping to

ARMv8 [6], ARMv8 allows the annotated behavior for the tar-

get program.
6
Roughly speaking, although the instructions

cannot be reordered at the source level, they can be reordered

at the micro-architecture level. FADD is effectively turned

into two special instructions, a load exclusive followed by a

store exclusive. Since there is no dependency between the

load of x and the exclusive load of z, the two loads could

be executed out of order. Similarly, the two stores could be

executed out of order, and so the store to y could effectively

be executed before the load of x , which in turn leads to the

annotated behavior.

What went wrong? These three problems all arise be-

cause PS’s certification requirement against every memory

extension is overly conservative in approximating the inter-

ference by other threads. The challenge lies in relaxing this

condition in a way that will ensure the soundness of global

optimizations while maintaining thread-locality.
As CDRF shows, simply relaxing the certification require-

ment by requiring certification only against the current mem-

ory is not an option. Another naive remedy would be to

restrict the certification to extensions of the current memory

that can actually arise in the given program. This approach,

however, is bound to fail:

6
Here the fact that no other thread accesses z is immaterial. ARMv8 allows

this behavior also when, say, a third thread executes z := 5.

6



Promising 2.0 PLDI ’20, June 15–20, 2020, London, UK

• First, due to the intricate interaction with local optimiza-

tions, a precise approximation of other threads effect on

memory is too strong—we may have a preceding local op-

timization that reduces the behaviors of the other threads.

For instance, consider the following program:

a := CAS(x , 0, 1) //1
if a < 10 then

y := 1

x := 42

b := y //1
x := b

(GA+E)

Here, x := 42 occurs in a possible future memory, but a

compiler may soundly eliminate this write.

• Second, this approach is not thread-local, and, since other

threads may promise as well, it immediately leads to trou-

blesome cyclic reasoning: whether thread 1 may promise

a write depends on behavior of thread 2 that may include

promise steps that again depend on behavior of thread 1.

4 Solution Overview

In this section, we present the key ideas behind our modified

PS model, which we call PS 2.0. Section 4.1 describes the

notion of capped memory, which enables value-range anal-

ysis, while Section 4.2 discusses reservations, an additional

mechanism needed to support register promotion and re-

cover the correctness of the mapping to ARMv8. Section 4.3

discusses our modeling of undefined behavior (which we use

to formally specify value range analysis). Finally, Section 4.4

describes certain trade-offs in our model.

4.1 Capped Memory

We note that PS’s certification against every memory exten-

sion is quantifying over two aspects of possible interference:

message values and message views.
We observe that quantifying only over message views

suffices for DRF-RA. By carefully analyzing CDRF, we can

see that for DRF-RA, one has to make sure that during the

certification of promises, no acquire-release RMW reads from

a message that already exists in the memory. Indeed, (i) due

to interference by other threads, such RMW may not have

the opportunity to read from that message in the actual run;

and (ii) such racy RMWs may exist (the DRF-RA assumption

does not prevent them). Together, (i) and (ii) invalidate the

DRF-RA guarantee (as happens in CDRF). We observe here

that this is the only role of the future memory quantification

that is required for ensuring DRF-RA.

The conservative future memory quantification of PS in-

deed disallows such problematic RMWs during certification.

In fact, even certification against memory extensions that

do not introduce new values in the future memory suffices

for DRF-RA. For example, in CDRF, when certifying against

Mfuture that, in addition to the initialization messages, has

a message formm = ⟨x : 0@(0, _],R⟩ with R(y) ≥ t , thread
1 is forced to readm when performing its FADD. Since it

is an acquire FADD, it will increase the thread view of y
to R(y), which will not allow it to fulfill its promise. More

generally, when a thread promises a message of the form

⟨x :v@(f , t],V ⟩ in the current memory M , there is always

a possible memory extensionMfuture ofM that forces (non-

promised) RMWs of locationy performed during certification

(which read from a message inMfuture) to read from a specific

messagem
y
future

∈ Mfuture whose view of x is greater than or

equal to t . When such RMWs are acquire RMWs, this will

force the thread to increase its view of x to at least t , which,
in turn, does not allow the thread to fulfill its promise.

Remark 1. Completely disallowing release-acquire RMWs

during certification is too strong. We should allow them to

read from local writes added during certification, since no

other thread can prevent them from doing so.

We further observe that value-range analysis concerns

message values, but it is insensitive to message views. As
we saw for the GA program above, the conservative future

memory quantification of PS is doing too much: it forbids

any promise that depends on the value read by an RMW,

which invalidates value-range analysis. However, we note

that there is no problem in disallowing the following variant

of GA that uses an acquire CAS instead of a relaxed one:

a := CAS
acq(x , 0, 1) //1

if a < 10 then

y := 1

b := y //1
x := b

(GAacq)

Although value analysis may deduce that a < 10 is always

true, it cannot justify the reordering of a := CAS
acq(x , 0, 1)

and y := 1, since acquire accesses in general cannot be re-

ordered with subsequent accesses. In other words, an anal-

ysis that is based solely of values does not give any infor-

mation about the views of read messages, so that any opti-

mization based on such analysis cannot enable reordering

of acquire RMWs.

Based on these observations, it seems natural to replace

the conservative future memory quantification of PS with a

requirement to certify against all extensions of the current

memoryM that employ values that already exist inM (for

each location). While this approach makes value-range anal-

ysis sound and maintains DRF-RA, it is still too strong for

the combination of local and global optimizations. Indeed,

consider the following variant of the GA+E program above.

x := 42

x := 0

f laдrel := 1

f := f laд
if f = 1 then

a := CAS
acq(x , 0, 1) //1

if a < 10 then

y := 1

b := y //1
x := b

(GA+E’)

In order for thread 2 to promise y := 1, the write to f laд
has to be executed first. (Note that a release write cannot be

promised.) Therefore, the value 42 for x exists in memory

when the promise y := 1 is made, but, to support both the

elimination of overwritten values and global value analysis,

x := 42 should not be considered as a possible extension of

7
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Figure 1. An example of the capped memory

the current memory. We observe that it is enough, however,

to consider memory extensions whose additional messages

only use values of maximal messages (which were not yet

overwritten) to each location.

Now, instead of quantifying over a restricted set of mem-

ory extensions, we identify the most restrictive such exten-

sion, which we called the “capped memory”. This leads to a

conceptually simpler certification condition, where certifica-

tion is needed only against one particular memory, which

is uniquely determined by the current memory. The capped

memory M̂ of a memoryM is obtained by:

• Filling all “gaps” between existing messages so that non-

promised RMWs can only read from the maximal message

of the relevant location. In other words, for every twomes-

sages m1 = ⟨x : _@(_, t], _⟩ and m2 = ⟨x : _@(f , _], _⟩
with t < f and no message in between, we block the

space between t and f . (The exact mechanism to achieve

this, “reservations”, is discussed in Section 4.2.)

• For every location x , attaching a “cap message” m̂x with

a globally maximal view to the latest message to x inM :

m̂x = ⟨x : v̂x@(̂tx , t̂x + 1], V̂M ⟩

where t̂x and v̂x are the “to”-timestamp and the value of

the message to x inM with the maximal “to”-timestamp,

and V̂M is given by:

V̂M = λy. max{t | ⟨y : _@(_, t], _⟩ ∈ M}.

Fig. 1 depicts an example of the capped memory construc-

tion. The shaded area in M̂ represents the blocked space.

Starting from M̂ , any (non-promised) RMWs reading from

a message in M̂ are forced to read from the m̂x messages

(since the timestamp interval [0, t̂x ] is completely occupied).

Because these messages carry maximal views, acquire RMWs

reading from them cannot be executed during certification,

as it will increase the thread view to V̂M , which, in turn, will

prevent the thread from fulfilling its outstanding promises.

In turn, the new machine step is then simplified as follows:

⟨TS(i),M⟩ −→+ ⟨TS′,M ′⟩
∃TS′′. ⟨TS′, M̂ ′⟩ −→∗ ⟨TS′′, _⟩ ∧ TS′′.prm = ∅

⟨TS,M⟩ −→ ⟨TS[i 7→ TS′],M ′⟩

Since the capped memory is clearly one possible future

memory, the semantics we obtain is clearly weaker than PS.
It is (i) weak enough to allow the annotated behaviors of GA

and RP above: certification against the capped memory will

not lead to a ≥ 10 in GA and to c , 0 in RP; and, on the other

hand, (ii) strong enough to forbid the annotated behavior

of CDRF above: certification against the capped memory

will not allow the y := 1 promise. In particular, by using the

maximal messages for constructing capped memory, thread 2

of GA+E’ can promisey := 1 and certify it while the message

x := 42 (which is overwritten by x := 0) is in the memory.

Remark 2. The original PS quantification over all future

memories could equivalently quantify over all memories de-

fined just like the capped memory, except for using arbitrary

values for the cap messages. Capped memory is more than

that: it sets the value of each cap messages to that of the

corresponding maximal message.

4.2 Reservations

While capped memory suffices for justifying the weak out-

comes of the examples seen so far, it is still too strong to

support register promotion and to validate the intended map-

ping to ARMv8. Consider the following variant of RP that

uses an acquire RMW in thread 1.

a := x //1
c := FADD

acq(z,a) //0
y := 1

b := y //1
x := b

(RPacq)

The weakening of PS presented in Section 4.1 disallows the

annotated behavior. Thread 1 cannot promise y := 1 because

its certification has to execute a non-promised acquire RMW

reading from an existing message against the capped mem-

ory; and also it cannot promise the RMW z := 1 beforey := 1

because its certification requires reading x := 1. Neverthe-

less, as for RP, a global analysis may notice that z is accessed
only by one thread and perform register promotion, yield-

ing the annotated outcome. (Similarly, ARMv8 allows the

annotated behavior of the corresponding target program.)

We note that the standard (Java) optimization of removing

locks used by only one thread requires to perform register

promotion on local locations accessed by acquire RMWs.

Indeed, lock acquisitions are essentially acquire RMWs.

So, how can we allow such behaviors without harming

DRF-RA? Our idea here is to enhance PS by allowing one to

declare which thread will win the competition to perform

an RMW reading from a given messagem. Once such a dec-

laration is made, RMWs performed by other threads cannot

read fromm.

The technical mechanism for these declarations is simple:

we add a “reservation” step to PS, allowing a thread to re-

serve a timestamp interval that it plans to use later, without

committing on how it will use it (what value and view will

be picked). Once an interval is reserved, other threads are

blocked from reusing timestamps in this interval. Intuitively,

a reservation corresponds to promising the “read part” of

the RMW, which confines the behavior of other threads. In

particular, if a thread reserves an interval (t1, t2] attached to

8
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some message (f , t1], then other threads cannot read from

the (f , t1] message with an RMW operation.

Since reservations are included in the machine memory

(just like normal writes and promises), the semantics re-

mains thread-local. Technically, reservations take the form

⟨x : (f , t]⟩ where x ∈ Loc and (f , t] is a timestamp interval.

To meet their purpose, we allow attaching reservations only

immediately after existing concrete messages (f should be

the “to”-timestamp of some existing message to the same lo-

cation). Threads are also allowed to cancel their reservations

(provided they can still certify their outstanding promises) if

they no longer need to block an interval. This is technically

needed for the soundness of register promotion (see [1, §B]).

Returning to the RPacq program above, reservations allow

the annotated outcome. Thread 1 can first reserve the interval

(0, 1] for z. Then, it can promisey := 1 and certify its promise

by using its own reservation to perform the RMW.

Intuitively, reservations are closer to the implementation

of RMWs in ARM: reserving the read part of an RMW first

and then writing the RMW at the reserved space later corre-

sponds to execution of a load exclusive first and a (successful)

write exclusive later.

Reservations are also used in the definition of the capped

memory to fill the gaps between messages to the same loca-

tion (Section 4.1). In the presence of reservations, however,

the capped memory definition requires some care. First, the

value of the cap messages m̂x should be the value of the max-

imal concrete message to x (reservations do not carry values).

Second, when constructing the capped memory for thread i ,
if the maximal message to some location y is a reservation

of thread i itself, then we do not add a cap message for y. In
effect, during certification, the thread can execute any RMW

on y but only after filling the reserved space on y. Other
threads cannot execute an RMW on reservations of thread i ,
and so cannot interfere with respect to y.

4.3 Undefined Behavior

So far, we have described value-range optimizations by in-

formally referring to a global analysis performed by the

compiler. For our formal development, we introduce unde-
fined behavior (UB). We note that UB, which is not supported

in the original PS model, is also useful in a broader context

(e.g., to give sensible semantics to expressions like x/0).
In order to formally define global optimizations, we in-

clude in our language an abort instruction, abort, which

causes UB. In turn, for a global invariant I (formally defined

in Section 6.2), we allow the program transformation intro-

ducing at arbitrary program points the instruction assert(I ),
which is a syntactic sugar to if ¬I then abort. This paves

the way to further local optimizations, such as:

assert(x ∈ {0, 1})
a := x
if a ∈ {0, 1} then c

{
a := x
c

The standard semantics of UB is “catch-fire”: UB should

be thought as allowing any arbitrary sequence of opera-

tions. This enables common compiler optimizations (e.g.,
if e then c else abort { c). Nevertheless, to make sure

the semantics is not overly weak, like any thread step, for

taking an abort-step, the certification condition has to be

satisfied (where the certifying thread may replace abort by

any sequence of operations).

Our formal condition for taking an abort-step is some-

what simpler: we require that for every location x , the cur-
rent view of the aborting thread for x should be lower than

the “to”-timestamp of all the outstanding promises for x of

that thread. We say a thread is promise-consistent when this

condition is met. Recall that a thread can take a write step to

a location x when the thread view of x is lower than the “to”-

timestamp of the writing message. In turn, considering that

taking an abort-step is capable of executing arbitrary write

instructions, a thread is able to fulfill its outstanding promises

when aborting if and only if it is promise-consistent.

4.4 Relaxed RMWs in Certifications

In PS 2.0, we opted to allow relaxed RMWs (that were non-

promised before and read from a message that exists in the

current memory) during certification of promises. This de-

sign choice can cause execution deadlocks:

a := FADD(x , 1) //0
y := 1 + a

b := FADD(x , 1) (deadlock)

Suppose that in the beginning of the run the thread 1 promises

y := 1. This promise can be certified against the capped mem-

ory by reading from the cap message of x (whose value is 0).

Now, thread 2 can perform its RMW, and block thread 1 from

fulfilling its promise. Although allowing such deadlocks is

awkward, they are inconsequential, since deadlocking runs

are discarded from the definition of observable behavior.

Similarly, this choice enables somewhat dubious behaviors

that seem to invalidate atomicity of relaxed RMWs: for in-

stance, CDRF can have the annotated behavior if one FADD

is made rlx. Such behaviors are actually unavoidable if one

insists on allowing all (local and global) optimizations al-

lowed by PS 2.0 ([1, §C] provides an example).

A stronger alternative would be to disallow relaxed RMWs

during certification unless they were promised before the

certification, or they read from a message that is added to

the memory during certification. This can be easily achieved

by defining the capped memory (against which threads cer-

tify their promises) to include a reservation instead of a cap

message, which disallows to read from cap messages during

certification. The resulting model is deadlock-free and it sup-

ports all (global and local) optimizations supported by PS 2.0,
except for the local reordering of a relaxed RMW followed

by a write. To see this consider the following example:

a := FADD(x , 1) //1
y := 1

b := y //1
x := b

(LB-RMW)

9
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To read the annotated values, the runmust start with thread 1

promising y := 1. Such a promise can only be certified if we

allow relaxed RMWs that read an existing message during

certification. Nevertheless, reordering the two instructions in

thread 1 clearly exhibits the annotated behavior. In particular,

since ARMv8 performs such reorderings, the mapping to

ARMv8 should always include a dependency from relaxed

RMWs, thereby incurring some (probably small) overhead.

5 Formal Model

In this section, we present our formal model, called PS 2.0,
which combines and makes precise the ideas outlined above.

For simplicity, we omit some features that were included in

PS (plain accesses, fences, release sequences, and split and

lower of promises).
7
All of these features are handled just

like in PS and are included in our Coq formalization. The

full operational semantics and the programming language

are presented in [1, §A].

To keep the presentation simple and abstract, we do not

fix a particular programming language syntax, and rather

assume that the thread semantics is already provided as a

labeled transition system, with transition labels Silent for

a silent thread transition with no memory effect, R(o,x ,v)
for reads, W(o,x ,v) for writes, U(or,ow,x ,vr,vw) for RMWs,

Fail for failing assertions, Sys(v) for a system calls.

The o,or,ow variables denote access modes, which can be

either rlx or ra. We use ra for both release and acquire,

and include two access modes in RMW labels: a read mode

and a write mode. These naturally encode the syntax of the

examples we discussed above, e.g.,

FADD→ U(rlx, rlx, ...) FADD
acq → U(ra, rlx, ...)

FADD
acqrel → U(ra, ra, ...) FADD

rel → U(rlx, ra, ...)

Next, we present the components of the PS 2.0 model.

Time. Time is a set of timestamps that is totally and densely
ordered by < with a minimum value, denoted by 0.

Views. A view is a function V : View ≜ Loc→ Time. We

use ⊥ and ⊔ to denote the natural bottom elements and join

operations for views (pointwise extensions of the timestamp

0 and max operation on timestamps).

Concrete Messages. A concrete message takes the form

m = ⟨x :v@(f , t],R⟩ where x ∈ Loc, v ∈ Val, f , t ∈ Time,
and R ∈ View, such that f < t or f = t = 0, and R(x) ≤ t .
We denote bym.loc,m.val,m.from,m.to, andm.view the

components ofm.

Reservations. A reservation takes the formm = ⟨x : (f , t]⟩,
where x ∈ Loc, and f , t ∈ Time such that f < t . We denote

bym.loc,m.from, andm.to the components ofm.

7
In particular, note that the system calls in this simplified model do not

enforce sequentially consistent fences.

Messages. A message is either a concrete message or a

reservation. Twomessagesm1 andm2 are disjoint, denoted by
m1 #m2, if they have different locations or disjoint timestamp

intervals:

m1 #m2 ≜m1.loc ,m2.loc ∨

m1.to < m2.from ∨ m2.to < m1.from

Two sets M1 and M2 of messages are disjoint, denoted by

M1 #M2, ifm1 #m2 for everym1 ∈ M1 andm2 ∈ M2.

Memory. A memory is a (nonempty) pairwise disjoint fi-

nite set of messages. We write M(x) for the sub-memory

{m ∈ M | m.loc = x } and M̃ for the set {m ∈ M | m =
⟨_ : _@(_, _], _⟩ } of concrete messages inM .

Memory Operations. A memory M supports the inser-
tion for a message m denoted by M ←↩a m and given by

M ∪ {m}. It is only defined if: (i) {m} #M , (ii) ifm is a con-

crete message withm.loc = x , then no messagem′ ∈ M(x)
has m′.from = m.to, and (iii) if m is a reservation with

m.loc = x , then there is some concrete messagem′ ∈ M̃(x)
such thatm′.to =m.from. Note that the second condition

enforces that once a message is not an RMW (i.e., its “from”-

timestamp is not attached to another message), it never be-

comes an RMW (i.e., its “from”-timestamp remains detached).

Technically, this condition is required for the soundness of

the register promotion.

Closed View. Given a view V and a memoryM , we write

V ∈ M if, for every x ∈ Loc, we have V (x) =m.to for some

concrete messagem ∈ M̃(x).

Thread States. A thread state is a triple TS = ⟨σ ,V , P⟩,
where σ is a local state,V is a thread view, and P is a memory.

We denote by TS.st, TS.view, and TS.prm the components

of a thread state TS.

Thread Configuration Steps. A thread configuration is

a pair ⟨TS,M⟩, where TS is a thread state andM is a memory.

We use ⊥ as a thread configuration after a failure.

Fig. 2 presents the full list of thread configuration steps,

whichwe discuss now. To avoid repetition, we use the helpers

read-helper and write-helper. In these helpers, {x@t}
denotes the view assigning t to x and 0 to other locations.

promise. A thread can take a promise-step by adding a

concrete messagem to the set of outstanding promises P and

update the memoryM toM ←↩a m.

reserve and cancel. These two steps are specific to

PS 2.0 model. In a reserve-step a thread reserves a times-

tamp interval by adding it to both the memory M and the

set of outstanding promises TS.prm. The thread is allowed

to drop the reservation from the set of outstanding promises

and the memory using the cancel-step.

read. In this step a thread reads the value of a location x
from a messagem ∈ M and extend its view. Following the

read-helper, the thread’s view of location x is extended to

10
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Memory Helpers:

(memory: new)

⟨P ,M⟩
m
−−→ ⟨P ,M ←↩a m⟩

(memory: fulfill)

m ∈ P

⟨P ,M⟩
m
−−→ ⟨P \ {m},M⟩

Thread Helpers:

(read-helper)

m = ⟨x : _@(_, t],R⟩ ∈ M V (x) ≤ t
o = rlx⇒ V ′ = V ⊔ {x@t}
o = ra⇒ V ′ = V ⊔ {x@t} ⊔ R

⟨V ,M⟩
o,m
−−−→R ⟨V

′,M⟩

(write-helper)

m = ⟨x : _@(_, t],R⟩ V (x) < t
V ′ = V ⊔ {x@t}
o = rlx⇒ R = ⊥

o = ra⇒ P(x) = ∅ ∧ R = V ′

⟨P ,M⟩
m
−−→ ⟨P ′,M ′⟩

⟨V , P ,M⟩
o,m
−−−→W ⟨V

′, P ′,M ′⟩

Thread Steps:

(promise)

m = ⟨_ : _@(_, _],R⟩
M ′ = M ←↩a m R ∈ M ′

⟨⟨σ ,V, P⟩,M⟩ −→ ⟨⟨σ ,V, P ∪ {m}⟩,M ′⟩

(reserve)

m = ⟨_ : (_, _]⟩ M ′ = M ←↩a m

⟨⟨σ ,V, P⟩,M⟩ −→ ⟨⟨σ ,V, P ∪ {m}⟩,M ′⟩

(cancel)

m = ⟨_ : (_, _]⟩ ∈ P

⟨⟨σ ,V, P⟩,M⟩ −→ ⟨⟨σ ,V, P \ {m}⟩,M \ {m}⟩

(read)

σ
R(o,x,v)
−−−−−−−→ σ ′

m = ⟨x :v@(_, _], _⟩

⟨V ,M⟩
o,m
−−−→R ⟨V

′,M⟩

⟨⟨σ ,V , P⟩,M⟩ −→ ⟨⟨σ ′,V ′, P⟩,M⟩

(write)

σ
W(o,x,v)
−−−−−−−→ σ ′

m = ⟨x :v@(_, _], _⟩

⟨V , P ,M⟩
o,m
−−−→W ⟨V

′, P ′,M ′⟩

⟨⟨σ ,V , P⟩,M⟩ −→ ⟨⟨σ ′,V ′, P ′⟩,M ′⟩

(update)

σ
U(or,ow,x,vr,vw)
−−−−−−−−−−−−−−→ σ ′′

mr = ⟨x :vr@(_, t], _⟩ mw = ⟨x :vw@(t , _], _⟩

⟨V ,M⟩
or,mr

−−−−−→R ⟨V
′,M⟩ ⟨V ′, P ,M⟩

ow,mw

−−−−−−→W ⟨V
′′, P ′′,M ′′⟩

⟨⟨σ ,V , P⟩,M⟩ −→ ⟨⟨σ ′′,V ′′, P ′′⟩,M ′′⟩

(silent)

σ
Silent
−−−−−−→ σ ′

⟨⟨σ ,V, P⟩,M⟩ −→ ⟨⟨σ ′,V, P⟩,M⟩

(system call)

σ
Sys(v)
−−−−−→ σ ′ P = ∅

⟨⟨σ ,V, P⟩,M⟩
Sys(v)
−−−−−→ ⟨⟨σ ′,V, P⟩,M⟩

(failure)

σ
Fail
−−−−→ ⊥ ⟨σ ,V, P⟩ is promise-consistent

⟨⟨σ ,V, P⟩,M⟩
Fail
−−−−→ ⊥

Machine Steps:

(machine normal)

⟨TS(i),M⟩ −→+ ⟨TS′,M ′⟩
⟨TS′,M ′⟩ is consistent

⟨TS,M⟩ −→ ⟨TS[i 7→ TS′],M ′⟩

(machine system call)

⟨TS(i),M⟩ −→∗
Sys(v)
−−−−−→ ⟨TS′,M ′⟩

⟨TS′,M ′⟩ is consistent

⟨TS,M⟩
Sys(v)
−−−−−→ ⟨TS[i 7→ TS′],M ′⟩

(machine fail)

⟨TS(i),M⟩ −→∗
Fail
−−−−→ ⊥

⟨TS,M⟩
Fail
−−−−→ ⊥

Figure 2. Formal operational semantics

timestamp t . When the read is an acquire read, the view is

also updated by the message view R.
write andupdate. The write and the update steps cover

two cases: a fresh write to memory (memory:new) and a ful-

fillment of an outstanding promise (memory:fulfill). When

a thread writes a message m with location x along with

timestamp (_, t], t extends the thread’s view of location x to

memoryM . A release write step additionally ensures that the

thread has no outstanding promise on location x . Moreover,

a release write attaches the updated thread view V ′ to the

message m. The update step is similar, except that it first

reads a message with a timestamp interval (_, t], and then,

writes a message with an interval (t , _].
silent. A thread takes a silent-step to perform thread-

local computation which updates only the local thread state.

system call. A thread takes a system call-step that

emits an event with the call’s input and output values.

failure. We only allow a thread configuration ⟨TS,M⟩
to fail if TS is promise-consistent:

∀m ∈ TS.prm, TS.view(m.loc) ≤ m.to
Cap View and Messages. The last message of a memory

M to a location x , denoted bymM,x , is given by:

mM,x ≜ arg max

m∈M (x )
m.to

The cap view of a memoryM , denoted by V̂M , is given by:

V̂M ≜ λx .mM̃,x .to

By definition, we have V̂M ∈ M . The cap message of a mem-

oryM to a location x , denoted by m̂M,x , is given by:

m̂M,x = ⟨x :mM̃,x .val@(mM,x .to,mM,x .to + 1], V̂M ⟩

Capped Memory. The capped memory of a memory M

with respect to a set of promises P , denoted by M̂P , is an

extension ofM , constructed in two steps:

11
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1. For everym1,m2 ∈ M withm1.loc =m2.loc,m1.to <
m2.to, and there is no messagem′ ∈ M(m1.loc) such
thatm1.to < m′.to < m2.to, we include a reservation
⟨m1.loc : (m1.to,m2.from]⟩ to M̂P .

2. We include a cap message m̂M,x in M̂P for every loca-

tion x unlessmM,x is a reservation in P .

Consistency. A thread configuration ⟨TS,M⟩ is called con-
sistent if there exist TS′,M ′ such that:

⟨TS, M̂TS.prm⟩ −→
∗ ⟨TS′,M ′⟩ ∧ TS′.prm = ∅

Machine steps. A machine state is a pairMS = ⟨TS,M⟩
consisting of a function TS assigning a thread state to every

thread, and a memoryM . The initial stateMS0 (for a given
program) consists of the function TS0

mapping each thread i
to its initial state σ 0

i , the ⊥ thread view (all timestamps are

0), and an empty set of promises; and the initial memoryM0

consisting of one message ⟨x : 0@(0, 0],⊥⟩ for each location

x . The three possible machine steps are given at the bottom

of Fig. 2. We use ⊥ as a machine state after a failure.

Behaviors. To define what is externally observable dur-

ing executions of a program P , we use the system calls that

P’s executions perform. More precisely, every execution in-

duces a sequence of system calls, and the set of behaviors of

P , denoted Beh(P), consists of all such sequences induced by

executions of P . When a Fail occurs during the execution,

Beh(P) consists of the sequence of system calls performed be-

fore the failure followed by an arbitrary sequence of system

calls (reflecting an undefined behavior).

6 Results

Wenext present the results of PS 2.0. Except for Theorems 6.6

to 6.8 (whose proofs are given in [1]), all other results are

fully mechanized in the Coq proof assistant. These results

hold for the full model defined in [1, §A], not only for the

simplified fragment presented in §5.

6.1 Thread-Local Optimizations

A transformation Psrc { Ptgt is sound if it does not introduce

behaviors under any (parallel and sequential) context:

∀ C, Beh(C[Psrc]) ⊇ Beh(C[Ptgt]) .

PS 2.0 allows all compiler transformations supported by PS.
Additionally, it supports replacing abort by arbitrary code

(more precisely, abort;C1 { C2). Since assert(e) is defined
as if ¬e then abort, the following transformations are valid:

1. assert(e);C { assert(e);C[true/e]
2. assert(e) { skip

Thanks to thread-locality of PS and PS 2.0, we proved a

theorem that combines and lifts the local simulation relations

(almost without any reasoning on certifications) between

pairs of threads Si ,Ti into a global simulation relation be-

tween the composed programs S1 ∥ ... ∥ Sn andT1 ∥ ... ∥ Tn .

This theorem allows us to easily prove soundness of the

thread-local transformations using sequential and thread-

local simulation relations. See Kang [11] and our Coq for-

malization for more details.

6.2 Value-Range Optimizations

First, we provide a global value-range analysis and prove

its soundness in PS 2.0. A value-range analysis is a tuple

A = ⟨J , S1, ... ,Sn⟩, where J ∈ Loc → P(Val) represents a
set of possible values for each location and Si ⊆ Statei a
set of possible local states of the underlying language (i.e.,
excluding the thread views) for each thread i . The analysis is
sound for a program P if (i) the initial value for each location

is in J and the initial state of each thread i in P is in Si ;
(ii) taking a step from each state in Si necessarily leads to

a state in Si assuming that it only reads a value in J and
guaranteeing that it only writes a value in J .
Now, we show that sound analysis for P holds in every

reachable state of P .

Theorem 6.1 (Soundness of Value-Range Analysis). For a
sound value-range analysis ⟨J , S1, ... ,Sn⟩ for P, if ⟨TS,M⟩ is
a reachable machine state for P, then TS(i).st ∈ Si for every
thread i , andm.val ∈ J (x) for everym ∈ M̃(x).

Second, we prove the soundness of global optimizations

based on sound value-range analysis. An optimization based

on a value-range analysis A = ⟨J , S1, ... ,Sn⟩ can be seen

as inserting assert(e) at positions in thread i when e is

always evaluated to true. For this, we define a relation,

global_opt(A, Psrc, Ptgt), which holds when Ptgt is obtained
from Psrc by inserting valid assertions based on A.

Theorem 6.2 (Soundness of Global Optimizations). For a
sound value-range analysis A of Psrc, and for Ptgt such that
global_opt(A, Psrc, Ptgt), we have Beh(Psrc) ⊇ Beh(Ptgt).

6.3 Register Promotion

We prove soundness of register promotion. We denote by

promote(s,x , r ) the statement obtained from a statement s
by promoting the accesses to memory location x to accesses

to register r (see [1, §D] for a formal definition).

Theorem 6.3 (Soundness of Register Promotion). For a pro-
gram s1∥ ... ∥sn , if memory location x is only accessed by si
(i.e., not occurring in sj for every j , i) and register r is fresh
in si (i.e., not occurring in si ), we have:

Beh(s1∥ ... ∥sn) ⊇ Beh(s1∥ ... ∥ promote(si ,x , r ) ∥ ... ∥sn) .

6.4 DRF Theorems

We prove four DRF theorems for PS 2.0: DRF-Promise, DRF-

RA, DRF-Lock-RA and DRF-Lock-SC. First, we need several

definitions:

• Promise-free (PF) semantics is the strengthening of PS 2.0
obtained by revoking the ability to make promises or

reservations.
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• Release-acquire (RA) is the strengthening of PF obtained
by interpreting all memory operations as if they have ra
access mode.

• Sequential consistency (SC) is the strengthening of RA
obtained by forcing every read of a location x to read from

the message with location x with the maximal timestamp

and every write to a location x to write a message at a

timestamp higher than any other x-message.

In the absence of promises, PS and PS 2.0 coincide:

Theorem 6.4. PF is equivalent to the promise-free fragment
of PS, and thus the same holds for RA and SC.

We say that a machine state is rlx-race-free, if whenever
two different threads may take a non-promise step accessing

the same location and at least one of them is writing, then

both are ra accesses.

Theorem6.5 (DRF-Promise). If everyPF-reachablemachine
state for P is rlx-race-free, then BehPF(P) = BehPS 2.0(P).

This theorem is one of the key results of DRF theorems

for PS 2.0. In our Coq formalization, we proved a stronger

version of DRF-Promise, which is presented in [1, §E].

Theorem6.6 (DRF-RA). If everyRA-reachablemachine state
for P is rlx-race-free, then BehRA(P) = BehPS 2.0(P).

Thanks to Theorems 6.4 and 6.5, the proof of DRF-RA for

PS 2.0 is identical to that for PS given in [12].

Our DRF-Lock theorems given below generalize those for

PS given in [12] in two aspects: our Lock are implemented

with an acquire CAS rather than acquire-release CAS that

was assumed in [12]; and our results cover tryLock, not just

Lock and Unlock.

We define tryLock, Lock and Unlock as follows:

a := tryLock(L) ≜ a :=WCAS
acq(L, 0, 1)

Lock(L) ≜ do a := tryLock(L) while !a
Unlock(L) ≜ Lrel := 0

whereWCAS
o
is the weak CAS operation, which can either

return true after successfully performing CAS
o
, or return

false after reading any value from L with relaxed mode.

We prove DRF-Lock-RA and DRF-Lock-SC for programs

using the three lock operations. We say such a program

is well-locked if (1) locations are partitioned into lock and

non-lock locations, (2) lock locations are accessed only by

the three lock operations, and (3) Unlock is executed only

when the thread holds the lock.

Theorem 6.7 (DRF-Lock-RA). For a well-locked program P,
if every RA-reachable machine state for P is rlx-race-free for
all non-lock locations, then BehRA(P) = BehPS 2.0(P).

Theorem 6.8 (DRF-Lock-SC). For a well-locked program P,
if every SC-reachable machine state reachable for P is race-
free for all non-lock locations, then BehSC(P) = BehPS 2.0(P).

The proofs of these theorems are given in [1, §F].

6.5 Compilation Correctness

Following Podkopaev et al. [19], we prove the correctness of

mapping from PS 2.0 to hardware models (x86-TSO, POWER,

ARMv7, ARMv8, RISC-V) using the Intermediate Memory

Model, IMM, from which intended compilation schemes to

the different architectures are already proved to be correct.

Theorem 6.9 (Correctness of Compilation to IMM). Every
outcome of a program P under IMM is also an outcome of P
under PS 2.0, i.e., BehPS 2.0(P) ⊇ BehIMM(P).

We note that this result (which is mechanized in Coq)

requires the existence of a control dependency from the read

part of each RMW operation. Such dependency exists “for

free” in CAS operations, since its write operation (a store-

conditional instruction) is anyway control-dependent on

the read operation (a load-link instruction). However, when

compiling FADDs to ARMv8, the compiler has to place “fake”

control dependencies to meet this condition (and be able

to use our theorem). We conjecture that a slightly more

efficient compilation (standard) scheme of FADDs that does

not introduce such dependencies is also sound. We leave this

proof to a future work. In any case, our result is better than

the one for PS by Podkopaev et al. [19] that requires an extra

barrier (“ld fence”) when compiling RMWs to ARMv8.

Remark 3. As in ARMv8, our compilation result to RISC-V

uses release/acquire accesses. These accesses are not a part

of RISC-V ISA, but the RISC-V memory model (RVWMO) is

“designed to be forwards-compatible with the potential addi-
tion” of them [24, §14.1].

7 Related Work

Wehave already discussed the challenges in defining a ‘sweet-

spot’ for a programming language concurrencymodel, which

is neither too weak (i.e., it provides programmability guaran-

tees) nor too strong (i.e., it allows efficient compilation). Java

was the first language, where considerable effort was put into

defining such a formal model [16], but the model was found

to be flawed in that it did not permit a number of desired

transformations [21]. To remedy this, C/C++ introduced a

very different model based on ‘per-execution’ axioms [3],

which was also shown to be inadequate [2, 13, 22, 23]. More

recently, PS [12], which has already been discussed at length,

addressed this challenge using the idea of locally certifiable

promises. PS 2.0 improves PS by supporting global optimiza-

tions and better compilation of RMWs to ARMv8. We note

that the promise-free fragment of PS 2.0 is identical to the

promise-free fragment of PS.
Besides PS, there are three other approaches based on

event structures [7, 8, 18]. Pichon-Pharabod and Sewell [18]

defined an operational model based on plain event structures.

Execution starts with a structure representing all possible

program execution paths, and proceeds either by commit-

ting a prefix of the structure or by transforming it in a way
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that imitates a compiler optimization (e.g., by reordering ac-

cesses). The model also has a speculation step, whose aim is

to capture transformations based on global value range anal-

ysis, but has side-condition that is rather difficult to check.

The main downside of this model is its complexity, which

hinders the formal development of results about it.

Jeffrey and Riely [8] defined a rather different model based

on event structures, which constructs an execution via a two

player game. The player tries to justify all the read events

of an execution, while the opponent tries to prevent him. At

each step, the player can extend the justified execution by

one read event, provided that for any continuing execution

chosen by the opponent, there is a corresponding write that

produced the appropriate value. The basic model does not

allow the reordering of independent reads, which means that

compilation to ARM and Power are suboptimal. Although

the model was later revised to fix the reordering problem

[9], optimal compilation to hardware remains unresolved.

Moreover, it does not support global optimizations and/or

elimination of overwritten stores, since it forbids the anno-

tated outcome of LB-G (in §1).

Chakraborty and Vafeiadis [7] introduced weakestmo,

a model based on justified event structures, which are con-

structed in an operational fashion by adding one event at a

time provided it can be justified by already existing events.

Justified event structures are then used to extract consistent

executions, which in turn determine the possible outcomes

of a program. While weakestmo resolve PS’s ARMv8 com-

pilation problem [17], it does not formally support global op-

timizations. Moreover, weakestmo does not support a class

of strengthening transformations such as Wrel{Frel; Wrlx.
Both PS and PS 2.0 support these transformations.

More recently, Java has been extended with different ac-

cess modes in JDK 9 [14, 15]. Bender and Palsberg [4] formal-

ized this extension with a ‘per-execution’ axiomatic model

similar to RC11 [13]. The model disallows load-store reorder-

ing (LB behaviors) for atomic accesses, while allowing out-

of-thin-air values for plain accesses. Because of the latter,

global value analysis is unsound in this model. It remains

unclear, however, whether transformations based on such

(unsound) analysis might be sound or not.

8 Conclusion

We have presented PS 2.0, the first model that formally en-

ables transformations based on global analysis while support-

ing programmability (via DRF guarantees and soundness of

value-range reasoning) and efficient compilation (including

various compiler thread-local optimizations). The inherent

tension between these desiderata, together with our goal to

have a thread-local small-step operational semantics, natu-

rally leads to a rather intricate model, which is less abstract

than alternative declarative models. Nevertheless, we note

that PS 2.0, like its predecessor PS, is modeling weak be-

haviors with just two principles: (i) “views“ for out-of-order

execution of reads; and (ii) “promises” for out-of-order exe-

cution of writes. The added complexity of PS 2.0 is twofold:
reservations and capped memory. We view reservations as

a simple and natural addition to the promises mechanism.

Capped memory is less natural and more complex. Fortu-

nately, it is only a part of the certification process and not of

normal execution steps. In addition, the DRF-Promise (and

the other DRF theorems as well, Theorems 6.5 to 6.8) are

methods to simplify the semantics. Programmers may safely

use the PF or the RA fragment of PS 2.0, which has only

views (without any promises, certifications, reservations, or

capped memory), when their programs are avoiding data

race via release-acquire and lock synchronization.

We also note that PS 2.0 allows some seemingly dubious

behaviors, such as “read from unexecuted branch” [5]:

a := x //42
y := a

b := y //42
if b = 42

then x := b
else x := 42

(RFUB)

The annotated behavior is allowed in PS 2.0 (as in PS and

C/C++11). Aiming to support local compiler optimizations,

this is actually unavoidable. Practical compilers (including

gcc and llvm) may observe that thread 2 writes 42 to x re-

gardless of which branch is taken, and optimize the program

of thread 2 to b := y;x := 42 (such optimization is a “trace-

preserving transformation” [12]). The resulting program is

essentially the LB program (see §1), whose annotated behav-

ior can be obtained by mainstream architectures.

Finally, to the best of our knowledge, PS 2.0 supports all
practical compiler optimizations performed by mainstream

compilers. As a future goal, we plan to extend it with sequen-

tially consistent accesses (backed up with DRF-SC guarantee)

and C11-style consume accesses.
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