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Abstract

Work stealing is a widely-used scheduling technique for paral-
lel processing on multicore. Each core owns a queue of tasks
and avoids idling by stealing tasks from other queues. Prior
work mostly focuses on balancing workload among cores, dis-
regarding whether stealing may adversely impact the owner’s
performance or hinder synchronization optimizations. Real-
world industrial runtimes for parallel processing heavily rely
on work-stealing queues for scalability, and such queues can
become bottlenecks to their performance.

We present Block-based Work Stealing (BWoS), a novel
and pragmatic design that splits per-core queues into multiple
blocks. Thieves and owners rarely operate on the same blocks,
greatly removing interferences and enabling aggressive opti-
mizations on the owner’s synchronization with thieves. Fur-
thermore, BWoS enables a novel probabilistic stealing pol-
icy that guarantees thieves steal from longer queues with
higher probability. In our evaluation, using BWoS improves
performance by up to 1.25x in the Renaissance macrobench-
mark when applied to Java G1GC, provides an average 1.26x
speedup in JSON processing when applied to Go runtime,
and improves maximum throughput of Hyper HTTP server
by 1.12x when applied to Rust Tokio runtime. In microbench-
marks, it provides 8-11x better performance than state-of-the-
art designs. We have formally verified and optimized BWoS
on weak memory models with a model-checking-based frame-
work.

1 Introduction

Many language runtimes and similar systems (e.g., JVM [104],
Go [36], Rust’s Tokio [38]) divide their work into smaller
units called tasks, which are executed asynchronously on mul-
tiple cores and whose execution can generate further tasks. To
achieve good performance, the task scheduler has to ensure a

*Ming Fu (ming.fu@huawei.com) is the corresponding author.

Flame Graph

testing.(*B).doBench.func1

ru..

r..
r..

runtim..

runt..

runtime.gcBgMarkWorker.func2

foo

runtim..

github.com/..

runt..

sy.. runt..

runtim..
ru..

swapper

ru..

ru..

runtime.p..
__sec..runtime.systemstack.abi0

testing.(*B).launch

github.com/goccy/go-json.unmarshal
runtime.mallocgc

r..
github.com..

ru..

ru..
runtime.newobject

github.com/goccy/go-json/internal/decoder.(..

testing.(*B).runN

ru..

runtime...

runtime.goexit.abi0

cpu..benchmark.Benchmark_Decode_SmallStruct_Unmarshal_GoJson

arc..

cpu_s..

github.. github.com/g..

runtime...

runt..
g..

def..

do_idle

runtime.m..

runtime.gcDrain
runt..

secon..

Flame Graph

r..

github.com/goccy/go..

runtime.goexit.abi0
foo

a..
r..

github.com/goccy/..

runtime.gcDr..

runtim.. runtime.systemstack..
n..

sy..

testing.(*B).launch

sw..

github.com/goccy/go-json.unmarshal
run..

testing.(*B).doBench.func1

d..
g..g..

github.com/goccy/g..
g..

se..

run..

r..

github.com/goccy/go-json/internal/decoder.(*structDecoder).Decode

runtime.gcBg..

c..

cp..
do..

benchmark.Benchmark_Decode_SmallStruct_Unmarshal_GoJson

github.c..

runti..
runtim..

runtime.mallocgc

__..
runti..

runtime.newobject

run..

r.. testing.(*B).runN runti..

Decoding Scheduling

GC Worker CPU Idle

51%

71%

7%

5% 9%

20%

3%

5%

Figure 1: Profiling results for go-json complex object decod-
ing (~1µs/op) benchmark [9], with the original work stealing
queue (up) and with BWoS (down).

good workload distribution (preventing idle cores while there
are pending tasks) with a low scheduling overhead.

Achieving these goals, however, is non-trivial. Storing the
tasks in a single queue shared by all cores achieves optimal
workload distribution, but incurs a huge overhead due to con-
tention. Using per-core task queues minimizes the overhead
per operation, but can easily lead to a skewed workload dis-
tribution, with some cores remaining idle while others have
queued work.

Work stealing [51] is a trade-off between these two ex-
tremes: each core owns a queue (owner) and acts as both
the producer and the consumer of its own queue to put
and get tasks. When a core completes its tasks and the
queue is empty, it then steals another task from the queue
of another processing core to avoid idling (thief ). A num-
ber of stealing policies [69, 76, 77, 83, 88, 100] have been
proposed to choose the proper queue (victim) to steal from,
which can bring significant speedups depending on the use-
cases. Due to these features, work stealing is widely used
in parallel computing [22, 35, 56, 64, 65, 85, 93, 97], par-
allel garbage collection [60, 68, 69, 96, 101], GPU envi-
ronment [52, 54, 99, 102, 103], programming language run-
times [26,36,38,50,63,80,81], networking [86] and real-time
systems [82].

However, as parallel processing is applied to more work-
loads, current implementations of work stealing become a bot-
tleneck, especially for small tasks. For example, web frame-
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works running over lightweight threading abstractions, such
as Rust’s Tokio and Go’s goroutines, often contain many very
small tasks, leading the Tokio runtime authors to observe
that “the overhead from contending on the queue becomes
significant” and even affects the end-to-end performance [28].
Similarly, high-performant garbage collectors, such as Java
G1GC [13], rely on work stealing for parallelizing massive
mark/sweep operations, which comprise only a few instruc-
tions. The work stealing overhead becomes a performance
bottleneck for GC [68, 69, 96, 101].

As a third example, in Fig. 1, we profile the GoJson ob-
ject decoding benchmark, which uses goroutines both for GC
workers and for parsing complex objects. Only 51% of all
CPU cycles constitute the useful workload (JSON decoding).
The remaining cycles are spent on the runtime code, includ-
ing 7% on lightweight thread scheduling, 20% on GC, 5%
on kernel code idling the CPUs, etc. As both the scheduler
and the GC code rely on work stealing, improving its perfor-
mance can result in massive efficiency gains. Furthermore, the
benefit is not limited to the above-mentioned scenarios, but
expands to all fine-grained tasks parallel processing scenarios.
Thus, we ask the following question: How can we improve
performance of work-stealing queues for fine-grained tasks
to the benefit of a large range of common applications?

Existing work-stealing queues suffer from four main
sources of inefficiency:

P1: Synchronization overhead. Due to the possibility of
a steal, local queues must use stronger atomic primitives (e.g.,
atomic compare-and-swap and memory barriers) than a purely
sequential queue. Queues with a FIFO policy are generally
implemented as single-producer multiple-consumer (SPMC)
queues [8, 17, 39, 47], thereby treating steal similarly to get,
and thus distributing the costs of stealing equally between
owner and thieves. This also applies to the existing block-
based queues [106], which lack any optimizations specific to
the work-stealing use case to achieve high performance in the
presence of thieves (§6.2, §7). Queues with a LIFO policy,
such as the well-known and widely-used ABP queue [35, 48,
104], suffer from memory barrier overhead [83, 98] to avoid
the conflict between the owner and thieves, even when they
operate on different tasks.

P2: Thief-induced cache misses. Since steals update the
metadata shared between the owner and the thieves, they cause
cache misses on subsequent accesses to the queue by its owner.
This problem is especially apparent on unbalanced workloads,
which feature high steal rates—for example, in the JVM Re-
naissance benchmarks [95], 10% of all items are stolen on
average. Although strategies such as batching (e.g., steal-
half [66]) can reduce the frequency of steals, they often cause
overstealing which introduces additional overhead (§2.1.3).

P3: Victim selection. To improve the workload distribu-
tion, advanced policies for selecting the victim queue to steal
from require scanning the metadata of several queues, e.g., to

find the longest queue. Doing so, however, causes contention
for its owner and severely limits the improvement from ad-
vanced victim selection policies (§2.1.3).

P4: Correctness under weak memory models (WMMs).
Correctly implementing concurrent work-stealing queues on
weak memory architectures, such as Arm servers for datacen-
ters [46,70], is very challenging because it requires additional
memory barriers to prevent unwanted reordering. Using re-
dundant barriers can greatly reduce the performance of work-
stealing [79], while not including enough barriers can lead
to errors, such as in the C11 [6] version of the popular un-
bounded Chase-Lev deque translated from formally verified
ARMv7 assembly [90]. Even the popular Rust Tokio runtime
required a fix to its implementation of work stealing [2].

Contribution. In response, we introduce BWoS, a block-
based work stealing (BWoS) bounded queue design, which
provides a practical solution to these problems, drastically re-
ducing the scheduling overhead of work stealing. Our solution
is based on the following insights.

First, we split each per-core queue into multiple blocks
with independent metadata and arrange for the owner and
the thieves to synchronize at the block level. Therefore, in
the common case where operations remain within a block,
we can elide synchronization operations and achieve almost
single-threaded performance (§3.2). Similarly, since a queue
owner and the thieves share only block-local metadata, they
do not interfere when operating on different blocks (§2.1). We
can arrange for that to happen frequently by allowing stealing
tasks from the middle of the queue.

Second, we improve victim selection with a probabilistic
policy, which approximates selecting the longest queue (§3.4),
while avoiding the severe interference typical of the prior state-
of-the-art (§2.1), to which we can integrate NUMA-awareness
and batching.

Finally, we ensure correctness under WMMs by verifying
BWoS with the GenMC model checker [74,75] and optimizing
its choice of barriers with the VSync toolchain [92] (§5).

As a result, BWoS offers huge performance improvements
over the state-of-the-art (§6). In microbenchmarks, BWoS
achieves up to 8-11x throughput over other algorithms. In
representative real-world macrobenchmarks, BWoS improves
performance of Java industrial applications by up to 25%
when applied to Java G1GC, increases throughput by 12.3%
with 6.74% lower latency and 60.9% lower CPU utilization for
Rust Hyper HTTP server when applied to the Tokio runtime,
and speeds up JSON processing by 25.8% on average across
9 different libraries when applied to the Go runtime.

Returning to our motivating example (Fig. 1), applying
BWoS to the Go runtime removes 29% of scheduling time,
55% of GC time, and 40% of CPU idle time, while increasing
the CPU time ratio for useful work from 51% to 71%.
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Figure 2: Motivating benchmarks: (a) Sequential performance of state-of-the-art work stealing algorithms. (b,c) Performance of
the ABP queue owner depending on the frequency of (b) steal and (c) getsize operations. (d) Hyper HTTP server performance
with different stealing batch sizes with the original Tokio work stealing queue: S is the victim queue size and S/2 refers to the
default steal half policy [66]. (e,f) Interference between two threads for two sizes of cacheline sets.

2 Background

Task processing. Tasks vary a lot among benchmarks. Their
processing time ranges from a few nanoseconds (e.g., Java
G1GC [13]), to microseconds (e.g., RPC [55, 73, 108]), and
even to seconds (e.g., HPC tasks [35]). In this paper, we
mainly focus on the nanosecond- and microsecond-scale tasks.
Ignoring steals, tasks may be processed either:
• in FIFO (first-in-first-out) order, when minimizing process-

ing latency is important (e.g., network connections), or
• in LIFO (last-in-first-out) order, when only the overall exe-

cution time matters, as is often the case with multithreaded
fork-join programs [57].

We use the term queue to refer to the instances of work steal-
ing data structures without implying a specific task ordering.
Victim selection. There are multiple policies for selecting the
victim queue to steal from. Random [51] chooses one of the
remaining queues uniformly at random: it has the least com-
plexity but achieves poor load balancing. Size-based policies
(e.g., best of two [88] and best of many [69]) scan the queues’
size to improve the load balance by stealing from a large
queue. The NUMA-aware policy [77] was proposed to opti-
mize the remote communication cost, by tending to steal from
the queues in the local cache domain. Batch-based policies
(e.g., steal half [66] is used in Go and Rust’s Tokio runtimes)
allow thieves to steal multiple tasks at once to reduce their
interference with the owner. Later in this section (§2.1.3),
we will quantify these overhead sources to guide our queue
design.

2.1 Performance Overhead Breakdown

Next, we analyze the state-of-the-art work stealing algorithms
to dissect their performance issues, and motivate the design
decisions of BWoS. Fig. 2 contains our experimental results
on an x86 server [71].

2.1.1 Cost of Synchronization Operations

As steals may happen at any time, strong atomic primitives
are introduced for local queue manipulation. To quantify their
cost, we first measure the throughput of the state-of-the-art

Thief: cost of
communication

Victim: cost of
interference Overhead

reduction
1� Cs+Is

Cd+Id

same
node
(Cs)

diff
node
(Cd)

same
node
(Is)

diff
node
(Id)

abp 15ns 141ns 170ns 278ns 56%
ideal – – 90%

Table 1: Reducing the stealing overhead with a NUMA-aware
policy.

work stealing algorithms on a sequential setup where an owner
puts and gets data from its local queue, without any tasks ever
being stolen (§6.2). We compare the results with the the-
oretical performance upper bound: a single-threaded FIFO
(FIFO_seq) or LIFO (LIFO_seq) queue implementation [72]
without support for steals. Although there is no owner-thief in-
terference, these synchronization operations pose a huge over-
head (Fig. 2a): throughput of these work stealing algorithms
is less than 0.25x for FIFO-based (0.19x for LIFO-based)
compared to the upper bound.

2.1.2 Interference Cost with Thieves

To estimate how thieves affect the throughput of the owner,
we consider an ABP queue benchmark with an owner and
one thief, which steals tasks from the queue with various
frequencies (one queue and two threads in total). As the “ideal”
baseline, we take the single-threaded performance of the ABP
queue (i.e., with no steals). To account for any NUMA effects
in this measurement, we use two configurations, running the
thief in the same or in different NUMA nodes.

As we can see in Fig. 2b, the thief significantly degrades the
owner’s throughput: e.g., by stealing only 1% of the tasks, the
owner’s throughput drops by 17.8% when the thief is in the
same NUMA node, and by 25.2% when it runs in a different
NUMA node. This degradation happens because of the cache
interference between the owner and the thief on the shared
metadata. We will further explain this in §2.2.

2.1.3 Overhead due to Victim Selection

There are two main sources of stealing overhead: first, a sub-
optimal victim selection can lead to workload imbalance trig-
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gering more stealing; second, the cost of steal operations.
Size-based policies. Policies like best of two [88] or best
of many [69] read global metadata of multiple queues (their
length) to determine the victim. Somewhat surprisingly, as
shown in Fig. 2c, these reads introduce significant overhead
for the owner, especially in the cross-NUMA scenario: even
with a getsize frequency of only 1%, the owner throughput
drops by 34.4%. This is further amplified as getsize is called
multiple times for a single steal.

Therefore, for size-based policies, although reading more
queues’ sizes (e.g., best of many [69]) can achieve better load
balance, it inevitably induces more slowdown to the owners
of these queues (§6).
NUMA-aware policies. NUMA-aware policies [77] try to
reduce the overhead of each steal by prioritizing the stealing
from queues in the same NUMA node. We observe that al-
though such NUMA-aware policies can reduce the overhead
of steals by 56% in the case of our ABP queue benchmark,
they fail to achieve their full potential.

In Table 1, we break down the overhead of stealing in the
ABP queue into its two main parts: the thief’s communication
cost and the owner’s interference penalty. The former is 141ns
when the thief and owner run on different NUMA nodes (mea-
sured by Intel MCA [21]), and reduces to 15ns (consistent
with the L3 cache access latency [7]) when they are at the
same NUMA node. The victim’s interference penalty is 170ns
and 278ns for cases of thief and victim running on the same
(Is) and different (Id) NUMA domains respectively. NUMA-
aware policies with existing queues can typically eliminate
the first communication overhead, while leaving the second
interference overhead not sufficiently optimized.

With long enough queues, steals could ideally happen at a
different part of the queue and cause no interference to the
victim. This would reduce Is and Id to zero, resulting in a 90%
improvement due to NUMA-awareness (rather than 56%).
Batch-based policies. Batch-based policies steal more tasks
at once with the aim of reducing the frequency of steals. In-
deed, in the Hyper HTTP server benchmark (see Fig. 2d),
choosing larger batch sizes leads to a reduction in the number
of steal operations. These larger steal operations, however,
make the workload even less balanced (i.e. percentage of
stolen tasks increases), which results in additional overhead
(e.g., task ping-pong), canceling out the overhead reduction
due to the fewer steals: the end-to-end throughput remains
roughly the same.

2.2 Recap to Motivate BWoS
In summary, the owner’s performance suffers both from the
synchronization cost, and the interference with thieves (due to
victim selection and task stealing). This interference occurs
because of cache contention on the queue metadata: write-
write interference with steal, and read-write interference with
getsize in size-based stealing policies.

To better understand the effects of these types of cache
contention, we conduct a simple microbenchmark with two
threads: thread t0 continuously writes to a cacheline, while
thread t1 either reads or writes to a cacheline with a specified
frequency (Figs. 2e and 2f). The cachelines for t0 and t1 are
independently and randomly chosen on each iteration out of
the cacheline sets of two sizes: 1 or 64.

In both cases, the cache contention on a single cacheline
significantly harms the throughput of t0, regardless of the
NUMA domain proximity. Introducing multiple cachelines
(64 in this case) reduces the contention and significantly im-
proves the throughput. Therefore, in the design of BWoS we
separate the metadata.

3 Design

BWoS is based on a conceptually simple idea: the queue’s
storage is split into a number of blocks, and the global mutable
metadata shared between thieves and owner is replaced with
the per-block instances.

The structure of BWoS queue facilitates abstracting the op-
erations into block advancement that works across blocks, and
fast path that operates inside of the block chosen by the block
advancement (§3.1). Moving most of the synchronization
from the fast path to the block advancement allows BWoS
to fully reap the performance benefit indicated by our pre-
vious observation (§2.1.1) thus approaching the theoretical
upper bound. get and steal always happen on different blocks.
We carefully construct the algorithm such that thieves cannot
obstruct the progress of get, while get can safely takeover a
block from thieves operating on it without waiting for them.
For complexity consideration, we don’t prohibit put and steal
in the same block1, as they can synchronize with the weak
barriers without losing performance (§6.2).

As metadata is also split per block, thieves and the owner
are likely to operate on different blocks and thus update dif-
ferent metadata. As explained in §2.2, this reduces the in-
terference between thieves and the owner. For FIFO-based
BWoS, block-local metadata allows stealing from the middle
of the queue, without enforcing the SPMC queue restriction
of always stealing the oldest task, which is not required by
the workloads.

BWoS can benefit from NUMA-aware policies more than
other queues because the reduction in interference for the
victim makes both constituents of cross-NUMA-domain steal-
ing overhead negligible (Table 1). Furthermore, unlike batch-
based policies, stealing policies integrated with BWoS can fo-
cus on balancing the workload itself without worrying about
the interference from frequently called steal.

1Nevertheless, it is guaranteed automatically in LIFO BWoS.
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1 bool queue<E>::put(E e){
2 again:
3 blk = blk_to_put();
4 switch(blk.put(e))
5 case success():
6 return true;
7 case blk_done(rnd):
8 if (adv_blkput(blk,rnd))
9 goto again;
10 else return false;
11 }
12 E queue<E>::get(){
13 again:
14 blk = blk_to_get();
15 switch(blk.get())
16 case success(e):
17 return e;
18 case empty:
19 return null;
20 case blk_done(rnd):

21 if (adv_blkget(blk,rnd))
22 goto again;
23 else return null;
24 }
25 E queue<E>::steal(){
26 again:
27 v, blk = blk_to_steal();
28 switch(blk.steal())
29 case success(e):
30 return e;
31 case empty:
32 return null;
33 case conflict:
34 goto again;
35 case blk_done(rnd):
36 if (adv_blksteal(v,
37 blk,rnd))
38 goto again;
39 else return null;
40 }

Figure 3: Pseudocode of put, get, and steal operations.

3.1 Bird’s-Eye View of the Queue

To better understand the block-based approach, let’s consider
the put, get, and steal operations of the BWoS queue (Fig. 3).
For each of these operations, the first step is to select a block
to work on (lines 3, 14, and 27). The owner uses the top block
for put and get for the LIFO BWoS, and gets from the front
block and puts to the back block for the FIFO BWoS. In this
case, top, back, and front block pointers are owner-exclusive
metadata which is unavailable to the thieves. For steal, the
choice of the block is more complicated and we will explain
it in a later section (§3.4).

After selecting the block, operations execute the fast path
(lines 4, 15, and 28), which may return one of the three results:
(1) The fast path succeeds, returning the value for get and steal.
(2) The fast path fails because there is no data to consume
(lines 18 and 31) or because a thief detects a conflict with
other thieves or with the owner due to the takeover (line 33).
In case of a conflict, the fast path is retried (line 34), otherwise
null value is returned. (3) The margin (beginning or end) of
the current block is reached (lines 7, 20, and 35). In this case,
the operation tries to move to the next block by performing
the block advancement, and retries if it succeeds, otherwise
returns the empty or full queue status.

Splitting the global metadata into block-level instances
enables splitting the operations into the fast path and block ad-
vancement, which increases the performance by keeping the
fast path extremely lightweight. However, the lack of global
mutable metadata shared between owner and thieves raises
additional challenges, which are mostly delegated to the block
advancement—it is now responsible for maintaining complex
block-level invariants. We introduce the following invariants:
(1) put never overwrites unconsumed data;
(2) steal and get never read the same data;
(3) steal and get never read data that has been read before;
(4) steal in progress cannot prevent get from reading from
a thieves’ block. Before explaining fast path and block ad-

0

1

2

3

4

5

adv_blkputadv
_blk

get

adv_blksteal

blk_to_steal()

blk_to_get()

blk_to_put()

top

bottom

e
m
p
ty

e
m
p
ty

(a) LIFO BWoS

0

1

2

3

4

5

adv_blkput

adv_blkget

blk_to_put()

blk_to_get()

back

front

blk_to_steal()

e
m
p
ty

e
m
p
ty

(b) FIFO BWoS
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Figure 5: Update of round numbers in each block.

vancement implementations, we introduce two key concepts
we rely on to ensure that the abovementioned invariants hold:
block-level synchronization (§3.2) and round control (§3.3).

3.2 Block-level Synchronization

Block-level synchronization is the key responsibility of the
block advancement and ensures that thieves never steal from
the block currently used for get operations. Each block is
owned either by the owner or by the thieves. For example,
in Fig.4, blocks with lighter and darker colors belong to the
owner and thieves respectively. The owner grants a block to
the thieves, or takes a block back from them with block ad-
vancement. More specifically, for LIFO BWoS, get advances
to the preceding block (3 to 2) and takes it over from thieves;
put grants the current one and advances to the following block
(3 to 4). For FIFO BWoS, get (resp. put) advances and takes
over (resp. grants) the following block.

The grant and takeover procedures are based on the thief
index—an entry in the block metadata that indicates the steal-
ing location inside the block. Takeover sets this index to the
block margin with an atomic exchange, and uses the old value
as the threshold between the owner and the ongoing thieves in
this block. This ensures that owner is not blocked by thieves
when it takes over the block. Moreover, concurrent owner
and thieves never read the same data because the threshold
between them is set atomically. Similarly, the grant procedure
transfers the block to thieves by writing the threshold to the
thief index. We will introduce the details in §4.2.1.

3.3 Round Control

Each block also records round numbers of the last data access.
When advancing block, the current block’s round is copied
over to the next block; except in the case of a wrap-around,
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where the block number is increased by 1 (Fig. 5).
In fact, there are producer, consumer, and thief round num-

bers in each block. When the producer tries to write round
r’s data into a block, the consumer and thieves must have
finished reading all data with round r�1 from that block; so
that the producer never overwrites any unread data. Similarly,
when the consumer or a thief tries to read round r’s data from
a block, the producer’s round at that block must already be r;
this prevents reading any data twice, or reading data that was
never written. Details can be found in §4.2.2.

3.4 Probabilistic Stealing

As discussed in §2.1.3, size-based policies can achieve better
load balance at the cost of degrading the performance of the
owner of each queue. Calculating the size is even harder in
our setting because the appropriate metadata is distributed
across all blocks. However, BWoS brings an opportunity to
have a new size-based, probabilistic stealing policy, which
can provide strong load balance without adversely affecting
the owner’s performance.

We ensure strong load balancing by making the probability
of choosing a queue as a victim proportional to its size. We
implement this approach with a two-phase algorithm: the
Pselect phase first selects a potential victim randomly, and
then the Paccept phase decides whether to steal from it with
probability S/C , where S is the selected queue’s size and C
is its capacity; otherwise (with probability 1�S/C ) it returns
to Pselect for a new iteration.

Therefore, given a pool of N queues each with the same
capacity and a selector in Pselect that selects each queue with
equal probability, Paccept can guarantee that the probability of
a thief stealing from a queue is proportional to its size.

To minimize the impact on the owner’s performance, in-
stead of measuring S , we estimate S/C directly by sampling.
The thief chooses a random block from all blocks of the queue
and checks if it has data available for stealing, where the prob-
ability of returning true is close to S/C . As the thief reads
only one block’s metadata, its interference with the owner is
minimal (cf. §2.2).

For FIFO BWoS, the above approach can achieve zero-
overhead for steals: after the estimation returns true, we can
steal from the block used for estimation directly, as block-
local metadata enables thieves to steal from any block which
has been granted to thieves. We call this instance of applying
our probabilistic stealing policy to FIFO BWoS a randomized
stealing procedure.

For LIFO BWoS, stealing still happens from the bottom
block (Fig. 4). Thieves advance to the following block when
they finish the current one. For FIFO BWoS, thieves do not
advance block when randomized stealing is enabled, and fall
back to the stealing policy for selection of the new queue and
block instead (§3.4). In this case, the operation to advance to
the next block on stealing (Fig. 3 line 36) becomes a no-op.

f_pos b_pos

blk s_cnt = …

get putbget f
b_pos

put
s_pos

blk

steal
0 NE 0 NE

Figure 6: Put, get, and steal operations inside the block.

Moreover, we can further combine the probabilistic steal-
ing policy with a variety of selectors for Pselect phase (e.g.,
from NUMA-aware policy), to benefit from both better work-
load balance and reduced stealing cost. Results show that
the hybrid probabilistic NUMA-aware policy brings the best
performance to BWoS (§6).

4 Implementation

4.1 Single-Block Operations (Fast Path)

Let’s consider how put, get, and steal operations inside the
block are implemented (lines 4, 15, and 28 in Fig. 3). Because
get and steal always happen on different blocks, we only
need to consider two cases of multiple operations in a block:
producer-consumer and producer-thieves (Fig 6).

To support these cases, each block has 4 metadata variables:
entries which are ready for the consumer in the block are
between the front position (f_pos) and back position (b_pos),
while thieves use the stealing position (s_pos) and a counter
of finished steals in the block (s_cnt) for coordinating among
themselves and with the producer respectively.

To produce a value, put first checks whether it reaches the
block margin NE (number of entries), if not, writes the data
into the producer position (b_pos), and lets it point to the next
entry.

To consume a value, there are two get operations, get f

and getb, which correspond to the FIFO and LIFO BWoS
respectively. get checks whether the block margin has been
reached, or if the block has run out of data (f_pos has reached
b_pos), if not, it reads the data and updates the consumer
position variable in the block metadata. The two variants of
get differ in which position variables and boundaries they use.
get f uses f_pos as consumer position variable, NE as block
margin, and b_pos as boundary of valid data. getb uses b_pos,
zero position of the block, and f_pos for the same purposes,
respectively.

Thieves follow a similar pattern: steal first checks if it
has reached the block margin, or if the block has run out
of data (s_pos has reached b_pos). Then, it updates s_pos
using an atomic compare-and-swap (CAS) to point to the next
entry, reads the data, and finally updates s_cnt with an atomic
increment. If the CAS fails, steal returns conflict. (CAS is
used because multiple thieves can operate in the same block.)

All of these operations return block_done when they reach
a block margin. Otherwise, if the block runs out of data, get
and steal return empty.
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Figure 7: Takeover and grant procedures in block advancement.

4.2 Block Advancement

In case a block margin is reached, put, get, and steal move to
the next block: They first check whether advancing is permit-
ted by the round control, and if so, they call takeover (by get)
or grant (by put) procedures, and reset block-level metadata.

4.2.1 Takeover and Grant Procedures

We explain the takeover and grant procedures using a queue
with 4-entry blocks as an example (Fig. 7).
LIFO. Let us assume that 6 elements (a-f) were put into the
queue. Thus, the owner is in the block b1; b_pos in b0 and b1
becomes 4 and 2 respectively, while f_pos and s_pos remain
at the initial value (0) (state 1�). Then, two actions happen
concurrently: two thieves try to steal entries, updating s_pos
in b0 to 2, and start to copy out the data (steal on Fig. 7), while
the owner gets 3 values, consuming f, e (state 2�), and advanc-
ing to b0, thus starting the takeover. To perform the takeover,
the owner atomically exchanges s_pos with the block mar-
gin (4), and then sets f_pos to the previous s_pos value (2)
(state 3�). After the takeover, the owner gets d and puts g.
Meanwhile, one ongoing steal completes (steal’ on Fig. 7),
increasing s_cnt by 1 (state 4�). It does not matter which of
the two completes first. When the owner puts new items h and
i, it grants b0 to thieves and advances to b1. To perform the
grant, it sets s_pos to the f_pos value (2), indicating to thieves
that the block is available (state 5�). After thieves steal all
entries in b0, s_cnt reaches the block margin (state 6�). Thus,
b0 can be reused in the next round.
FIFO. First, the producer puts 7 elements (a-g) into the queue.
The producer and the consumer are in b1 and b0 respectively,
and thieves can steal from b1 (state 1�). Then, the consumer
gets all elements in b0, and advances to b1 (state 2�). This re-
quires taking over b1 from thieves: for this purpose, it updates
s_pos and f_pos in the same way as the LIFO BWoS, but also
adds the difference between the new f_pos (2) and the block
margin (i.e. length of the block) to s_cnt (state 3�). This way,
when all thieves finish their operation in b1, its s_cnt will be
equal to the block margin. After that, the producer puts a new
item h, and advances to b2 granting it to thieves (state 4�).

Finally, both thieves and the consumer have read all entries
from b1, its f_pos and s_cnt are equal to the block margin
(state 5�). The producer uses this condition to check if the
block can be reused for producing new values into it.

4.2.2 Round Control and Reset Procedure

To implement round control (§3.3), the position variables
in block metadata (f_pos, b_pos, s_pos, s_cnt) contain both
the index or counter (idx field) as described in §4.2.1 and
the round number (rnd field). We fit both components into a
64-bit variable that can be updated atomically.

Consider, for example, the put operation of FIFO BWoS
(Fig. 8). In put, when the producer idx reaches the block
margin NE of the block blk (step 1�), the new round x of
the next block nblk is calculated as described in §3.3 (step
2�). When advancing to the block nblk with the producer

round x, the producer checks that the consumer and the thieves
have finished reading all data from the previous round in nblk
by checking if their idx fields are equal to NE and their rnd
fields are x�1 (step 3�). When the check succeeds, the new
value with the index 0 and the round x will be written into
the producer position variable (step 4�), thus resetting the
block for the next round producing. Otherwise, a “queue full”
condition is reported.

The get operation of the FIFO BWoS is similar. To de-
cide whether get can use a next block, it checks whether the
block’s next consumer’s round is equal to the producer round
(step 3�), and resets the round and index fields if the check
succeeds.

Each operation resets only a subset of position variables
(b_pos, f_pos, s_pos, s_cnt). We carefully select which vari-
ables each operation resets so that takeover and grant proce-
dures by the owner have no write conflict with the reset done
by thieves.

5 Verification and Optimization

The complexity of the BWoS algorithm necessitates the use
of formal verification techniques to ensure that there are no
lurking design or implementation bugs, and to optimize the
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Figure 8: Round control in FIFO BWoS.

use on WMMs. One can easily imagine several tricky cases
with block advancements. For example, for LIFO BWoS, when
the owner calls puts and gets and advances to the next block,
it may easily trigger ABA [67] bugs during the round control
and takeover.

Unlike simpler algorithms like ABP [79], it is virtually
impossible to justify the correctness of an optimal memory
barrier placement by inspection. Luckily, model checking
tools [62, 74, 84, 92] are widely used to check the correctness
of concurrent algorithms and optimize the memory barrier
under WMMs automatically, improving both performance and
developer confidence. For example, the Tokio library uses the
model checker Loom [27, 91], which has helped them find
more than 10 bugs [28].

5.1 Verification Client

A model checker takes as input a small verification client
program that invokes queue operations. It verifies that all pos-
sible executions of the input program satisfy some generic
correctness properties, such as memory safety and termina-
tion [45], as well as any algorithm-specific properties that are
included in the verification client as assertions. Whenever ver-
ification fails, the model checker returns a concrete erroneous
execution as a counterexample.

To be able to generalize the verification result beyond the
specific client program verified, the client program must trig-
ger all possible contending scenarios and cover all desired
properties. Because of the symmetry of BWoS (each owner
operates on its own queue and steals from others), it suffices
to verify the use of one queue owned by one thread and con-
tended by several thief threads.

Verified properties. We have verified the following properties
with the GenMC model checker [74, 75]:
• Memory safety: The program does not access uninitialized,

unallocated or deallocated memory.
• Data race freedom: there are no data races on variables that

are marked as non-atomic.
• Consistency: Each element written by the producer is read

only once by either the consumer or thieves. No data cor-
ruption or loss occurs.

• Loop termination: Every unbounded spinloop and bounded
fail-retry-loop in the program will eventually terminate even
under weak memory models.

1 class stat {
2 u64 sum = 0, buf = 1;
3 void put(queue<u64> q){
4 if (q.put(buf))
5 sum += buf;
6 buf <<= 1;
7 }
8 bool get(queue<u64> q){
9 data = q.get(buf);
10 if (data != null) {
11 sum += data;
12 return true;
13 }
14 return false;
15 }
16 void steal(queue<u64> q){

17 data = q.steal(buf);
18 if (data != null)
19 sum += data;
20 }
21 }
22 stat f, b, s1, s2;
23 queue<u64> q; // 2 * 2
24 T0: b.put(q)*3; f.get(q)*2;
25 b.put(q)*4; f.get(q)*3;
26 b.put(q)*5; f.get(q)*4;
27 T1: s1.steal(q);
28 T2: s2.steal(q)*2;
29 T3: while (f.get(q));
30 assert (b.sum == f.sum +
31 s1.sum + s2.sum);
32 (T0 k T1 k T2) ; T3

Figure 9: Verification and optimization client code.

VERI/OPT
time

memory barriers #executions
explored#SEQ #ACQ #REL #RLX

LIFO
BWoS 62 min. 0 2 2 14 1.39 M

FIFO
BWoS 53 min. 0 3 3 16 1.43 M

ABP 16 min. 4 3 1 7 2.05 M

Table 2: Statistics of the verification and optimization.

All possible executions, including those that occur due to
weak memory reordering under the IMM [94] and RC11 [78]
memory models, have been explored, and the aforementioned
properties hold for each of them. With GenMC we were able
to verify safety properties and termination of loops, but not
the properties of individual operations.
Contending scenarios. As in any model checking verifica-
tion, our models have a limited size within which the above
properties hold. The client code for verifying and optimizing
put, get, steal operations of BWoS is shown in Fig. 9. We con-
figure the queue to have two blocks, each with the capacity
of two entries (line 23). It is thus sufficient to put 5 entries
to trigger the queue wraparound. We then launch 3 threads
that run in parallel: The owner thread T0 has 3 rounds of
put and get (lines 24-26) with different numbers of entries,
trying to trigger block advancement for both producers and
consumers in each round. Thief threads T1 and T2 steal one
and two entries respectively, and thus together with T0, they
trigger the queue empty condition, takeover, grant, and reset
procedures, as well as conflicts between thieves.
Assertion and properties. After threads T0–T2 exit, thread
T3 gets all remaining entries, and asserts that the sum of put
elements is equal to the sum of elements read via get and
steal (lines 30-31). Notice that the elements are generated as
powers of two (line 6), therefore this assertion ensures that
each element written by the producer has been read only once.

5.2 Results

We have optimized and verified the C code of LIFO and FIFO
BWoS with the VSync framework and the GenMC model
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checker. We have also verified the ABP queue using our
verification client as a baseline. The statistics are shown in
Table 2, broken down by memory barrier type: sequentially
consistent (SEQ), acquire (ACQ), release (REL), and relaxed
(RLX, i.e. plain memory accesses).

For BWoS, barrier optimization and verification finished in
about an hour on a 6-core workstation [59], with over 1 million
execution explorations. For ABP, the checking finishes in 16
minutes. More executions are explored for ABP since thieves
and owner synchronize for every operation, which brings more
interleaving cases.

Verification confidence. By adding one thread and discover-
ing that no further barriers were required, we conclude that
further increasing the thread count is unlikely to discover
some missing barrier. Hence, we can avoid the state space
explosion that happens with larger thread counts. On the other
hand, discovering that an existing barrier had to be stronger
would have forced us to review the algorithm in general.

Experience. Model checking proved itself to be invaluable
during BWoS’s development. For example, an early version
of LIFO BWoS had a bug where thieves would reset the s_pos
variable when advancing to their following block (blk). In
the case when the owner is advancing to its preceding block
which also happens to be blk, it would update s_pos in the
takeover procedure, which conflicts with the thieves’ reset
procedure, resulting in data loss. This data loss was detected
by GenMC with the verification client assertion (lines 30-
31). We have fixed it by delegating the thieves’ s_pos reset
procedure to the owner, thus removing this conflict.

Optimization. For BWoS, most concurrent accesses are con-
verted to relaxed barriers, with the few remaining cases being
release or acquire barriers. For the owner’s fast path that de-
termines the performance, we have only one release barrier in
the FIFO BWoS. In contrast, the highly optimized ABP [79]
contains many barriers. In particular, owner operations con-
tain 2 sequentially consistent, 1 acquire, and 1 release barriers,
which significantly degrade its performance.

We note that these optimization results are optimal: re-
laxing any of these barriers produces a counterexample. To
further increase our confidence in the verification result, we
added another thief thread stealing one entry, and checked the
optimized BWoS with GenMC. BWoS passes the check in 3
days with around 200 million execution explorations.

Barrier analysis. LIFO BWoS does not contain any barriers
in the fast path because the owner and the thieves do not
synchronize within the same block. An acquire-release pair
is related to s_pos in the owner’s slow path and thieves’ fast
path that ensures the correctness of the takeover procedure.
Another acquire-release pair is related to s_cnt which ensures
the owner doesn’t overwrite ongoing reading when it catches
up with a thieves’ block (wraparound case). For FIFO BWoS,
besides the above barriers, since producer and thieves need to
synchronize within a block, an additional acquire-release pair

in their fast path is required.

6 Evaluation

Experimental setup. We perform all experiments on two x86
machines connected via 10Gbps Ethernet link, each with 88
hyperthreads (x86) [71], and one Arm machine with 96 cores
(arm) [70]. The operating system is Ubuntu 20.04.4 LTS with
Linux kernel version 5.7.0.

6.1 Block Size and Memory Overhead

In comparison with other queues, BWoS has extra parameters
that the user needs to chose when initializing a data structure,
namely the block size and the number of blocks. In our expe-
rience with both micro- and macro-benchmarks, the system’s
throughput remains mostly contants regardless of the block
size or the number of blocks as long as they are above certain
minimal values: 8 or more blocks in the queue and 64 or more
elements in the block, both for our x86 and arm machines.

The reason for this insensitivity to block size change is
twofold: first, since a single thread is responsible for advanc-
ing the blocks of its own queue, the block size does not in-
troduce any contention-related overhead. Larger block sizes
cause the queue owner to advance the block less often, but
after a certain block size, the overhead of advancing the block
becomes negligible. Second, since BWoS forbids the owner
and thieves consuming items in the same block with block-
level synchronization, the contention of them on a queue is
largely independent from the number of blocks. These in-
sights guide the block size selection for our benchmarks: we
set the number of blocks to 8 and calculated the block size
based on the queue capacity.

Therefore, selecting an appropriate block size is straight-
forward. Further fine-tuning of these parameters may be ben-
eficial for extreme scenarios where memory-size constraints
are present or the overly large block size becomes detrimental
to stealing (§8).

BWoS contains three pointers for each queue, and four
atomic variables, two pointers, and one boolean variable for
each block as its metadata. The actual memory usage also
includes cache padding added to prevent false sharing. The
memory overhead from this metadata is static and thus negli-
gible for most use-cases.

6.2 Microbenchmarks

To verify our claims, we have designed a microbench-
mark which supports both LIFO and FIFO work stealing
and compared BWoS with the state-of-the-art algorithms:
an off-the-shelf ABP [48] implementation from Taskflow
v3.4.0 [35] with barrier optimization [79] (abp), the block-
based bounded queue [106] (bbq), work stealing queues
from Tokio v1.17.0 [38] (tokioq), Go’s runtime v1.18 [36]
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Figure 10: Throughput of LIFO BWoS and ABP with (opt) or
without (sc) memory barrier optimization on x86 and arm
running with different stolen percentages.

x86

Figure 11: Throughput of FIFO BWoS and other state-of-the-
art FIFO work stealing algorithms.

(goroutineq), Kotlin coroutines v1.6.4 [26] (coroutineq), and
Eigen v3.3 [8] (eigenq).

Each queue has a capacity of 8k entries, with 8-byte data
items; BWoS is configured to have 8 blocks. We perform the
following three experiments:

• Single queue without stealing (§6.2.1): The owner thread
executes the workload in a loop: it first puts until the queue is
full and then gets until the queue is empty.

• Single queue with stealing (§6.2.2): An additional thief
thread calls steal operations on the queue in a loop. We adjust
the put/get ratio, and the idle time between each steal to
perform the experiment at varying stolen percentages2.

• Pool consisting of 8 queues (§6.2.3): 8 threads perform
the following operations in a loop: put items to its queue until
it is full, then get until it is empty, and then attempt to steal
k ⇤C items from the pool, where k is the balancing factor
(in percent), and C is the queue capacity. The threads are
distributed equally between two NUMA domains, and within
each NUMA domain between two L3 cache groups [58].

In each experiment, we measure the total throughput: the
sum of put, get, and steal operation throughputs (ops/sec).

6.2.1 Queue without Stealing

Overall performance. Figures 10 and 11 for stolen percent-
age equal to 0 show the performance of the queue without
stealing. BWoS outperforms other algorithms by a signifi-
cant margin. For example, LIFO BWoS (bwos_opt) has 4.55x
higher throughput than ABP (abp_opt) on x86, and FIFO
BWoS written in C/C++, Rust, Go, and Kotlin outperform
bbq in C, eigenq in C++, tokioq in Rust, goroutineq in Go,

2The thief thread is located in the same L3 cache group as the owner; the
results are similar when putting the thief thread elsewhere.

coroutineq in Kotlin by 8.9x, 10.15x, 3.55x, 1.61x, and 1.82x
accordingly.
Impact of the memory barrier optimization. abp and LIFO
BWoS get 1.65x and 5.39x speedup on x86, and 2.03x and
3.38x speedup on arm respectively due to the memory bar-
rier optimization. We observe similar results for FIFO work
stealing algorithms3. The much greater speedup of BWoS
compared to ABP is possible in particular due to the separa-
tion of fast path and block advancement, where most of the
barriers in the fast path become relaxed.
Effectiveness of the block-level synchronization. Results
show that on x86 LIFO and FIFO BWoS are only 10.7% and
5.4% slower than ideal, respectively. On arm the results are
similar. Thus, block-level synchronization allows BWoS to ap-
proach the theoretical upper bound by removing the consumer-
thief synchronization from the fast path.

6.2.2 Queue with Stealing

Overall performance. As the stolen percentage increases,
BWoS continues to outperform other work-stealing algo-
rithms. For example, with 10% stolen percentage, LIFO BWoS
outperforms abp by 12.59x, while FIFO BWoS outperforms
bbq, eigenq, tokioq, goroutineq, coroutineq by 11.2x, 30.1x,
9.41x, 2.78x, and 1.64x respectively.
Effectiveness of the block-based approach. Unlike other al-
gorithms, BWoS suffers only a minor performance drop as the
stolen percentage increases. For example, for 20% stolen per-
centage, the throughput of LIFO and FIFO BWoS drops only
by 0.53% and 9.35%, while for abp_opt, tokioq and goroutineq
it degrades by 71.9%, 80.2%, and 59.3% respectively. Note
that the BBQ concurrent FIFO queue [106], which is also a
block-based design, does not reach performance comparable
to BWoS, stressing the importance of our design decisions for
the work stealing workloads.

6.2.3 Pool with Different Stealing Policies

Stealing policies. We perform this experiment with 6 stealing
policies, namely the random choice policy (rand), a policy that
chooses the victim based on a static configuration (seq), a pol-
icy that chooses the last selected one as the victim [104] (last),
best of two (best_of_two), best of many (best_of_many), and
NUMA-aware policy (numa). For best_of_many we choose
best of half (i.e. best of four).
Overall performance. In this experiment, we compare BWoS
only with the second-best algorithm from the previous ex-
periments: abp and tokioq for LIFO and FIFO work stealing
respectively. Fig. 12 shows that BWoS performs consistently
better than other algorithms. When the balancing factor is 0%,
BWoS outperforms abp by 4.69x and tokioq by 2.68x. As the

3Notice here bwos_go does not have barrier optimization because Go
does not expose an interface for relaxed atomics. However, for the mac-
robenchmarks we apply the barrier optimization by using the Go internal
atomic library.
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Figure 12: Throughput of the pool (8 queues) with different
stealing policies and different balancing factors on x86. rest
refers to all non-numa policies with and without probabilistic
stealing.

Figure 13: Speedup of 23 benchmarks from Renaissance
benchmark suite on x86.

balancing factor increases, the throughput of BWoS variants
is 7.90x higher than of abp and 6.45x higher than of tokioq.
Impact of the NUMA-aware policy. LIFO and FIFO BWoS
with numa policy outperform BWoS with other policies by at
most 2.21x and 1.73x respectively. For other work stealing
algorithms, best_of_two brings the best performance. Thus,
BWoS benefits from numa policy while other algorithms do
not. On the other hand, in many cases best_of_many brings
the worst performance, proving that interference with the
owner can outweigh its improvements to the load balance.
Effectiveness of the probabilistic stealing. BWoS can ad-
ditionally benefit from the probabilistic stealing. When the
balancing factor is 100%, numa with probabilistic stealing
(bwos+numa+prob) brings 1.34x, 1.53x performance improve-
ment on average to LIFO and FIFO BWoS.

6.3 Macrobenchmarks

6.3.1 Java G1GC

We replace the task queue [24] in Java 19 HotSpot [37]
with LIFO BWoS, and run the Renaissance benchmark suite
v0.14.0 [33], which consists of 25 modern, real-world, and
concurrent benchmarks [95] designed for testing and opti-
mizing garbage collectors. Two database benchmarks are
omitted since they don’t support JDK 19. JVM enables
-XX:+DisableExplicitGC [30,68] and -XX:+UseG1GC flags
when running the benchmark. All other parameters (e.g., num-
ber of GC threads, VM memory limit) are default. We run
10 iterations for each benchmark with the modified and the

Figure 14: Throughput and latency results of Hyper HTTP
server with BWoS and the original algorithm.

Figure 15: Throughput and latency of Tonic gRPC server with
BWoS and the original algorithm.

original JVM, and measure the end-to-end program run time
via the Renaissance testing framework.

Figure 13 shows the speedup of all 23 benchmarks on x86.
When BWoS is enabled, 17 of them get performance improve-
ment. The average speedup of all benchmarks is 3.55% and
the maximum speedup is 25.3%. The applications that bene-
fit more from concurrent GC also get greater speedup from
BWoS. Results on arm are similar where the average speedup
is 5.20%, 18 benchmarks are improved and the maximum
speedup is 17.2%.

On the other hand, several Renaissance benchmarks did
not get any performance improvement from using BWoS.
We have investigated this issue by running JVM with flags
-Xlog:gc+cpu and -Xlog:gc+heap+exit to collect GC-
related statistics. These experiments have shown that appli-
cations that trigger GC often demonstrate improvement from
BWoS, while applications that don’t trigger GC or triggered it
only rarely (e.g. at JVM exit) see no speedup. For the bench-
marks which never or seldomly trigger the GC, the slowdown
is most likely due to the longer queue initialization.

6.3.2 Rust Tokio Runtime

We replace the run queue [39] in Tokio v1.17.0 [38] with FIFO
BWoS, and run Hyper HTTP server v0.14.18 [20] and Tonic
gRPC server v0.6.2 [40] with the modified runtime. Tokio
runtime (also Go runtime) provides a batch stealing interface.
Based on observations from benchmarks similar to Fig. 2d,
we configured the thief of BWoS to steal all available entries
from its block at once. Benchmarks are performed on two x86
machines, one running the server, the other running the HTTP
benchmarking tool wrk v4.2.0 [43] or the gRPC benchmarking
and load testing tool ghz v0.017 [14]. All parameters of Hyper
and Tonic are default. Each benchmark runs 100 seconds and
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Figure 16: Request throughput, average latency, and task
stolen percentage comparison results of 5 Rust web frame-
works of BWoS (normalized to the original algorithm results)
with rust-web-benchmarks workload on x86.

has 10 iterations. The latency and throughput are measured by
wrk or ghz, while the CPU utilization of the server is collected
through the Python psutil library [32]. wrk and ghz run the
echo workload and SayHello protocol respectively and are
configured to utilize all hyperthreads of their machine.

Figure 14 shows the throughput-latency and throughput-
CPU utilization results of Hyper with different connection
numbers (100, 200, 500, 1k, 2k, 5k, and 10k). Before the sys-
tem is overloaded, BWoS provides 1.14⇥106 op/s throughput
while dropping 60.4% CPU usage with similar latency, the
original algorithm provides only 9.44⇥105 op/s throughput.
With 1k connections, BWoS increases throughput by 12.3%
with 6.74% lower latency and 60.9% lower CPU utilization.

Figure 15 shows the throughput and latency results of Tonic.
Using BWoS increases throughput by 32.9%, with 32.8%
lower average latency and 36.6% lower P95 latency.

To prove the generality of BWoS when applied to web
frameworks, we also benchmark another 5 popular Rust web
frameworks [4, 31, 34, 41, 42] that used Tokio runtime with
rust-web-benchmarks [5] workload on x86 (Fig. 16). Results
show that BWoS increases the throughput by 82.7% while
dropping 45.1% of average latency. In addition, the task stolen
percentage drops from 69.0% to 49.2%. We have made our
implementation for the Tokio runtime available to the open-
source community [3].

6.3.3 Go Runtime

We replace the runqueue [17] in the Go programming lan-
guage [36] v1.18.0 runtime with BWoS and benchmark 9
JSON libraries [1, 9–12, 15, 18, 19, 25]. The benchmark
suite [16] comes from the go-json library and runs 3 iter-
ations with default parameters. We record the latency of each
operation (e.g., encoding/decoding small/medium/large JSON
objects) reported by the benchmark suite, and calculate the
speedup.

As shown in Fig. 17, when BWoS is enabled, operations
get 25.8% average performance improvement on x86. arm
produces similar results with 28.2% speedup on average. In
general, encoding operations have better speedup compared
to decoding operations. We observe no improvement for en-
coding booleans and integers.

7 Related Work

Block-based queues. Wang et al. proposed a block-based
bounded queue [106] (BBQ) that splits the buffer into mul-
tiple blocks, thus reducing the producer-consumer interfer-
ence. BWoS differs from BBQ in the following ways: (1)
although BBQ also applies metadata separation, the producer-
consumer interference it reduces is not an issue for work
stealing as these always execute on the same core. By intro-
ducing block-level synchronization, steal-from-middle prop-
erty, and randomized stealing, FIFO BWoS outperforms BBQ
by a large margin (§6). (2) For the round control in BWoS, the
new round of a block is determined only by the round of its
adjacent block instead of relying on global metadata, as the
version mechanism in BBQ does. This design simplifies the
round updating and reduces its overhead.

Owner-thief interference and synchronization costs. Attiya
et al. proved that work stealing in general requires strong
synchronization between the owner and thieves [49]. BWoS
overcomes this issue by delegating this synchronization to
the block advancement, thus removing it from the fast path.
Acar et al. used a sequential deque with message passing
to remove the owner’s barrier overhead [44]. However, this
design relies on explicit owner-thief communication, thus
the steal operation cannot run to completion in parallel with
the owner’s operations. Dijk et al. proposed a deque-based
LIFO work-stealing algorithm which splits the deque into
owner and thief parts, thus reducing the owner’s memory
fences when they do not reach the queue split point [61].
However, the entries read by thieves cannot be reused until
the whole deque is empty. Horie et al. proposed a similar
idea, where each owner has a public queue that is accessible
from other threads and a private queue that is only accessible
by itself [68]. However, it requires more effort to deal with
load balancing, e.g., introducing global statistics metadata
which causes more cache misses for the owner. In contrast,
BWoS reduces the interference using techniques of block-level
synchronization, and probabilistic and randomized stealing.
Morrison et al. introduced work stealing algorithms which
rely on the bounded TSO microarchitectural model, which
x86 and SPARC CPUs were shown to possess [89]. Michael
et al. reduced the thief-owner synchronization by allowing
them to read the same task [87], which requires reengineering
of tasks to be idempotent. BWoS exhibits correct and efficient
execution on a wide range of CPU architectures without any
additional requirements.

Stealing policies. Yang et al. gave a survey of scheduling
parallel computations by work stealing [107]. Kumar et al.
benchmarked and analyzed variations of stealing policies [76].
Mitzenmacher proposed to give the thief two choices for
selecting the victim to have a better load balancing [88]. Most
of the analyzed policies are size-based, and thus aim to reach
the same goal as our probabilistic stealing policy—namely,
better load balance. Hendler et al. allow thieves to steal half
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Figure 17: Speedup in the go-json library benchmark on x86 from using BWoS.

of the items in a given queue once to reduce interference [66].
BWoS supports batched stealing, but the maximum amount
of data that can be stolen atomically is a block. However,
the stealing policy can be configured to steal more than one
block. Kumar et al. proposed a NUMA-aware policy for work
stealing [77]. This policy is fully orthogonal to BWoS and can
be combined with its probabilistic stealing policy.

Formally verified work stealing. Lê et al. [79] manually
verified and optimized the memory barriers of Chase-Lev
dequeue [53] on WMMs. Unlike the verification of BWoS
which relies on model checking, manual verification is a high-
effort undertaking. In the context of concurrent queues, Meta’s
FollyQ was verified using interactive theorem prover [105].
While this approach provides the highest levels of confi-
dence in the design, it works only with sequentially consistent
memory model, and is also a high-effort endeavor. Recently,
GenMC authors have verified the ABP queue as part of evalu-
ation of their model checker [74]. The authors of BBQ have
relied on VSync to simultaneously verify and optimize the bar-
rier for weak memory models [106]. BWoS also uses VSync
for this purpose, but instead of many hand-crafted tests, which
exercise the individual corner cases in BBQ, we create one
comprehensive client that covers several corner cases and
their interactions at once. We further verify the optimization
results by adding one more thief into the verification client
and checking it with GenMC.

8 Conclusion

To conclude, we explore two of our learnings from this work.

The benefit of the block-based design is manyfold. First,
by replacing the global mutable metadata with block-level
metadata, it is possible to eliminate the interference between
the owner and the thieves that operate on different blocks.
Second, by ensuring exclusive access to a block for owner’s
get operation through block-level synchronization, it is pos-
sible to relax most of the barriers from the operation’s fast
path, increasing its performance up to the theoretical upper
bound. Although being unnecessary in our current algorithm,
a third benefit is the verification modularity given by the
block-based design, e.g., allowing the verification of blocks

and their composition in separate steps. Finally, the block-
based design opens possibilities for holistic optimization of
the data structure use, as we do with our probabilistic stealing
policy.

BWoS can also be applied to GPU and hybrid CPU-GPU
computations, as well as in HPC schedulers, where work
stealing is common. We plan to explore this direction in the
future. More generally, the BWoS design can be applied to
other use cases, where the data structure is mostly accessed
by a single thread, and only rarely by multiple. In this case,
the decisions demonstrated in BWoS can act as design and
implementation guidelines.
Verified software can be faster than unverified software.

The more hardware details and tweaks are mirrored in the
software, the more complex and opaque that piece of code
becomes. The interaction of this complexity with concurrency
and weak memory consistency is a major challenge. We be-
lieve that practical verification tools (i.e., tools applied to
increase confidence in correctness) are a key enabler in the
development of efficient, and inevitably complex, concurrent
software such as BWoS.
Future Work There are several directions for further work:
We plan to contribute BWoS to more open-source projects,
e.g., openJDK [23, 29], and Golang, as well as investigate
how to use BWoS in HPC runtimes. We also plan to better
explore the performance trade-offs for BWoS: if the number of
outstanding work items is smaller than the block size, BWoS
can prevent stealing and thus limit the achieved parallelism.
Furthermore, if the queue capacity has to be very small (due to
space requirements), it may be necessary to reduce the block
size and thus incur more block advancement that leads to
performance drop. These situations would benefit from more
exploration in the system design. In other cases, BWoS is
expected to outperform existing state-of-the-art work-stealing
algorithms due to its implementation of several performance-
enhancing techniques.
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