
Adjustable References

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Even when programming purely mathematical functions, mu-
table state is often necessary to achieve good performance, as it underlies
important optimisations such as path compression in union-find algo-
rithms and memoization. Nevertheless, verified programs rarely use mu-
table state because of its substantial verification cost: one must either
commit to a deep embedding or follow a monadic style of programming.
To avoid this cost, we propose using adjustable state instead. More con-
cretely, we extend Coq with a type of adjustable references, which are like
ML references, except that the stored values are only partially observable
and updatable only to values that are observationally indistinguishable
from the old ones.

1 Introduction

Interactive proof assistants (Coq [3], Isabelle [13], HOL [11], etc.) are generally
very good at reasoning about terminating purely functional computations, as
these are just mathematical functions, which the provers support natively. In
contrast, however, they are not so good at reasoning about real computations,
which are not necessarily always terminating or purely functional. Such compu-
tations are not supported natively, but have to be encoded in some non-trivial
way. This is a problem, because while requiring termination or productiveness
for real computations may seem a reasonable restriction, disallowing mutable
state is not at all reasonable, as many programs use mutable state for efficiency.

There are essentially two approaches for encoding stateful computations in
an interactive proof assistant, both of which have their limitations.

First, in the deep embedding approach (e.g., [1,4,14]), impure computations
are represented as terms of a custom data structure. Then, to reason about such
terms, the user effectively has to build a specialized theorem prover for such
terms. This is at the same time a rather challenging and a rather mundane task,
as one cannot reuse much of the infrastructure of the interactive theorem prover,
but may rather have to (re)implement standard features such as variable binding
(cf. the PoplMark challenge [2]) or equating terms up to reduction.

Alternatively, there is the monadic approach (e.g., [8,9]), where imperative
code is written in a monadic style against the state monad. This approach is
usually preferable to the deep embedding approach as it reuses the interactive
prover’s infrastructure. It is nevertheless problematic because one cannot use
global state to optimise purely functional code without forcing all the code de-
pending on it to be written in a monadic style. Consider, for example, a math-
ematical function of type A → B. If we apply the memoization optimisation



2 Viktor Vafeiadis

(remembering the results of earlier function invocations in a hashtable so as to
avoid recomputation), we will get a function of type A→ StateMonadB. Thus,
the memoized function, although intuitively equivalent to the original one, has
a different type and can, therefore, no longer be used in arbitrary contexts, but
only within contexts expecting monadic stateful computations as arguments.

To avoid these problems, we introduce a restricted form of mutable state,
which we call adjustable references, that can be used freely inside pure com-
putations (see §2). Similar to mutable references in ML, adjustable references
store some internal value, but unlike ML references, the values stored cannot
be arbitrarily updated. They can only be ‘adjusted’ so that the represented
value remains the same, but perhaps affecting the cost of returning/computing
it. From a verification point of view, we have to show that every adjustment is
effectively an identity function. Then, when reasoning about code using adjust-
ments, we can simply ignore the adjustments. In the extracted implementations,
however, we perform the adjustments, as these can be very beneficial in terms
of performance.

Adjustable references allow us to implement advanced persistent data struc-
tures by enabling imperative updates provided that they affect only the efficiency
of the data structure accessor methods and not their results. As examples, we
present two standard imperative optimisations that can be easily expressed us-
ing adjustable references: (i) memoization of function calls (see §3) and (ii) path
compression of the union-find representation tree (see §4). The formal develop-
ment associated with this paper can be found at the URL below:

http://www.mpi-sws.org/~viktor/arefs/

2 Adjustable References

In this section, we present an axiomatisation of adjustable references in Coq [3]
and two implementations: (i) a purely-functional one in Coq that ensures the
logical consistency of the axioms, and (ii) an efficient imperative one in OCaml.
While adjustable references can be encoded in other proof assistants, we remark
that our axiomatisation uses dependent types.

Our axiomatisation uses the Coq Axiom x : T and Parameter x : T decla-
rations, which extend the context axiomatically with a new global constant, x,
having the given type, T. (The former is typically used for propositions, and the
latter for other types.)

Adjustable references internally store values of a representation type, R, but
do not allow direct read-access to those values. The values are instead observable
only at a possibly different type, T . Each adjustable reference type, aref f , thus
has an associated observation function, f : R→ T , mapping values of its internal
representation type to ones of its observation type.

Parameter aref : ∀R T, (R → T) → Type.

http://www.mpi-sws.org/~viktor/arefs/


Adjustable References 3

Adjustable references have a canonical constructor, aref_val f v, which cre-
ates a new reference of type aref f holding the internal value v. Our first axiom
insists that every adjustable reference contains some internal value.

Parameter aref_val : ∀R T (f: R → T), R → aref f.
Axiom aref_inh :

∀ R T (f: R → T) (r: aref f), ∃v, r = aref_val f v.

Further, we have an operation, aref_get r, which reads the adjustable ref-
erence r and returns its ‘external’ value—namely, the result of applying the
observation function to its internal value.

Parameter aref_get : ∀R T (f: R → T), aref f → T.
Axiom aref_get_val :

∀ R T (f: R → T) v, aref_get (aref_val f v) = f v.

Next, we need a way of adjusting the contents of the reference cell. Naively,
one might think of axiomatising an operation of the following type:

∀R, T. ∀f : R→ T. ∀r : aref f. ∀v : R. f(v) = aref_get (r)→ unit .

That is, we should be able to replace the r’s current internal value with any
value, v, that is observationally indistinguishable: i.e., f(v) = aref_get (r).

There are, however, three problems with this type.

1. First, Coq does not fix an evaluation order. In particular, the evaluation of
e1; e2 (standing for let x = e1 in e2 where x /∈ fv(e2)) may run e1 and e2
in any order. Moreover, it may not even evaluate e1 at all since its value is
never used. Coq’s extraction [7], for example, does exactly so. It transforms
e1; e2 into e2, thereby erasing any ‘adjustments’ made in e1. This problem
on its own is not insurmountable, as we can force the evaluation of e1 by
redefining e1; e2 to mean match e1 with tt⇒ e2 end.

2. Second, the type above is overly restrictive. It requires the new internal value
to be provided directly, thereby allowing it to depend only on the observable
values of adjustable reference cells. In particular, it cannot depend on the
previous internal value of the same reference cell. This is problematic if we
want to use adjustable references to store some sort of cache. A typical
adjustment of such a reference would be to extend the cache with one more
entry, but to do so, the adjusted cache should clearly be able to depend on
the old cache.

3. Third, unless the externally observable type, T , is a function type, A→ B,
there is not much point in using adjustable references: we can just as simply
calculate f(v) at creation time, and then store the result in an immutable
reference. For a function type, however, one may gradually refine the stored
internal value each time the function is called, and therefore potentially
improve the performance of future function calls.

For these reasons, we provide a combined adjustment read operation cus-
tomized to the case of T = (A→ B).



4 Viktor Vafeiadis

Parameter aref_getu :
∀ R A B (f : R → A → B) (upd : R → A → R * B)

(PF: ∀x a, f (fst (upd x a)) = f x)
(PF’: ∀x a, snd (upd x a) = f x a),

aref f → A → B.

Here, we must provide a function, upd, which when given the current internal
representation and the function argument returns a pair consisting of the new
representation and the result of calling f with these two arguments.

Adjusting reads have a remarkably simple axiomatisation: logically they are
exactly the same as normal reads!

Axiom aref_getuE : ∀R A B (f : R → A → B) upd PF PF’,
aref_getu upd PF PF’ = aref_get (f:= f).

Coq experts will note that the proof obligations of aref_getu use the normal
propositional Leibniz equality, and may be concerned that these proof obligations
will be difficult to satisfy if B is itself a function type. This apparent problem,
however, is not very serious as there are multiple ways around it. For example,
one may assume the functional extensionality axiom when doing such proofs,
as the axiom is consistent with Coq and its use will moreover not impact exe-
cution, since extraction erases these arguments. Alternatively, one may uncurry
the function type, T , or simply extend the definition to one expecting a curried
function of n arguments; i.e., with T = (A1 → . . .→ An → B).

When adjusting the value of a reference cell, we have seen that it is useful for
the new internal value to depend on the old internal value of the cell. Something
similar holds for allocation of new adjustable reference cells: it is useful for the
new internal value to depend on the internal value of some old reference cell.
Thus, we also assume the following operation:

Parameter aref_new :
∀ R1 T1 (f1: R1 → T1) (r: aref f1)
R2 T2 (f2 : R2 → T2) (g: ∀v, aref_get r = f1 v → R2)
(PF: ∀x pfx y pfy, f2 (g x pfx) = f2 (g y pfy)),
aref f2.

Axiom aref_new_val :
∀ R1 T1 (f1: R1 → T1) v R2 T2 (f2: R2 → T2) g PF,
aref_new (aref_val f1 v) g PF
= aref_val f2 (g v (aref_get_val f1 v)).

Having the internal value of a new reference cell depend on that of one old
reference cell suffices for our examples, but it may easily be extended to making
the internal value of the new cell depend on the internal values of a list of existing
reference cells.

2.1 Logical Consistency of Adjustable References

In order to show that the new axioms about adjustable references are logi-
cally consistent, we present a very naive implementation satisfying them. We



Adjustable References 5

model the adjustable reference type as its internal representation type, and have
aref_get apply the function f to it. Adjusting reads simply ignore the adjust-
ment and behave as normal reads.

Definition aref R T (f : R → T) := R.
Definition aref_val R T (f: R → T) (v : R) := v.
Definition aref_get R T (f: R → T) (r : aref f) := f r.
Definition aref_getu R A B (f : R → A → B) (upd : R → A → R * B)

(PF: ∀x a, f (fst (upd x a)) = f x)
(PF’: ∀x a, snd (upd x a) = f x a) := aref_get f.

Definition aref_new R1 T1 (f1: R1 → T1) (r: aref f1)
R2 T2 (f2 : R2 → T2) (g: ∀v, aref_get f1 r = f1 v → R2)
(PF: ∀x pfx y pfy, f2 (g x pfx) = f2 (g y pfy)) :=
g r eq_refl.

With this representation, it is straighforward to prove the associated axioms:
our proof scripts are ‘one-liners.’

2.2 Extraction to Efficient Imperative Code

Coq’s extraction mechanism [7] generates OCaml code from the Coq definitions
by erasing proofs and inserting suitable type casts to work around OCaml’s type
system. For types and operations that are specified as parameters, such as the
aref, Coq allows us to specify their OCaml implementations.

There is also a way, using the Extraction Implicit directive, to remove
further arguments (besides the propositional ones), if we know that a certain
argument will not be used by the OCaml implementation. We use this fea-
ture to remove the unused observation function argument f from aref_val and
aref_getu, as well as f1 and f2 from aref_new.

In OCaml, we implement adjustable references as a mutable reference cells
storing the representation type. A normal read, aref_get, just reads the contents
of the cell and applies the observation function, f , to it. An adjusting read,
aref_getu, applies the update function, u, instead, and updates the reference
cell as appropriate. Finally, aref_new simply creates a new reference cell as
expected. Unfortunately, extraction cannot fully remove the second argument of
g despite it being a proposition; so we call g with a dummy second argument.
Below, we show our OCaml implementation with the OCaml types in comments.

type (’r,’t) aref = ’r ref
let aref_val x = ref x (∗ ’ r → (’r ,’ t) ref ∗)
let aref_get f r = f !r (∗ (’ r → ’t) → (’r ,’ t) aref → ’t ∗)
let aref_getu u r a =

let (v, b) = u !r a in r := v; b
(∗ (’ r → ’a → ’r ∗ ’b) → (’r, ’a → ’b) aref → ’a → ’b ∗)

let aref_new r g = ref (g !r ())
(∗ (’ r1 ,’ t1) aref → (’r1 → unit → ’r2) → (’r2 ,’ t2) aref ∗)



6 Viktor Vafeiadis

3 Memoization Using Adjustable References

A simple use of adjustable references is in the memoization optimisation. Given
a function f : A → B, we construct the function memo f which is extensionally
equal to f , but which caches the results of previous f invocations, so that if
memo f is called with the same argument again, the cached version is used. To
implement the cache, we also require a decidable equality on A, as well as a hash
function mapping elements of A to machine integers. We use the Coq Section
mechanism to avoid repeating these assumptions for every definition.

Section Memo.
Variables (A B : Type) (f : A → B).
Variable eqA : ∀x y : A, { x = y } + { x 6= y }.
Variable hash : A → int.

The cache is just an array of pairs (a, b) such that f(a) = b. In Coq,

Definition cache :=
{ c : Parray.t (option (A * B)) |
∀ x a b, Parray.get c x = Some (a, b) → b = f a }.

where we assume a module, Parray, implementing functional arrays.
The main program, memo, creates an adjustable reference cell holding an

initially empty cache that represents the function f , and then returns a function
that does an adjusting read from that reference cell. The main work of the
adjusting read is performed by the memo_upd function, which reads the cache to
determine if it contains an appropriate entry (a, b): if so, it returns b; if not, it
calculates f(a) and stores (a, f(a)) into the cache. In case of a hash collision, for
simplicity, we simply overwrite the old colliding array entry.

We define these operations using the Program feature of Coq which allows
us to write functions in a natural style and emits missing proof obligations as
goals to be proved interactively at the end of the definition. In this example, we
are basically asked to show that the initial and updated arrays are valid caches.
For simplicity, we omit these easy proofs.

Program Definition memo_upd (c : cache) (a : A) : (cache * B) :=
let h := hash a in
match Parray.get c h with
| None ⇒

let b := f a in (Parray.set c h (Some (a, b)), b)
| Some (a’, b) ⇒

if eqA a a’ then (c, b) else
let b := f a in (Parray.set c h (Some (a, b)), b)

end. 〈. . .〉

Program Definition memo :=
let r := aref_val (fun c : cache ⇒ f)

(Parray.create (Int.repr 100) None) in
aref_getu memo_upd _ _ r. 〈. . .〉



Adjustable References 7

We can now easily prove that the memo function is equivalent to f : we unfold
the definition of memo and rewrite using two adjustable reference axioms.

Lemma memo_eq : memo = f.
Proof. by unfold memo; rewrite aref_getuE, aref_get_val. Qed.

Finally, we close the Coq section, which will parametrize all the functions
and lemmas declared within the section by the variables A, B, f, eqA, and hash.

End Memo.

4 Union-Find Path Compression

As a second example, we implement the path compression optimisation, which
is crucial for achieving good performance in the union-find algorithm [12].

The union-find data structure describes a partition of a finite set, and sup-
ports two operations: (1) find returning the representative of an element (such
that two elements are in the same partition iff they have the same representa-
tive), and (2) union that coalesces two partitions.

The data-structure is organised as an upward pointing forest so that elements
of the same partition belong to the same tree. In this setting, find follows the
parent-pointing edges from its argument until it reaches the root of its tree,
which it returns as the representative, whereas union simply adds an edge from
the root of the one partition to the root of the other.

To achieve practically constant (inverse Ackerman) time per operation, find
‘compresses’ the paths during look up. There are many ways of doing so, the
simplest being to make all the nodes along the path from the input node to the
root point directly to the root.

Below, we implement two functions that do the path lookup: get_aux (simply
returning the root) and find_aux (also returning the updated path-compressed
graph). When writing these functions in Coq, we have (as an orthogonal problem)
to prove termination for the path lookups. For conciseness, however, we omit
these proofs from the presentation.

Definition get_rel (a : Parray.t int) (x y : int) : Prop :=
x 6= y ∧ Parray.get a y = x.

Program Fixpoint get_aux a x (WF : Acc (get_rel a) x) :=
let y := Parray.get a x in
if y ≡ x then x else get_aux a y 〈. . .〉.

Program Fixpoint find_aux a x (WF : Acc (get_rel a) x) :=
let y := Parray.get a x in
if y ≡ x then (a, x)
else let ’(f, r) := find_aux a y 〈. . .〉 in

(Parray.set f x r, r).



8 Viktor Vafeiadis

Our main data structure then consists of a rank array returning an approxi-
mate size of each partition (so that when union merges two partitions, it makes
the smaller point to the larger one) and an adjustable reference to the parent-
pointing array representing the union-find forest. Formally, we represent the
latter as a refinement type, as we need to ensure that it has the same length as
the rank array and actually represents a forest (so that path lookups terminate).

Definition closed_arr_cond (length: int) (a: Parray.t int) :=
Parray.length a = length
∧ (∀ x, Int.ltu (Parray.get a x) (Parray.length a))
∧ well_founded (get_rel a).

Definition closed_arr length := { a | closed_arr_cond length a }.

Record t := { ranks : Parray.t int ;
parr : aref (@get_closed (Parray.length ranks)) }.

With these definitions, it is now easy to implement the main union-find op-
erations. The omitted proof obligations have to do with ensuring ‘forestness’
is maintained when compressing paths or adding edges, and the soundness of
find_aux with respect to get_aux.

Program Definition create (size: int) : t :=
{| ranks := Parray.create size Int.zero ;
parr := aref_val _ (Parray.init size id) |}.

Definition find (uf: t) : int → int :=
aref_getu (fun a x ⇒ @find_aux (proj1_sig a) x 〈. . .〉) 〈. . .〉〈. . .〉

(parr uf).

Definition union (uf : t) (a b : int) : t :=
let a’ := find uf a in
let b’ := find uf b in
if a’ ≡ b’ then uf
else
let ra := Parray.get (ranks uf) a’ in
let rb := Parray.get (ranks uf) b’ in
if Int.ltu ra rb then
{| ranks := Parray.set (ranks uf) b’ (Int.add ra Int.one) ;
parr := aref_new (parr uf) (fun r PF ⇒

existT _ (Parray.set (proj1_sig r) b’ a’) 〈. . .〉) 〈. . .〉|}
else
{| ranks := Parray.set (ranks uf) a’ (Int.add rb Int.one) ;
parr := aref_new (parr uf) (fun r PF ⇒

existT _ (Parray.set (proj1_sig r) a’ b’) 〈. . .〉) 〈. . .〉|}.



Adjustable References 9

In our Coq development, we proceed further to prove various properties about
create, find, and union which together entail the correctness of our union-find
implementation. We also use this union-find data structure to implement an
efficient certified separation logic satisfiability checker.

5 Conclusion

This paper has presented adjustable references, a referentially transparent data
type that enables imperative programming in a local and semantically unobserv-
able fashion. We have seen how adjustable references can be used to implement
and verify memoization and path compression, two important optimisations that
cannot be programmed in a purely functional style.

One clear omission from this paper is a formal proof that the efficient im-
perative OCaml implementation of §2.2 is equivalent to the naive one of §2.1.
Formally, we have to prove contextual equivalence in the context of a language
with higher-order state, and a type and effect system including abstract, recur-
sive and dependent types. To show that the two implementations are equivalent,
one would have to extend the proof techniques for showing contextual equiva-
lence, such as Kripke logical relations [10] or relation transition systems [6], to
this setting. This task is by no means trivial, and is left as future work.

This work was largely inspired by a paper by Conchon and Filliâtre [5],
who built persistent array and union-find implementations, whose performance
is very close to that of the standard imperative implementations. In that paper,
Conchon and Filliâtre used Coq to verify a monadic encoding of a slightly simpli-
fied form of those implementations against an axiomatisation of ML references.
Adjustable references allows us to make a step further and program the exact
path-compressing union-find algorithm directly in Coq.

It should be noted, however, that adjustable references are not a panacea.
For example, they cannot directly be used to program the Conchon and Filliâtre
persistent array [5]. The issue is that their implementation performs a sequence
of updates that temporarily change the externally observable values of reference
cells only to restore them at the end of the sequence. By definition, adjustable
references do not permit such value-changing updates. To program such persis-
tent data structures we need a more general primitive that can take a sequence
of updates to multiple references and check that the entire sequence does not
alter the observable value of any individual cell.

In essence, what we would like to have is an adjustable state monad, within
which unrestricted read-write access to the internal values of adjustable refer-
ences is allowed, together a primitive operation for converting internally stateful
computations into pure computations:

runST : ∀c : AdjStateMonad A. c is logically pure→ A .

The somewhat informal condition that c is logically pure is supposed to check
that (1) c’s output is independent of the internal values of any reference cells it
accessed, and (2) c’s end-to-end behaviour does not change the external values of



10 Viktor Vafeiadis

any reference cells that were not newly created by its execution. Again, properly
defining runST and formally justifying its soundness seems quite a challenging
task, which we leave for future work.

Even though adjustable references as presented in this paper are clearly not
applicable to every internally imperative, persistent data structure, we have iden-
tified and presented two examples that can easily be programmed with them.
We hope that they will be equally useful in programming other similar persistent
data structures directly inside interactive theorem provers.

Acknowledgements. I would like to thank Beta Ziliani and the anonymous
ITP 2013 reviewers for their constructive feedback, which helped improve the
presentation of the paper.

References
1. Appel, A. W., and Blazy, S.: Separation logic for small-step Cminor. In Schneider,

K., and Brandt, J.: TPHOLs 2007. LNCS, vol. 4732, pp. 5-21. Springer, Heidelberg
(2007)

2. Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., and Zdancewic, S.: Mechanized Metathe-
ory for the Masses: The PoplMark Challenge. In Hurd, J., and Melham, T. F.:
TPHOLs 2005. LNCS, vol. 3603, pp. 50-65. Springer, Heidelberg (2006)

3. Bertot, Y.: A short presentation of Coq. In Mohamed, O. A., Muñoz, C., and
Tahar, S.: TPHOLs 2008. LNCS, vol. 5170, pp. 12-16. Springer, Heidelberg (2008)

4. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In PLDI 2011, pp. 234-245. ACM (2011)

5. Conchon, S., and Filliâtre, J.-C.: A persistent union-find data structure. In Russo,
C. V., Dreyer, D.: ML 2007, pp. 37-46. ACM (2007).

6. Hur, C., Dreyer, D., Neis, G., and Vafeiadis, V.: The marriage of bisimulations and
Kripke logical relations. In POPL 2012, pp. 59-72. ACM (2012)

7. Letouzey, P.: A new extraction for Coq. In Geuvers, H., and Wiedijk, F.: TYPES
2002. LNCS, vol. 2646, pp. 200-219. Springer, Heidelberg (2002)

8. Nanevski, A., Morrisett, G., and Birkedal, L.: Hoare type theory, polymorphism
and separation. J. Functional Programming 18(5-6): 865-911. CUP (2008)

9. Nanevski, A., Vafeiadis, V., and Berdine, J.: Structuring the verification of heap-
manipulating programs. In POPL 2010, pp. 261-274. ACM (2010)

10. Pitts, A. M., and Stark, I. D. B.: Operational Reasoning for Functions with Lo-
cal State. In Gordon, A. D., and Pitts, A. M. (eds): Higher Order Operational
Techniques in Semantics, pp. 227-273. CUP (1998)

11. Slind, K., and Norrish, M.: A brief overview of HOL4. In Mohamed, O. A., Muñoz,
C., and Tahar, S.: TPHOLs 2008. LNCS, vol. 5170, pp. 28-32. Springer, Heidelberg
(2008)

12. Tarjan, R. E., and Van Leeuwen, J.: Worst-case analysis of set union algorithms.
JACM 31(2):245-281. ACM (1984)

13. Wenzel, M., Paulson, L. C., and Nipkow, T.: The Isabelle Framework. In Mohamed,
O. A., Muñoz, C., and Tahar, S.: TPHOLs 2008. LNCS, vol. 5170, pp. 33-38.
Springer, Heidelberg (2008)

14. Yu, D., and Shao, Z.: Verification of safety properties for concurrent assembly code.
In ICFP 2004, pp. 175-188. ACM (2004)


