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Abstract. To optimize the performance of some of our systems run-
ning on non-uniform memory architecture (NUMA) servers with Arm
processors, we have implemented multiple versions of the HMCS lock,
an advanced NUMA-aware lock that has been identified in the literature
as particularly scalable.
This is a highly non-trivial task because of the many implementation
choices for interlocked operations, alignment, and memory barrier place-
ment, affecting not only the lock’s performance but also its correctness.
The published HMCS lock does not discuss choices that affect perfor-
mance, but it does present a choice of barriers. We observe that this
choice is wrong, leading to hangs on Kunpeng Arm servers. We repair
the barriers and implement the first formally-verified HMCS lock with
VSync, an automated formal verification and optimization tool for weak
consistency. We explain the barrier bugs in detail and report our expe-
rience of barrier optimizations for Arm servers.

Keywords: Consistency Models · Verification · Optimization · NUMA-
aware locks

1 Introduction

Arm is making inroads on many-core servers [11,4]. To achieve a high level of
parallelism, these many-core servers are implemented as non-uniform memory
architectures (NUMA) in which CPUs are clustered on NUMA nodes. In these
architectures, communication between CPUs within a single node is much faster
than across nodes. Software therefore needs to ensure locality to scale well, i.e.,
avoid communication across NUMA nodes.

One strategy to achieve locality is through so-called NUMA-aware locks,
which favor CPUs within the same NUMA node when passing the lock. Among
these, we have chosen the NUMA-aware HMCS lock [6], which has been shown
to be very scalable [5,9]. We have implemented the NUMA-aware HMCS lock on
Arm with the goal of improving the performance of Huawei products running on
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Kunpeng Arm servers. Implementing the HMCS lock for use in industry involved
two main challenges.

The first challenge is the weak consistency. To improve single-core perfor-
mance, Arm CPUs commit and propagate memory operations out-of-order: for
example, memory operations issued after a cache miss can be performed while
the missing cache line is being fetched. Such optimizations can be fatal to the
HMCS lock, which relies on the order of a few crucial memory operations. To
avoid bugs, one needs to selectively turn these optimizations off through so-called
memory barriers; these include stand-alone explicit fences (e.g., DMB) as well as
implicit barriers attached to the memory operations (e.g., LDAR and STLR). Turn-
ing off the optimizations everywhere is relatively easy, e.g., by using sequentially
consistent C11 atomics to insert barriers for every memory access. The excessive
use of barriers, however, does degrade performance. Therefore, experts attempt
to identify precisely the operations that need to be executed in-order, and insert
only barriers needed to enforce those orders. Indeed, the original HMCS lock pa-
per “shows the fences necessary for the HMCS lock on systems with processors
that use weak ordering” [6, p. 218], as identified by its authors. Our investigation
reveals that these fences are wrong, potentially leading to hangs on Arm, Power,
and RISC-V. We have reproduced the hang on a Kunpeng Arm server.

The second challenge is performance-tuning. We investigate two main factors
that influence the performance of the HMCS lock: (1) the implementation of
atomic SWAP and CAS operations and (2) the placement of barriers. These atomic
operations can be implemented on Arm either through built-in interlocked SWP

and CAS instructions (introduced in Arm’s LSE extension [8]), which perform the
operation in memory, or with load/store-exclusive LDXR/STXR instruction pairs,
which perform the operation inside the CPU. For barrier placement there are
similarly various implementation choices, e.g., between fences and implicit bar-
riers. As the performance implications of these choices are not well-understood,
the best choice needs to be identified by trial-and-measure.

In this paper, we show how to solve both challenges with the help of VSync
[15], a formal verification and optimization tool for weak consistency. We gener-
ate formally verified barrier placements with VSync (Fig. 2). Since precise Arm
support is not yet implemented in VSync, our barriers are verified against the
slightly weaker IMM (intermediate memory model [16]) model, which forms the
least common denominator of several weak consistency models including Arm,
Power, and RISC-V. Thus the verified barriers are correct but not optimal for
Arm. In fact, VSync detects a second hang and a mutual exclusion violation
on IMM, but we manually verify that these bugs cannot occur on Arm weak
consistency.

In the following, we present the HMCS algorithm (Section 2) and discuss
the set of barriers necessary for its correctness (Section 3), showing what goes
wrong if some barriers are omitted. We then briefly describe our verification and
optimization setup (Section 4). Finally, we measure the performance impact of
the implementation choices mentioned above as well as the conservative barriers
introduced by VSync (Section 5) on a microbenchmark and on LevelDB [7].



Verifying and Optimizing the HMCS Lock for Arm Servers 3

In summary, we make the following contributions:

– We have discovered a bug in the fences proposed in the HMCS lock from the
literature, and present a formally verified fix.

– We propose various barrier optimizations for the HMCS lock and investigate
their impact on performance.

– We present the following insights:
• Barriers optimizations make little difference for scalability; sequentially

consistent C11 atomics are good enough for Arm.
• If barrier optimizations are desired, they should be left to an automatic

tool like VSync.
• Arm’s interlocked instructions (LSE) degrade performance.

2 Background

l0 d = 1

l1 d = 2

l2 d = 3l3

l4

l5 l6

CPU[0] CPU[23]. . . CPU[24] CPU[47]. . . CPU[48] CPU[71]. . . CPU[72] CPU[95]. . .

NUMA node 0 NUMA node 1 NUMA node 2 NUMA node 3

Package 0 Package 1

Fig. 1: NUMA topology and lock trees for 96-core Kunpeng Arm server

2.1 HMCS Lock

The HMCS lock is a tree of MCS locks, configured to model the NUMA topol-
ogy tree of the target machine; in our case, we consider a Kunpeng 920 Arm
server with four NUMA nodes (24 CPUs each), organized in two packages. As
illustrated in Fig. 1, the lock tree for this topology is a binary tree of depth
DEPTH=3. We now explain the MCS lock, which is the main component of the
HMCS lock, and the acquire and release protocols of the HMCS lock. The code
of the HMCS lock is shown in Fig. 2.

MCS Lock. The MCS lock [14] forms a queue so that threads enter the critical
section in a FIFO manner. Acquiring and releasing the MCS lock are performed
by the AcqReal<1> and RelReal<1> functions in Fig. 2. A thread enqueues its
QNode, which contains a status field that is used as means of communication
with its predecessor. Before enqueueing, a thread sets its status to µ (Line 14),
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1 enum LockStatus {
2 ¬=UINT64_MAX -1,
3 b=0x1,
4 µ=0x0,
5 n ∈ [2 : THRESHOLD]
6 };
7

8 Acquire(HNode *L, QNode *I){
9 AcqReal <DEPTH >(L, I);

10 ---- ACQUIRE FENCE ----
11 }
12

13 AcqReal <1>(HNode *L, QNode *I){
14 I->status = µ; I->next = ⊥;
15 ---- RELEASE FENCE ARMIMM ----
16 QNode *pred;
17 pred = SWAPsc(& L->tail , I);
18 if (!pred) {
19 I->status = b;
20 } else {
21 pred ->next =rel I ;
22 while (I->statusacq == µ);
23 }
24 }
25

26 AcqReal <d>(HNode *L, QNode *I) {
27 I->status = µ; I->next = ⊥;
28 ---- RELEASE FENCE ----
29 QNode *pred;
30 pred = SWAPsc(& L->tail , I);
31 if (pred) {
32 pred ->next =rel I;
33 LockStatus curStatus;
34 do curStatus = I->statusacq

35 while (curStatus == µ);
36 ---- ACQUIRE FENCE IMM ----
37 if (curStatus < ¬) return;
38 }
39 I->status = 1;
40 AcqReal <d-1>(L->parent , & L->N);
41 }
42

43 Release(HNode *L , QNode *I){
44 ---- RELEASE FENCE ----
45 RelReal <DEPTH >(L, I);
46 }
47

48 ReleaseHelper(HNode *L, QNode *I,
49 LockStatus st) {
50 QNode *succ = I->nextacq;
51 ---- ACQUIRE FENCE IMM ----
52 if (succ) {
53 succ ->status =rel st;
54 } else {
55 if (CASsc(& L->tail , I, ⊥))
56 return;
57 while ((succ = I->next) == ⊥);
58 succ ->status =rel st;
59 }
60 }
61

62 RelReal <1>(HNode *L, QNode *I){
63 ReleaseHelper(L, I, b);
64 }
65

66 RelReal <d>(HNode *L , QNode *I){
67 uint64_t curCount = I->status;
68 if (curCount == THRESHOLD[d]) {
69 RelReal <d-1>(L->parent , & L->N);
70 ---- RELEASE FENCE ----
71 ReleaseHelper(L, I, ¬);
72 return;
73 }
74 QNode *succ = I->nextacq;
75 ---- ACQUIRE FENCE IMM ----
76 if (succ) {
77 curCount += 1;
78 succ ->status =rel curCount;
79 return;
80 }
81 RelReal <d-1>(L->parent , & L->N);
82 ---- RELEASE FENCE ----
83 ReleaseHelper(L, I, ¬);
84 }

Fig. 2: Pseudo-code of the HMCS Lock from [6] except for barrier placement and
cosmetic changes

then it advances the tail pointer (Line 17). If it finds a predecessor p it waits in
Line 22 for p to give the signal status = b; otherwise it unlocks itself (Line 19)
and enters the critical section. Once it is done, it releases the lock. If it is the tail
(i.e., it has no successor), it does so by setting the tail pointer to ⊥ (Line 55).
Otherwise, if it has a successor s, it signals s by setting the status of s to b
(Line 53 or Line 58).

HMCS Lock Acquisition. The critical section is protected by the root lock l0
at depth d = 1. To initiate the lock acquisition protocol, the HMCS lock client
calls Acquire on the leaf lock that belongs to the NUMA on which the thread
is running; e.g., in Fig. 1 a thread bound to CPU[0] calls Acquire on l2. This
calls AcqReal<3> on l2, which recursively calls AcqReal<2> on l1 (l2’s parent)
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Fig. 3: Execution graphs

and AcqReal<1> on l0 (l1’s parent). Note that this means a) all threads in the
queue of a leaf lock are on the same NUMA node, b) all threads in the queue of
a lock at depth d = 2 are in the same package but different NUMA nodes, and
c) all threads in the queue of lock l0 are in different packages. Enqueueing at
any MCS lock in the tree requires a QNode. Each thread Ti has its own QNode Ni

with which it enqueues at its leaf lock. Each lock l protects a QNode l.N which
is used to enqueue at the parent of l. For example, if T1 is running on NUMA
node 0, it uses N1 to enqueue at l2. Once it owns that lock, it can use l2.N to
enqueue at l1, and so on.

HMCS Lock Release. Invoking Release initiates the release protocol. This recur-
sively calls RelReal<3>, RelReal<2> and RelReal<1>. The lock can be passed at
any depth d ∈ {1, 2, 3}, if a successor is found at depth d. To maximize through-
put, the lock should be passed within the NUMA node, i.e., at depth d = 3.
However, this would lead to starvation in the other NUMA nodes. THRESHOLD[d]
defines the maximum number of times a lock is passed at depth d ∈ {2, 3}. If
THRESHOLD[d] has been reached, the lock owner sets the status of the succes-
sor at depth d to ¬. This signals to the successor that the lock is passed at a
depth d′ < d. In contrast, when a successor is found and THRESHOLD[d] is not
reached, the lock is passed directly to the successor by setting its status to
n ∈ [2 : THRESHOLD[d]], counting the number of times the lock was acquired at
depth d.

2.2 Weak Consistency and Execution Graphs

A standard way to define weak consistency models is through execution graphs
such as those in Fig. 3. Nodes in these graphs represent events such as reads
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(R, Rsc, Racq), fences (Facq and Frel), and writes (W, Wsc, Wrel), and edges
specify various relations between these events, such as moe (modification order
external) and rfe (reads-from external) edges which indicate the order in which
reads and writes to the same location are committed, and po (program order)
edges which indicate the order in which instructions are issued (but not necessar-
ily committed). In this paper, we only give high-level explanations for differences
between Arm and IMM; motivated readers will find more detailed explanations
in Appendix A. A weak consistency model is defined by the execution graphs it
permits. For IMM and Arm, this is done by forbidding graphs in which any event
“happens before” itself, where “happens before” is defined by model-specific rela-
tions that indicate the order in which events happen. The difference between the
models can be explained in terms of when one event “happens before” another
according to the model.

Arm has one “happens before” relation (called ob, ordered-before), which
respects among other things: a) the order in which writes are committed (moe),
b) the order between a write and a read that observes the write (rfe), c) fences
such as DMB.ISH (implied by a release fence (Frel) in the code), and d) control
dependencies from a read influencing the position of control, e.g., through an
if-condition, to a write occurring after the condition (written ctrl in graphs). In
Figs. 3(a) and 3(b), this means that Event a “happens before” itself on Arm.

On IMM, there are two “happens before” relations, both weaker than that
of Arm. A graph is forbidden if an event “happens before” itself according to
either relation. The first is the acyclic relation (ar) which critically does not
respect moe. According to this relation, Event a “happens before” itself only in
Fig. 3(a), not in Fig. 3(b). The second relation (which is nameless in IMM, but
which we will call hbIMM) respects moe, but critically ignores control dependen-
cies; thus according to this relation, Event a “happens before” itself neither in
Figs. 3(a) and 3(b). Indeed, none of the other events “happen before” themselves
in Fig. 3(b) with either definition, and Fig. 3(b) is consistent on IMM.

Unfortunately, behaviors like that in Fig. 3(b) lead to various bugs in the
HMCS lock. To forbid this behavior on IMM, one has to add an acquire fence
Facq along the ctrl edge (Fig. 3(c)). The existing Frel fence synchronizes-with
(sw) this Facq, creating a happens-before (hb) edge from Event a to Event f
(Fig. 3(d)); together with the moe edge in the opposite direction, Event a “hap-
pens before” itself according to hbIMM. Thus Fig. 3(c) is inconsistent on IMM.

3 Barriers on Arm and IMM

Figure 2 shows two formally verified barrier placements: one uses the highlighted
implicit barriers, and the other uses the highlighted fences. Both use sequentially
consistent (sc) SWAP and CAS operations. Further barrier optimizations on these
operations are possible but bring no performance benefit (see hmcs-amo in Fig. 10
on Page 12, or a detailed discussion in Appendix B) and are thus not shown.
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moe
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Fig. 4: Bug on Arm and IMM: Non-terminating execution due to missing fences
at Events b and h

In addition to the fences already presented in [6], VSync introduces fences at
Lines 36, 51 and 75 (for IMM) and Line 15 (for IMM and Arm) to solve three
bugs. In the following sections we discuss these in more detail.

3.1 Termination Violation

To simplify the discussion of the hang we consider only an HMCS lock L with
maximum depth one (DEPTH = 1), with two threads T1 and T2. We first discuss
the desired behavior in which the lock is passed correctly. Initially thread T1

owns the lock and is about to release it, while thread T2 is attempting to acquire
the lock. T2 first prepares its node (Line 14), writing µ to its status to indicate
that it does not yet have permission to enter the critical section. It proceeds to
append itself to the queue by moving the tail pointer (Line 17) and updating
T1’s next pointer (Line 21). T1 sees its successor in Line 50 or after failing to set
the tail pointer to ⊥ in Lines 55 and 57. Subsequently T1 will set T2’s status

to b, indicating that T2 can enter the critical section (Line 58).
On Arm, T2’s initialization to its own node can happen after it informs

T1 that it has a successor. In this case T1 can unlock T2 before T2 initializes
its node (locking itself again). An execution graph for this case is shown in
Fig. 4. Perhaps surprisingly, the SWAP operation in Line 17 does not prevent this
reordering even if it is sequentially consistent (note that the original presentation
in [6] does not mention whether the atomic SWAP and CAS operations have any
ordering semantics). The reason for this is that sequentially consistent atomic
operations are compiled to LDAXR/STLXR instruction pairs which generate the
Events c and d. Intuitively speaking, Arm only preserves the order 1) between
Event c and subsequent events, 2) between Event d and preceding events, and
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Fig. 5: Bug on IMM: Non-terminating execution

3) between all sequentially consistent events on the same processor. But, it does
not preserve the order between Event a and Event c, or Event d and Event e.
Thus the events can be committed in the order c, e, a, d. In this commit order,
the node initialization (Event a) happens after T2 informs T1 (Event e).

We repair the bug by adding a Frel fence in Line 15 in AcqReal<1>. With
this fence, the Events a, b, e, g and i map directly to the events in Fig. 3(b).
Thus (with the fence) the buggy execution becomes inconsistent on Arm, and
the bug can not occur anymore. On IMM we additionally need to add an Facq

fence at Event h. With both fences, the events Events a, b, e and g to i map
directly to the events in Fig. 3(c), showing that the bug is fixed also on IMM.

Note that for higher depths d > 1, the corresponding Frel fence already exists
(in Line 28), but the corresponding Facq fence is also missing. Indeed VSync
reports the analogous termination bug (Fig. 5) at greater depths. Analogously
to before, we can see that this bug only exists on IMM and that it can be fixed
by inserting the Facq fence in Line 75.

3.2 Mutual Exclusion Violation

This bug only occurs with three threads T1, T2 and T3 on separate NUMA nodes,
as indicated in Fig. 6. In a nutshell, T2 enqueues behind T3 at l0 with the QNode

l1.N, which was previously used by T1 (Fig. 7(b)). When T1 entered the critical
section (Fig. 7(a)), it had no predecessor and therefore set the status of l1.N
to b (Line 19). Due to a missing fence, this operation is only propagated to
T2 after T2 enqueued behind T3, giving T2 the false signal that it can enter the
critical section even though T3 is still holding the lock (Fig. 7(c)).

A more detailed execution leading to the bug is shown in Fig. 8. Note that
Events d, e, g, i and l map to the events in Fig. 3(b), implying that the bug is not
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Fig. 6: Assignment of threads to NUMAs
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Fig. 7: Mutual exclusion violation on IMM due to a missing acquire fence.
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Fig. 8: Bug on IMM: Mutual exclusion violation execution graph.
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T1

Acquire(l2, N1);

counter ++;

Release(l2, N1);

Acquire(l2, N1);

counter ++;

Release(l2, N1);

T2

Acquire(l3, N2);

counter ++;

Release(l3, N2);

T3

Acquire(l5, N3);

counter ++;

Release(l5, N3);

Fig. 9: The client code for verifying and optimizing HMCS with VSync

possible on Arm. On IMM it can be fixed like indicated in Figs. 3(c) and 3(d)
by adding Facq at Event j.

4 Verifying and Optimizing HMCS with VSync

Vsync [15] is a fully automated verification and optimization tool that accepts
(bounded) concurrent C/C++ programs as input. In its verification mode, it
exhaustively enumerates all the possible executions of the input program fol-
lowing the GenMC model checking algorithm [12], and checks that these are
terminating, memory-safe, and satisfy all user-supplied assertions. In its opti-
mization mode, it uses an iterative algorithm to find minimal barrier placements
that ensure program correctness (i.e., successful verification).

Like all model checkers, VSync does not verify locks abstractly: one must
provide client code that uses the lock appropriately. A reasonable client must
visit all functions and paths of a lock. For example, if in our client we configured
HMCS with maximum depth = 1, the verification would cover only AcqReal<1>

and RelReal<1>, and if we created only one thread then we would miss all
concurrency bugs.

Verification time is generally super-exponential in the number of threads and
acquire/release calls. We thus need to find the minimum number of threads with
which we can still generate all bug-prone execution graphs. In general, finding
this number is an open problem. We simply choose the maximum number of
threads for which verification time is within reason. We experimentally justify
this bound by adding an additional thread and observe that no additional bugs
are found by VSync.

Our client code is shown in Fig. 9: it uses three threads, maximum DEPTH = 3,
and thresholds THRESHOLD[d] = 2. We choose this maximum DEPTH = 3 because
it covers the case where a lock (at depth d = 2) has both children and a parent.
We assign threads to NUMA nodes as in Fig. 6. Each thread in our client acquires
the lock, increments a shared variable, and then releases the lock. One thread
(T1) repeats this twice. This way we cover the case of a thread entering the critical
section twice. With this setup, verification with VSync takes 10 seconds. Adding
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a fourth thread T4 on NUMA 0 (respectively, NUMA 3) increases verification
time to 1300 seconds (respectively, 2800 seconds).

To verify mutual exclusion, we assert that our shared counter has the ex-
pected value after all threads are done (assert(counter==4)). If any execution
graph of the client violates this assertion or indicates a non-terminating run of
the program (such as the graphs in Figs. 4, 5 and 8), VSync prints that graph
in text form. We note that debugging such graphs is non-trivial.

A simpler and more elegant way to use VSync is to implement the lock with
only sequentially consistent memory operations (without fences). This ensures
that there will be no bugs related to the consistency model. VSync then optimizes
these barriers and reports to the user which barriers can be relaxed and/or
removed. With our client code with three threads, optimization takes one second.
With four threads, optimization takes less than 100 seconds.

5 Performance Evaluation

We evaluated HMCS on our Arm server and studied implementation choices
that we expect are affecting performance. In particular, we tackle the following
questions:

– Do the Large System Extensions (LSE) of Armv8.1 bring the promised per-
formance improvements?

– Is there a performance penalty of unnecessary barriers, e.g., those introduced
by VSync when optimizing for IMM rather than Arm?

– Do implicit barriers provide better performance than fences?

5.1 Experimental Setup

Environment. We ran the experiments on a Huawei TaiShan 200 (Model 2280) [1]
with two HiSilicon Kunpeng 920-4826 processors [2] (2 packages), each of them
with 48 Armv8.2 64-bit cores organized in 2 NUMA nodes and running at 2.6
GHz. The experiments reported in this section were conducted on openEuler
20.09 [3]. We reproduced similar results on Ubuntu 18.04 LTS.

Benchmarks. We conducted userspace experiments with LevelDB (readrandom
benchmark) [7] and with a custom microbenchmark. In the microbenchmark,
each thread repeatedly acquires a pthread mutex lock, increments a shared
counter (causing a cache miss), and releases the mutex. In each experiment, we
vary the number of threads and the lock implementation. We interpose calls to
pthread functions with LD PRELOAD in order to replace the lock implementation
without modifying the benchmarks — in a similar fashion as [10]. We run each
experiment for 3 seconds, repeat the experiment 10 times, and report the median
throughput (number of iterations per second). We pin threads to cores from core
95 downwards, always keeping core 0 free to serve other OS tasks.
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Lock variants. We compare the following variants of the HMCS-lock in regard
to barrier/fence placements:

– hmcs-arm with a minimal set of fences required for Arm,
– hmcs-imm with a minimal set of fences required for IMM,
– hmcs-sc in which all racy accesses use sequentially consistent implicit barri-

ers,
– hmcs-vsync with VSync-optimized implicit barriers, and
– hmcs-amo with optimized barriers on CAS and SWAP in hmcs-vsync.

We use the mcs lock with optimized barriers as a baseline. To avoid false
sharing and ensure reliable results, we also cache-align and pad the shared data
structures (QNode and HNode). All locks are implemented using C11 atomics
(stdatomic.h).

5.2 Experimental Results for Low Contention

We start by exploring the performance of the HMCS variants with our mi-
crobenchmark running a single thread (see Fig. 10).

0 2 4 6 8
Throughput (iter./µs)

hmcs-vsync
hmcs-nop

hmcs-amo
hmcs-arm
hmcs-imm

hmcs-sc

LDXR/STXR LSE

Fig. 10: Low contention scenario: Single-threaded microbenchmark with several
HMCS variants compiled with and without LSE instructions.

LSE versus LDXR/STXR. HMCS variants that employ LSE instructions perform
poorly in comparison to those that employ the conventional LDXR/STXR pair.
The current hardware implementation of LSE degrades the performance of all
HMCS variants. For example, in the case of hmcs-vsync, the throughput of the
LSE version is 27% of the LDXR/STXR throughput. We also observe that LSE
implementations tend to have a higher variance than the LDXR/STXR implemen-
tations (see standard deviation reported on Fig. 10).

Due to the importance of the single-thread scenario, we only consider the
implementations with LDXR/STXR in the remainder of the evaluation.
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Performance penalty of no optimization. The performance of hmcs-sc shows that
exclusively employing sequentially consistent implicit barriers incurs a consider-
able cost under low contention. As we will see below, the performance of hmcs-sc
is comparable to the other variants under high contention.

Performance penalty of targeting IMM. We observe that hmcs-arm has 16%
higher throughput than hmcs-imm, implying that the additional fences required
by IMM impact the performance negatively. In contrast, the additional im-
plicit barriers in hmcs-vsync do not reduce throughput compared to hmcs-amo,
which has been manually optimized for Arm. This suggests that the performance
penalty of using IMM as the verification target depends on the type of barriers
and not simply on the number of additional barriers required by IMM.

Implicit barriers versus fences. Automatically-selected implicit barriers perform
better than fences: hmcs-vsync shows 49% higher throughput than hmcs-imm, and
28% higher throughput than hmcs-arm. Note that replacing fences with implicit
barriers reduces the code length, which in turn can shorten single-threaded runs
and improve the instruction cache usage. To validate that the shorter code length
is not the source of the improved performance of hmcs-vsync over hmcs-arm, we
create a variant based on hmcs-vsync, in which we introduce a NOP instruction for
every removed fence (NOP and fences have the same length in Arm); we call this
variant hmcs-nop. Figure 10 shows a negligible difference between hmcs-vsync and
hmcs-nop, corroborating the claim that implicit barriers improve performance
for single threaded code [13]. Nevertheless, whether implicit barriers or fences
perform better for multiple threads may depend on the benchmark, as we will
see below.

The reason for this discrepancy is not clear; besides micro-architectural im-
plementation details, a possible reason may lie in the weak consistency model
of Arm itself. For the correctness of the HMCS lock, the order between spe-
cific loads and subsequent memory operations needs to be enforced. On the
Kunpeng 920 server, these loads can be implemented either as a load with a
trailing DMB LD instruction (acquire fence), or as LDAR/LDAXR load instructions
with implicit acquire barriers. Both are unsatisfactory. The DMB LD instruction
needlessly orders all previous loads with subsequent operations. The LDAR/LDAXR
instructions needlessly order all previous stores with implicit release barriers with
that load. These non-comparable unnecessary ordering constraints might be the
reason both implementation choices are sometimes the better choice. Armv8.3
(not supported on Kunpeng 920) introduces the LDAPR load instruction, which
only introduces the necessary order. Perhaps the comparison between implicit
barriers and fences would be more clear-cut with this instruction.

5.3 Experimental Results for High Contention

We now explore higher contention scenarios with our microbenchmark and with
LevelDB benchmark. In the following experiments, we consider hmcs-arm, hmcs-
vsync, hmcs-sc, and mcs.
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Fig. 11: Microbenchmark with 2 to 95 threads
and different lock implementations.
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Fig. 12: Speedup histogram of
hmcs-arm over hmcs-vsync for
the microbenchmark with 1
to 95 threads.

Figure 11 shows the performance of our benchmark running with 2 to 95
threads. (Single-threaded runs were evaluated in Section 5.2, and one core is
left free to handle interrupts, which are otherwise a source of noise.) We assign
threads to cores sequentially.

After filling a complete NUMA node (with 24 threads), the performance of
mcs drops considerably; for example at 95 threads, mcs throughput is about
45% of hmcs-vsync throughput. The performance spike with 4 threads is due to
the higher cache locality achieved when threads share the same L3 cache region.
Kunpeng 920 processors split the L3 cache in regions shared by groups of 4 cores.
The spike with 28 threads is caused by the interplay of the HMCS policy to keep
the lock in the NUMA node and the fact that 4 cores of the second NUMA node
share the same L3 cache region. HMCS enforces that both NUMA nodes have
the same share of the lock with a user-configured threshold (see Section 2.1).
Therefore, the first NUMA node executes half of the benchmark iterations with
24 cores, whereas the second NUMA node executes the other half with 4 threads
and few L3 cache misses, improving the overall throughput. The spike repeats
at lower intensities when the other NUMA nodes only use 4 cores.

The different HMCS variants perform in most configurations less than 10%
apart. Figure 12 shows the histogram of speedups of hmcs-arm over hmcs-vsync
for 2 to 95 threads. The single case around 0.89 is with 49 threads, where hmcs-
arm is slower than hmcs-vsync. The single case around 1.20 is with 2 threads,
where hmcs-arm is faster than hmcs-vsync: this is caused by the slowpath of
MCS lock release, which is triggered more often with hmcs-vsync and 2 threads.
For the other cases, we observe that hmcs-arm tends to be slightly slower than
hmcs-vsync, but the difference is below 8%.

Figure 13 shows the performance of the LevelDB benchmark running 1 to
95 threads. The benchmark contains parallel work and can scale up to around 8
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Fig. 13: LevelDB benchmark with 1 to 95
threads and different lock implementations.
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Fig. 14: Speedup histogram of
hmcs-arm over hmcs-vsync for
the LevelDB benchmark with
1 to 95 threads.

threads. Up to 9 threads, mcs performs up to 20% faster than hmcs-vsync, but
continuously degrades its throughput when more than 24 threads are running
(or more than one NUMA node is used in the application). For example at 95
threads, the mcs throughput is 47% of hmcs-vsync throughput. Between 10 and
24 threads, hmcs-vsync and mcs are at most 6% apart.

Figure 14 shows again the histogram of speedups of hmcs-arm over hmcs-
vsync for 1 to 95 threads. In the range from 1 to 5 threads, hmcs-vsync performs
up to 4% faster than hmcs-arm. With 6 threads or more, hmcs-arm performs up
to 5% faster than hmcs-vsync.

Finally, hmcs-vsync performs up to 8% faster than hmcs-sc in the range from
1 to 10 threads. With 11 threads or more, the hmcs-vsync throughput is between
0.99 to 1.03 times the hmcs-sc throughput.

6 Discussion

Already with sequentially consistent barriers, the NUMA-aware HMCS lock con-
siderably outperforms the MCS lock at high levels of contention. At these lev-
els, the performance impact of barrier optimization is negligible. On the other
hand, incorrect optimizations can lead to heisenbugs. For this reason, we recom-
mend simply using sequentially consistent barriers on all racy accesses, and not
worrying about weak consistency. In cases of low contention, however, barrier
optimizations can show substantial performance improvements. In these cases,
the automatic and formally verified optimizations by VSync outperform manual
optimizations (both our own and the repaired fences from the literature). This
shows that barrier optimization, if desired, should be left to the machine.
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A Arm vs. IMM Consistency Model

obs ⊇ rfe ∪ moe (1)

dob ⊇ ctrl; [W ] (2)

bob ⊇ po; [Frel];po (3)

lob ⊇ dob ∪ bob (4)

ob ⊇ obs ∪ lob ∪ ob;ob (5)

ob is irreflexive (6)

Fig. 15: A Subset of the Arm Consistency Model. The key derived relation is
ordered-before (ob), which is irreflexive in consistent graphs.

F ⊇ Frel ∪ Facq (7)

deps ⊇ ctrl (8)

ppo ⊇ [R]; deps; [W] (9)

bob ⊇ [F ];po ∪ po; [F ] (10)

ar ⊇ rfe ∪ bob ∪ ppo (11)

ar is acyclic (12)

release ⊇ [Frel];po (13)

sw ⊇ release; rfe;po; [Facq] (14)

hb ⊇ po ∪ sw ∪ hb;hb (15)

eco ⊇ rfe ∪ moe (16)

hb; eco is irreflexive (17)

Fig. 16: A Subset of the IMM Consistency Model. Key relations are the acyclic
relation (ar) which is acyclic in consistent graphs, as well as synchronizes-with
(sw), extended coherence order (eco), and happens-before (hb), where hb; eco
is irreflexive in consistent graphs.

A standard way to define weak consistency models is through execution
graphs. Nodes in these graphs represent events such as reads and writes, and
edges specify various relations between these events, e.g., the order in which
reads and writes to the same location are committed. Memory models are de-
fined by a) the edges that exist in the graph and b) restrictions on these edges.
For brevity, we introduce only the event and edge types of Arm and IMM
that are relevant to the bugs we mention in this paper. We consider write
events WX(loc, val), read events RX(loc, val), and fence events FX , where X ∈
{ sc,acq, rel, rlx } is the so called mode of the event, loc is the shared memory
location on which the event operates, and val is the value written or read in
the event. The mode denotes the type of memory barrier (if any) represented by
the event: rlx indicates that no barrier is present, acq represents acquire, rel
release, and sc sequentially consistent barriers. Mode rlx is the default mode
and omitted.
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We consider the following types of fundamental edges:

– rfe (read from external) edges WX(x, a) rfe−→ RY (x, a) connect a write event
of a thread to a read event of another thread that reads from it.

– moe (modification order external) edges WX(x, a) moe−→WY (x, b) connect
write events (writing to the same location) of different threads indicating
the order in which they were committed.

– po (program order) edges connect events of the same thread in the order in
which they are issued by the program.

– ctrl (control dependency) edges connect a read RX(x, a) that influences a
condition (e.g., if- or while-condition) evaluation to every event of the same
thread that is issued after the condition.

– event-type self-loops e
[E]−→ e for event type E ∈ {R, W, Frel, Facq } con-

nect every event e of type E to itself.

Other edges are derived from these fundamental edges according to the rules

of the consistency model (Figs. 15 and 16). For instance, the edge a moe−→ e in

Fig. 3(b) implies an eco edge a eco−→ e on IMM (with Eq. (16)). Such derived
rules are often defined with the composition operator ‘;’, which for arbitrary
edge types R and S is defined by

a
R;S−→ c ⇐⇒ a R−→ b S−→ c

The meaning of barriers is defined by the derived edges they imply; for example,
the meaning of Frel (which maps to the full DMB.ISH fence) on Arm is defined
through the ob edge it implies between preceding and subsequent operations
(with Eqs. (3) to (5)).

In Figs. 15 and 16 we have collected the rules of IMM and Arm consistency
that are relevant to our discussion. In [16] it is shown that Arm consistency
implies IMM consistency; thus any bug on Arm is also present on IMM, and
verification on IMM implies correctness on Arm. The converse is not true, and
bugs on IMM are not always bugs on Arm. Indeed, some of the bugs identified
by VSync on the HMCS lock on IMM are not bugs on Arm. The key difference
relevant to these bugs is that moe edges imply an ob edge on Arm, but do not
imply an ar edge on IMM. Thus they contribute to ob cycles but not to ar
cycles.

We illustrate the implications at hand of the execution graphs in Fig. 3. In
Fig. 3(a), we have an rfe edge from Event e to Event a; in Fig. 3(b), we instead
have an moe edge from Event e to Event a. Other than those events and the
edge between them, the graphs are the same. Thus in both graphs, the following
imply ob edges:

– a
po−→ b

[Frel]−→ b
po−→ c (Eqs. (3) to (5))

– c rfe−→ d (Eqs. (1) and (5))

– d ctrl−→ e
[W]−→ e (Eqs. (2), (4) and (5))
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The only edge missing for an ob cycle is e ob−→ a. This edge is implied by

the e rfe−→ a edge in Fig. 3(a) and the e moe−→ a edge in Fig. 3(b) (with Eqs. (1)

and (5)). Note that due to transitivity (Eq. (5)) the cycle a ob−→ . . . ob−→ a implies

a reflexive edge a ob−→ a, which contradicts the irreflexivity of ob (Eq. (6)). Thus
both graphs are inconsistent on Arm.

On IMM, the following imply ar-edges:

– a
po−→ b

[Frel]−→ b and b
[Frel]−→ b

po−→ c (Eqs. (7), (10) and (11))

– c rfe−→ d (Eq. (11))

– d
[R]−→ d ctrl−→ e

[W]−→ e (Eqs. (8), (9) and (11))

Analogous to before, only an e ar−→ a is missing for an ar cycle. In Fig. 3(a) this

edge is implied by the e rfe−→ a edge with Eq. (11), and this graph is inconsistent
on IMM. But in Fig. 3(b), the moe edge does not contribute an ar edge. Indeed,
there is no ar cycle in Fig. 3(b), which is consistent on IMM. Unfortunately, two
of the bugs detected by VSync on IMM appear only in graphs that look like
Fig. 3(b). These bugs therefore only appear on IMM, but can not appear on
Arm.

We proceed to discuss how to fix these bugs on IMM. Consider the third
graph (see Fig. 3(c)) which is almost identical to the second (see Fig. 3(b)).
We only added a Facq fence between the d and f. Adding this fence does not
eliminate the ob-cycle we inferred previously, and this graph is also inconsistent
with Arm. On IMM we derive the following edges:

– b
[Frel]−→ b

po−→ c rfe−→ d
po−→ e

[Facq]−→ e thus b sw−→ e (Eqs. (13) and (14))

– a hb−→ b, b hb−→ e and e hb−→ f thus a hb−→ f (Eq. (15))

– f eco−→ a (Eq. (16))

As shown in (Fig. 3(d)) we end up with a hb−→ f eco−→ a and thus a
hb;eco−→ a.

But the hb;eco relation is irreflexive (Eq. (17)). We conclude that this graph
is inconsistent with IMM. In other words, due to the Facq fence the execution
with the bug cannot occur on IMM.

B Optimizing Barriers on Atomic Operations

The implicit sc barriers on CAS and SWAP in Fig. 2 are not optimal. VSync
reports that they are already too strong for IMM, and indeed they can be opti-
mized further for Arm. The exact optimization depends on the variant. Manual
analysis shows that when using fences, all barriers on the atomic operations can
be removed. When using implicit barriers, release barriers on Lines 17 and 30
are needed to avoid non-termination (with similar bugs as those in Section 3.1)
and acquire and release barriers are needed on Line 17 resp. Line 55 to ensure
that operations in the critical section can not leak out of the lock (resulting
in loss of mutual exclusion). The resulting barriers are shown in Table 1. That
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SWAP [Line 17] SWAP [Line 30] CAS [Line 55]

Fences - - -
Implicit sc rel rel

Implicit (LSE) rel ; Facq rel rel

Table 1: Possible optimizations on Arm for atomic operations when using fences
or implicit barriers.

table also shows a variant that may be more optimal when using interlocked
LSE instructions. Unlike load/store-exclusive pairs, on which sc implicit barri-
ers do not act like a full barrier (see discussion in Section 3.1), LSE interlocked
operations have been strengthened in a recent change to Arm specifications to
provide the same semantics for sc implicit barriers as a DMB.ISH (see Eq. (10)
from Page 17) through the rule

bob ⊇ po; ([A]; amo; [L]);po

where amo relates a the read event of an atomic memory operation (such as
SWP) to its write event, and [A] and [L] are event-type self-loops for acquire
resp. release events. This contrasts the earlier definition in [17], in which LSE
instructions provide the same ordering guarantees as load/store-exclusive pairs.

However, this stronger ordering is not necessary for the HMCS lock, and thus
we optimize barriers further by relegating the acquire barrier to a trailing fence.
This variant is what is denoted by hmcs-amo in Section 5. As demonstrated in
Fig. 10 on Page 12, this optimization does not currently improve performance
compared to hmcs-vsync (which uses sc barriers on atomic operations). Perhaps
if LSE operations become more efficient for low-contention cases in the future,
these optimizations will become more interesting.

For the sake of completeness we also implement a variant hmcs-armamo which
applies the optimization to hmcs-arm, i.e., in which as described in Table 1 all
implicit barriers on atomic operations are removed. Performance results (without
LSE) are shown in Figs. 17 and 18. While minor improvements can be measured
in the microbenchmark, these improvements also do not translate to the larger
benchmark.
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Fig. 17: Performance of AMO-optimizations with fences on microbenchmark
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Fig. 18: Performance of AMO-optimizations with fences on LevelDB
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