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Liveness properties, such as termination, of even the simplest shared-memory concurrent programs under

sequential consistency typically require some fairness assumptions about the scheduler. Under weak memory

models, we observe that the standard notions of thread fairness are insufficient, and an additional fairness

property, which we call memory fairness, is needed.

In this paper, we propose a uniform definition for memory fairness that can be integrated into any declarative

memory model enforcing acyclicity of the union of the program order and the reads-from relation. For the

well-known models, SC, x86-TSO, RA, and StrongCOH, that have equivalent operational and declarative

presentations, we show that our declarative memory fairness condition is equivalent to an intuitive model-

specific operational notion of memory fairness, which requires the memory system to fairly execute its

internal propagation steps. Our fairness condition preserves the correctness of local transformations and the

compilation scheme from RC11 to x86-TSO, and also enables the first formal proofs of termination of mutual

exclusion lock implementations under declarative weak memory models.
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1 INTRODUCTION

Suppose we want to prove termination of a concurrent program under a full-featured weak memory
model, such as RC11 [Lahav et al. 2017]. Sadly, this is not currently possible because RC11 does
not support reasoning about liveness. Extending its formal definition to enable reasoning about
liveness properties is very important because, as shown by Oberhauser et al. [2021a, Table 2],
multiple existing mutual exclusion lock implementations hang if too few fences are used. This is
also the case for the published version of the HMCS algorithm [Chabbi et al. 2015]: it contains such
a termination bug, a simplified version of which we describe in ğ5.3.
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Termination of concurrent programs typically relies on some fairness assumptions about concur-
rency as illustrated by the following program, whose variables are initialized with 0.

𝑥 := 1 repeat { 𝑎 := 𝑥 } until (𝑎 ≠ 0) (SpinLoop)

Under sequential consistency (SC), the program can diverge if, e.g., thread 2 is always scheduled
and thread 1 never gets a chance to run. This run is considered unfair because although thread 1 is
always available to be scheduled, it is never selected. A standard assumption is thread fairness (which
is typically simply called fairness in the literature [Francez 1986; Lamport 1977; Lehmann et al.
1981; Park 1979]), namely that every (unblocked) non-terminated thread is eventually scheduled.
With a fair scheduler, SpinLoop is guaranteed to terminate.

Under weak memory consistency, thread fairness alone does not suffice to ensure termination of
SpinLoop because merely executing the 𝑥 := 1 write does not mean that its effect is propagated to
the other threads. Take, for example, the operational TSO model [Owens et al. 2009], where writes
are appended to a thread-local buffer and are later asynchronously applied to the shared memory.
With such a model, it is possible that the 𝑥 := 1 write is forever stuck in the first thread’s buffer and
so thread 2 never gets a chance to read 𝑥 = 1. To rule out such behaviors, we introduce another
property, memory fairness (MF), that ensures that threads do not indefinitely observe the same stale
memory state.
Operational models can easily be extended to support MF by requiring fairness of the internal

transitions of the model, which correspond to the propagation of writes to the different threads.
For the standard interleaving semantics of SC [Lamport 1979], MF holds vacuously (because the
model does not have any internal transitions). For the usual TSO operational model [Owens et al.
2009], MF requires that every buffered write eventually propagates to the main memory. For the
operational characterization of release-acquire (RA) following Kang et al. [2017], more adaptations
are necessary: (1) we constrain the timestamp ordering so that no write can overtake infinitely
many other writes; and (2) add a transition that forcefully updates the views of threads so that
all executed writes eventually become globally visible. The same criteria are required for MF in
the model of strong coherence (StrongCOH), which is essentially a restriction of the promise-free
fragment of Kang et al. [2017]’s model (as well as of RC11) to relaxed accesses.

In contrast, it is quite challenging to support MF in declarative (a.k.a. axiomatic) models, which
have become the norm for hardware architectures (x86-TSO [Owens et al. 2009], Power [Alglave
et al. 2014], Arm [Pulte et al. 2017]) and programming languages (e.g., RC11 [Lahav et al. 2017],
OCaml [Dolan et al. 2018], JavaAtomics [Bender and Palsberg 2019], Javascript [Watt et al. 2020],
WebAssembly [Watt et al. 2019]) alike. In these models, there are no explicit write propagation
transitions so that MF could require them to eventually take place. Further, the memory accesses of
different threads are not even totally ordered, so even the concept of an event eventually happening
is not immediate. We observe, however, neither internal transitions nor a total order are necessary
for defining fairness; what is important is that every event is preceded by only a finite number of
other events, and this can be defined on the execution graphs used by declarative models.

Specifically, for declarative models satisfying (po ∪ rf)-acyclicity (i.e., acyclicity of the union of
the program order and the reads-from relation), such as RC11, SC, TSO, RA, and StrongCOH, we
show that MF can be defined in a uniform fashion as prefix-finiteness of the extended coherence
order. The latter is a relation used in declarative models to order accesses to the same location for
guaranteeing SC-per-location [Alglave et al. 2014]. Requiring this relation to be prefix-finite means
that in a fair execution no write can be preceded by an infinite number of other events in this order
(e.g., reads that have not yet observed the write).

We justify the uniform declarative definition of memory fairness in three ways. First, we show
that our declarative MF condition is equivalent to operational MF for models that have equivalent
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declarative and operational presentations (i.e., SC, TSO, RA, and StrongCOH). This requires ex-
tending the existing equivalence results between operational and declarative models to infinite

executions, and involves more advanced constructions that make use of memory fairness. Second,
we show that including our MF condition in the RC11 declarative language model, which currently
lacks any fairness guarantees, incurs no performance overhead: the correctness of local program
transformations and the compilation scheme to TSO are unaffected. Third, we show that memory
fairness allows lifting robustness theorems about finite executions to infinite ones.
We finally demonstrate that our declarative MF condition enables verification of liveness prop-

erties of concurrent programs under RC11 by verifying termination and/or fairness of multiple
lock implementations (see ğ5), including the MCS lock once the fence missing in the presentation
of Chabbi et al. [2015] is added. Key to those proofs is a reduction theorem we show for the
termination of spinloops. Under certain conditions about the program, which hold for multiple
standard implementations, a spinloop terminates under a fair model if and only if it exits whenever
an iteration reads only the latest writes in the coherence order. For example, the loop in SpinLoop
terminates because reading the latest write (𝑥 := 1) exits the loop.

Outline. In ğ2 we define fairness operationally and incorporate it in the operational definitions
of SC, x86-TSO, RA, and StrongCOH. In ğ3 we recap the declarative framework for defining
memory models. In ğ4 we present our declarative MF condition; we establish its equivalence to the
operational MF notions and show that it preserves the existing compilation and optimization results
for RC11 and that it allows lifting of robustness theorems to infinite executions. In ğ5 we show that
the declarative fairness characterization yields an effective method for proving (non-)termination of
spinloops and illustrate it to prove deadlock-freedom and/or fairness of three lock implementations.
We conclude with a discussion of fairness in other models in ğ6.

Supplementary Material. Our technical appendix [Lahav et al. 2021a] contains typeset proofs
for the lemmas and propositions of the article. We also provide a Coq development [Lahav et al.
2021b] containing:

• a formalization of operational and declarative fairness for SC, TSO, RA, and StrongCOH;
• proofs of the aforementioned definitions’ equivalence (Theorem 4.5);
• a proof of Theorem 5.3 stating a sufficient loop termination condition;
• proofs of termination of the spinlock client and of progress of the ticket lock client for all
models satisfying "SC per location" property (which generalizes Theorems 5.4 and 5.5) and
of termination of the MCS lock client for SC, TSO and RA (Theorem 5.6 without the RC11
part); and

• a proof of infinite robustness property (Corollary 4.16, excluding the RC11 case).

2 WHAT IS A FAIR OPERATIONAL SEMANTICS?

In this section, we define our operational framework and its fairness constraints. We initially demon-
strate our terminology for sequential consistency (SC). In Sections 2.1 to 2.3, we instantiate our
framework to the total store order (TSO), release/acquire (RA), and strong coherence (StrongCOH)
models, and discuss memory fairness in each of these models.

Labeled Transition Systems. Our formal development is based on labeled transition systems

(LTSs), which we use to represent both programs and operational memory models. We assume that
the transition labels of these systems are split between (externally) observable transition labels and
silent transition labels. Using transition labels we define a trace to be a (finite or infinite) sequence
of transition labels (of any kind); whereas an observable trace is a (finite or infinite) sequence of
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observable transition labels. Then, LTSs capture sets of traces and observable traces in the standard
way, which is formulated below.

Formally, we define an LTS 𝐴 to be a tuple ⟨𝑄, Σ,Θ, init,−→⟩, where 𝑄 is a set of states, Σ is a
set of observable transition labels, Θ is a set of silent transition labels, init ∈ 𝑄 is the initial state,
and −→ ⊆ 𝑄 × (Σ ⊎ Θ) ×𝑄 is a set of transitions. We denote by 𝐴.Q, 𝐴.Σ, 𝐴.Θ, 𝐴.init, and −→𝐴 the
components of an LTS 𝐴.
We denote by src(𝑡), tlab(𝑡), and tgt(𝑡) the three components of a transition 𝑡 ∈ −→. For

𝜎 ∈ Σ ⊎ Θ, we write
𝜎
−→ for the relation {⟨src(𝑡), tgt(𝑡)⟩ | 𝑡 ∈ −→, tlab(𝑡) = 𝜎}. We use −→ for the

relation
⋃

𝜎 ∈Σ⊎Θ
𝜎
−→. We say that a transition label 𝜎 ∈ Σ ⊎ Θ is enabled in some state 𝑞 ∈ 𝑄 if

𝑞
𝜎
−→ 𝑞′ for some 𝑞′ ∈ 𝑄 .
A run of 𝐴 is a (finite or infinite) sequence 𝜇 of transitions in −→𝐴 such that src(𝜇 (0)) = 𝐴.init

and tgt(𝜇 (𝑘 − 1)) = src(𝜇 (𝑘)) for every 𝑘 ≥ 1 in dom(𝜇). A run 𝜇 of 𝐴 induces the trace 𝜌

if 𝜌 (𝑘) = tlab(𝜇 (𝑘)) for every 𝑘 ∈ dom(𝜇). Also, 𝜇 induces the observable trace 𝜌 ′ if 𝜌 ′ is the
restriction to Σ of some trace 𝜌 that is induced by 𝜇.
An (observable) trace 𝜌 is called an (observable) trace of 𝐴 if it is induced by some run of 𝐴.

We write OTr(𝐴) for the set of all observable traces of 𝐴 and OTrfin (𝐴) for the set of all finite
observable traces of 𝐴.

Domains and Event Labels. To define programs and their semantics, we fix sets Loc, Tid, and
Val of (shared) locations, thread identifiers, and values (respectively). We assume that Val contains a
distinguished value 0, which serves as the initial value for all locations. In addition, we assume that
Tid is finite, given by Tid = {1, 2, ... ,𝑁 } for some 𝑁 ≥ 1. (Our main result below requires Tid to be
finite, see Remark 3.) We use 𝑥,𝑦 to range over Loc; 𝜏, 𝜋 to range over Tid; and 𝑣 to range over Val.
Programs interact with the memory using event labels, defined as follows.

Definition 2.1. An event label 𝑙 is one of the following:

• Read event label: R (𝑥, 𝑣R) where 𝑥 ∈ Loc and 𝑣R ∈ Val.
• Write event label: W (𝑥, 𝑣W) where 𝑥 ∈ Loc and 𝑣W ∈ Val.
• Read-modify-write label: RMW (𝑥, 𝑣R, 𝑣W) where 𝑥 ∈ Loc and 𝑣R, 𝑣W ∈ Val.

The functions typ, loc, valr, and valw return (when applicable) the type (R/W/RMW), location (𝑥),
read value (𝑣R), and written value (𝑣W) of a given event label 𝑙 . We denote by ELab the set of all
event labels.

Remark 1. For conciseness, we have not included fences in the set of event labels. In TSO
[Owens et al. 2009] and RA [Lahav et al. 2016], fences can be modeled as read-modify-writes to an
otherwise-unused distinguished location 𝑓 .

Remark 2. Rich programming languages like C/C++ [Batty et al. 2011] and Java [Bender and
Palsberg 2019] as well as the Armv8 multiprocessor [Pulte et al. 2017] have multiple kinds of
accesses. This requires us to extend our event labels with additional modifiers. However, simple
event labels as defined above suffice for the purpose of this paper.

Sequential Programs. To keep the presentation abstract, we do not fix a particular programming
language, but rather represent sequential (thread-local) programs as LTSs with ELab, the set of
all event labels, serving as the set of observable transition labels. For simplicity, we assume that
sequential programs do not have silent transitions.1 For an example of a toy programming language
syntax and its reading as an LTS, see [Podkopaev et al. 2019]. In our code snippets throughout the
paper, we implicitly assume such a standard interpretation.

1This assumption serves us merely to simplify the presentation, since silent program transitions can be always attached to

the next memory access.
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We refer to observable traces of sequential programs (i.e., sequences over ELab) as sequential
traces.

Example 2.2. The simple sequential program repeat { 𝑎 := 𝑥 } until (𝑎 ≠ 0) is formally
captured as an LTS with an initial state init and a state final, and transitions ⟨init, R (𝑥, 𝑣), init⟩ for
every 𝑣 ∈ Val \ {0} and ⟨init, R (𝑥, 0), final⟩. The sequential traces R (𝑥, 0), R (𝑥, 0), R (𝑥, 0), R (𝑥, 42)
is an (observable) trace of this program. The infinite sequential trace R (𝑥, 0), R (𝑥, 0), ... is another
(observable) trace of this program.

Concurrent Programs. A concurrent program, which we also simply call a program, is a top-level
parallel composition of sequential programs, defined as a finite mapping assigning a sequential
program to each thread 𝜏 ∈ Tid. A concurrent program 𝑃 induces an LTS with Tid × ELab serving
as the set of observable transition labels (and no silent transition labels). This LTS follows the
interleaving semantics of 𝑃 : its states are tuples in

∏

𝜏 ∈Tid 𝑃 (𝜏).Q; the initial state is 𝜆𝜏 . 𝑃 (𝜏).init;
and the transitions are given by:

𝑝 (𝜏)
𝑙
−→𝑃 (𝜏) 𝑝

𝑝
𝜏 :𝑙
−−→𝑃 𝑝 [𝜏 ↦→ 𝑝]

In the sequel, we identify concurrent programs with their induced LTSs.
We refer to observable traces of concurrent programs (i.e., sequences over Tid×ELab) as concurrent

traces. We denote the two components of a pair 𝜎 ∈ Tid×ELab by tid(𝜎) and elab(𝜎) respectively.

Behaviors. We define a behavior to be a function 𝛽 assigning a sequential trace to every thread,
since the events executed by each thread capture precisely what it has observed about the memory
system.

Notation 2.3. The restriction of a concurrent trace 𝜌 to thread 𝜏 ∈ Tid, denoted by 𝜌 |𝜏 , is the
sequence obtained from 𝜌 by keeping only the transition labels of the form 𝜏 : _.

Definition 2.4. The behavior induced by a concurrent trace 𝜌 , denoted by 𝛽 (𝜌), is given by

𝛽 (𝜌) ≜ 𝜆𝜏 ∈ Tid. 𝜆𝑘 ∈ dom(𝜌 |𝜏 ) . elab(𝜌 |𝜏 (𝑘)) .

This notation is extended to sets of concurrent traces in the obvious way (𝛽 (𝑆) ≜ {𝛽 (𝜌) | 𝜌 ∈ 𝑆}).

Notation 2.5. For an LTS𝐴 with𝐴.Σ = Tid×ELab, we denote by B(𝐴) the set of behaviors induced
by observable traces of 𝐴 ( i.e., B(𝐴) ≜ 𝛽 (OTr(𝐴))) and by Bfin (𝐴) the set of behaviors induced by

finite observable traces of 𝐴 ( i.e., Bfin (𝐴) ≜ 𝛽 (OTrfin (𝐴))).

Since operations of different threads commute in the program semantics, the following property
easily follows from our definitions.

Proposition 2.6. For every program 𝑃 , if 𝛽 (𝜌1) = 𝛽 (𝜌2), then 𝜌1 ∈ OTr(𝑃) iff 𝜌2 ∈ OTr(𝑃).

Thread Fairness. Not all program behaviors are fair.

Example 2.7. Consider the following program:

𝑥 := 1
𝐿 : 𝑎 := 𝑥

if 𝑎 = 0 goto 𝐿
(Rloop)

The behaviors of this program include the behavior assigning W (𝑥, 1) to the first thread and R (𝑥, 1)
to the second, but also the (infinite) behavior assigning the empty sequence to the first thread and
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the infinite sequence R (𝑥, 0), R (𝑥, 0), ... to the second. This behavior occurs if an unfair scheduler
only schedules the second thread to run even though the first thread is always available to execute.2

A natural constraint, which in particular excludes the infinite behavior in the example above,
requires a fair scheduler. Since our formalism assumes no blocking operations (in particular, locks
are implemented using spinloops), such a scheduler has to ensure that every non-terminated thread
is eventually scheduled, which we formally define as follows.

Definition 2.8. Let 𝑃 be a program.

• A thread 𝜏 ∈ Tid is enabled in 𝑝 ∈ 𝑃 .Q if ⟨𝜏, 𝑙⟩ is enabled in 𝑝 for some 𝑙 ∈ ELab.
• A thread 𝜏 ∈ Tid is continuously enabled at index 𝑘 in an infinite run 𝜇 of 𝑃 if it is enabled in
src(𝜇 ( 𝑗)) for every index 𝑗 ≥ 𝑘 . Thread 𝜏 is continuously enabled in 𝜇 if it is continuously
enabled in 𝜇 at some index 𝑘 .

• A run 𝜇 of 𝑃 is thread-fair if 𝜇 is finite or for every thread 𝜏 ∈ Tid and index 𝑘 such that 𝜏 is
continuously enabled in 𝜇 at 𝑘 , there exists 𝑗 ≥ 𝑘 such that tid(tlab(𝜇 ( 𝑗))) = 𝜏 .

• A thread-fair observable trace of 𝑃 is any concurrent trace induced by a thread-fair run of 𝑃 .
• A thread-fair behavior of 𝑃 is any behavior induced by a thread-fair observable trace of 𝑃 . We
denote by Btf (𝑃) the set of all thread-fair behaviors of 𝑃 .

Returning to Example 2.7, thread-fair behaviors of Rloop are either finite or must assign W (𝑥, 1)
to the first thread.
Again, since operations of different threads commute in the program semantics, the following

property easily follows from our definitions.

Proposition 2.9. For every program 𝑃 , if 𝛽 (𝜌1) = 𝛽 (𝜌2), then 𝜌1 is a thread-fair observable trace

of 𝑃 iff 𝜌2 is a thread-fair observable trace of 𝑃 .

Memory Systems. To give operational semantics to programs, we synchronize themwithmemory

systems, which, like programs, are LTSs with Tid × ELab serving as the set of observable transition
labels. In addition, memory systems have silent transition labels, which vary from one system
to another. Intuitively, the set of silent transition labelsM .Θ of a memory systemM consists of
internal actions that the program cannot observe (e.g., cache-related operations).

The most well-known memory system is that of sequential consistency [Lamport 1979], denoted
here by MSC, in which writes by each thread are made immediately visible to all other threads.
MSC tracks the most recent value written to each location. Its initial state maps each location
to zero. That is, MSC .Q ≜ Loc → Val and MSC.init ≜ 𝜆𝑥 . 0. The system MSC has no silent
transitions (MSC.Θ = ∅) and its transition relation −→MSC

is defined as follows:

𝑀 ′
= 𝑀 [𝑥 ↦→ 𝑣]

𝑀
𝜏 :W (𝑥,𝑣)
−−−−−−→MSC

𝑀 ′

𝑀 (𝑥) = 𝑣

𝑀
𝜏 :R (𝑥,𝑣)
−−−−−−→MSC

𝑀

𝑀
𝜏 :R (𝑥,𝑣R)
−−−−−−−→MSC

𝜏 :W (𝑥,𝑣W)
−−−−−−−→MSC

𝑀 ′

𝑀
𝜏 :RMW (𝑥,𝑣R,𝑣W)
−−−−−−−−−−→MSC

𝑀 ′

Writing 𝑣 to 𝑥 simply updates the value of 𝑥 stored in𝑀 . (𝑀 [𝑥 ↦→ 𝑣] is the function that maps 𝑥 to
𝑣 and all other locations 𝑦 to𝑀 (𝑦).) Reading 𝑣 from 𝑥 succeeds iff the value stored for 𝑥 in memory
is 𝑣 . The atomic read-modify-write RMW (𝑥, 𝑣R, 𝑣W) reads location 𝑥 yielding value 𝑣R and immediately

writes 𝑣W to it. Note that MSC is oblivious to the thread that takes the action (
𝜏 :𝑙
−−→MSC

=
𝜋 :𝑙
−−→MSC

).
The other memory systems below do not have this property.

2On this level, without considering a particular memory system (as defined below), the read values are not restricted

whatsoever. Thus, the behaviors of this program include also any behavior assigning W (𝑥, 1) to the first thread and either

R (𝑥, 𝑣) for some 𝑣 ∈ Val \ {0} or the infinite sequence R (𝑥, 0), R (𝑥, 0), ... to the second thread. Nonsensical behaviors (with

𝑣 ∉ {0, 1}) are overruled when the program is linked with any of the memory systems defined below, with or without

łmemory fairnessž.
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Linking Programs and Memory Systems. By linking programs and memory systems, we
can talk about the behavior of a program 𝑃 under a memory system M. We say that a certain
behavior 𝛽 is a behavior of a program 𝑃 under a memory system M if 𝛽 is both a behavior of 𝑃 and
a behavior of M (i.e., 𝛽 ∈ B(𝑃) ∩ B(M)). Similarly, 𝛽 is called a thread-fair behavior of 𝑃 under M
if 𝛽 ∈ Btf (𝑃) ∩ B(M).

Proposition 2.10. Let 𝑃 be a program, M be a memory system, and 𝛽 be a behavior.

• 𝛽 is a behavior of 𝑃 underM iff 𝛽 = 𝛽 (𝜌) for some 𝜌 ∈ OTr(𝑃) ∩ OTr(M).
• 𝛽 is a thread-fair behavior of 𝑃 under M iff 𝛽 = 𝛽 (𝜌) for some 𝜌 ∈ OTr(M) that is also a

thread-fair observable trace of 𝑃 .

Example 2.11. Thread-fair behaviors of the program Rloop under MSC must be finite. Indeed, in
observable traces ofMSC, after the first thread performs W (𝑥, 1), the second thread will perform
R (𝑥, 1) and terminate its execution. The behavior 𝛽inf that assigns the empty sequence to the first
thread and the infinite sequence consisting of R (𝑥, 0) event labels to the second thread cannot be
obtained from a thread-fair run of Rloop.

Memory Fairness. As we have already discussed, thread-fairness alone is often insufficient
to reason about termination under weak memory models. For this reason, we introduce memory

fairness (MF), which ensures that a thread cannot be lagging behind indefinitely because the memory
system did not propagate certain updates to it. We formalize this intuition by having MF require
that the memory silent transitions (responsible for such propagation steps) are scheduled infinitely
often.

Definition 2.12. LetM be a memory system.

• A silent transition label 𝜃 ∈ M .Θ is continuously enabled at index 𝑘 in an infinite run 𝜇 of M if
it is enabled in src(𝜇 ( 𝑗)) for every index 𝑗 ≥ 𝑘 . The label 𝜃 is continuously enabled in 𝜇 if it is
continuously enabled in 𝜇 at some index 𝑘 .

• A run 𝜇 ofM ismemory-fair if 𝜇 is finite or for every silentmemory transition label𝜃 ∈ M .Θ and
index 𝑘 such that 𝜃 is continuously enabled in 𝜇 at 𝑘 , there exists 𝑗 ≥ 𝑘 such that tlab(𝜇 ( 𝑗)) = 𝜃 .

• A memory-fair observable trace of M is any concurrent trace induced by a memory-fair run of
M.

• A memory-fair behavior ofM is any behavior induced by a memory-fair observable trace ofM.
We denote by Bmf (M) the set of all memory-fair behaviors of M.

Linking this definitionwith programs, we say that a certain behavior 𝛽 is amemory-fair behavior of

a program 𝑃 under amemory systemM if 𝛽 ∈ B(𝑃)∩Bmf (M). Similarly, 𝛽 is called a thread&memory-

fair behavior of 𝑃 under M if 𝛽 ∈ Btf (𝑃) ∩ Bmf (M).

Proposition 2.13. Let 𝑃 be a program, M be a memory system, and 𝛽 be a behavior.

• 𝛽 is a memory-fair behavior of 𝑃 under M iff 𝛽 = 𝛽 (𝜌) for some observable trace 𝜌 of 𝑃 that is

also a memory-fair observable trace of M.

• 𝛽 is a thread&memory-fair behavior of 𝑃 underM iff 𝛽 = 𝛽 (𝜌) for some thread-fair observable

trace 𝜌 of 𝑃 that is also a memory-fair observable trace of M.

SinceMSC.Θ = ∅, every behavior of a program 𝑃 underMSC is (vacuously) memory-fair.

Example 2.14. Consider the following program (assuming that 𝑥 is initialized to 0):

𝐿1 : 𝑥 := 1

𝑥 := 0

goto 𝐿1

𝐿2 : 𝑎 := 𝑥

if 𝑎 = 0 goto 𝐿2 (WWRloop)
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𝐵′
= 𝐵 [𝜏 ↦→ ⟨𝑥, 𝑣⟩ · 𝐵(𝜏)]

𝑀, 𝐵
𝜏 :W (𝑥,𝑣)
−−−−−−→MTSO

𝑀, 𝐵′

𝐵(𝜏) = ⟨𝑥𝑛, 𝑣𝑛⟩· ... ·⟨𝑥1, 𝑣1⟩
𝑀 [𝑥1 ↦→ 𝑣1]···[𝑥𝑛 ↦→ 𝑣𝑛] (𝑥) = 𝑣

𝑀, 𝐵
𝜏 :R (𝑥,𝑣)
−−−−−−→MTSO

𝑀, 𝐵

𝐵(𝜏) = 𝜖 𝑀 (𝑥) = 𝑣R

𝑀, 𝐵
𝜏 :RMW (𝑥,𝑣R,𝑣W)
−−−−−−−−−−→MTSO

𝑀 [𝑥 ↦→ 𝑣W], 𝐵

𝐵(𝜏) = 𝑏 · ⟨𝑥, 𝑣⟩

𝑀, 𝐵
prop(𝜏)
−−−−−−→MTSO

𝑀 [𝑥 ↦→ 𝑣], 𝐵 [𝜏 ↦→ 𝑏]

Fig. 1. Transitions of MTSO

The infinite behavior that assigns the infinite sequences W (𝑥, 1), W (𝑥, 0), W (𝑥, 1), W (𝑥, 0), ..., and
R (𝑥, 0), R (𝑥, 0), ... to the first and second threads (respectively) is a thread&memory-fair behavior
of this program under MSC: in a corresponding run both threads are executed infinitely often.
In particular, note that our definitions require that transitions that are continuously enabled are
eventually taken, and while the transition R (𝑥, 1) is infinitely often enabled for the second thread,
it is not continuously enabled.

Next, we demonstrate three weaker memory systems with non-empty sets of silent transitions
that have non-memory-fair traces. In these systems, whether a program terminates or deadlocks
may crucially depend on memory fairness.

2.1 The Total Store Order Memory System

We instantiate memory fairness to the łTotal Store Orderž (TSO) model [Owens et al. 2009; Sewell
et al. 2010] of the x86 architecture. This memory system, denoted by MTSO, is defined by:

(1) MTSO .Q ≜ (Loc → Val) × (Tid → (Loc × Val)∗)
(Each state consists of a memory and a per-thread store buffer.)

(2) MTSO .Θ ≜ {prop(𝜏) | 𝜏 ∈ Tid}
(Silent transitions consist of a propagation label for every thread.)

(3) MTSO .init ≜ ⟨𝑀0, 𝐵0⟩, where𝑀0 ≜ 𝜆𝑥. 0 and 𝐵0 ≜ 𝜆𝜏 . 𝜖 (Initially, all buffers are empty.)
(4) −→MTSO

is given in Fig. 1.

In addition to the global memory𝑀 , states of MTSO include a mapping 𝐵 assigning a FIFO store

buffer to every thread. Writes are first written to the local buffer and later non-deterministically
propagate to memory (in the order in which they were issued). Reads read the most recent value of
the relevant location in the thread’s buffer and refer to the memory if such value does not exist.
RMWs can only execute when the thread’s buffer is empty and write their result in the memory
directly.

Example 2.15 (Store Buffering). The following annotated behavior is allowed underMTSO (but
not under MSC):

𝑥 := 1
𝑎 := 𝑦 //reads 0

𝑦 := 1
𝑎 := 𝑥 //reads 0

(SB)

Indeed, the first thread may run first, but the write of 1 to 𝑥 may remain in its store buffer. Then,
when the second thread runs, it reads the initial value (0) of 𝑥 from the memory.

Example 2.16. Revisiting the Rloop program from ğ2, unlike underMSC, thread-fair behaviors of
Rloop underMTSO include the (infinite) behavior assigning the W (𝑥, 1) to the first thread and the
infinite sequence R (𝑥, 0), R (𝑥, 0), ... to the second. Indeed, the entry ⟨𝑥, 1⟩ may indefinitely remain
in the first thread’s buffer, so that W (𝑥, 1) is never executed from the point of view of the second

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 98. Publication date: October 2021.



Making Weak Memory Models Fair 98:9

thread. To disqualify this behavior, we need to further require memory fairness. Indeed, in runs
inducing this infinite behavior, the silent memory transition prop(1) is necessarily continuously
enabled. Memory fairness requires that prop(1) will be eventually executed, and from that point
on MTSO prohibits the second thread from executing R (𝑥, 0).

We note that the notion of memory fairness is sensitive to the choice of silent memory transitions.
For example, consider an alternative memory system, denoted by M ′

TSO, with less informative
silent transition labels that do not record the thread identifier of the propagated write. (Formally
M ′

TSO is defined just like MTSO except for M ′
TSO .Θ ≜ {prop}, and the label of the propagation

step is prop rather than prop(𝜏).) Then,M ′
TSO induces the same set of behaviors asMTSO, but not

the same set of memory fair behaviors. In particular, we can extend the Rloop program with an
additional thread that constantly writes to some unrelated location 𝑦, and obtain a memory fair
run ofM ′

TSO by infinitely often propagating a write to 𝑦, but never propagating the W (𝑥, 1) entry.

2.2 The Release/Acquire Memory System

We instantiate our operational framework with a memory system for Release/Acquire (RA), en-
riched with silent memory transitions for capturing fair behaviors. Here we follow an operational
formulation of RA from Kaiser et al. [2017], based on the Promising Semantics of Kang et al. [2017].
The memory of the RA system records a (finite) set of messages, each of which corresponds

to some write that was previously executed. Messages (of the same location) are ordered using
timestamps, and carry a viewÐa mapping from locations to timestamps. In turn, the states of this
memory system also keep track of the current view of each thread, and use these views to confine
the set of messages that threads may read and write. In particular, if a thread has observed (either by
reading or by writing itself) a message whose view V has V (𝑥) = 𝑡 , then it can only read messages
of 𝑥 whose timestamp is greater than or equal to 𝑡 .

To formally define this system, we let Time ≜ N (using natural numbers as timestamps), View ≜
Loc → Time (the set of views), and Msg ≜ Loc × Val × Time × View (the set of messages). We
denote a message𝑚 as a tuple of the form ⟨𝑥 : 𝑣@𝑡,V ⟩, where 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑡 ∈ Time, and
V ∈ View. We write loc(𝑚), val(𝑚), ts(𝑚), and view(𝑚) to refer to the components of a message
𝑚. The usual order < on natural numbers is lifted pointwise to a partial order on views; ⊔ denotes
the pointwise maximum on views; and V0 is the minimum view (V0 ≜ 𝜆𝑥. 0).

With these definitions and notations, the RA memory system, denoted here by MRA, is defined
as follows (additional silent memory transitions are discussed below):

(1) MRA .Q ≜ P(Msg) × (Tid → View).
(2) MRA .init ≜ ⟨𝑀0, 𝜆𝜏 . V0⟩, where the initial memory is𝑀0 ≜ {⟨𝑥 : 0@0,V0⟩ | 𝑥 ∈ Loc}.
(3) −→MRA

is given in Fig. 2.

The states of MRA consist of a set𝑀 of all messages added to the memory so far and a mapping
T assigning a view to each thread. Write steps of thread 𝜏 writing to location 𝑥 pick a timestamp 𝑡
that is fresh (�𝑚 ∈ 𝑀. loc(𝑚) = 𝑥 ∧ ts(𝑚) = 𝑡 ) and greater than the latest timestamp that 𝜏 has
observed for 𝑥 (T (𝜏) (𝑥) < 𝑡 ); update the thread’s view to include this timestamp (T ′

= T [𝜏 ↦→
T (𝜏) [𝑥 ↦→ 𝑡]]); and add a corresponding message to the memory carrying the (updated) thread
view (𝑀 ′

= 𝑀 ∪ {⟨𝑥 : 𝑣@𝑡, T ′(𝜏)⟩}). Read steps of thread 𝜏 reading from location 𝑥 pick a message
from the current memory (⟨𝑥 : 𝑣@𝑡,V ⟩ ∈ 𝑀) whose timestamp is greater than or equal to the
latest timestamp that 𝜏 has observed for 𝑥 (T (𝜏) (𝑥) ≤ 𝑡 ); and incorporate the message’s view in
the thread view (T ′

= T [𝜏 ↦→ T (𝜏) ⊔ V ]). RMW steps are defined as atomic sequencing of a read
step followed by a write step, with the restriction that the new message’s (fresh) timestamp is the
successor of the timestamp of the read message (T ′′(𝜏) (𝑥) = T ′(𝜏) (𝑥) + 1). The latter condition
is needed to ensure the atomicity of RMWs: no other write can intervene between the read part
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�𝑚 ∈ 𝑀. loc(𝑚) = 𝑥 ∧ ts(𝑚) = 𝑡

T (𝜏) (𝑥) < 𝑡

T ′
= T [𝜏 ↦→ T (𝜏) [𝑥 ↦→ 𝑡]]

𝑀 ′
= 𝑀 ∪ {⟨𝑥 : 𝑣@𝑡, T ′(𝜏)⟩}

⟨𝑀, T ⟩
𝜏 :W (𝑥,𝑣)
−−−−−−→MRA

⟨𝑀 ′, T ′⟩

⟨𝑥 : 𝑣@𝑡,V ⟩ ∈ 𝑀

T (𝜏) (𝑥) ≤ 𝑡

T ′
= T [𝜏 ↦→ T (𝜏) ⊔ V ]

⟨𝑀, T ⟩
𝜏 :R (𝑥,𝑣)
−−−−−−→MRA

⟨𝑀, T ′⟩

⟨𝑀, T ⟩
𝜏 :R (𝑥,𝑣R)
−−−−−−−→MRA

⟨𝑀, T ′⟩
𝜏 :W (𝑥,𝑣W)
−−−−−−−→MRA

⟨𝑀 ′, T ′′⟩ T ′′(𝜏) (𝑥) = T ′(𝜏) (𝑥) + 1

⟨𝑀, T ⟩
𝜏 :RMW (𝑥,𝑣R,𝑣W)
−−−−−−−−−−→MRA

⟨𝑀 ′, T ′′⟩

Fig. 2. Transitions of MRA

and the write part of the RMW (i.e., no message can be placed between the read and the written
messages in the timestamp order).

Example 2.17 (Message passing). The following annotated behavior is disallowed underMRA:

𝑥 := 1
𝑦 := 1

𝑎 := 𝑦 //reads 1

𝑏 := 𝑥 //reads 0
(MP)

Indeed, the second thread can read 1 for 𝑦, only after the first thread added two messages𝑚𝑥 =

⟨𝑥 : 1@𝑡𝑥 , [𝑥 ↦→ 𝑡𝑥 ]⟩ and𝑚𝑦 = ⟨𝑦 : 1@𝑡𝑦, [𝑥 ↦→ 𝑡𝑥 , 𝑦 ↦→ 𝑡𝑦]⟩ to the memory with 𝑡𝑥 , 𝑡𝑦 > 0. When
reading𝑚𝑦 , the second thread increases its view of 𝑥 to be 𝑡𝑥 . Since 𝑡𝑥 > 0, it is then unable to read
the initial message of 𝑥 , and must read𝑚𝑥 .

Example 2.18. By forcing RMWs to use the successor of the read message as the timestamp of
the written message, MRA forbids different RMWs to read the same message. To see this, consider
the following example (where FADD denotes an atomic fetch-and-add instruction):

𝑎 := FADD(𝑥, 1) //reads 0 𝑏 := FADD(𝑥, 1) //reads 0 (2RMW)

W.l.o.g., if the first runs first, it reads from the initialization message ⟨𝑥 : 0@0,V0⟩ (it is the only
message of 𝑥 in𝑀0), and it is forced to add a message with timestamp 1. When the second thread
runs, it may not read from the initialization message: that would again require adding a message of
𝑥 with timestamp 1, but that timestamp is no longer available. Thus, it may only read from the
message that was added by the first thread.

Example 2.19. Fences (modeled as RMWs to an otherwise unused distinguished location 𝑓 ) can
be used to recover sequential consistency when needed. The following outcome is forbidden by RA.

𝑥 := 1
FADD(𝑓 , 0)
𝑎 := 𝑦 //reads 0

𝑦 := 1
FADD(𝑓 , 0)
𝑏 := 𝑥 //reads 0

(SB+RMWs)

Due to the RMWs in both threads, MRA forbids the annotated program behavior. Indeed, suppose,
w.l.o.g., that the first thread executes its FADD(𝑓 , 0) first, it will read from the initialization message
to 𝑓 and will add to memory a message of the form ⟨𝑓 : 0@1,V ⟩ with V (𝑥) > 0. When the second
thread executes its FADD(𝑓 , 0), it will necessarily read that message and incorporate the view V in
its thread view, so that its view of 𝑥 will be increased. Then, when it reads 𝑥 it may not pick the
initial message.
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The RA memory system defined so far (with no silent transitions) allows non-fair executions.
In particular, it allows messages added by some thread to never propagate to other threads, so
that other threads may forever read a message with a lower timestamp, and thus, allows, e.g., a
thread-fair infinite behavior for the Rloop program from ğ2.
To address this problem, we include silent memory transitions inMRA, labeled with tuples of

the form prop(𝜏,𝑚), where 𝜏 ∈ Tid and𝑚 ∈ Msg (i.e.,MRA.Θ ≜ {prop(𝜏,𝑚) | 𝜏 ∈ Tid,𝑚 ∈ Msg}).
Then, we include in MRA the following silent memory step:

RA-propagate

𝑚 ∈ 𝑀 T (𝜏) (loc(𝑚)) < ts(𝑚)

⟨𝑀, T ⟩
prop(𝜏,𝑚)
−−−−−−−−→MRA

⟨𝑀, T [𝜏 ↦→ T (𝜏) [loc(𝑚) ↦→ ts(𝑚)]]⟩

For a given thread 𝜏 and message𝑚 that has not been yet observed by thread 𝜏 (T (𝜏) (loc(𝑚)) <
ts(𝑚)), this step increases 𝜏 ’s view to include 𝑚’s timestamp. Intuitively speaking, it ensures
that every thread 𝜏 eventually advances its view so that it cannot keep reading an old message
indefinitely.

Example 2.20. While thread-fair behaviors of Rloop under MRA include an infinite behavior (in
which the second thread indefinitely read the initialization message), memory fairness forbids this
behavior. Indeed, in runs inducing this infinite behavior, a silent label prop(2, ⟨𝑥 : 1@𝑡, [𝑥 ↦→ 𝑡]⟩)
(where 𝑡 is a timestamp of amessage added by instruction𝑥 := 1 ofRloop) is necessarily continuously
enabled. Memory fairness ensures that the corresponding transition is eventually executed, and
from that point on,MRA prohibits the second thread from executing R (𝑥, 0).

We emphasize again that memory fairness is sensitive to the choice of silent memory transitions.
For instance, the system obtained from MRA by discarding the message𝑚 from the labels of silent
memory steps induces the same set of behaviors as MRA, but not the same set of memory fair

behaviors. In the next sections, we present the declarative approach for defining the semantics of
memory systems, which uniformly captures memory fairness, and does not require the technical
ingenuity needed for ensuring fairness in operational memory systems.

2.3 The Strong-Coherence Memory System

We consider a memory system for Strong-Coherence (StrongCOH), i.e., the relaxed fragment of
RC11. Similar to RA, we follow an operational formulation of StrongCOH following the relaxed
and promise-free fragment of the Promising Semantics of Kang et al. [2017]. Since this formulation
is very close to RA’s one discussed above, we describe only the difference between them.
The states of MStrongCOH are the same as of MRA, and transitions are similar, where the only

difference is in the read transition (note the crossed out ł⊔V ž):

⟨𝑥 : 𝑣@𝑡,V ⟩ ∈ 𝑀 T (𝜏) (𝑥) ≤ 𝑡 T ′
= T [𝜏 ↦→ T (𝜏) [𝑥 ↦→ 𝑡]✟✟⊔V ]

⟨𝑀, T ⟩
𝜏 :R (𝑥,𝑣)
−−−−−−→MStrongCOH

⟨𝑀, T ′⟩

That is, when a thread reads from a message, it does not update its view by the message’s view but
just by its timestamp.3 This change makes the semantics weaker: StrongCOH allows weak behavior
of MP and SB+RMWs from Examples 2.17 and 2.19.

We include the same silent memory transitions inMStrongCOH as we do forMRA, which is enough
to guarantee termination of memory-fair executions of Rloop for the same reason as for RA.

3In this model one may change messages to not store views at all since they are never used. We keep the message views

only in order to be as close as possible to RA.
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3 PRELIMINARIES ON DECLARATIVE SEMANTICS

In this section, we review the declarative (a.k.a. axiomatic) framework for assigning semantics
to concurrent programs and present the well-known declarative models for the four operational
models presented above. Later, we will extend the framework and the existing correspondence
results with fairness guarantees that account for infinite behaviors.

Relations. Given a binary relation (in particular, a function) 𝑅, dom(𝑅) and codom(𝑅) denote
its domain and codomain. We write 𝑅?, 𝑅+, and 𝑅∗ respectively to denote its reflexive, transitive,
and reflexive-transitive closures. The inverse relation is denoted by 𝑅−1. We denote by 𝑅1 ; 𝑅2 the
(left) composition of two relations 𝑅1, 𝑅2, and assume that ; binds tighter than ∪ and \. We denote
by [𝐴] the identity relation on a set 𝐴. In particular, [𝐴] ; 𝑅 ; [𝐵] = 𝑅 ∩ (𝐴 × 𝐵). For 𝑛 ≥ 0 and a
relation 𝑅 on a set 𝐴, 𝑅𝑛 is recursively defined by 𝑅0

≜ [𝐴] and 𝑅𝑛+1 ≜ 𝑅 ; 𝑅𝑛 . We write 𝑅≤𝑛 for the
union

⋃

1≤𝑖≤𝑛 𝑅
𝑛 .

Events. Events represent individual memory accesses in a run of a program. They consist of a
thread identifier, an event label, and a serial number used to uniquely identify events and order the
events inside each thread.

Definition 3.1. An event 𝑒 is a tuple ⟨𝑘, 𝜏 : 𝑙⟩ where 𝑘 ∈ N ∪ {⊥} is a serial number inside each
thread (⊥ for initialization events), 𝜏 ∈ Tid ⊎ {⊥} is a thread identifier (⊥ for initialization events),
and 𝑙 ∈ ELab is an event label (as defined in Def. 2.1). The functions sn, tid, and elab return the
serial number, thread identifier, and the event label of an event. The functions typ, loc, valr, and
valw are lifted to events in the obvious way. We denote by Event the set of all events, and use R, W,
and RMW to denote the following subsets:

R ≜ {𝑒 ∈ Event | typ(𝑒) = R ∨ typ(𝑒) = RMW}

W ≜ {𝑒 ∈ Event | typ(𝑒) = W ∨ typ(𝑒) = RMW}

RMW ≜ {𝑒 ∈ Event | typ(𝑒) = RMW}

We use subscripts and superscripts to restrict sets of events to certain location and thread (e.g.,
W𝑥 = {𝑤 ∈ W | loc(𝑤) = 𝑥} and 𝐸𝜏 = {𝑒 ∈ 𝐸 | tid(𝑒) = 𝜏}). The set of initialization events is given
by Init ≜ {⟨⊥,⊥ : W (𝑥, 0)⟩ | 𝑥 ∈ Loc}.

Notation 3.2. We denote by 𝑅 |loc the restriction of a relation 𝑅 to events of the same location:

𝑅 |loc = {⟨𝑒1, 𝑒2⟩ ∈ 𝑅 | ∃𝑥 ∈ Loc. loc(𝑒1) = loc(𝑒2) = 𝑥}

Our representation of events induces a sequenced-before partial order on events given by:

𝑒1 < 𝑒2
△
⇔ (𝑒1 ∈ Init ∧ 𝑒2 ∉ Init) ∨ (tid(𝑒1) = tid(𝑒2) ∧ sn(𝑒1) < sn(𝑒2))

Initialization events precede all non-initialization events, while events of the same thread are
ordered according to their serial numbers.

Behaviors (i.e., mappings from threads to sequential traces) are associated with sets of events in
the obvious way:

Definition 3.3. The set of events extracted from a behavior 𝛽 , denoted by Event(𝛽), is given by
Event(𝛽) ≜ Init ∪ {⟨𝑘, 𝜏 : 𝛽 (𝜏) (𝑘)⟩ | 𝜏 ∈ Tid, 𝑘 ∈ dom(𝛽 (𝜏))}.

It is easy to see that for every behavior 𝛽 , Event(𝛽) satisfies certain łwell-formednessž properties:

Definition 3.4. A set 𝐸 ⊆ Event is well-formed if the following hold:

• Init ⊆ 𝐸.
• tid(𝑒) ≠ ⊥ and sn(𝑒) ≠ ⊥ for every 𝑒 ∈ 𝐸 \ Init.
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• If tid(𝑒1) = tid(𝑒2) and sn(𝑒1) = sn(𝑒2), then 𝑒1 = 𝑒2 for all 𝑒1, 𝑒2 ∉ Init.
• For every 𝑒 ∈ 𝐸 \ Init and 0 ≤ 𝑘 < sn(𝑒), there exists 𝑙 ∈ ELab such that ⟨𝑘, tid(𝑒) : 𝑙⟩ ∈ 𝐸.

Execution Graphs. An execution graph consists of a set of events, a reads-from mapping that
determines the write event from which each read reads its value, and a modification order which
totally orders the writes to each location.

Definition 3.5. An execution graph 𝐺 is a tuple ⟨𝐸, rf ,mo⟩ where:

(1) 𝐸 is a well-formed (possibly, infinite) set of events.
(2) rf , called reads-from, is a relation on 𝐸 satisfying:

• If ⟨𝑤, 𝑟 ⟩ ∈ rf then𝑤 ∈ W, 𝑟 ∈ R, loc(𝑤) = loc(𝑟 ), and valw (𝑤) = valr (𝑟 ).
• 𝑤1 = 𝑤2 whenever ⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf (that is, rf −1 is functional).
• 𝐸 ∩ R ⊆ codom(rf ) (every read should read from some write).

(3) mo, called modification order, is a disjoint union of relations {mo𝑥 }𝑥 ∈Loc, such that each mo𝑥
is a strict total order on 𝐸 ∩ W𝑥 .

We denote the components of 𝐺 by 𝐺.E, 𝐺.rf, and 𝐺.mo, and write 𝐺.po (called program order) for
the restriction of sequenced-before to 𝐺.E (i.e., 𝐺.po ≜ [𝐺.E];<; [𝐺.E]). For a set 𝐸 ′ ⊆ Event, we
write 𝐺.𝐸 ′ for 𝐺.E ∩ 𝐸 ′ (e.g., 𝐺.W = 𝐺.E ∩ W). The set of all execution graphs is denoted by EGraph.

A declarative memory system is simply a set G of execution graphs (often formulated using a
conjunction of several constraints). We refer to execution graphs in a declarative memory system
G as G-consistent execution graphs.
We can now define the behaviors allowed by a given declarative memory system.

Definition 3.6. A behavior 𝛽 is allowed by a declarative memory system G if Event(𝛽) = 𝐺.E for
some execution graph 𝐺 ∈ G. We denote by B(G) (Bfin (G)) the set of all (finite) behaviors that are
allowed by G.

The linking with programs is defined as follows.

Definition 3.7. Let 𝑃 be a program, G be a declarative memory system, and 𝛽 be a behavior.

• 𝛽 is a behavior of 𝑃 under G if 𝛽 ∈ B(𝑃) ∩ B(G).
• 𝛽 is a thread-fair behavior of 𝑃 under G if 𝛽 ∈ Btf (𝑃) ∩ B(G).

3.1 A Declarative Memory System for SC

To provide a declarative formulation of SC, following Alglave et al. [2014], we use the standard
łfrom-readž relation (a.k.a. łreads-beforež). In this relation a read 𝑟 is ordered before a write𝑤 if 𝑟
reads from a write𝑤 ′ that is earlier than𝑤 in the modification order.

Definition 3.8. The from-read relation for an execution graph 𝐺 , denoted by 𝐺.fr, is defined by:

𝐺.fr ≜ (𝐺.rf−1 ;𝐺.mo) \ [𝐺.E] .

Note that we have to explicitly subtract the identity relation from 𝐺.rf−1 ;𝐺.mo for making sure
that RMW events are not 𝐺.fr-ordered before themselves.
Having defined fr, the łSC-happens-beforež relation is given by:

𝐺.hbSC ≜ (𝐺.po ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr)+

In turn, SC consistency requires that 𝐺.hbSC is irreflexive:

GSC ≜ {𝐺 ∈ EGraph | 𝐺.hbSC is irreflexive}

Intuitively speaking, every trace ofMSC induces an execution graph 𝐺 with irreflexive𝐺.hbSC;
and, conversely, every total order on 𝐺.E that extends 𝐺.hbSC is essentially a trace of MSC. The
following standard theorem formalizes these claims for finite executions:
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Theorem 3.9 ([Alglave et al. 2014]). Bfin (MSC) = Bfin (GSC).

Example 3.10. GSC forbids the annotated outcome of the SB program from Example 2.15 because
the following graph is GSC-inconsistent (W (𝑥, 0) and W (𝑦, 0) are the implicit initialization writes):

W (𝑥, 0)

W (𝑦, 0)

W (𝑥, 1) R (𝑦, 0)

W (𝑦, 1) R (𝑥, 0)

mo

rf

mo

Indeed, to get the desired behavior, the rf-edges are forced because of the read values. Since mo
cannot contradict po (they are both included in hbSC), the mo-edges are also forced as depicted
above. We obtain fr-edges from R (𝑥, 0) to W (𝑥, 1) and from R (𝑦, 0) to W (𝑦, 1), which, in turn, imply
a hbSC-cycle composed of two po and two fr edges.

3.2 A Declarative Memory System for TSO

Following Alglave et al. [2014], a declarative formulation for TSO is easily obtained from the one of
SC, by removing from the transitive closure in hbSC the program order edges from writes to reads
that are not necessarily łpreservedž in TSO. Indeed, because writes are buffered in TSO, roughly
speaking, the effect of a write in TSO may be delayed w.r.t. subsequent reads. By contrast, it cannot
be delayed w.r.t. subsequent writes, since entries in the TSO buffers propagate in a FIFO fashion.
When removing the write to read program order edges, we need to explicitly enforce łSC per-

locationž (a.k.a. coherence), which takes care of intra-thread write-read pairs (a read 𝑟 from 𝑥 that
is later in program order than a write𝑤 to 𝑥 may not read from a write that is mo-earlier than𝑤 ).
To achieve this, the model employs the following derived relations:

𝐺.rfe ≜ 𝐺.rf \𝐺.po (external reads-from)

𝐺.ppo ≜ 𝐺.po \ ((W \ RMW) × (R \ RMW)) (preserved program order)

𝐺.hbTSO ≜ (𝐺.ppo ∪𝐺.rfe ∪𝐺.mo ∪𝐺.fr)+ (TSO-happens-before)

𝐺.scloc ≜ (𝐺.po|loc ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr)+ (SC-per-location order)

Then, TSO consistency requires that 𝐺.hbTSO and 𝐺.scloc are irreflexive:

GTSO ≜ {𝐺 ∈ EGraph | 𝐺.hbTSO and 𝐺.scloc are irreflexive}

Theorem 3.11 ([Alglave et al. 2014]). Bfin (MTSO) = Bfin (GTSO).

The execution graph for the SB program in Example 3.10 is GTSO-consistent. In particular, the
two po edges that participate in the 𝐺.hbSC cycle are from a write to a read, so none of them is
included in 𝐺.hbTSO.

3.3 A Declarative Memory System for RA

The declarative model for RA is obtained by strengthening the SC per-location requirement to use
RA’s happens-before relation instead of the program order:

𝐺.hbRA ≜ (𝐺.po ∪𝐺.rf)+ (RA-happens-before)

𝐺.raloc ≜ (𝐺.hbRA |loc ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr)+ (RA-per-location order)

Then, RA consistency requires that 𝐺.raloc is irreflexive:

GRA ≜ {𝐺 ∈ EGraph | 𝐺.raloc is irreflexive}

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 98. Publication date: October 2021.



Making Weak Memory Models Fair 98:15

Example 3.12. The annotated outcome of the MP program from Example 2.17 is disallowed by
GRA because the following (partially depicted) execution graph is GRA-inconsistent:

W (𝑥, 0)

W (𝑦, 0)

W (𝑥, 1) W (𝑦, 1)

R (𝑦, 1) R (𝑥, 0)

rf

mo

An execution graph for this outcome must have rf and mo-edges as depicted above. Since mo

goes from W (𝑥, 0) to W (𝑥, 1), and R (𝑥, 0) reads from W (𝑥, 0), we have an fr edge from R (𝑥, 0) to
W (𝑥, 1). Due to the hbRA from W (𝑥, 1) to R (𝑥, 0), we obtain a raloc-cycle, rendering this graph
GRA-inconsistent.

Example 3.13. Similarly, the annotated outcome of 2RMW from Example 2.18 is disallowed by
GRA because the following execution graph is GRA-inconsistent for any choice of mo:

W (𝑥, 0)

RMW (𝑥, 0, 1)

RMW (𝑥, 0, 1)

rf

rf

To see this, note that in GRA-consistent executions, mo cannot contradict po. Hence, we must have
mo from the initial write to the two RMWs. This implies an fr edge in both directions between the
two RMWs, so that raloc must be cyclic.

Equivalence to the operational RA model for finite behaviors follows from [Kang et al. 2017]:

Theorem 3.14. Bfin (MRA) = Bfin (GRA).

3.4 A Declarative Memory System for StrongCOH

The declarative model for StrongCOH is obtained by requiring łSC per-locationž and irreflexivity
of RA’s happens-before, (𝐺.po ∪𝐺.rf)+:

GStrongCOH ≜ {𝐺 ∈ EGraph | 𝐺.hbRA and 𝐺.scloc are irreflexive}

Similarly to RA, equivalence to the operational StrongCOH model for finite behaviors follows
from the results of Kang et al. [2017]:

Theorem 3.15. Bfin (MStrongCOH) = Bfin (GStrongCOH).

4 MAKING DECLARATIVE SEMANTICS FAIR

In this section, we introduce memory fairness into declarative models in a model-agnostic fashion.
To define fairness of execution graphs, we require that the partial ordering of events in the graph

is, like the ordering of natural numbers, prefix-finite. From an operational point of view, an event
preceded by an infinite number of events is never executed.

Definition 4.1. A relation 𝑅 on a set 𝐴 is prefix-finite if {𝑎 | ⟨𝑎, 𝑏⟩ ∈ 𝑅} is finite for every 𝑏 ∈ 𝐴.

Concretely, we require the modification order and the from-read relation to be prefix-finite.4

Definition 4.2. An execution graph𝐺 is fair if𝐺.mo and𝐺.fr are prefix-finite. We denote by Gfair

the set of all fair execution graphs, and let Gfair
𝑋
≜ G𝑋 ∩Gfair for 𝑋 ∈ {SC, TSO,RA, StrongCOH}.

4Note that the program order and the reads-from relation are prefix-finite in a well-formed execution graph. The formerśby

construction, the latterśsince its reverse relation is functional.
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Example 4.3. The following program illustrates our definition of fairness:

𝑥 := 1 ;

𝐿1 : 𝑎 := 𝑥 //only 1

goto 𝐿1

𝐿2 : 𝑥 := 2 ;

goto 𝐿2
(SCDeclUnfair)

Thread-fair executions of this program cannot produce the annotated outcome with the SCmemory
system. With the declarative SC memory system, however, there are two ways in which every read
can read from the write of 1.
First, the write of 1 to 𝑥 may have infinitely many mo-predecessors, as illustrated below.

W (𝑥, 1)Thread 1: R (𝑥, 1) R (𝑥, 1) · · ·

W (𝑥, 2)Thread 2: W (𝑥, 2) W (𝑥, 2) · · ·
mo mo

mo
mo

mo
rf

rf

Otherwise, the write of 1 may have finitely many mo-predecessors but infinitely many mo-
successors. Then, each of the mo-successors will have infinitely many fr-predecessors.

W (𝑥, 1)Thread 1: R (𝑥, 1) R (𝑥, 1) · · ·

W (𝑥, 2)Thread 2: W (𝑥, 2) W (𝑥, 2) · · ·

mo
mo

mo

rf

rf

fr
frfr

fr

In both cases, the execution graph is unfair. (As we prove below, this is not a coincidence.)

Example 4.4. On the converse, one should avoid unnecessary prefix-finiteness constraints. In
particular, requiring prefix-finiteness of cyclic relations, such as [𝐺.E \ Init] ; hbSC under TSO,
RA, or StrongCOH, is too strong. Doing so would forbid the annotated behavior of the following
example. The corresponding execution graph contains an infinite po ∪ fr descending chain. Yet,
the three models allow the annotated behavior, as every write may be delayed past 1 or 2 reads.

𝐿1 : 𝑘 := 𝑘 + 1

𝑥 := 𝑘

𝑎 := 𝑦 //0,0,1,2. . .

goto 𝐿1

𝐿2 : 𝑚 :=𝑚 + 1

𝑦 :=𝑚

𝑏 := 𝑥 //0,1,2,3. . .

goto 𝐿2

(HbAcyclic)

W (𝑥, 1)Thread 1: R (𝑦, 0) W (𝑥, 2) R (𝑦, 0) W (𝑥, 3) R (𝑦, 1)

W (𝑦, 1)Thread 2: R (𝑥, 0) W (𝑦, 2) R (𝑥, 1) W (𝑦, 3) R (𝑥, 2)

. . .

Our main result extends Theorems 3.9, 3.11, 3.14 and 3.15 for infinite traces by imposing memory
fairness on the operational systems (Def. 2.12) and execution graph fairness on the declarative
systems (Def. 4.2).

Theorem 4.5. For 𝑋 ∈ {SC, TSO,RA, StrongCOH},

Bmf (M𝑋 ) = B(Gfair
𝑋 ).

As a corollary, it easily follows from our definitions that the set of (thread&) memory-fair
behaviors of a program 𝑃 under M𝑋 coincides with the set of (thread&) memory-fair behaviors of
a program 𝑃 under Gfair

𝑋
.

The full proof of Theorem 4.5 is included in appendix ([Lahav et al. 2021a]) and its Coq mecha-
nization in [Lahav et al. 2021b]. Here, we outline the proof starting with the easier direction.
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4.1 Bmf (M𝑋 ) ⊆ B(Gfair
𝑋

)

Given a memory-fair behavior 𝛽 ofM𝑋 , we let 𝜌 be a memory-fair observable trace ofM𝑋 such
that 𝛽 (𝜌) = 𝛽 . Then, using 𝜌 , we construct a fair execution graph𝐺 ∈ G𝑋 . Its events are determined
by 𝛽 (𝐺.E = Event(𝛽)), and its relations are defined differently for every system:

SC. The rf and mo relations are determined by the trace order: for each read rf assigns the latest
write of the same location, while mo corresponds to the trace order restricted to writes to the same
location. It follows that fr is included in the trace order, and since the trace order is prefix-finite,
mo and fr are prefix-finite as well.

TSO. We define mo to be the order in which writes to the same location are propagated to memory.
For each read, rf maps it either to the mo-maximal write to the same location that was propagated
before it in 𝜌 (if the read reads from memory) or to the po-maximal one by the same thread (if it
reads from the buffer). Since every write is eventually propagated to memory, and once propagated
no thread can read from an mo-prior write, it follows that both mo and fr are prefix-finite.

RA and StrongCOH. The mo component of 𝐺 follows the order induced by timestamps of
messages in the operational run. Prefix-finiteness of mo follows from the facts that a location and a
timestamp uniquely identify the corresponding message (and the write event in 𝐺 respectively)
and that timestamps are natural numbersÐthat is, each write event𝑤 representing a message with
a timestamp 𝑡 has at most 𝑡 mo-prior writes.
The rf component of 𝐺 connects an event related to a read/RMW transition of 𝜌 with a write

event representing the message read by the transition.
Prefix-finiteness of fr follows from the fact that in the fair operational run every message is

eventually propagated to every thread. That is, for any given write event 𝑤 to a location 𝑥 in 𝐺

representing a message with a timestamp 𝑡 , there cannot be infinitely many reads from 𝑥 in 𝐺

reading from write events that correspond to messages with timestamps smaller than 𝑡 .

4.2 B(Gfair
𝑋

) ⊆ Bmf (M𝑋 )

The converse direction is more challenging. Given a fair G𝑋 -consistent execution graph𝐺 , we have
to find a memory-fair observable trace 𝜌 ofM𝑋 such that Event(𝛽 (𝜌)) = 𝐺.E.

Put differently, we need a total order over𝐺.E \ Init that extends𝐺.po, so that some memory-fair
run ofM𝑋 executes according to this order. Existing proofs of correspondence between declarative
and operational definitions of SC, RA, and StrongCOH pick an arbitrary total order extending
𝐺.hbSC (for SC) and𝐺.hbRA (for RA and StrongCOH). (Assuming the axiom of choice, any partial
order 𝑅 on a set 𝐴 can be extended to a total order on 𝐴.) It is then not difficult to show that
executing the program following that order yields the labels appearing in the execution graph.
For infinite graphs, however, an arbitrary extension of 𝐺.hbSC (or 𝐺.hbRA respectively) does not
necessarily correspond to a (memory-fair) run of the program. For this, we need an enumeration of
𝐺.E \ Init, as defined next.

Definition 4.6. An enumeration of a set 𝐴 is a (finite or infinite) injective (i.e., without repetitions)
sequence 𝜈 covering all the elements in 𝐴 (i.e., 𝐴 = {𝜈 (𝑖) | 𝑖 ∈ dom(𝜈)}). An enumeration 𝜈 of 𝐴
respects a partial order 𝑅 on 𝐴 if 𝑖 < 𝑗 whenever ⟨𝜈 (𝑖), 𝜈 ( 𝑗)⟩ ∈ 𝑅.

Prefix-finiteness of a partial order ensures that a suitable enumeration exists (our proof employs
classical, non-constructive, reasoning):

Proposition 4.7. Let 𝑅 be a prefix-finite partial order on a countable set 𝐴. Then, there exists an

enumeration of 𝐴 that respects 𝑅.
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However, we do not yet have that the łhappens-beforež relation of each model is prefix-finite;
we only know that 𝐺.mo and 𝐺.fr are prefix-finite. Next, we show that prefix-finiteness of 𝐺.mo

and𝐺.fr suffices for prefix-finiteness of the other relations, as long as the program in question has
a bounded number of threads. (Recall that we assume that the set Tid is finite.)

First, note that every relation on a finite set is prefix-finite, and prefix-finiteness is preserved by
(finite) composition.

Lemma 4.8. Let 𝑅 and 𝑅′ be prefix-finite relations and 𝑛 ∈ N. Then 𝑅 ∪ 𝑅′, 𝑅 ; 𝑅′ and 𝑅≤𝑛 are also

prefix-finite.

For transitive closures, we need an auxiliary property.

Definition 4.9. A relation 𝑅 on a set𝐴 is 𝑛-total if for every 𝑛 + 1 distinct elements 𝑎1, ... ,𝑎𝑛+1 ∈ 𝐴,
we have ⟨𝑎𝑖 , 𝑎 𝑗 ⟩ ∈ 𝑅 for some 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1.

For an execution graph 𝐺 with 𝑛 threads, 𝐺.po is 𝑛-total (as a relation on 𝐺.E \ Init). By the
pigeonhole principle, any set of 𝑛 + 1 events in 𝐺.E \ Init contain two elements belonging to the
same thread, and those two events are ordered by 𝐺.po.
Now, if a relation 𝑅 is 𝑛-total and acyclic, its transitive closure 𝑅+ has bounded length, which

entails that 𝑅+ is prefix-finite provided 𝑅 is prefix-finite.

Lemma 4.10. Let 𝑅 be an acyclic, 𝑛-total, prefix-finite relation. Then, 𝑅+ is prefix-finite.

As a corollary, we obtain that the prefix-finiteness of the łhappens-beforež relation in fair
execution graphs.

Corollary 4.11. For 𝑋 ∈ {SC, TSO,RA, StrongCOH}, let 𝐺 be a fair G𝑋 -consistent execution

graph. Then [𝐺.E \ Init] ;𝐺.hb𝑋 is prefix finite.5

From Prop. 4.7, there is an enumeration 𝜈 that respects hb𝑋 . We use 𝜈 to construct a program
trace 𝜌 :

SC. The trace 𝜌 follows 𝜈 exactly. Since MSC has no silent memory transitions, 𝜌 is trivially
memory fair.

TSO. The trace 𝜌 is incrementally constructed by following the order of events in 𝜈 and appending
an appropriate sequence of transitions. If the next event in 𝜈 is a read, we append to 𝜌 all unexecuted
po-prior writes and then the read. If the next event in 𝜈 is a write, we append it to the trace if it has
not already been included in the trace. In addition, when the next event is a write, we append its
propagation action. By construction, every write in 𝜌 is eventually propagated to memory.

RA and StrongCOH. The trace 𝜌 is the enumeration 𝜈 interleaved with silent RA/StrongCOH
transition labels. Namely, for each write𝑤 and thread 𝜏 , we compute an index 𝑖 in the enumeration
such that it is safe to propagate 𝑤 to 𝜏 at that index: for each event in 𝜏 with index greater than
𝑖 , there is no X-following (where X = hbRA for RA and X = rf? ; po? for StrongCOH) (i) write that
mo-precedes𝑤 and (ii) read that reads from a write mo-preceding𝑤 . Since 𝐺 is fair, such an index
is defined for all (non-initialization) writes. Then, after the event with an index corresponding to
some write has been enumerated, we execute a propagation transition for the write. In that way,
every write is eventually propagated to every thread, so the resulting trace is memory fair.

Remark 3. Corollary 4.11 relies on having a bounded number of threads. With infinite number
of threads, generated, e.g., by thread spawning, prefix-finiteness of mo and fr is not enough to rule

5We define𝐺.hbStrongCOH to be equal to𝐺.hbRA.
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out unfair behaviors. To see this, consider the annotated behavior of the following program and
the corresponding execution graph:

𝐿 : 𝑖 := 𝑖 + 1

spawn

{

𝑥𝑖+1 := 1

𝑎 := 𝑥𝑖 //only 0

}

goto 𝐿

W (𝑥2, 1)

R (𝑥1, 0)

W (𝑥3, 1)

R (𝑥2, 0)

W (𝑥4, 1)

R (𝑥3, 0)
· ··

R (𝑥4, 0)
fr fr fr

While mo and fr are trivially prefix-finite, hbSC has an infinite descending chain, and indeed there
is no SC execution of the program leading to the annotated behavior (where spawn adds a thread
to the current pool, and a thread from the pool is non-deterministically chosen at each step).

4.3 Making RC11 Fair

Having established evidence for the adequacy of the declarative fairness condition, we may apply
this condition in other (and richer) declarative models. In particular, we propose to adopt this
condition into the C/C++ memory model. Next, we discuss this proposal in the context of the
RC11 model [Lahav et al. 2017], a repaired version of the C/C++11 specification [Batty et al. 2012]
that fixes certain issues involving sequentially consistent accesses and works around the łthin-airž
problem by completely forbidding po ∪ rf cycles. A full definition of RC11 is obtained by carefully
combining the key concepts of SC, RA, and StrongCOH. It requires us to include in the declarative
framework access modes (a.k.a. łmemory orderingsžÐthe consistency level required from every
memory access), and several types of fences. For simplicity, we elide these definitions and keep
the discussion more abstract. Indeed, there is nothing special about RC11 in this contextÐthe
declarative fairness condition could be added to any model requiring po ∪ rf acyclicity.

Generally speaking, when proposing a strengthening of a programming language memory model,
one has to make sure that the mapping schemes to multicore architectures are not broken, and that
source-to-source compiler transformations are still validated. In our case, the mapping of RC11
to x86-TSO trivially remains sound. Indeed, as we saw in Theorem 4.5, the natural operational
characterization of liveness in TSO corresponds to the declarative condition requiring that the
mo and fr relations are prefix-finite. Since the same condition is applied both in the source level
(RC11) and in the target level (x86-TSO), and mappings of source graphs to target ones keep mo and
fr intact, we maintain the soundness of the known mappings.6 We note that for establishing the
soundness of the mappings to other architectures, one first needs a formal fairness condition of the
architecture. While this may be more difficult in architectures weaker than x86-TSO (see ğ6), it is
likely that no hardware will allow that a write is placed after infinitely many other writes in the
coherence order (non-prefix-finite mo), or that infinitely many reads do not observe a later write
(non-prefix-finite fr).

Considering compiler transformations, one has to show that every behavior of the target program
explained by a consistent graph𝐺tgt is also obtained by a consistent graph𝐺src of the source program.
It is not hard to see that the constructions of Vafeiadis et al. [2015] and Lahav et al. [2017] work
as-is for the RC11 model strengthened with fairness. First, the constructions of 𝐺src for reordering
transformations, which reorder two memory accesses under certain conditions, keep the same mo
and fr relations of 𝐺tgt; so their prefix-finiteness trivially follows.
Second, we consider elimination transformations that eliminate a redundant memory access. In

this case, 𝐺src is obtained from 𝐺tgt by adding one additional event 𝑒new that corresponds to the
eliminated instruction. For read elimination (read-after-read or read-after-write), 𝑒new is a read

6See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html [accessed July-2021].
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event, and the construction of ensures that 𝐺src .mo = 𝐺tgt .mo. In turn, 𝐺tgt.fr ⊆ 𝐺src .fr, but since
only one event is added to 𝐺src, prefix-finiteness of fr is again trivially preserved.

Finally, we consider write-after-write elimination. Let𝑤0 denote the immediate𝐺src.po-successor
of 𝑒new. Then, to construct 𝐺src.mo, one places 𝑒new as the immediate predecessor of 𝑤0. Then,
consistency of 𝐺src follows the argument of [Lahav et al. 2017], and it remains to show that fair-
ness of 𝐺src follows from the fairness of 𝐺tgt. The latter is easy: write events in 𝐺src other than
𝑒new all have at most one more incoming 𝐺src .mo edge (from 𝑒new), and the same set of incom-
ing 𝐺src.fr edges. In turn, For 𝑒new itself, we have: {𝑒 ∈ 𝐺src.E | ⟨𝑒, 𝑒new⟩ ∈ 𝐺src .mo ∪𝐺src .fr} ⊆
{𝑒 ∈ 𝐺tgt.E | ⟨𝑒,𝑤0⟩ ∈ 𝐺tgt.mo ∪𝐺tgt.fr}.
In the next section, we demonstrate that adding fairness to RC11 as proposed above provides the

necessary underpinnings allowing one to formally reason about termination under RC11.

4.4 From Finite to Infinite Robustness

Common advice given to programmers of multi-threaded software is to follow a programming
discipline that hides the effects of that weak memory model, e.g., to use exclusively sequentially
consistent accesses. Programs that follow such a discipline are robust, meaning that they have
only sequentially consistent behaviors on the underlying weak memory model. While there is a
rich literature on programming disciplines that imply robustness and verification techniques for
robustness [Bouajjani et al. 2013, 2018, 2011; Derevenetc and Meyer 2014; Lahav and Margalit 2019;
Margalit and Lahav 2021; Oberhauser 2018], most work only considers finite behaviors, i.e., they
leave open whether programs following the discipline have only sequentially consistent infinite
behaviors. This means that any correctness properties that only concern infinite behaviors, such as
starvation-freedom, might be lost on the weak memory model despite its (finite) robustness. In
this section, we show that this cannot happen as long as the weak memory model satisfies our
declarative memory fairness condition and its consistency predicate is po ∪ rf-prefix closed. This
is the case for all models studied in this paper. Thus our unified definition of memory fairness lifts
all existing robustness results for these models from the literature to infinite behaviors.

First, we observe that the consistency predicates based on acyclicity (SC-consisterncy, in partic-
ular) enjoy a łcompactness propertyžÐif they hold for all finite prefixes of a graph, then they also
hold for the full graph. Below, by finite execution graph, we mean a graph 𝐺 with 𝐺.E \ Init being
finite (the set Init of initialization events may be infinite if Loc is infinite).

Definition 4.12. An execution graph 𝐺 ′ is a po ∪ rf-prefix of an execution graph 𝐺 if we have
dom((𝐺.po ∪𝐺.rf) ; [𝐺 ′.E]) ⊆ 𝐺 ′.E,𝐺 ′.rf = [𝐺 ′.E] ;𝐺.rf; [𝐺 ′.E], and𝐺 ′.mo = [𝐺 ′.E] ;𝐺.mo; [𝐺 ′.E].

Proposition 4.13 (GSC compactness). Let 𝐺 be an execution graph with prefix-finite ( [𝐺.E \
Init] ;𝐺.po ∪𝐺.rf)+. If every finite po ∪ rf-prefix of 𝐺 is GSC-consistent, then so is 𝐺 .

Proof. Suppose that𝐺 is GSC-inconsistent, and let 𝑎1, ... ,𝑎𝑛 ∈ 𝐺.E such that ⟨𝑎𝑖 , 𝑎𝑖+1⟩ ∈ 𝐺.po ∪
𝐺.rf ∪𝐺.mo ∪𝐺.fr for every 1 ≤ 𝑖 ≤ 𝑛 − 1, and ⟨𝑎𝑛, 𝑎1⟩ ∈ 𝐺.po ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr. Let 𝐸 ′

=

Init ∪ dom((𝐺.po ∪𝐺.rf)∗ ; [{𝑎1, ... ,𝑎𝑛}]), and let 𝐺 ′
= ⟨𝐸 ′, [𝐸 ′] ;𝐺.rf ; [𝐸 ′], [𝐸 ′] ;𝐺.mo ; [𝐸 ′]⟩.

Since ( [𝐺.E \ Init] ; 𝐺.po ∪ 𝐺.rf)+ is prefix-finite, 𝐺 ′ is a finite po ∪ rf-prefix of 𝐺 . However,
we have ⟨𝑎𝑖 , 𝑎𝑖+1⟩ ∈ 𝐺 ′.po ∪ 𝐺 ′.rf ∪ 𝐺 ′.mo ∪ 𝐺 ′.fr for every 1 ≤ 𝑖 ≤ 𝑛 − 1, and ⟨𝑎𝑛, 𝑎1⟩ ∈
𝐺 ′.po ∪𝐺 ′.rf ∪𝐺 ′.mo ∪𝐺 ′.fr, so 𝐺 ′ is GSC-inconsistent. □

Definition 4.14 (Robustness). Let 𝑃 be a program and G be a declarative memory system.

• 𝑃 is finitely execution-graph robust against G if for every finite behavior 𝛽 ∈ B(𝑃) and𝐺 ∈ G
with Event(𝛽) = 𝐺.E, we have 𝐺 ∈ GSC.

• 𝑃 is strongly execution-graph robust against G if for every (finite or infinite) behavior 𝛽 ∈ B(𝑃)
and 𝐺 ∈ G with Event(𝛽) = 𝐺.E, we have 𝐺 ∈ GSC.
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Theorem 4.15. Let G be a declarative memory system such that:

• G-consistency is po∪ rf-prefix closed ( i.e., if𝐺 ∈ G then𝐺 ′ ∈ G for every po∪ rf-prefix𝐺 ′ of

𝐺).

• 𝐺 ∈ G implies that ( [𝐺.E \ Init] ;𝐺.po ∪𝐺.rf)+ is prefix-finite.

Then, if a program 𝑃 is finitely execution-graph robust against G, then it is also strongly execution-

graph robust against G.

Proof. Suppose that 𝑃 is finitely execution-graph robust against G. Let 𝐺 ∈ G such that
𝐺.E = Event(𝛽) for some behavior 𝛽 ∈ B(𝑃). From finite execution-graph robustness, it follows that
every finite po ∪ rf-prefix of 𝐺 is GSC-consistent. By Prop. 4.13, 𝐺 is GSC-consistent as well. □

We note that the declarative TSO, RA, StrongCOH, and RC11 models satisfy the premises of
Theorem 4.15. The Coq mechanization includes the formal proof of the statement below.

Corollary 4.16. Suppose that a program 𝑃 is finitely execution-graph robust against G𝑋 for

𝑋 ∈ {TSO,RA, StrongCOH,RC11}. Then, the set of (thread&) memory-fair behaviors of 𝑃 underM𝑋

coincides with the set of (thread&) memory-fair behaviors of 𝑃 underMSC.

Proof. One direction is obvious since MSC is stronger than M𝑋 . For the converse, let 𝛽 be a
memory-fair behavior of 𝑃 under M𝑋 . Then, by Theorem 4.5, we have that 𝛽 be a memory-fair
behavior of 𝑃 under Gfair

𝑋
. By definition, we have that 𝛽 ∈ B(𝑃) ∩ B(Gfair

𝑋
). Let 𝐺 ∈ G𝑋 such

that Event(𝛽) = 𝐺.E. Then, since 𝐺 ∈ G𝑋 , by Theorem 4.15, we have that 𝐺 ∈ GSC. Since the
declarative fairness condition is the same in all four models, we have 𝐺 ∈ Gfair

SC
. Hence, we have

𝛽 ∈ B(𝑃) ∩B(Gfair
SC

), and so by Theorem 4.5, it follows that 𝛽 is a memory-fair behavior of 𝑃 under

MSC. To deal with thread fairness, one has to use Btf (𝑃) instead of B(𝑃) in this argument. □

As a simple application example, the SpinLock-Client program in ğ5.1 below is (finitely) execution-
graph robust because the program employs only a single location (the location 𝑙 for the lock
implementation). Then, Corollary 4.16 entails that this program may diverge under the weak
memory models studied in this paper iff it diverges under SC, and that the same also holds when
assuming thread fairness.

5 PROVING DEADLOCK FREEDOM FOR LOCKS

In this section, we prove the termination and/or fairness of spinlock, ticket lock, and MCS lock
clients. The key to doing so is Theorem 5.3 below, which reduces proving termination of spinloops
under fair weak memory models to reasoning about a single specific iteration of the loop.

For simplicity, we henceforth assume that the sequential programs composing the concurrent pro-
grams are deterministic, as defined below. (The thread interleaving itself still makes the concurrent
program semantics non-deterministic.)

Definition 5.1. A program 𝑃 is deterministic if 𝑝
𝜏 :𝑙1
−−→𝑃 𝑝1 and 𝑝

𝜏 :𝑙2
−−→𝑃 𝑝2 imply that typ(𝑙1) =

typ(𝑙2) and loc(𝑙1) = loc(𝑙2), and, moreover, if 𝑙1 = 𝑙2, then 𝑝1 = 𝑝2 also holds.

For a behavior 𝛽 of a deterministic program 𝑃 and 𝜏 ∈ Tid, we denote by 𝜇𝜏 (𝛽) the unique run
of 𝑃 (𝜏) that induces the sequential trace 𝛽 (𝜏).

Definition 5.2. A spinloop iteration of thread 𝜏 in a behavior 𝛽 is a range of event serial numbers
[𝑛, 𝑛′] such that the sequence of corresponding program steps:

(1) performs only reads: typ(tlab(𝜇𝜏 (𝛽) (𝑖))) = R for 𝑛 ≤ 𝑖 ≤ 𝑛′; and
(2) returns the program to the starting state of the loop: src(𝜇𝜏 (𝛽) (𝑛)) = tgt(𝜇𝜏 (𝛽) (𝑛

′)).
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An infinite spinloop of thread 𝜏 in a behavior 𝛽 is an infinite sequence 𝑠 of consecutive spinloop
iterations of thread 𝜏 (i.e., 𝑠 (𝑖) = [𝑛𝑖 , 𝑛

′
𝑖 ] =⇒ ∃𝑛′

𝑖+1. 𝑠 (𝑖 + 1) = [𝑛′
𝑖 , 𝑛

′
𝑖+1]).

If infinite spinloops are the only source of unbounded behavior in programs (i.e., their individual
iterations are of bounded length and there are boundedly many writes to each memory location),
then because of fairness, an infinite spinloop has to eventually read from the mo-maximal writes.

Theorem 5.3. Let 𝛽 be a behavior of a deterministic program and 𝐺 be a fair execution graph

with 𝐺.E = Event(𝛽) and 𝐺.scloc (see ğ3.2) irreflexive. For every infinite spinloop 𝑠 of a thread 𝜏 in

𝛽 whose iterations have bounded length and read only from locations that are written to by finitely

many writes in 𝐺 , there is a loop iteration 𝑠 (𝑖) whose reads all read from mo-maximal writes.

This theorem provides a sufficient condition for establishing termination of spinloops. In the
supplementary material, we also establish the other direction: whenever a deterministic program
has a behavior where all non-terminated threads end with a loop iteration reading from mo-maximal
writes, then it has an infinite memory-fair behavior.

5.1 Spinlock

Consider the following spinlock implementation:

int 𝑙 := 0

void 𝑙𝑜𝑐𝑘 () { int 𝑟
repeat { repeat { 𝑟 := 𝑙 } until (𝑟 = 0) }
until (CAS(𝑙, 0, 1)) }

void 𝑢𝑛𝑙𝑜𝑐𝑘 () { 𝑙 := 0 }

Theorem 5.4. All thread-fair behaviors of the following program under Gfair
{SC,TSO,RA,StrongCOH}

are

finite:

𝑙𝑜𝑐𝑘 ()
𝑢𝑛𝑙𝑜𝑐𝑘 ()

𝑙𝑜𝑐𝑘 ()
𝑢𝑛𝑙𝑜𝑐𝑘 ()

...
𝑙𝑜𝑐𝑘 ()
𝑢𝑛𝑙𝑜𝑐𝑘 ()

(SpinLock-Client)

Proof. Assume for the sake of contradiction that the program has an infinite thread-fair behavior
𝛽 , which is induced by a fair execution graph𝐺 . By inspection, since𝐺 is infinite, 𝛽 must contain an
infinite spinloop. The number of write events to the location 𝑙 in𝐺 is finite since each thread makes
at most two writes to 𝑙 . Fix the mo-maximal one among them and denote it𝑤 . Due to thread fairness
of 𝛽 , the value written by𝑤 has to be 0. (Otherwise, it could have been only the value 1 produced
by the CAS instruction, which is followed by a store writing 0, and the write event produced by
the store would have been mo-following for𝑤 by {SC, TSO,RA, StrongCOH}-consistency of𝐺 .) By
Theorem 5.3, there is a spinloop iteration that reads from𝑤 , which is a contradiction, since reading
0 from location 𝑙 exits the loop. □

5.2 Ticket Lock

Consider the following ticket lock implementation:

int 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 := 0, 𝑡𝑖𝑐𝑘𝑒𝑡 := 0

void 𝑙𝑜𝑐𝑘 () { int 𝑠 := 0, 𝑟 := FADD(𝑡𝑖𝑐𝑘𝑒𝑡, 1)
repeat { 𝑠 := 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 } until (𝑠 = 𝑟 ) }

void 𝑢𝑛𝑙𝑜𝑐𝑘 () { 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 := 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 + 1 }
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Theorem 5.5. In every thread-fair behavior of the following program under Gfair
{SC,TSO,RA,StrongCOH}

,

𝑟1, ... ,𝑟𝑁 all grow unboundedly:

𝐿1 : 𝑙𝑜𝑐𝑘 ()
𝑟1 := 𝑟1 + 1

𝑢𝑛𝑙𝑜𝑐𝑘 ()
goto 𝐿1

𝐿2 : 𝑙𝑜𝑐𝑘 ()
𝑟2 := 𝑟2 + 1

𝑢𝑛𝑙𝑜𝑐𝑘 ()
goto 𝐿2

...

𝐿𝑁 : 𝑙𝑜𝑐𝑘 ()
𝑟𝑁 := 𝑟𝑁 + 1

𝑢𝑛𝑙𝑜𝑐𝑘 ()
goto 𝐿𝑁

Proof. For any thread-fair behavior 𝛽 of this program and a fair execution graph𝐺 inducing 𝛽 ,
it can be shown that each call to 𝑙𝑜𝑐𝑘 reads a unique value from ticket, and that whenever a certain
𝑙𝑜𝑐𝑘 call reads ticket value 𝑣 (and the spinloop exits), the corresponding 𝑢𝑛𝑙𝑜𝑐𝑘 writes to serving

value 𝑣 + 1. Moreover, the values written to ticket and to serving are strictly increasing along 𝐺.mo.
(These are standard safety properties, so we elide details of their proofs.)

By means of contradiction, now assume that there is a fair execution graph 𝐺 inducing 𝛽 where
𝑟𝑖 for some 1 ≤ 𝑖 ≤ 𝑁 is incremented only a finite number of times.

Due to thread-fairness of 𝛽 , the only way this can happen is if thread 𝑖 has an infinite spinloop.
There may well be multiple threads with infinite spinloops, so among those threads let us consider
the thread 𝜏 that reads the smallest value for ticket, say 𝑘 , just before going into the infinite spinloop.
So, for all 0 ≤ 𝑗 < 𝑘 , some 𝑙𝑜𝑐𝑘 has incremented ticket to value 𝑗 and subsequently serving to value
𝑗 + 1. In particular, the mo-maximal among those sets serving to value 𝑘 . Note that there cannot
be any writes to serving with larger values because they all require serving to first be set to 𝑘 + 1

(which does not happen since 𝜏 is stuck in a spinloop).
Because of thread-fairness and Theorem 5.3, the infinite spinloop must have an iteration that

reads from the mo-maximal write to serving, i.e., reading value 𝑘 . This is a contradiction, because
reading 𝑘 exits the loop. □

5.3 MCS lock

As a third example, we study the MCS lock [Mellor-Crummey and Scott 1991], which is the basis of
the qspinlock currently used in the Linux kernel and the highly scalable NUMA-aware HMCS lock
[Chabbi et al. 2015]. For the latter, Oberhauser et al. [2021b] observe that łthe fences necessary for
the HMCS lock on systems with processors that use weak orderingž presented in the original HMCS
paper [Chabbi et al. 2015, p. 218] result in non-terminating behaviors under RC11, which do in fact
occur in practice when running the HMCS lock on a Kunpeng 920 Arm server. Non-termination
is due to a missing release fence (or store-release) in the MCS lock used in that algorithm. For
simplicity, we therefore limit our discussion to the MCS lock, whose code follows.

QNode Lock := null

void 𝑙𝑜𝑐𝑘 (QNode 𝑛) {
𝑛.locked := 1

𝑛.next := null

// fencerel missing in HMCS paper

QNode pred := SWAPacqrel (Lock, 𝑛)
if pred ≠ null

then pred.next := 𝑛

while 𝑛.locked = 1 { }
fenceacq

}

void 𝑢𝑛𝑙𝑜𝑐𝑘 (QNode 𝑛) {

fencerel

QNode succ := 𝑛.next

fenceacq // can be elided on ARM

if succ = null

then if CASacqrel (Lock, 𝑛, null)
then return

else repeat { succ := 𝑛.next }
until succ ≠ null

succ.locked := 0

}

The MCS lock uses a FIFO queue to ensure fairness. Therefore, the lock and unlock functions take
a QNode argument to identify the calling thread. A thread 𝑇 can enter the critical section (after
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calling the lock function) either if the queue is empty or after its predecessor in the queue lowers
the locked bit in 𝑇 ’s QNode. To release the lock, a thread 𝑇 lowers the locked bit of the next thread
in the queue, or if no such thread exists, empties the queue.

Consider now the following client program, in which two threads enter the critical section once.

𝑎 := new QNode()
lock(Lock, 𝑎)
unlock(Lock, 𝑎)

𝑏 := new QNode()
lock(Lock, 𝑏)
unlock(Lock, 𝑏)

(MCS-Client)

Suppose we want to show that this program terminates and, in particular, that the while loops
in lock terminate if ever reached. Due to symmetry, we only consider the loop for 𝑛 = 𝑎. By
Theorem 5.3, it suffices to consider the iteration in which the loop reads from the mo-maximal
store. We can now construct all candidate mos and attempt to show for each one that either the
mo-maximal store allows the loop to terminate or any graph with that mo is not RC11-consistent.

It is easy to show that in every execution of this program in which that loop is reached, there are
exactly two non-initial stores to 𝑎.locked, generated by the calls lock(Lock, 𝑎) and unlock(Lock, 𝑏),
respectively. For brevity’s sake, we call these storesA andB respectively. SinceBwrites 𝑎.locked = 0,
reading from it allows the loop to terminate. Consequently, the loop may only diverge in execution
graphs in which A is mo-maximal. Such a graph is shown below.

W (𝑎.locked, 1)

A

W (𝑎.next, null) RMW (Lock, 𝑏, 𝑎) W (𝑏.next, 𝑎) R (𝑎.locked, 1) . . .

W (𝑏.locked, 1) W (𝑏.next, null) RMW (Lock, null, 𝑏) Frel R (𝑏.next, 𝑎) Facq W (𝑎.locked, 0)

B

morf

mo rf

rf

The graph is in fact RC11-consistent, and therefore the client program does not always terminate.

Once, however, we add back the commented-out fencerel in the lock function, then the highlighted
po ; rf ; po ; mo cycle in the execution graph above is forbidden. Similarly, the release fence also
rules out all other graphs in which A is the mo-maximal store, and we can thus prove the following
theorem. (Our Coq proof generalizes this theorem to an arbitrary finite number of threads.)

Theorem 5.6. If the fencerel in the MCS lock is uncommented, MCS-Client’s thread-fair behaviors

under 𝐺fair
{SC,TSO,RA,RC11}

are all finite.

6 RELATED WORK AND DISCUSSION

We have investigated fairness in (po ∪ rf)-acyclic weak memory models, both operationally and
declaratively, established four equivalence results, and showed how the declarative formulations
can be used for reasoning about program termination.
Several papers, e.g., [Bouajjani et al. 2014; Cerone et al. 2015; Gotsman and Burckhardt 2017],

have studied declarative formulations of transactional consistency with prefix-finiteness constraints
to ensure that a transaction is never preceded by an infinite set of other transactions. In particular,
Gotsman and Burckhardt [2017] established a connection between declarative presentations that
include fairness constraints and operational presentations for models in their łGlobal Operation
Sequencingž framework. The TSO model can be expressed in this framework. Their declarative
specifications require prefix-finiteness of the global visibility order, while we derive this property
from prefix finiteness of more local relations (mo and fr). Thus, our formulation is easily applicable
for model checking based on partial order reduction in the style of Kokologiannakis et al. [2017,
2019]. To the best of our knowledge, this is the first work to make a connection between liveness
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in declarative models formulated in the widely used framework of Alglave et al. [2014] and in
operational models.

Termination of the MCS lock was previously studied by [Oberhauser et al. 2021a]; however, due
to the lack of a formal definition of fairness, Oberhauser et al. [2021a] assumed a highly technical
consequence of fairness in their proofs. Our unified definition of fairness and Theorem 5.3 bridge
the gap left in their arguments and allow us to obtain the first complete formal termination proof
for the MCS lock.
We note that our approach for establishing termination of spinloops is not only useful for

manually proving deadlock-freedom and related progress properties as shown in ğ5, but can also
be used to automatically establish termination of programs whose only potentially unbounded
behavior is due to spinloops. One can use Theorem 5.3 to reason about the termination of such
programs by examining only a finite number of finite execution graphs. This approach has actually
been implemented in the GenMC model checker [Kokologiannakis and Vafeiadis 2021], and thus
termination of the example programs in the paper (for a bounded number of threads) can also be
shown automatically.

We outline two directions for future work, which concern extending our results to more complex
models.

Fairness under non-(po ∪ rf)-acyclic models. Some low-level hardware memory models,
such as Arm [Flur et al. 2016] and POWER [Alglave et al. 2014], and hardware-inspired memory
models, such as LKMM [Alglave et al. 2018] and IMM [Podkopaev et al. 2019], record syntactic
dependencies between instructions so as to allow certain executions with cycles in po∪ rf. In these
models, prefix-finiteness of mo and fr alone does not suffice for prefix-finiteness of the appropriate
łhappens-beforež relation. For instance, under Arm (version 8) [Flur et al. 2016], assuming prefix-
finiteness of mo and fr does not forbid the out-of-thin-air read of the value 5 in the following
example (with an unbounded address domain):

𝐿1 : 𝑦𝑖 := 𝑥𝑖 //5

𝑖 := 𝑖 + 1

goto 𝐿1

𝐿2 : 𝑥 𝑗 := 𝑦 𝑗+1 //5

𝑗 := 𝑗 + 1

goto 𝐿2

R (𝑥0, 5) W (𝑦0, 5) R (𝑥1, 5) W (𝑦1, 5) R (𝑥2, 5) W (𝑦2, 5)

R (𝑦1, 5) W (𝑥0, 5) R (𝑦2, 5) W (𝑥1, 5) R (𝑦3, 5) W (𝑥2, 5)

. . .

We conjecture that the appropriate liveness condition for Arm is to require prefix-finiteness of the
łordered-beforež (ob) relation. We leave adapting the operational Arm model to ensure fairness and
establishing correspondence between the two models for future work.
Similarly, there are a number of more advanced memory models for programming languages

that aim to admit write-after-read reorderings (and thus have to allow (po ∪ rf) cycles) such as
JMM [Manson et al. 2005], Promising [Kang et al. 2017], Pomsets with Preconditions [Jagadeesan
et al. 2020], and Weakestmo [Chakraborty and Vafeiadis 2019]. Integrating liveness requirements
in such memory models is left for future work.

Weak RMWs. Besides ordinary (łstrongž) CAS instructions, C11 supports łweakž CASes,7 which
may fail spuriously, i.e., even when they read the expected value, since on some architecturesÐ
namely, POWER and ArmÐweak CASes are more efficient than strong ones. A strong CAS can
be implemented by repeatedly performing a weak CAS in a loop as long as it fails spuriously.
Termination of such loops depends upon the weak CASes not always failing spuriously, which
constitutes an additional fairness requirement. Since this requirement is orthogonal to the notion
of memory fairness introduced in this paper, we leave it for future work.

7See https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange [accessed November-2020].
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