
Formal Methods in Computer-Aided Design 2023

Optimal Bounded Partial Order Reduction
Iason Marmanis

Max Planck Institute for Software Systems
Kaiserslautern, Germany
imarmanis@mpi-sws.org

Viktor Vafeiadis
Max Planck Institute for Software Systems

Kaiserslautern, Germany
viktor@mpi-sws.org

Abstract—Preemption bounding (PB) and dynamic partial
order reduction (DPOR) are two key techniques for scaling up
the model checking of concurrent software. Attempts to combine
them have so far been suboptimal: they either explore redundant
executions (that DPOR alone would eliminate) or executions
exceeding the desired bound (that PB alone would not consider).

By bounding the number of rounds of a round-robin scheduler
instead of the number of preemptions, we obtain the first optimal
bounded partial order reduction algorithm. Our approach has
two additional benefits: (1) it makes checking boundedness of a
Mazurkiewicz trace linear-time (instead of NP-hard) and (2) it
extends smoothly to weak memory models.

I. INTRODUCTION

Even under sequential consistency (SC) [18], to make
automated verification of concurrent programs feasible, one
typically has to restrict their state space in several unsound
ways, such as considering only executions with up to K
recursive calls, L loop iterations, N concurrent threads, and
even M preemptive context switches between them. In this
paper, we will focus on the latter restriction, which is known
as preemption bounding (PB) or context bounding [23].

Bounding such quantities is generally sufficient for finding
safety errors in programs and can provide reasonable confi-
dence in the correctness of programs whose full verification
is intractable. PB is especially good in that regard: it achieves
great state-space reduction (since the number of executions
of a concurrent program is exponential in the number of
preemptions) and bug coverage (because bugs in practice can
be exposed with a very small number of preemptions [22]).

Bounding, however, often destroys symmetries in a pro-
gram, which lessens the effect of sound state-space reduction
techniques. In particular, PB does not work well with dynamic
partial order reduction (DPOR) [9], which calls two execu-
tions of a concurrent program equivalent if they differ only
in the order of commuting operations (e.g., two accesses to
different shared memory locations) and strives to explore only
one execution per equivalence class.

Combining DPOR and bounding optimally is non-trivial.
Coons et al. [8] weaken the benefit of DPOR leading to the
(redundant) exploration of multiple equivalent interleavings;
whereas Marmanis et al. [19] weaken the benefit of PB and
often require the exploration of executions with more preemp-
tions than the desired bound. Moreover, both approaches suffer
from the NP-hardness of checking whether a given execution
is equivalent to some execution with at most M preemptions.

In this paper, we provide an optimal combination of these
two techniques by changing the bounded quantity. Rather
than assuming a completely non-deterministic scheduler and
bounding the number of preemptive context switches, we
assume the presence of a round-robin scheduler under a fixed
ordering of the threads (e.g., in increasing thread-identifier
order) and bound the number of rounds such a scheduler can
take. This change has two immediate consequences:

1) Checking whether an execution is below the desired
bound can be decided in linear time (see §II).

2) The optimal DPOR exploration procedure of Kokolo-
giannakis et al. [12] is monotone in the number of
scheduling rounds (see §III).

Therefore, by stopping the exploration of any execution prefix
that exceeds the desired bound, we immediately obtain a
sound, complete, and optimal bounded partial order reduction
algorithm called ROUNDER (see §IV), which enables the
bounded verification of programs whose unbounded verifica-
tion is intractable (see §VI). Our optimal bounding approach
extends seamlessly to weak memory models for bounding
metrics that are similar to the number of scheduling rounds or
that constrain only the non-SC part of executions (see §V).

II. BOUNDING THE NUMBER OF SCHEDULING ROUNDS

A. Program Traces and Execution Graphs

A program trace τ is a sequence of events, each correspond-
ing to the execution of a single thread instruction, such as a
read (R) or a write (W) of a certain location and value. In a
sequentially consistent trace, every read event r in the trace
reads the value written by the last write event in the same
location that appears before r in the trace. Two traces are
(Mazurkiewicz-)equivalent if they only differ in the order of
commuting instructions (of different threads) [20].

Instead of using traces, several recent DPOR algorithms [11,
12, 14] directly explore their equivalence classes, succinctly
represented as execution graphs. An execution (graph) G
consists of a set of events G.E including one initialization
write event for each memory location and the following set of
directed edges that reflect the ordering between the events:

• the program order G.po, which orders events of the same
thread in their control-flow order and initialization write
events before all non-initialization events,

• the coherence order G.co, which (totally) orders same-
location write events, and

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 16 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-5077-5275
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_16
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_16
https://creativecommons.org/licenses/by/4.0/

a := y b := x x := 1

W(x, 0)W(y, 0)

R(y) R(x) W(x, 1)

popo

rf

rf co

Fig. 1. A program (left) and one of its execution graphs (right).

• the reads-from G.rf, which orders every read event after
the write event that it reads from.

We write G|S for the restriction of execution G to the set of
events S; and we say that G is a prefix of G′ if G = G′|G.E.

In Fig. 1, we show a program with three threads and one
of its execution graphs. The graph contains two initialization
writes (one for x and one for y along with three events
corresponding to the memory accesses of the program.

Given two relations X and Y , we define their composi-
tion X;Y

△
=

{
⟨x, z⟩ ∃y. ⟨x, y⟩ ∈ X ∧ ⟨y, z⟩ ∈ Y

}
and the

inverse X−1 △
=

{
⟨x, y⟩ ⟨y, x⟩ ∈ X

}
of X . Finally, we write

X+ for the transitive closure of X .
We now define the following four derived relations:
• The causality order, G.porf

△
= (G.po∪G.rf)+, captures

dependencies between events due to the program order
and the reads-from relation: an event b causally ordered
after an event a cannot be executed before a because it
depends on a’s execution.

• The from-reads relation, G.fr
△
= G.rf−1;G.co, orders

every read event before the same-location writes that are
co-after than the write that the read it is reading from.

• The extended coherence order, G.eco
△
= (G.rf∪G.co∪

G.fr)+, orders all same-location access events apart from
two reads that read from the same write—their order is
immaterial.

• The SC order, G.sc
△
= (G.po ∪ G.eco)+, puts together

orderings due to the program and due to coherence.
An execution G is (sequentially) consistent if G.sc is irreflex-
ive. A consistent execution G represents the equivalence class
of the set of all linearizations of G.sc.

Other memory models require only certain subsets of the
G.sc relation to be irreflexive. For example, coherence re-
quires G.po;G.eco to be irreflexive, while release-acquire
consistency requires G.porf;G.eco to be irreflexive.

B. Round-Robin Rounds

We define the (round-robin) rounds of a program trace
τ = e1, e2, ... , ek to be the number of times a round-robin
scheduler needs to start again from the first thread to generate
the trace τ , i.e., rounds(τ) △

= |
{
ei tid(ei) > tid(ei+1)

}
|.

where tid(e) returns the thread identifier of event e.
The notion of rounds can be naturally lifted to execution

graphs: the rounds of an execution graph is the least among
the rounds of the traces it represents, i.e., rounds(G)

△
=

min
{
rounds(τ) τ linearizes G.sc

}
.

The execution graph in Fig. 1 represents the following three
traces: (a) a := y ;x := 1 ; b := x, (b) x := 1 ; a := y ; b := x,
and (c) x := 1 ; b := x ; a := y. It has one round, since traces
(a) and (b) have one round, whereas trace (c) has two rounds.

Algorithm 1 Greedy algorithm for rounds(G)

1: procedure rounds(G)
2: S ← G.E
3: rounds← 0
4: while S ̸= ∅ do
5: rounds← rounds+ 1
6: for i← 1 ... N do
7: while

(
∃e ∈ S. tid(e) = i

∧ ∄e′ ∈ S. ⟨e′, e⟩ ∈ G.sc

)
do

8: S ← S \ {e}
9: return rounds− 1

Clearly, to compute the rounds of an execution G we do not
have to enumerate the traces of G. Assuming G has N threads,
Algorithm 1 computes rounds(G) with a greedy approach: it
follows the scheduling of the round-robin scheduler adding as
many events from the current thread as possible. Any trace
τ ′ has at least as many rounds as the trace τ that rounds(.)
(implicitly) constructs. To see this, observe that at the first
point where τ and τ ′ differ, τ ′ could be extended with the
event e of thread t, but instead moved to the next thread and
possibly incurred an additional round.

We note that rounds(.) is monotone w.r.t. the prefix relation.

Proposition 1. Given two consistent executions G and G′, if
G is a prefix of G′, then rounds(G) ≤ rounds(G′).

Proof. Consider a trace τ ′ of G′ with rounds(G′) rounds.
Restricting it to the events of G yields a trace τ of G.E with
at most rounds(G′) rounds.

C. Rounds versus Context Switches

We say that a program trace incurs a context switch when-
ever adjacent elements of the trace belong to different threads.
A preemptive context switch between two events is one where
the thread of the first event could have continued execution:
it is neither blocked nor finished. As with scheduling rounds,
we straightforwardly count the number of (preemptive) context
switches in a trace and lift that definition to execution graphs.

Although the formal definitions of scheduling rounds and
context switches are very similar, the number of scheduling
rounds and the number of context switches of a particular trace
can differ widely. The reason is that one scheduling round in a
program with N threads can contain events from at least one
and at most N threads. Consequently, a round-robin execution
of a program with N threads and K rounds can have at most
K ×N context switches.

Conversely, an arbitrary execution with N threads and C
context-switches can be generated by a round-robin scheduler
with at most C − ⌊C/N⌋ rounds. To see this, consider the
worst-case scenario where as many of the context-switches as
possible incur a new round: at least ⌊C/N⌋ of them originate
from the same thread and therefore at least ⌊C/N⌋ increase
the thread identifier of the current thread, which does not incur
a new round.

87

III. OPTIMAL UNBOUNDED DPOR

In this section, we recall the TruSt algorithm [12] in
Algorithm 2. With every execution graph G, TruSt keeps track
of a total order <G on G.E, which corresponds to the order
they were added to the graph.

Algorithm 2 TruSt’s exploration algorithm
1: procedure VERIFY(P)
2: VISITP(G∅)

3: procedure VISITP(G)
4: if ¬consistent(G) then return
5: switch a← nextP(G) do
6: case a = ⊥
7: return “Visited full execution graph G”
8: case a ∈ error

9: return “Visited erroneous execution G”
10: case a ∈ R

11: for w ∈ G.Wloc(a) do VISITP(SetRF(G, a,w))

12: case a ∈ W

13: VISITCOSP(G, a)
14: for r ∈ G.Rloc(a) s.t. ⟨r, a⟩ ̸∈ G.porf do
15: D ← {e ∈ G.E | r <G e ∧ ⟨e, a⟩ ̸∈ G.porf}
16: if ISMAXIMAL(G, {r} ∪D , a) then
17: VISITCOSP(SetRF(G|G.E\D , r, a), a)

18: case
19: VISITP(G)

20: procedure VISITCOSP(G, a)
21: for wp ∈ G.Wloc(a) do VISITP(SetCO(G,wp, a))

TruSt’s exploration of the execution of program P starts by
invoking VISITP on the empty execution graph. At each step,
TruSt checks that the current execution graph is inconsistent
and drops it if so (line 4). Otherwise, TruSt augments the
current execution with the next event a picked by the scheduler
(line 5), and proceeds differently depending on the type of a.
The interesting cases are when a is a read or a write.

In the case of a read event, TruSt considers all the executions
where a reads from some write event w in the same location
as a. (SetRF(G, a,w) modifies G so that a reads from w.)

In the case of a write event a, TruSt first considers every
possible co-placement for a (placing it directly after each write
wp to the same location as a via SetCO(G,wp, a), line 21).
Second, it considers revisiting each previously added read r
of the same location as a that does not causally precede a
(line 14). The revisit operation removes from the execution all
events added after r that do not causally precede a (line 17).

To perform the revisit, TruSt checks a maximality condition
for the set of events that would be removed from the execution
graph (line 16). Intuitively, ISMAXIMAL(G,S, a) checks if it
is possible to reconstruct G from the restriction of G to the
events of G.E \ S, by adding the events of S one by one
in the order prescribed by <G in a coherence-maximal way:
each read event must read from the co-maximal same-location

write, and each write must be added at the end of co. This
condition is necessary to guarantee optimality, i.e., no execu-
tion graph is explored twice. We omit the concrete definition
of ISMAXIMAL and refer the reader to Kokologiannakis et al.
[12] for details about this condition.

Assuming that nextP(.) always picks an event from the
leftmost available thread, we can prove that the steps of TruSt
are monotone w.r.t. to the rounds function, i.e., if VISITP(G)
invokes VISITP(G

′), then rounds(G) ≤ rounds(G′).
To prove this monotonicity, we need the following corollary

that follows directly from TruSt’s proof of correctness [13,
Prop A.22 (P4)]:

Corollary 1. Let G be a consistent execution visited by
Algorithm 2 and e be either the revisited read, if the last step
was a revisit, or the last event added, otherwise. Then, there
is no G.porf-maximal event e′ such that tid(e′) > tid(e).

Proposition 2. Assuming that nextP(.) always picks an event
from the leftmost available thread, if a call to VISITP(G)
directly calls VISITP(G

′), then rounds(G) ≤ rounds(G′).

Proof. For calls from lines 11 and 13, we immediately have
rounds(G) ≤ rounds(G′) from Prop. 1.

The remaining case is when the call to VISIT(P, G′) results
from a revisit at line 17. Let Ĝ be the execution that results
from G′ by removing the added write a and the revisited read
r, and S be the linearization of G.po on the events in G.E\Ĝ.E
in non-decreasing thread identifier order. Note that r is the first
event in S. From TruSt’s proof of correctness [13, Prop A.22
(P3)], G can be obtained from Ĝ by adding the missing events
in the order they appear in S in a coherence-maximal way. We
now consider two cases, depending on whether there exists a
trace τ of Ĝ with rounds(Ĝ) rounds such that tid(last(τ)) ≤
tid(r), where last(.) returns the last event of a trace.

If there is such a trace τ , then it is easy to see that τ++S is
a trace of G and rounds(τ ++S) = rounds(τ). Thus we have
rounds(G) ≤ rounds(τ ++ S) = rounds(τ) = rounds(Ĝ).
From monotonicity, we have rounds(Ĝ) ≤ rounds(G′), which
gives us the desired rounds(G) ≤ rounds(G′).

Otherwise, let τ̂ be a trace of Ĝ with rounds(Ĝ) rounds.
Again, τ̂ ++ S is a trace of G, but rounds(τ̂ ++ S) =
rounds(τ̂) + 1, because tid(last(τ̂)) ≤ tid(r). Since
rounds(G) ≤ rounds(τ̂ ++ S) and rounds(τ̂) = rounds(Ĝ),
showing that rounds(Ĝ) ≤ rounds(G′) − 1 suffices to prove
that rounds(G) ≤ rounds(G′).

Assume the opposite, i.e., rounds(Ĝ) ≥ rounds(G′) and let
K = rounds(G′). From monotonicity, rounds(Ĝ) ≤ K, and
thus rounds(Ĝ) = K. Let G′′ be the execution that results
from removing r from G′. Since Ĝ ⊑ G′′ ⊑ G′, from mono-
tonicity, it is also rounds(G′′) = K. From TruSt’s proof of
correctness [13, Prop A.22 (P9)], because a revisited r in G′,
tid(a) > tid(r). From Corollary 1 for G′, any event e′ with
tid(e′) > tid(r) is not G′.porf-maximal, and therefore the
only event e′ in G′′ with tid(e′) > tid(r) that is G′′.porf-
maximal is the write a. Any trace τ ′′ with K rounds must end
with a, otherwise we can remove a from τ ′′ and obtain a trace

88

τ̂ ′ of Ĝ with at most K (and therefore exactly K) rounds such
that tid(last(τ̂ ′)) ≤ tid(r), which contradicts the hypothesis.
Let τ ′ be a trace of G′ with K rounds. Removing r from τ ′

results in a trace τ ′′ of G′′ with at most K (and therefore
exactly K) rounds. Since τ ′′ ends with a, and r must be after
a in τ ′, it is τ ′ = τ ++ [r, a], for a trace τ of Ĝ. Therefore
rounds(τ ′) = rounds(τ)+1 (tid(a) > tid(r)). This leads to
a contradiction: rounds(Ĝ) = rounds(τ) = rounds(τ ′) − 1 =
rounds(G′)− 1 = rounds(Ĝ)− 1.

IV. OPTIMAL BOUNDED DPOR
Given Prop. 2, we can trivially obtain an algorithm that

explores all executions of a program P with up to k rounds.
Let ROUNDER be Algorithm 2 that, apart from consistency,
also checks whether rounds(G) ≤ k at line 4.

ROUNDER is sound, complete, and optimal. Soundness is
trivial because any execution that is not consistent or exceeds
the bound k is dropped. Completeness of ROUNDER, i.e.,
ROUNDER explores every consistent execution of P with up
to k rounds, follows from the completeness of TruSt and
Prop. 2. Optimality, i.e., no execution graph is explored twice,
is inherited from the TruSt algorithm because ROUNDER
explores a subset of the executions that TruSt does.

Theorem 1. ROUNDER is sound, complete, and optimal.

V. EXTENSIONS FOR WEAK MEMORY MODELS

While in the previous sections we have focused on sequen-
tially consistent executions, the framework can also be used for
weaker memory models, such as x86-TSO, PSO, and RC11. In
fact, TruSt is parametric in the choice of the memory model,
provided it respects some common assumptions, such as ruling
out porf cycles.

Our optimal bounding approach can be similarly generalized
to such memory models by choosing a bounding function that
validates Prop. 2. A sufficient condition is for the function
(a) to be monotone w.r.t. the prefix relation and (b) to not
be affected by the coherence maximal addition of an event.
To see this, note that any execution graph that TruSt visits in
order to reach a final execution graph Gf is a prefix of Gf

that is (possibly) extended with coherence-maximally added
events [19].

One suitable such function is the modification of Algo-
rithm 1 by changing G.sc to just G.porf. Another is to count
the number of simple sc cycles in an execution graph, or
the number of events participating in such cycles. It is also
possible to combine the results of multiple such functions by
any monotone operation (e.g., addition or to return a tuple).

VI. EVALUATION

We implemented ROUNDER on top of the GENMC tool
[15], which implements the TruSt algorithm. To evaluate
ROUNDER, we investigate (a) how many rounds are usually
enough to discover concurrency bugs (§ VI-A), and (b) how
efficient is ROUNDER for that number of rounds (§ VI-B).

Our evaluation shows that 2 rounds suffice to uncover
almost all concurrency bugs, and for a bound of 2, bounded
search is generally much faster that a plain DPOR algorithm.

TABLE I
ROUNDER’S SPEEDUP COMPARED TO GENMC

GENMC k = 2 k = 3
Benchmark Time (s) Speedup Speedup

bstack(5) 90.37 37.50 5.11
bstack(6) 859.83 104.35 9.89
bstack2(8) 174.72 95.48 9.84
bstack2(9) 730.50 243.50 19.37
dglm-queue(6) 105.58 9.36 2.17
dglm-queue(7) 589.54 22.49 3.88
dglm-oe(7) 22.23 3.01 1.02
dglm-oe(8) 33.33 3.60 1.11
dglm-fifo(7) 24.40 1.81 1.10
dglm-fifo(8) 40.48 1.88 0.83
ms-queue(6) 296.69 42.44 4.96
ms-queue(7) 148.64 34.09 4.61
ms-queue(8) 660.85 81.39 8.50
ms-oe(6) 242.88 23.13 4.26
ms-oe(7) 490.78 34.22 5.62
ttas-lock2(7) 28.13 7.99 2.12
ttas-lock2(8) 149.35 19.20 3.93
ttas-lock3 424.31 22.30 3.80

Experimental Setup: We conducted all experiments on a
Dell PowerEdge M620 blade system with two Intel Xeon E5-
2667 v2 CPU (8 cores @ 3.3 GHz) and 256GB of RAM. We
used LLVM 11.0.1 for GENMC and ROUNDER. All reported
times are in seconds. We set a timeout limit of 30 minutes.

A. Rounds and Bug Discovery

To evaluate how many rounds are sufficient to discover
concurrency bugs in practice, we run ROUNDER on the two
sets of benchmarks used in the evaluation of BUSTER [19].

For the first set of benchmarks consisting of programs from
SV-COMP [24] and SCTBench [25], ROUNDER discovered all
bugs with only two rounds, apart from one benchmark with
100 threads where it times out before discovering the bug.
ROUNDER managed to find one more bug than BUSTER before
timing out because of the significantly reduced overhead of the
bound calculation.

For the second set of benchmarks, consisting of concur-
rent data structures with induced bugs, ROUNDER discovered
again all bugs with two rounds, with the exception of two
benchmarks where it timed out, while BUSTER does not. The
reason for this is that the number of executions grows faster
as the round-robin bound increases compared to when the
preemption-bound increases.

B. Bounding Efficiency

To evaluate how efficient ROUNDER is, we compared its
execution time for bounds of two and three against the un-
bounded DPOR algorithm implemented in GENMC. We again
used a set of correct concurrent data structures as benchmarks.

Our results are summarized in Table I. We report the
execution time of GENMC and the speedup when run with
ROUNDER for bounds of two and three. In most benchmarks,
ROUNDER is significantly faster under both bound values.
For the “dglm-oe” and “dglm-fifo” benchmarks, little to no

89

speedup is observed because ROUNDER explores most to all
program executions for these small bounds.

In comparison to BUSTER, we note that the execution time
of ROUNDER grows faster as the bound increases. This hap-
pens because scheduling rounds are a coarser-grained bound-
ing metric than preemptions: one additional round typically
allows many more executions than one additional preemption.

VII. RELATED WORK AND CONCLUSIONS

In this paper, we have presented the first optimal bounded
DPOR algorithm. While bounding the number of round-
robin scheduling rounds in the context of DPOR is a novel
contribution of this paper, the bound itself is not new. It was
first used by Lal et al. [17] as a technical device to show
that preemption-bounded verification of concurrent pushdown
automata is decidable, and has since been used for related
decidability results.

Two other works have tried to integrate notions of concur-
rency bounding into DPOR algorithms, albeit nonoptimally.
Specifically, Musuvathi et al. [21] developed the BPOR al-
gorithm, which combines DPOR with a preemption-bound
search by weakening the reduction obtained by DPOR to avoid
exploring any executions with a larger number of preemptions
than the desired bound. As a result, their algorithm explores
redundant equivalent executions leading to poor performance,
which is often worse than the state of the art in unbounded
DPOR. More recently, Marmanis et al. [19] developed a
different sound approach for combining DPOR and PB by
allowing the exploration of executions that exceed by the
desired bound by a certain margin equal to the number
of threads in the program minus two. Their tool, BUSTER,
avoids any redundant exploration, and so is generally faster
than unbounded DPOR; it does, however, typically explore
a large number executions exceeding the bound, negatively
impacting its performance. Both approaches are further limited
by the need to determine whether a given execution graph
(Mazurkiewicz trace) exceeds the desired preemption bound,
which is an NP-complete problem [21].

A large body of work on DPOR devoted on coarser equiv-
alence relations [4, 6, 7, 10, 14] and on supporting weak
memory models [1, 3, 11, 14, 16]. These works are mostly
orthogonal to our extension over TruSt [12], and can likely be
integrated into ROUNDER.

Finally, Abdulla et al. [2] and Atig et al. [5] have proposed
bounds for the TSO and Power memory models, but being
based on preemption bounding, they are not very suitable for
integration with DPOR. In contrast, the proposed bounds of
§V, while coarser, can be integrated smoothly into ROUNDER.

ACKNOWLEDGMENTS

We would like to thank the anonymous FMCAD reviewers
for their feedback. This work has received funding from Ama-
zon and from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

REFERENCES

[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi
Atig, Bengt Jonsson, Carl Leonardsson, and Konstanti-
nos Sagonas. “Stateless model checking for TSO and
PSO”. In: TACAS 2015. Vol. 9035. LNCS. Berlin,
Heidelberg: Springer, 2015, pp. 353–367. DOI: 10.1007/
978- 3- 662- 46681- 0 28. URL: http: / /dx.doi .org/10.
1007/978-3-662-46681-0 28.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed
Bouajjani, and Tuan Phong Ngo. “Context-Bounded
Analysis for POWER”. In: TACAS 2017. Ed. by
Axel Legay and Tiziana Margaria. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 56–74. ISBN:
978-3-662-54580-5. DOI: 10.1007/978-3-662-54580-
5 4.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt
Jonsson, and Tuan Phong Ngo. “Optimal stateless
model checking under the release-acquire semantics”.
In: Proc. ACM Program. Lang. 2.OOPSLA (Oct.
2018), 135:1–135:29. ISSN: 2475-1421. DOI: 10.1145/
3276505. URL: http://doi.acm.org/10.1145/3276505.

[4] Pratyush Agarwal, Krishnendu Chatterjee, Shreya
Pathak, Andreas Pavlogiannis, and Viktor Toman.
“Stateless Model Checking Under a Reads-Value-From
Equivalence”. In: CAV 2021. Ed. by Alexandra Silva
and K. Rustan M. Leino. Cham: Springer International
Publishing, July 2021, pp. 341–366. ISBN: 978-3-030-
81685-8. DOI: 10.1007/978-3-030-81685-8 16.

[5] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro
Parlato. “Context-Bounded Analysis of TSO Systems”.
In: FPS 2014. Ed. by Saddek Bensalem, Yassine Lakh-
neck, and Axel Legay. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 21–38. ISBN: 978-3-642-
54848-2. DOI: 10.1007/978-3-642-54848-2 2.

[6] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlo-
giannis, Nishant Sinha, and Kapil Vaidya. “Data-centric
dynamic partial order reduction”. In: Proc. ACM Pro-
gram. Lang. 2.POPL (Dec. 2017), 31:1–31:30. ISSN:
2475-1421. DOI: 10 .1145 /3158119. URL: http : / /doi .
acm.org/10.1145/3158119.

[7] Krishnendu Chatterjee, Andreas Pavlogiannis, and Vik-
tor Toman. “Value-Centric Dynamic Partial Order Re-
duction”. In: Proc. ACM Program. Lang. 3.OOPSLA
(Oct. 2019). DOI: 10.1145/3360550. URL: https://doi.
org/10.1145/3360550.

[8] Katherine E. Coons, Madan Musuvathi, and Kathryn
S. McKinley. “Bounded Partial-Order Reduction”. In:
OOPSLA 2013. Indianapolis, Indiana, USA: ACM,
2013, pp. 833–848. ISBN: 9781450323741. DOI: 10 .
1145/2509136.2509556. URL: https://doi.org/10.1145/
2509136.2509556.

[9] Cormac Flanagan and Patrice Godefroid. “Dynamic
partial-order reduction for model checking software”.
In: POPL 2005. New York, NY, USA: ACM, 2005,

90

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
http://doi.acm.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-642-54848-2_2
https://doi.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556

pp. 110–121. DOI: 10 . 1145 / 1040305 . 1040315. URL:
http://doi.acm.org/10.1145/1040305.1040315.

[10] Jeff Huang. “Stateless model checking concurrent pro-
grams with maximal causality reduction”. In: PLDI
2015. New York, NY, USA: ACM, 2015, pp. 165–174.
DOI: 10.1145/2737924.2737975. URL: http://doi.acm.
org/10.1145/2737924.2737975.

[11] Michalis Kokologiannakis, Ori Lahav, Konstantinos
Sagonas, and Viktor Vafeiadis. “Effective stateless
model checking for C/C++ concurrency”. In: Proc.
ACM Program. Lang. 2.POPL (Dec. 2017), 17:1–17:32.
ISSN: 2475-1421. DOI: 10 .1145/3158105. URL: http :
//doi.acm.org/10.1145/3158105.

[12] Michalis Kokologiannakis, Iason Marmanis, Vladimir
Gladstein, and Viktor Vafeiadis. “Truly stateless, opti-
mal dynamic partial order reduction”. In: Proc. ACM
Program. Lang. 6.POPL (Jan. 2022). DOI: 10 . 1145 /
3498711. URL: https://doi.org/10.1145/3498711.

[13] Michalis Kokologiannakis, Iason Marmanis, Vladimir
Gladstein, and Viktor Vafeiadis. “Truly Stateless, Opti-
mal Dynamic Partial Order Reduction (supplementary
material)”. In: (Jan. 2022). URL: https://plv.mpi- sws.
org/genmc.

[14] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. “Model checking for weakly consistent li-
braries”. In: PLDI 2019. New York, NY, USA: ACM,
2019. DOI: 10.1145/3314221.3314609.

[15] Michalis Kokologiannakis and Viktor Vafeiadis.
“GenMC: A model checker for weak memory
models”. In: CAV 2021. Ed. by Alexandra Silva and
K. Rustan M. Leino. Vol. 12759. LNCS. Springer, 2021,
pp. 427–440. DOI: 10.1007/978-3-030-81685-8 20.

[16] Michalis Kokologiannakis and Viktor Vafeiadis. “HMC:
Model checking for hardware memory models”. In:
ASPLOS 2020. ASPLOS ’20. Lausanne, Switzerland:
ACM, 2020, pp. 1157–1171. ISBN: 9781450371025.
DOI: 10.1145/3373376.3378480. URL: https://doi.org/
10.1145/3373376.3378480.

[17] Akash Lal and Thomas Reps. “Reducing Concurrent
Analysis Under a Context Bound to Sequential Anal-
ysis”. In: CAV 2008. Ed. by Aarti Gupta and Sharad
Malik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 37–51. ISBN: 978-3-540-70545-1.

[18] Leslie Lamport. “How to Make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Programs”.
In: IEEE Trans. Computers 28.9 (Sept. 1979), pp. 690–
691. DOI: 10.1109/TC.1979.1675439. URL: http://dx.
doi.org/10.1109/TC.1979.1675439.

[19] Iason Marmanis, Michalis Kokologiannakis, and Vik-
tor Vafeiadis. “Reconciling Preemption Bounding with
DPOR”. In: TACAS 2023. Ed. by Sriram Sankara-
narayanan and Natasha Sharygina. Cham: Springer Na-
ture Switzerland, 2023, pp. 85–104. ISBN: 978-3-031-
30823-9.

[20] Antoni Mazurkiewicz. “Trace Theory”. In: PNAROMC
1987. Vol. 255. LNCS. Berlin, Heidelberg: Springer,

1987, pp. 279–324. DOI: 10.1007/3-540-17906-2 30.
URL: http://dx.doi.org/10.1007/3-540-17906-2 30.

[21] Madalan Musuvathi and Shaz Qadeer. Partial-Order
Reduction for Context-Bounded State Exploration.
Tech. rep. MSR-TR-2007-12. Microsoft Research,
2007. URL: https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/tr-2007-12.pdf.

[22] Madanlal Musuvathi and Shaz Qadeer. “Iterative Con-
text Bounding for Systematic Testing of Multithreaded
Programs”. In: PLDI 2007. San Diego, California, USA:
ACM, 2007, pp. 446–455. ISBN: 9781595936332. DOI:
10.1145/1250734.1250785. URL: https: / /doi .org/10.
1145/1250734.1250785.

[23] Shaz Qadeer and Jakob Rehof. “Context-Bounded
Model Checking of Concurrent Software”. In: TACAS
2005. Ed. by Nicolas Halbwachs and Lenore D. Zuck.
Vol. 3440. LNCS. Springer, 2005, pp. 93–107. DOI:
10 .1007/978- 3- 540- 31980- 1\ 7. URL: https : / /doi .
org/10.1007/978-3-540-31980-1%5C 7.

[24] SV-COMP. Competition on Software Verification (SV-
COMP). 2019. URL: https://sv-comp.sosy-lab.org/2019/
(visited on 03/27/2019).

[25] Paul Thomson, Alastair F. Donaldson, and Adam Betts.
“Concurrency testing using schedule bounding: an em-
pirical study”. In: PPoPP 2014. ACM, 2014, pp. 15–28.
DOI: 10.1145/2555243.2555260. URL: https://doi.org/
10.1145/2555243.2555260.

91

https://doi.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
https://doi.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
https://doi.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260

	Introduction
	Bounding the Number of Scheduling Rounds
	Program Traces and Execution Graphs
	Round-Robin Rounds
	Rounds versus Context Switches

	Optimal Unbounded DPOR
	Optimal Bounded DPOR
	Extensions for Weak Memory Models
	Evaluation
	Rounds and Bug Discovery
	Bounding Efficiency

	Related Work and Conclusions

