Specifying and Verifying Persistent Libraries

Léo Stefanesco!, Azalea Raad?, and Viktor Vafeiadis!

L MPI-SWS, Kaiserslautern, Germany
2 Imperial College, London, United Kingdom

Abstract. We present a general framework for specifying and verifying
persistent libraries, that is, libraries of data structures that provide some
persistency guarantees upon a failure of the machine they are execut-
ing on. Our framework enables modular reasoning about the correctness
of individual libraries (horizontal and vertical compositionality) and is
general enough to encompass all existing persistent library specifications
ranging from hardware architectural specifications to correctness con-
ditions such as durable linearizability. As case studies, we specify the
FIiT and Mirror libraries, verify their implementations over Px86, and
use them to build higher-level durably linearizable libraries, all within
our framework. We also specify and verify a persistent transaction library
that highlights some of the technical challenges which are specific to per-
sistent memory compared to weak memory and how they are handled by
our framework.

1 Introduction

Persistent memory (PM), also known as non-volatile memory (NVM), is a new
kind of memory, which can be used to extend the capacity of regular RAM,
with the added benefit that its contents are preserved after a crash (e.g. a power
failure). Employing PM can boost the performance of any program with access
to data that needs to survive power failures, be it a complex database or a plain
text editor.

Nevertheless, doing so is far from trivial. Data stored in PM is mediated
through the processors’ caching hierarchy, which generally does not propagate
all memory accesses to the PM in the order issued by the processor, but rather
performs these accesses on the cache and only propagates them to the memory
asynchronously when necessary (i.e. upon a cache miss or when the cache has
reached its capacity limit). Caches, moreover, do not preserve their contents upon
a power failure, which results in rather complex persistency models describing
when and how stores issued by a program are guaranteed to survive a power
failure. To ensure correctness of their implementations, programmers have to
use low-level primitives, such as flushes of individual cache lines, fences that
enforce ordering of instructions, and non-temporal stores that bypass the cache
hierarchy.

These primitives are often used to implement higher-level abstractions, pack-
aged into persistent libraries, i.e. collections of data structures that must guar-
antee to preserve their contents after a power failure. Persistent libraries can be

2 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

thought of as the analogue of concurrent libraries for persistency. And just as
concurrent libraries require a specification, so do persistent libraries.

The question naturally arises: what is the right specification for persistent
libraries? Prior work has suggested a number of candidate definitions, such as
durable linearizability, buffered durable linearizability [17], and strict lineariz-
ability [1], which are all extensions of the well-known correctness condition for
concurrent data structures (i.e. linearizability [15]). In general, these definitions
stipulate the existence of a total order among all executed library operations,
a contiguous prefix of which is persisted upon a crash: the various definitions
differ in exactly what this prefix should be, e.g. whether it is further constrained
to include all fully executed operations.

Even though these specifications have a nice compositionality property, we
argue that none of them are the right specification pattern for every persistent
concurrent library. While for high-level persistent data structures, such as stacks
and queues, a strong specification such as durable or strict linearizability would
be most appropriate, this is certainly not the case for a collection of low-level
primitives. Take, for instance, a library whose interface simply exposes the ex-
act primitives of the underlying platform: memory accesses, fences and flushes.
Their semantics, recently formalized in [30,19,28] in the case of the Intel-x86
architecture and in [31,5] in the case of the ARMvS8 architecture, quite clearly
do not fit into the framework of the durable linearizability definitions. More
generally, there are useful concurrent libraries (especially in the context of weak
memory consistency) that are not linearizable [26]; it is, therefore, conceivable
that making those libraries persistent will require weak specifications.

Another key problem with attempting to specify persistent libraries modu-
larly is that they often break the usual abstraction boundaries. Indeed, some
models such as epoch persistency [6,24] provide a global persistency barrier that
affects all memory locations, and therefore all libraries using them. Such global
operations also occur at higher abstraction layers: persistent transactional li-
braries often require memory locations to be registered with the library in order
for them to be used inside transactions. As such, to ensure compatibility with
such transactional libraries, implementers of other libraries must register all lo-
cations they use and ensure that any component libraries they use do the same.

In this paper, we introduce a general declarative framework that addresses
both of these challenges. Our framework provides a very flexible way of specifying
persistent libraries, allowing each library to have a very different specification—
be it durable linearizability or a more complex specification in the style of the
hardware architecture persistency models. Further, to handle libraries that have
a global effect (such as persistent barriers above) or, more generally, that make
some assumptions about the internals of all other libraries, we introduce a tag
system, allowing us to describe these assumptions modularly.

Our framework supports both horizontal and vertical compositionality. That
is, we can verify an execution containing multiple libraries by verifying each
library separately (horizontal compositionality). Moreover, we can completely
verify the implementation of a library over a set of other libraries using the

Specifying and Verifying Persistent Libraries 3

specifications of its constituent libraries without referring to their implemen-
tations (vertical compositionality). To achieve the latter, we define a semantic
notion of substitution in terms of execution graphs, which replaces each library
node by a suitably constrained set of nodes (its implementation).

For simplicity, in §2, we develop a first version of our framework over the
classical notion of an execution history [15], which we extend with a notion
of crashes. This basic version of our framework includes full support for weak
persistency models but assumes an interleaving semantics of concurrency; i.e.
sequential consistency (SC) [23].

Subsequently, in §3 we generalise and extend our framework to handle weak
consistency models such as x86-TSO [32] and RC11 [22], thereby allowing us
to represent hardware persistency models such as Px86 [30] and PARMvS [31],
in our framework. To do so, we rebase our formal development over execution
graphs using Yacovet [26] as a means of specifying the consistency properties of
concurrent libraries.

We illustrate the utility of our framework by encoding in it a number of exist-
ing persistency models, ranging from actual hardware models such as Px86 [30],
to general-purpose correctness conditions such as durable linearizability [17]. We
further consider two case studies, chosen to demonstrate the expressiveness of
our framework beyond the kind of case studies that have been worked out in the
consistency setting.

First, in §4 we use our framework to develop the first formal specifications
of the FIiT [35] and Mirror [10] libraries and establish the correctness of not only
their implementations against their respective specifications, but also their asso-
ciated constructions for turning a linearizable library into a durably linearizable
one. This generic theorem is new compared to the case studies in [26], and lever-
ages our ‘semantic’ approach in §3. Moreover, our proofs of these constructions
are the first to establish this result in a weak consistency setting.

Second, in §5 we specify and prove an implementation of a persistent trans-
actional library Lirans, which provides a high-level construction to persist a set of
writes atomically. The Limans library illustrates the need for a ‘well-formedness’
specification (in addition to its consistency and persistency specifications) that
requires clients of the Lyans library to ensure e.g. that Lians writes appear only
inside transactions. Moreover, it demonstrates the use of our tagging system to
enable other libraries to interoperate with it.

Contributions and Outline. The remainder of this article is organised as

follows.

82 We present our general framework for specifying and verifying persistent
libraries in the strong sequential consistency setting.

§3 We further generalise our framework to account for weaker consistency mod-
els.

§4 We use our framework to develop the first formal specifications of the FIiT
and Mirror libraries, verify their implementations against their specifications
and prove their general construction theorems for turning linearizable li-
braries to durably linearizable ones.

4 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

85 We specify a persistent transactional library Lians, develop an implemen-
tation of Lians (over the Intel-x86 architecture) and verify it against its
specification. We then consider two case studies of vertical and horizontal
composition in our framework using Liyans.

We conclude and discuss related and future work in §6. The full proofs of all
theorems stated in the paper are given in the technical appendix.

2 A General Framework for Persistency

We present our framework for specifying and verifying persistent libraries, which
are collections of methods that operate on durable data structures. Following
Herlihy et al. [15], we will represent program histories over a collection of libraries
A as A-histories, i.e. as sequences of calls to the methods of A, which we will then
gradually enhance to model persistency semantics. Throughout this section, we
assume an underlying sequential consistency semantics; in §3 we will generalize
our framework to account for weaker consistency models.

In the following, we assume the following infinite domains: Meth of method
names, Loc of memory locations, Tid of thread identifiers, and Val O LocUTid
of values. We let m range over method names, x over memory locations, t over
thread identifiers, and v over values. An optional value v; € Val, is either a
value v € Val or L ¢ Val.

2.1 Library Interfaces

A library interface declares a set of method invocations of the form m(v). Some
methods are are designated as constructors; a constructor returns a location
pointing to the new library instance (object), which is passed as an argument to
other library methods. An interface additionally contains a function, loc, which
extracts these locations from the arguments and return values of its method
calls.

Definition 1. A library interface L is a tuple (M, M., loc), where the set of
method invocations M is a subset of P (Meth x Val*), M. C M is the set of
constructors, and loc : M x Val; — P (Loc) is the location function.

Ezample 1 (Queue library interface). The queue library interface, Lqueue, has
three methods: a constructor QueueNew(), which returns a new empty queue;
QueueEnq(z,v) which adds value v to the end of queue z; and QueueDeq(x)
which removes the head entry in queue z. We define loc(QueueNew(),z) =
loc(QueueEnqg(x,), -) = loc(QueueDeq(x),) = {z}.

A collection A is a set of library interfaces with disjoint method names. When
A consists of a single library interface L, we often write L instead of {L}.

Specifying and Verifying Persistent Libraries 5

2.2 Histories

Given a collection A, an event e € Events(A) of A is either a method invocation
m(v); with m(v) € Uy, L-M and t € Tid or method response (return) event
ret(v);.

A A-history is a sequence of events of A whose projection to each thread is
an alternating sequence of invocation and return events which starts with an
invocation.

Definition 2 (Sequential event sequences). A sequence of events e; .. .ey,
1s sequential if all its odd-numbered events ey, es, ... are invocation events and
all its even-numbered events es, ey, ... are return events.

Definition 3 (Histories). A A-history is a finite sequence of events H €
Events(A)*, such that for every thread t, the sub-sequence H[t] comprising only
of t events is sequential. The set Hist(A) denotes the set of all A-histories.

When clear from the context, we refer to occurrences of events in a history by
their corresponding events. For example, if H = e; ...e, and i < j, we say that e;
precedes e; and that e; succeeds e;. Given an invocation m(v) in H, its matching
return (when it exists) is the first event of the form ret(v); that succeeds it (they
share the same thread). A call is a pair m(v)y:v) of an invocation and either its
matching return v, € Val (complete call) or v = L (incomplete call).

A library (specification) comprises an interface and a set of consistent histo-
ries. The latter captures the allowed behaviors of the library, which is a guarantee
made by the library implementation.

Definition 4. A library specification (or simply a library) L is a tuple (L,S.),
where L is a library interface, and Sc C Hist(L) denotes its set of consistent
histories.

2.3 Linearizability

Linearizability [15] is a standard way of specifying concurrent libraries that have
a sequential specification S, denoting a set of finite sequences of complete calls.
Given a sequential specification S, a concurrent library L is linearizable under S
if each consistent history of L can be linearized into a sequential one in S, while
respecting the happens before order, which captures causality between calls. It
is sufficient to consider consistent executions because inconsistent executions
are, by definition, guaranteed by the library to never happen. Happens-before is
defined as follows.

Definition 5 (Happens-Before). A method call C; happens before another
method call Cy in a history H, written C1 <pg Cy if the response of Cy precedes
the invocation of Co in H. When the choice of H is clear from the context, we
drop the H subscript from <.

6 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

A history H is linearizable under a sequential specification S if there exists a
linearization (in the order-theoretic sense) of <y that belongs to S. The subtlety
is the treatment of incomplete calls, which may or may not have taken effect. We
write compl(H) for the set of histories obtained from a history H by appending
zero or more matching return events. We write trunc(H) for the history obtained
from H by removing its incomplete calls. We can then define linearizability as
follows [14].

Definition 6. A sequential history Hy is a sequentialization of a history H if
there exists H' € trunc(compl(H)) such that Hy is a linearization of <pr. A
history H is linearizable under S if there exists a sequentialization of H that
belongs to S. A library L is linearizable under S if all its consistent histories are
linearizable under S.

For instance, we can specify the notion of linearizable queues as those that
linearizable under the following sequential queue specification, Squeye-

Ezample 2 (Sequential queue specification). The behaviors of a sequential queue,
SQueue, 1S expressed as a set of sequential histories as follows. Given a his-
tory H of Lquewe and a location z € Loc, let H[z] denote the sub-history
containing calls ¢ such that loc(c) = {x}. We define Squeye as the set of all
sequential histories H of Lqueue such that for all z € Loc, H|[z] is of the form
QueueNew()y,:x €1 -+ en, where each QueueDeq call in e; --- e, returns the
value of the k-th QueueEnq call, if it exists and precedes the QueueDeq, where k
is the number of preceding QueueDeq calls returning non-null values; otherwise,
it returns null.

2.4 Adding Failures

Our framework so far does not support reasoning about persistency as it lacks
the ability to describe the persistent state of a library after a failure. Our first
extension is thus to extend the set of events of a collection, Events(A), with
another type of event, a crash event 7.

Crash events allow us to specify the durability guarantees of a library. For
instance, a library that does not persist any of its data may specify that a
history with crash events is consistent if all of its sub-histories between crashes
are (independently) consistent. In other words, in such a library, the method
calls before a crash have no effect on the consistency of the history after the
crash. We modify the definition of happens-before accordingly by treating it
both as an invocation and a return event. We also assume that, after a crash,
the thread ids of the new threads are distinct from that of all the pre-crash
threads. For libraries that do persist their data, a useful generic specification is
durable linearizability [17], defined as follows.

Definition 7. Given a history H, let ops(H) denote the sub-history obtained
from H by removing all its crash markers. A history H is durably linearizable
under S if there exists a sequentialization Hy of ops(H) such that Hy € S.

Specifying and Verifying Persistent Libraries 7

Intuitively, this ensures that operations persist before they return, and they
persist in the same order as they take effect before a crash.

Although durable linearizability can specify a large range of persistent data-
structures, it can be too strong. For example, consider a (memory) register li-
brary Lureg that only guarantees that writes to the same location are persisted
in the order they are observed by concurrent reads. The L,eg methods comprise
RegNew() to allocate a new register, RegWrite(z, v) to write v to register x, and
RegRead(x) to read from register . The sequential specification Swreg is simple:
once a register is allocated, a read R on z returns the latest value written to z,
or 0 if R happens before all writes. The associated durable linearizability speci-
fication requires that writes be persisted in the linearization order; however, this
is often not the case on existing hardware, e.g. in Px86 (the Intel-x86 persistency
model) [30].

A more relaxed and realistic specification would consider two linearizations
of the events: the standard volatile order < and a persistent order nvo expressing
the order in which events are persisted. The next sections will handle this more
refined model, this paragraph only gives a quick tastes of the kind of models that
are implemented by hardware. To capture the same-location guarantees, we stip-
ulate a per-location ordering on writes that is respected by both linearizations.
Specifically, we require an ordering of the write calls such that for all lo-
cations z: 1) restricting to x, written mo,, totally orders writes to x; and
2) z €< and + C nvo. Given a history H, we can then combine these two
linearizations by using < after the last crash and nvo before.

Formally, a history H with n—1 crashes can be decomposed into n (crash-
free) eras;i.e. H=Hy -4 ---4 - H, where each H; is crash-free. Let us write <;
for < N(H; x H;) and so forth. We then consider k-sequentializations of the form
Hé“ = Hél) . ~Hék_1) . Hék), where ngk) is a sequentialization of Fj w.r.t. <
and Hél) is a sequentialization of F; w.r.t. nvo;, for ¢ < k. We can now specify
our weak register library as follows, where H comprises n eras:

H € Lyreg-Sc <= Yk <n.3H} k-seq. of H. Hf € Syreg

Ezample 3. The following history is valid according to this specification but not
according to the durably linearizable one:

I/Vt1 (xv 1)'Wt2 (Z/, 1) 'Rt?, (y)'rEtt?, (1)'Rt3 (x) 'ret’ts (0) é 'Rt4 (y) 'rEtt4 (0)'Rt4 (x) 'ret’t4 (1)

While the writes to = (Wi, (z,1)) and y (W, (y,1)) are executing, thread ts
observes the new value (1) of y but the old value (0) of x; i.e. < must order
Wk, (y, 1) before Wy, (z,1). By contrast, after the crash the new value (1) of =
but the old value of y (0) is visible; i.e. nvo must order the two writes in the
opposite order to < (W4, (x,1) before Wi, (y, 1)).

Persist Instructions. The persistent registers described above are too weak
to be practical, as there is no way to control how writes to different locations are
persisted. In realistic hardware models such as Px86, this control is afforded to
the programmer using per-location persist instructions (e.g. CLFLUSH), ensuring

8 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

that all writes on a location x persist before a write-back on z. Here, we consider
a coarser (stronger) variant, denoted by PFENCE, that ensures that all writes
(on all locations) that happen before a PFENCE are persisted. Later in §3 we
describe how to specify the behavior of per-location persist operations.

Formally, we specify PFENCE by extending the specification of L,eg as follows:
given history H, write call ¢,, and PFENCE event ¢y, if ¢,, < ¢y, then (cy, cy) €
nvo.

Ezxample 4. Consider the history obtained from example 3 by adding a PFENCE:

Wi1 (1’, 1) : WiQ (y7 1)) th (y) ’ reti3(1)) Ri3 (x) : rettz (0) : PFENCEt4 O ’ I‘eti4() : é :
R, (y) - rety, (0) - Rey () - rety, (1)

This history is no longer consistent according to the extended specification of
Lwreg: as PFENCE has completed (returned), all its <-previous writes must have
persisted and thus must be visible after the crash (which is not the case for

Wt2 (y’ 1))

2.5 Adding Well-formedness Constraints

Our next extension is to allow library specifications to constrain the usage of
the library methods by the client of the library. For example, a library for a
mutual exclusion lock may require that the “release lock” method is only called
by a thread that previously acquired the lock and has not released it in between.
Another example is a transactional library, which may require that transac-
tional read and write methods are only called within transactions, i.e. between
a “transaction-begin” and a “transaction-end” method call.

We call such constraints library well-formedness constraints, and extend the
library specifications with another component, Sy¢ C Hist(L), which records
the set of well-formed histories of the library. Ensuring that a program produces
only well-formed histories of a certain library is an obligation of the clients of
that library, so that the library implementation can rely upon well-formedness
being satisfied.

2.6 Tags and Global Specifications

The goal of our framework is not only to specify libraries in isolation, but also to
express how a library can enforce persistency guarantees across other libraries.
For example, consider a library Li.ans for persistent transactions, where all op-
erations wrapped within a transaction persist together atomically; i.e. either all
or none of the operations in a transaction persist.

The Lirans methods are: PTNewReg to allocate a register that can be accessed
(read/written) within a transaction; PTBegin and PTEnd to start and end a trans-
action, respectively; PTRead(x) and PTWrite(x, v) to read from and write to Lirans
register x, respectively; and PTRecover to restore the atomicity of transactions
whose histories were interrupted by a crash.

Specifying and Verifying Persistent Libraries 9

Consider the snippet below, where the PEng(q, 33) (enqueuing 33 into per-
sistent queue q) and PSetAdd(s, 77) (adding 77 to persistent set s) are wrapped
within an Lians transaction and thus should take effect atomically and at the
latest after the end of the call to PTEnd.

PTBegin();
PEnq(q, 33);
PSetAdd(s, 77);

PTEnd();

Such guarantees are not offered by existing hardware primitives e.g. on Intel-
x86 or ARMv8 [30,31] architectures. As such, to ensure atomicity, the persis-
tent queue and set implementations cannot directly use hardware reads/writes;
rather, they must use those provided by the transactional library whose imple-
mentation could use e.g. an undo-log to provide atomicity.

Our framework as described so far cannot express such cross-library persis-
tency guarantees. The difficulty is that the transactional library relies on other
libraries using certain primitives. This, however, is against the spirit of compo-
sitional specification, which precludes the transactional library from referring to
other libraries (e.g. the queue or set libraries). Specifically, there are two chal-
lenges. First, both well-formedness requirements and consistency guarantees of
Ltrans must apply to any method call that is designed to use (transitively) the
primitives of Lyans. Second, we must formally express atomicity (“all operations
persist atomically”), without Lians knowing what it means for a method of an
arbitrary library to persist. In other words, Liyans needs to introduce an abstract
notion of ‘having persisted’ for an operation, and guarantee that all methods in
a transaction ‘persist’ atomically.

To remedy this, we introduce the notion of tags. Specifically, to address the
first challenge, the transactional library provides the tag T to designate those
operations that are ‘transaction-aware’ and as such must be used inside a trans-
action. To address the second challenge, the transaction library provides the
tag PY, denoting an operation that has abstractly persisted. The specification
of Lirans then guarantees that all operations tagged with T inside a transaction
persist atomically, in that either they are all tagged with P of none of them
are. Dually, using the well-formedness condition, Lians requires that all oper-
ations tagged with T appear inside a transaction. Note that as the persistent
queue and set libraries tag their operations with T, verifying their implementa-
tions incurs related proof obligations; we will revisit this later when we formalize
the notion of library implementations.

Remark 1 (Why bespoke persistency?). The reader may question why ‘having
persisted’ is not a primitive notion in our framework, as in an existing model of
Px86 [19] where histories track the set P of persisted events. This is because asso-
ciating a Boolean (‘having persisted’) flag with an operation may not be sufficient
to describe whether it has persisted. To see this, consider a library Ly, with op-
erations Write(z,,r) (writing (I,r) to pair z), Readl(x) and Readr(z) (reading
the left and right components of z, respectively). Suppose Lpair is implemented

10 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

by storing the left component in an Li,ns register and the right component in
a Luwreg register. The specification of Ly, would need to track the persistence of
each component separately, and hence a single set P of persisted events would
not suffice.

Let us see how libraries can use these tags in global well-formedness and
consistency specifications. The dilemma is, on the one hand, the specification
of Lirans needs to refer to events from other libraries, but on the other hand, it
should not depend on other libraries to preserve encapsulation. Our idea is to
anonymize these external events such that the global specification depends only
on their relevant tags. A library should only rely on the tags it introduces itself,
as well as the tags of the libraries it uses.

We now revisit several of our definitions to account for tags and global spec-
ifications. A library interface now additionally holds the tags it introduces as
well as those it uses. For instance, the Lirans library described above depends on
no tag and introduces tags T and P".

Definition 8 (Interfaces). An interface is a tuple L = (M, M, loc, TAGSpew,
TAGSdep), where M, Mg, and loc are as in Def. 1, TAGSnew 15 the set of tags
L introduces, and TAGSqep is the set of tags L uses. The set of tags usable by L
is TAGS(L) £ L.TAGSpew U L. TAGSdep-

We next define the notion of tagged method invocations (where a method in-
vocation is associated with a set of tags). Hereafter, our notions of events, history
(and so forth) use tagged method invocations (rather than methods invocations).

Definition 9. Given a library interface L, a tagged method invocation is of the
form m(v)L:v,, where the new component is a set of tags T C TaGs(L).

A global specification of a library interface L is a set of histories with some
“anonymized” events. These are formalized using a designated library interface,
*7, (with a single method «), which can be tagged with any tag from TAGs(L).

Definition 10. Given an interface L, the interface xr, is {{x},,0,0, Tacs(L)).

Now, given any history H € Hist({L} U A), let 7y (H) € Hist({L,*1}) denote
the anonymization of H such that each non-L event e in H labelled with a
method m(v){:vy of L’ € A is replaced with x{ of xy, if T' # () and is discarded
otherwise. It is then straightforward to extend the notion of libraries with global
specifications as follows.

Definition 11. A library specification L is a tuple (L, Asags, Sc, Swr, Te, Twe)
where L, Sc and Sy are as in Def. 4; Tc and Tor C Hist({L,x1,}) are the globally
consistent and globally well-formed histories, respectively; and Atags denotes the
tag-dependencies, i.e. a collection of libraries that provide all tags that L uses:

L. TAGSqep C UL,EAtags L. TAGSnhew. Both Tur and Te contain the empty history.

In the context of a history, we write |T| for the set of events or calls tagged
with the tag T (we consider a return event tagged the same way as its unique
matching invocation).

Specifying and Verifying Persistent Libraries 11

For the Lians library, the globally well-formed set Lians-Tws comprises histo-
ries H such that for each thread t, E[t] restricted to PTBegin, PTEnd and events
of the form T-tagged events is of the form described by the regular expression
(PTBegin.|T[*.PTEnd)*. In particular, transaction nesting is disallowed in our
simple Lians library.

To define global consistency, we need to know when two operations are part
of the same transaction. Given a history H, we define the same-transaction
relation, strans, relating pairs of e, ¢’ € |T| UPTEnd UPTBegin executed by the
same thread t such that there is no PTBegin or PTEnd executed by t between
them. The set Liyans-7c of globally consistent histories contains histories H such
that V(e,e’) € strans,e € |P"] < ¢’ € |PY], and all completed PTEnd calls are
in [P"]. Since the PTEnd call is related to all events inside its transaction, this
specification does express that (1) a transaction persist by the time the call to
PTEnd finishes and (2) all events persist atomically.

Finally, we need to define the local consistency predicate Lirans.Sc describing
the behavior of the registers provided by Lians. This is where the we define the
concrete meaning of ‘having persisted’ for these registers. Let S be the sequential
specification of a register. Let H € Hist(Lyans) be a history decomposed into &
eras as Hy -4 -Hy -4 --+-4 - Hy. Then H € Lyans.Sc iff all events are tagged
with T, and there exists a <-linearization H, of ((H1 4 Ho- g4 -Hp1)N
[P'"]) - Hy such that H, € S, where [P"] is the set of events of H tagged
with P'. In other words, a write operation is seen after a crash iff it has persisted.
The requirement that such operations must appear within transactions and the
guarantee that they persist at the same time in a transaction are covered by the
global specifications.

2.7 Library Implementations

We have described how to specify persistent libraries in our framework, and
next describe how to implement persistent libraries. This is formalized by the
judgment A + I : L, stating that I is a correct implementation of library L
and only uses calls in the collection of libraries A. As usual in such ‘layered’
frameworks [13,26], the base layer, which represents the primitives of the hard-
ware, is specified as a library, keeping the framework uniform. This judgement
can be composed vertically as follows, where I[I;] denotes replacing the calls
to library L in I with their implementations given by I, (which in turn calls
libraries A’):

ALFT:L ArIL:L
AN I

As we describe later, this judgment denotes contexrtual refinement and is im-
practical to prove directly. We define a stronger notion that is compositional
and more practical to use.

Definition 12 (Implementation). Given a collection A of libraries and a li-
brary L, an implementation I of L over A is a map, I : LM xVal, —

12 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

globals log := Q.new() method PTRecover() :=
method PTNewReg() := alloc(1) let w = Q.new() in
method PTRead(l) := read(l) while (x := Q.pop(log))
method PTWrite(l, v) := if (x = COMMITTED)
Q.append(log, (I, v)); w = Q.new();
write (1, v) else
method PTBegin() := FENCE(); Q.append(w, x);
method PTEnd() := while ((1, v) = Q.pop(log)) {
Append(log, COMMITTED); write(l, v); }
FENCE()

Fig. 1. Implementation of Lians

P(Hist(A)), such that it is downward-closed: 1) if H € I(m(v)t,v1) and H' is a
prefix of H, then H' € I(m(v), L); and 2) each I(m(v)y:vy) history only contain
events by thread t.

Intuitively, I(m(v),v) contains the histories corresponding to a call m(v) with
outcome v, where v; = 1 denotes that the call has not terminated yet and
vy = v € Val denotes the return value. Downward-closure means that an imple-
mentation contains all partial histories. We use a concrete programming language
to write these implementations; its syntax and semantics are standard and given
in the appendix [34].

For example, the implementation of Lians over Lyreg and Lqueue is given in
Fig. 1. The idea is to keep an undo-log as a persistent queue that tracks the
values of the variables before the transaction begins. At the end of a transaction,
and after all its writes have persisted, we write the sentinel value COMMITTED to
the log to indicate that the transaction was completed successfully. After a crash,
the recovery routine PTRecover returns the undo-log and undoes the operations
of incomplete transactions by writing their previous values.

Histories and Implementations. An implementation I of L over A is
correct if for all histories H € Hist({L} U A’) that use library L as well as
those in A’, and all histories H' obtained by replacing calls to L methods with
their implementation in I, if H’ is consistent, then so is H (it satisfies the L
specification).

We define the action H -1 of an implementation I on an abstract history H in
a ‘relational’ way: H' € H-I when we can match each operation m’(v) in H' with
some operation f(m/(v)) in H in such a way that the collection f~!(m(v)ev,)
of operations corresponding to some call m(v)y:v, in H agrees with I(m(v)q:vy).

Definition 13. Let I be an implementation of L over A; let H € Hist({L} UA’)
and H' € Hist(A U A’) be two histories. Given a map f : {1,...,|H'|} —
{1,...,|H|}, H (I, f)-matches H if the following hold:

1. f is surjective;

Specifying and Verifying Persistent Libraries 13

2. for all invocations of H, if m(v)y ¢ L.M, then f(m(v)y) = m(v)y;
3. for all threads t, if e; precedes eq in H'[t], then f(e1) precedes f(es) in HI[t];

4. for all calls m(v):vy of H, the set f~1(m(v)) corresponds to a substring H,
of H'[t] and H], € I(m(v)yvy), where vy is the (optional) return value
of m(v); in H.

The action of I on a history H is defined as follows:
H-I1={H'|3f. H (I, f)-matches H}.

Condition 1 ensures that all events of the abstract history are matched with an
implementation event; condition 2 ensures that the events that do not belong to
the library being implemented (L) are left untouched, and condition 3 ensures
that the thread-local order of events in the implementation agrees with the one in
the specification. The last condition (4) states that the events corresponding to
the implementation of a call m(v) are consecutive in the history of the executing
thread t, and correspond to the implementation I.

Well-formedness and Consistency. Recall that libraries specify both how
they should be used (well-formedness), and what they guarantee if used cor-
rectly (consistency). Using these specifications (expressed as sets of histories)
to define implementation correctness is more subtle than one might expect.
Specifically, if we view a program using a library L as a downward-closed set
of histories in Hist(L), we cannot assume all its histories are in the set L.Syf of
well-formed histories, as the semantics of the program will contain unreachable
traces (see [26]). To formalize reachability at a semantic level, we define heredi-
tary consistency, stating that each step in the history was consistent, and thus
the current ‘state’ is reachable.

Definition 14 (Consistency). History H € Hist(A) is consistent if for all Le
A, H[L] € L.S¢ and m (H) € L.7c. It is hereditarily consistent if all H[1..k] are
consistent, for k < |H|.

This definition uses the ‘anonymization’ operator m_ defined in §2.6 to test that
the history H follows the global consistency predicates of every L € A.

We further require that programs using libraries respect encapsulation, de-
fined below, stating that locations obtained from a library constructor are only
used by that library instance. Specifically, the first condition ensures that dis-
tinct constructor calls return distinct locations. The second condition ensures
that a non-constructor call e of L uses locations that have been allocated by an
earlier call ¢ (¢ < e) to an L constructor.

Definition 15 (Encapsulation). A history H € Hist(A) is encapsulated if
the following hold, where C' denotes the set of calls to constructors in H:

1. for all e,c € C, if ¢ # ¢, then loc(c) Nloc(c') = 0;
2. for alle € H\ C, if loc(e) # 0, then there exist c € C, L € A such that
e,c € LM, ¢ < e and loc(e) C loc(c).

14 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

We can now define when a history of A is immediately well-formed: it must
be encapsulated and be well-formed according to each library in A and all the
tags it uses.

Definition 16. History H € Hist(A) is immediately well-formed if the follow-
ing hold:

1. H is encapsulated;

2. H[L] € LSy, for allL € A; and

3. m(H) € L.Tur for all L € TagDep(A), where the immediate dependen-
cies TagDep(A) is defined as |, c q{L} U Atags(L).

We finally have the notions required to define a correct implementation.

Implementation Correctness. As usual, an implementation is correct if
all behaviors of the implementation are allowed by the specification. In our
setting, this means that if a concrete history is hereditarily consistent, so should
the abstract history. Moreover, assuming the abstract history is well-formed, all
corresponding concrete histories should also be well-formed; this corresponds to
the requirement that the library implementation uses its dependencies correctly,
under the assumption that the program itself uses its libraries correctly.

Definition 17 (Correct implementation). An implementation I of L over A
is correct, written A+ I : L, if for all collections A, all ‘abstract’ histories H €
Hist({L} U A") and all ‘concrete’ histories H' € H -1 C Hist(AU A'), the
following hold:

1. if H is immediately well-formed, then H' is also immediately well-formed;
and

2. if H' is immediately well-formed and hereditarily consistent, then H is con-
sistent.

This definition is similar to contertual refinement in that it quantifies over all
contexts: it considers histories that use arbitrary libraries as well as those that
concern [directly. We now present a more convenient, compositional method for
proving an implementation correct, which allows one to only consider libraries
and tags that are used by the implemented library.

2.8 Compositionally Proving Implementation Correctness

Recall that in this section we present our framework in a simplified sequentially
consistent setting; later in §3 we generalize our framework to the weak mem-
ory setting. We introduce the notion of compositional correctness, simplifying
the global correctness conditions in Def. 17. Specifically, while Def. 17 considers
histories with arbitrary libraries that may use tags introduced by L, our com-
positional condition requires one to prove that only those L methods that are
L-tagged satisfy L.7¢.

Specifying and Verifying Persistent Libraries 15

Definition 18 (Compositional correctness). An implementation I of L
over A is compositionally correct if the following hold:

1. For all A', H € Hist({L} U A) and H € H-I C Hist(AUA"), if H is
well-formed, then H is well-formed;

2. For oll H € Hist(L) and H' € H - I C Hist(A), if H' is well-formed and
hereditarily consistent, then H € L.S:NL.T¢; and

3. For alll' € A, H € Hist({L,L',x/}) and H € H - I, if iy, (H') € L". Ty N
L'. 7., then m(H) € L. T..

The preservation of well-formedness (condition 1) does not change compared to
its counterpart in Def. 17, as in practice this condition is easy to prove directly.
Condition 2 requires one to prove that the implementation is correct in isolation
(without A’). Condition 3 requires one to prove that global consistency require-
ments are maintained for all dependencies of the implementation. In practice,
this corresponds to proving that those L operations tagged with existing tags
in A obey the global specifications associated with these tags. Intuitively, the
onus is on the library that uses a tag for its methods to prove the associated
global consistency predicate: we need not consider unknown methods tagged
with tags in L. TAGSpew-

Finally, we show that it is sufficient to show an implementation I is compo-
sitionally correct as it implies that I is correct.

Theorem 1 (Correctness). If an implementation I of L over A is composi-
tionally correct (Def. 18), then it is also correct (Def. 17).

Ezample 5 (Transactional Library Lians). Consider the implementation Iians
of Lirans over A = {Lureg; LQueue} given in Fig. 1, and let us assume we were
to show that Iians is compositionally correct. Our aim here is only to outline the
proof obligations that must be discharged; later in §5 we give a full proof in the
more general weak memory setting.

1. For the first condition of compositional correctness, we must show Iians
preserves well-formedness: if the abstract history H is well-formed, then so
is any corresponding concrete history H' € H - Iiyans. This is straightforward
as the well-formedness conditions of Lyreg and Lqueye are trivial, and Lirans
does not use any existing tag.

2. For the second condition of compositional correctness, we must show that
Iirans preserves consistency in the other direction: keeping the notations as
above, assuming H' is consistent for A, then H is consistent as specified
by Lirans- There are two parts to this obligation, as we also have to show that
the Lirans’s operations tagged with T satisfy the global consistency predicate
of the library.

3. The last condition holds vacuously as Lirans does not use any existing tags.

Ezample 6 (A Client of Lians). To see how the global consistency specifications
work, consider a simple min-max counter library, Lymment, tracking the maxi-
mal and minimal integer it has been given. The Lyment is to be used within

16 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

method mmNew() := method mmMin(x) :=
(PTNewReg(), PTNewReg()) PTRead(x.1)

method mmAdd(x, n) := method mmMax(x) :=
PTWrite(min(n, PTRead(x.1))) PTRead(x.2)

PTWrite(max(n, PTRead(x.2)))

Fig. 2. Implementation Imment 0f Lmment

Lirans transactions, and provides four methods: mmNew() to construct a min-max
counter, mmAdd(x,n), to add integer n to the min-max counter, and mmMin(x)
and mmMax(x) to read the respective values.

We present the Iment implementation over Lians in Fig. 2. The idea is sim-
ply to track two integers denoting the minimal and maximal values of the num-
bers that have been added. Interestingly, even though they are stored in Lians
registers, the implementation does not begin or end transactions: this is the re-
sponsibility of the client to avoid nesting transactions. This is enforced by Lyment
using a global well-formedness predicate. Moreover, the mmAdd operation is tagged
with T from the Lians library, ensuring that it behaves well w.r.t. transactions.
A non-example is a version of Iymcnt where the minimum is in a Lians register,
but the max is in a “normal” L, register. This breaks the atomicity guarantee
of transactions.

Formally, the interface Lyment has four methods as above, where mmNew is
the only constructor. The set of used tags is TAGSqgep = {T, P"}, and all Lyment
methods are tagged with T as they all use primitives from Lans. The consis-
tency predicate is defined using the obvious sequential specification Syment, which
states that calls to mmMin return the minimum of all integers previously given
to mmAdd in the sequential history. We lift this to (concurrent) histories as follows.
A history H € Hist(Lmment) 18 i Linment-Se if there exists Ey € Spment that is a
<-linearization of E1[p"] - Ea[P"]: - E,_1 - E,[P"], where H constructs n eras
decomposed as H = Ey - 4 --- 4 - E,, (recall that E[P"] denotes the sub-history
with events tagged with PY, that is, persisted events.). The global specification
and well-formedness conditions of Lyment are trivial. Because Lpment uses tag T
of Lirans, a well-formed history of Lmment must satisfy Livans-7wf, which requires
that all operations tagged with T be inside transactions, and Liyans.7c guarantees
that Lyment Operations persist atomically in a transaction.

When proving that the implementation in Figure 2 satisfies Lyment using
compositional correctness, one proof obligation is to show that, given histories
H € Hist({Lirans; Lmment *Lyp,) @a0d H' € H - Inment © Hist({Lirans, *1,... 1) if
TLyane (H') € Lirans-Te, then m, . (H) € Lians-Tc. This corresponds precisely to
the fact that min-max counter operations persist atomically in a transaction,
assuming the primitives it uses do as well.

Specifying and Verifying Persistent Libraries 17

2.9 Generic Durable Persistency Theorems

We consider another family of libraries with persistent reads/writes guaranteeing
the following:

if one replaces regular (volatile) reads/writes in a linearizable implemen-
tation with persistent ones, then the implementation obtained is durably
linearizable.

We consider two such such libraries: FIiT [35] and Mirror [10]. Thanks to our
framework, we formalise the statement above for the first time and prove it for
both Flit and Mirror against a realistic consistency (concurrency) model (see

§4).

3 Generalization to weak-memory

This section sketches how we generalize the framework presented in the previous

section to the weak memory, where events generated by the program are not

totally ordered. For lack of space, the technical details, which largely follow that

of the previous section, are relegated to the Appendix [34]. The purpose of this

section is to give an idea of how executions, a standard tool in the semantics of

weak memory, generalize the histories we used in the Overview section, and to

give enough context for the case studies that follow.
Unlike the histories that we discussed

in the previous section, in which events

are totally ordered by a notion of time,

. : : [ini
events in executions are only partially or- / |
5

t]
dered, reflecting that instructions executed ﬁ\‘

in parallel are not naturally ordered. For- R(z) . R(y):0
mally, an execution is thus a set of events poi ™ NN ipo
equipped with a partial order which repre- W(y,2):() W(z,5):()

sents the ordering between events from the

same thread. This partial order, written po, pjg 3. An execution of the program
for program-order, is depicted with black p.

arrows in Fig. 3, where it orders minimally ¢ =z; y=2 la=y; =5

the initial event, and the two events of each

thread according to the source code. Addi-

tional edges indicate, for each read-event returning the value v, the write-event
that provided the value v: in that case, an rf-edge from the write-event to the
read-event is added to the execution.

To be able to reason about synchronization, the notion of happens-before
needs to be adapted to this setting. It is defined using po and an additional
type of edge, synchronizes-with, written sw, which denotes that two events syn-
chronize with each other, and in particular that one happens before the other.
Usually, sw C rf, for example between a release-write and an acquire-read in
the C11 memory model. Given these sw edges, the happens-before order they

T

18 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

induce, which generalizes < from the previous section is defined as the transitive
closure (po U sw)T. This is not sufficient however, because we consider partial
executions G where the focus is on a subset of the libraries in some unknown
global execution G’, that is: G = G’ | L. Therefore, external events (in G’ but
not in G) may induce happens-before relations between events of G, yet we want
to specify library L without referring to any such execution G’ that contains it.
To solve this issue, we use the technique of [26], and we add a final type of edge
to executions: hb, which corresponds to both the external and the internal syn-
chronization. Because of the latter, it must contain the internal synchronization:
poUsw C hb.

To summarize, an execution is a tuple (F, po, rf, sw, hb) comprised of a set E
of events, and of the relations we just described. A library specification is the
same as in the previous section, mutatis mutandis. The sets of executions that
are parts of specifications are defined using a formalism developed in the weak
memory model literature. A set S of executions is described with conditions
about relations built from po, rf, etc. Given a set V of events, we denote by
[V] the relation V' x V, and we denote by Rj; Ro the standard composition of
two relations R; and Rs. For example, if R denotes the set of read-events of an
execution and W the set of write-events, the condition [W1];rf;[R] C sw states
that if there is a rf-edges between two events e; € W and e; € R of an execution,
there must also be a sw synchronization edge between e; and es.

As in the previous section, the tag system allows the library specification to
state which events must have been persisted in a valid execution. The semantics
of a program is a set of executions that contain events from all the libraries used
by the program; and whose happens-before order satisfy hb = (po U sw)™, as
there are no external synchronization in the executions of the whole program.
The Appendix [34] details how our framework is defined in this more general
setting.

4 Case Study: Durable Linearizability with FIiT and
Mirror

We consider a family of libraries that provide a simple interface with persistent
memory accesses (reads and writes), allowing one to convert any linearisable
implementation to a durably linearisable one by replacing regular (volatile) ac-
cesses with persistent ones supplied by the library. Specifically, we consider two
such libraries FIiT [35] and Mirror [10]; we specify them both in our framework,
prove their implementations sound against their respective specifications, and
further prove their general result for converting data structures.

4.1 The FIiT Library

FIiT [35] is a persistent library that provides a simple interface very close to
Px86, but with stronger persistency guarantees, which make it easier to imple-
ment durable data structures. Specifically, a FIiT object ¢ can be accessed via

Specifying and Verifying Persistent Libraries 19

method wr,(¢,v) : method rd, (¢) :

if = P then) local v = read(g);
fet.ch-and-add(ﬂlt-COU”tGT(Z)v 1); if m = p A flit-counter(¢) > 0 then
write(4,v); flushopt (£);
flushope (€); return v;
fetch-and-add(flit-counter(f), —1); ’

else method finishOp :
sfence; sfence;
write(4, v); 7

Fig. 4. FIiT library implementation in Px86

write and read methods, wr,(¢,v) and rd,(¢), as well as standard read-modify-
write methods. Each write (resp. read) operation has two variants, denoted by
the type m € {p,v}. This type specifies if the write (resp. read) is persistent
(m = p) in that its effects must be persisted, or volatile (m = v) in that its
persistency has been optimised and offers weaker guarantees. The default access
type is persistent (p), and the volatile accesses may be used as optimizations
when weaker guarantees suffice. Wei et al. [35] introduce a notion of dependency
between different operations as follows. If a (persistent or volatile) write w de-
pends on a persistent write w’, then w’ persists before w. If a persistent read
r reads from a persistent write w, then r depends on w and thus w must be
persisted upon reading if it has not already persisted. Though simple, FIiT pro-
vides a strong guarantee as captured by a general result for correctly converting
volatile data structures to persistent ones: if one replaces every memory access
in the implementation of a linearizable data-structure with the corresponding
persistent FIiT access, then the resulting data structure is durably linearizable.

Compared to the original FliT development, our soundness proof is more
formal and detailed: it is established against a formal specification (rather than
an English description) and with respect to the formal Px86 model.

FIiT Interface. The FIiT interface uses the PP®® from Px86 and contains
a single constructor, new, allocating a new FIiT location, as well as three other
methods below, the last two of which are durable:

— rd,(¢) with w€{p, v}, for a m-read from ¢;
— wr,(¢,v) with w&€{p,v}, denoting a m-write of value v € Val to ¢; and
— finishop, which waits for previously executed operations to persist.

We write R and W respectively for the read and write events, and add the
superscript 7 (e.g. RP) to denote such events with the given persistency mode.

FIiT Specification. We develop a formal specification of FliT in our frame-
work, based on its original informal description. The correctness of FIiT execu-
tions is described via a dependency relation that contains the program order and
the total execution (linearization) order restricted to persistent write-read oper-
ations on the same location. Note that this dependency notion is stronger than
the customary definitions that use a rf relation (as in the Px86 specification)
instead of lin, because a persistent read may not read directly from a persistent
write w, but rather from another later (lin-after w) write.

20 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

Definition 19 (FIiT execution Correctness). A FIiT execution G is correct
if there exists a ‘reads-from’ relation rf and a total order lin O G.hb on G.E and
an order nvo such that:

1. FEach read event reads from the most recent previous write to the same loca-
tion:
1f = Uperoc([Wel3 1in; [Re]) \ (lin; [Wel; lin)
2. Reads return the value written by the write they read from:
(w,r) € rf = 3,7, 7', v. lab(r) = rd (¢) : v Alab(w) = wr, (4, v) : —
3. Persistent writes persist before every other later dependent write:
[(WP]; (po U Uperoc W71 lin; [RY])T5 [W] € nvo
4. Persistent writes before a finishOp persist:
dom([WPJ; (po U Uyeroc[W7l; lin; [RY]); [finishop]) C |pP*80]
5. And nvo is a persist order: dom(nvo; | Ptag]|) C | Ptag].

Px86 implementation of FIiT. The implementation of FIiT methods is
given in Fig. 4. Whereas a naive implementation of this interface would have to
issue a flush instruction both after persistent writes and in persistent reads, the
implementation shown associates each location with a counter to avoid perform-
ing superfluous flushes when reading from a location whose value has already
persisted. Specifically, a persistent write on ¢ increments its counter before writ-
ing to and flushing it, and decrements the counter afterwards. As such, persistent
reads only need to issue a flush if the counter is positive (i.e. if there is a con-
current write that has not executed its flush yet).

Theorem 2. The implementation of FIiT in Fig. 4 is correct.

FIiT and Durable Linearizability. Given a data structure implementa-
tion I, let p(I) denote the implementation obtained from I by 1) replacing
reads/writes in the implementation with their corresponding persistent FIiT in-
structions, and 2) adding a call to finishop right before the end of each method.
We then show that given an implementation I, if I is linearizable, then p(I) is
durably linearizable®. We assume that all method implementations are single-
threaded, i.e. all plain executions I(m(v)) are totally ordered.

Theorem 3. If Px86 E I : Lin(S), then FIiT & p(I) : DurLin(S).

4.2 The Mirror Library

The Mirror [10] persistent library has similar goals to FIiT. The main difference
between the two is that Mirror operations do not offer two variants, and their
operations are implemented differently from those of FIiT. Specifically, in Mir-
ror each location has two copies: one in persistent memory to ensure durability,

3 The definition here is the same as in §2, as hb-linearizations of the execution still
yield sequential executions.

Specifying and Verifying Persistent Libraries 21

and one in volatile memory for fast access. As such, read operations are imple-
mented as simple loads from volatile memory, while writes have a more involved
implementation than those of FIiT.

We present the Mirror specification and implementation in the technical ap-
pendix where we also prove that its implementation is correct against its spec-
ification. As with FIiT, we further prove that Mirror can be used to convert
linearizable data structures to durably linearizable ones, as described above.

5 Case Study: Persistent Transactional Library

We revisit the Lirans transactional library, develop its formal specification and
verify its implementation (Fig. 1) against it. Recall the simple Li;ans implemen-
tation in Fig. 1 and that we do not allow for nested transactions. The implemen-
tation uses an undo-log which records the former values of persistent registers
(locations) modified in a transaction. If, after a crash, the recovery mechanism
detects a partially persisted transaction (i.e. the last entry in the undo log is not
COMMITTED), then it can use the undo-log to restore registers to their former
values. The implementation uses a durably linearizable queue library* Q, and
assumes that it is externally synchronized: the user is responsible for ensuring
no two transactions are executed in parallel. We formalize this using a global
well-formedness condition.

Later in §5.2 we develop a wrapper library Lstrans for Lians that additionally
provides synchronization using locks and prove that our implementation of this
library is correct. To do this, we need to make small modifications to the structure
of the specification: the specification in §2 requires that any ‘transaction-aware
operation’ (i.e. those tagged with T) be enclosed in calls to PTBegin and PTEnd.
Since Lstrans wraps the calls to PTBegin and PTEnd, the well-formedness condition
needs to be generalized to allow operations tagged with T to appear between
calls to operations that behave like PTBegin and PTEnd. To that end, we add two
new tags B and E to denote such operations, respectively.

5.1 Specification

The Lians library provides four tags: 1) T for transaction-aware ‘client’ opera-
tions; 2) P' for operations that have persisted using transactions; and 3) B, E for
operations that begin and end transactions, respectively. We write R, W, B, £, RC
respectively for the sets of events labeled with read, write, begin, end and recov-
ery methods. As before, we write e.g. | T] for the set of events tagged with T. Note
that while B denotes the set of the begin events in library Lians, the |B| denotes
the set of all events that are tagged with B, which includes B (of library Lians) as
well as events of other (non-Ly.ns) libraries that may be tagged with B; similarly
for £ and [E|. As such, our local specifications below (i.e. local well-formedness

4 For example, take any linearizable queue implementation and use the FIiT library as
described in §4.

22 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

and consistency) are defined in terms of B and £, whereas our global specifica-
tions are defined in terms of |B| and |E|. As before, for brevity we write e.g.
[T] as a shorthand for the relation [|T]]. We next define the ‘same-transaction’
relation strans:

strans £ [[BJU[E|U|T]]; (poUpo™); [[BJU[EJU[T]] \ ((po; [E]; po)U(po; [B]; po))
An execution is locally well-formed iff the following hold:

1. A transaction must be opened before it is closed: £ C rng([B]; po)

2. Transactions are not nested and are matching: [£]; po; [€] C [€]; po; [B]; po; [€]
and [B]; po; [B] C [B]; po; [€]; po; [B]

3. Transactions must be externally synchronized: £ x B C hb Uhb™!

4. The recovery routine must be called after each crash before using the library:
4;hb; [B] C 4;hb; [RC]; hb; |B]

5. Events are correctly tagged: WU R C |T]

An execution is globally well-formed if client operations are inside transactions:

6. [T] € rng([B]; po)
7. [E]; po; [T] C [E]; po; [B]; po; [T]

An execution is locally-consistent if there exists a relation rf satisfying:

8. rf relates writes to reads, rf C W x R, such that each read is related to
exactly one write (i.e. rf~! is total and functional).

9. Reads access the most recent write: rf~!;hb C hb

10. External reads (reading from a different transaction) read from persisted
writes: dom(rf \ strans) C |p"|

An execution is globally-consistent if there exists an order nvo over | T| satisfying:

11. Transactions are nvo-ordered: [E]; hb; [B] C nvo

12. nvo is the persistance order: dom(nvo; [P"]) C |P™];

13. Either all the events or none of the events in a transaction persist (atomicity):
[P]; strans; [T] C [P"]

14. All events of a completed transaction (ones with an associated end event)
persist: |E|¢ C |PY], where |E]¢ denotes the set of method calls tagged
with E which have completed.

Theorem 4. The Lypans implementation in Fig. 1 over Px86 is correct.

5.2 Vertical Library Composition: Adding Internal Synchronization

We next demonstrate how our framework can be used for vertical library compo-
sition, where an implementation of one library comprises calls to other libraries
with non-trivial global specifications. To this end, we develop Lsirans, @ wrapper
library around Lyans that is meant to be simpler to use by providing synchro-
nization internally: rather than the user ensuring synchronization for Li,ns, One

Specifying and Verifying Persistent Libraries 23

can use Lsirans to prevent two transactions from executing in parallel. More for-
mally, the well-formedness condition (3) of Lians becomes a correctness guarantee
of Lsirans. We consider a simple implementation of Lstans that uses a global lock
acquired at the beginning of each transaction and released at the end as shown
below.

globals lock := L.new() method LPTBegin() := L.acq(lock);PTBegin()
method LPTEnd() := PTEnd();L.rel(lock)

Theorem 5. The implementation of Lstrans above is correct.

Using compositional correctness, the main proof obligation is the condition stip-
ulating that the implementation be well-formed, ensuring that Lians is used
correctly by the Lsirans implementation. This is straightforward as we can as-
sume there exists an immediate prefix that is consistent. The existence of the
hb-ordering of calls to PTBegin and PTEnd follows from the consistency of the
global lock used by the implementation.

5.3 Horizontal Library Composition

We next demonstrate how our framework can be used for horizontal library
composition, where a client program comprises calls to multiple libraries. To
this end, we develop a simple library, Ley,, providing a persistent counter to be
used in sequential (single-threaded) settings: If a client uses Leny in concurrent
settings, it must call its methods within critical sections. The Ly, provides three
operations to create (NewCounter), increment (Counterlnc) and read a counter
(CounterRead). The specification and implementation of Ly, are given in [34]

AS Leny uses the tags of Lians, we define Lener-Atags = {Lirans}- The all the
operations are tagged with T. As such, L, inherits the global well-formedness
condition of Lirans, meaning that Ley, operations must be used within transac-
tions (i.e. hb-between operations respectively tagged with B and E). Putting it
all together, the following client code snippet uses Lcy in a correct way, even
though L, has no knowledge of the existence of Lsirans.

¢ = NewCounter(); LPTBegin(); Counterlnc(c); Counterinc(c); LPTEnd();

Specifically, the above is an instance of horizontal library composition (as the
client comprises calls to both Lstans and Lentr), facilitated in our framework
through global specifications.

6 Conclusions, Related and Future Work

We presented a framework for specifying and verifying persistent libraries, and
demonstrated its utility and generality by encoding existing correctness notions
within it and proving the correctness of the FIiT and Mirror libraries, as well as
a persistent transactional library.

24 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

Related Work. The most closely related body of work to ours is [26]. How-
ever, while their framework can be used for specifying only the consistency guar-
antees of a library, ours can be used to specify both consistency and persistency
guarantees. More generally, our tag system extends the expressivity of [26] with
support for global effects such as some types of fences.

Existing literature includes several works on formal persistency models, both
for hardware [25,30,31,5,6,19,29,28] and software [4,21,11], as well as correct-
ness conditions for persistent libraries such as durable linearizability [17]. As we
showed in §3, such models can be specified in our framework.

There have been works [33] to specify libraries using an operational approach
instead of the declarative approach that we advocate for here. While it is not
generic in the memory model, it support weak memory, with a fragment of the
C++ 11 memory model, and supports synchronization that is internal and ex-
ternal to the library. Another framework for formalizing behavior of concurrent
objects in the presence of weak memory is [18], which is more syntactic as our
framework: they use a process calculus, which allows them to handle callbacks
between the library and the client. Extending our framework, which is more
semantic, to handle this setting would probably require shifting from execution-
s/histories to something similar to game semantics.

Additionally, there are several works on implementing and verifying algo-
rithms that operate on NVM. [9] and [36] respectively developed persistent queue
and set implementations in Px86. [8] provided a formal correctness proof of the
implementation in [36]. All three of [8,36,9] assume that the underlying concur-
rency model is SC [23], rather than that of Px86 (namely TSO). As we demon-
strated in §4-85 we can use our framework to verify persistent implementations
modularly while remaining faithful to the underlying concurrency model. [27,2]
have developed persistent program logics for verifying programs under Px86. [20]
recently formalized the consistency and persistency semantics of the Linux ext4
file system, and developed a model-checking algorithm and tool for verifying the
consistency and persistency behaviors of ext4 applications such as text editors.

Recently, and independently to this work, Bodenmiiller et al [3] have proved
the correctness of the Flit library under TSO. They used an operational ap-
proach, and modeled the libraries and the memory and persistency models oper-
ationally using automata, and proved a simulation result using KIV a specialized
proof assistant. As for this paper, they proved that a linearizable library using
Flit becomes durably linearizable.

Future Work. We believe our framework will pave the way for further work
on verifying persistent libraries, whether manually (as done here), possibly with
the assistance of an interactive theorem prover and/or program logics such as
those of [7,27,2], or automatically via model checking. The work of [7] uses the
framework of [26] to specify data structures in a program logic, and it would be
natural to extend it to our framework for persistency. Existing work in the latter
research direction, e.g. [12,20], has so far only considered low-level properties,
such as the absence of races or the preservation of user-supplied invariants. It has
not yet considered higher-level functional correctness properties, such as durable

Specifying and Verifying Persistent Libraries 25

linearizability and its variants. We believe our framework will be helpful in that
regard. In a more theoretical direction, it would be interesting to understand
how our compositional correctness theorem fits in general settings for abstract
logical relations such as [16].

Acknowledgments

We thank the anonymous reviewers for their feedback. This work has received
funding from the European Research Council under the European Union’s Hori-
zon 2020 research and innovation programme (grant agreement No. 101003349).
Raad is funded by a UKRI fellowship MR/V024299/1, by the EPSRC grant
EP/X037029/1 and by VeTSS.

References

1. Aguilera, M.K., Frolund, S.: Strict linearizability and the power of aborting. Tech.
Rep. HPL-2003-241 (2013)

2. Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based owicki—
gries reasoning for persistent x86-tso. In: Sergey, 1. (ed.) Programming Languages
and Systems. pp. 234-261. Springer International Publishing, Cham (2022)

3. Bodenmiiller, S.; Derrick, J., Dongol, B., Schellhorn, G., Wehrheim, H.: A fully
verified persistency library. In: Dimitrova, R., Lahav, O., Wolff, S. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation. pp. 26—47. Springer Nature
Switzerland, Cham (2024)

4. Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: Leveraging locks for non-
volatile memory consistency. SIGPLAN Not. 49(10), 433-452 (Oct 2014). https:
//doi.org/10.1145/2714064.2660224, http://doi.acm.org/10.1145/2714064.2660224

5. Cho, K., Lee, S.H., Raad, A., Kang, J.: Revamping hardware persistency models:
View-based and axiomatic persistency models for Intel-X86 and Armv8. p. 16-31.
PLDI 2021, Association for Computing Machinery, New York, NY, USA (2021)

6. Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Coetzee, D.:
Better I/O through byte-addressable, persistent memory. In: Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles. pp. 133-146.
SOSP 09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1629575.
1629589, http://doi.acm.org/10.1145/1629575.1629589

7. Dang, H.H., Jung, J., Choi, J., Nguyen, D.T., Mansky, W., Kang, J., Dreyer, D.:
Compass: Strong and compositional library specifications in relaxed memory sepa-
ration logic. In: Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. PLDI 2022 (2022)

8. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying cor-
rectness of persistent concurrent data structures. In: ter Beek, M.H., Mclver, A.,
Oliveira, J.N. (eds.) Formal Methods — The Next 30 Years. pp. 179-195. Springer
International Publishing, Cham (2019)

9. Friedman, M., Herlihy, M., Marathe, V., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: Proceedings of the 23rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. p. 28-40. PPoPP
’18, Association for Computing Machinery, New York, NY, USA (2018). https:
//doi.org/10.1145/3178487.3178490, https://doi.org/10.1145/3178487.3178490

https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
http://doi.acm.org/10.1145/2714064.2660224
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
http://doi.acm.org/10.1145/1629575.1629589
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis

Friedman, M., Petrank, E., Ramalhete, P.: Mirror: making lock-free data structures
persistent. In: Freund, S.N., Yahav, E. (eds.) PLDI "21. pp. 1218-1232 (2021)
Gogte, V., Diestelhorst, S., Wang, W., Narayanasamy, S., Chen, P.M., Wenisch,
T.F.: Persistency for synchronization-free regions. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
46-61. PLDI 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/
3192366.3192367, http://doi.acm.org/10.1145/3192366.3192367

Gorjiara, H., Xu, G.H., Demsky, B.: Yashme: Detecting persistency races. In:
Proceedings of the 27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. p. 830-845. ASPLOS
2022, Association for Computing Machinery, New York, NY, USA (2022). https:
//doi.org/10.1145/3503222.3507766, https://doi.org/10.1145/3503222.3507766
Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S., Zhang, H.,
Guo, Y.: Deep specifications and certified abstraction layers. In: POPL (2015)
Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463-492 (1990). https://doi.
0rg/10.1145/78969.78972

Hermida, C., Reddy, U.S., Robinson, E.P.: Logical relations and parametricity — a
reynolds programme for category theory and programming languages. Electronic
Notes in Theoretical Computer Science 303, 149-180 (2014), proceedings of the
Workshop on Algebra, Coalgebra and Topology (WACT 2013)

Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory ob-
jects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC. Lecture Notes in Computer Science, vol. 9888, pp. 313-327 (2016)
Jagadeesan, R., Petri, G., Pitcher, C., Riely, J.: Quarantining weakness. In:
Felleisen, M., Gardner, P. (eds.) Programming Languages and Systems. pp. 492—
511. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

Khyzha, A., Lahav, O.: Taming x86-tso persistency. Proc. ACM Program. Lang.
5(POPL), 1-29 (2021)

Kokologiannakis, M., Kaysin, 1., Raad, A., Vafeiadis, V.: Persevere: Persistency
semantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (jan
2021). https://doi.org/10.1145/3434324, https://doi.org/10.1145/3434324

Kolli, A., Gogte, V., Saidi, A., Diestelhorst, S., Chen, P.M., Narayanasamy, S.,
Wenisch, T.F.: Language-level persistency. In: Proceedings of the 44th Annual
International Symposium on Computer Architecture. pp. 481-493. ISCA '17, ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3079856.3080229, http://
doi.acm.org/10.1145/3079856.3080229

Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing sequential
consistency in ¢/c++11. SIGPLAN Not. 52(6), 618632 (jun 2017). https://doi.
org/10.1145/3140587.3062352, https://doi.org/16.1145/3140587.3062352
Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690-691 (Sep 1979). https:
//doi.org/10.1109/TC.1979.1675439, http://dx.doi.org/160.1109/TC.1979.1675439
Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: Proceeding of the
41st Annual International Symposium on Computer Architecuture. pp. 265-276.
ISCA ’14, IEEE Press, Piscataway, NJ, USA (2014), http://dl.acm.org/citation.
cfm?id=2665671.2665712

https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
http://doi.acm.org/10.1145/3192366.3192367
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/3079856.3080229
http://doi.acm.org/10.1145/3079856.3080229
http://doi.acm.org/10.1145/3079856.3080229
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Specifying and Verifying Persistent Libraries 27

Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: Proceeding of the
41st Annual International Symposium on Computer Architecuture. p. 265-276.
ISCA ’14, IEEE Press (2014)

Raad, A., Doko, M., Rozié¢, L., Lahav, O., Vafeiadis, V.: On library correctness un-
der weak memory consistency: Specifying and verifying concurrent libraries under
declarative consistency models. POPL (2019)

Raad, A., Lahav, O., Vafeiadis, V.: Persistent owicki-gries reasoning: A program
logic for reasoning about persistent programs on intel-x86. Proc. ACM Pro-
gram. Lang. 4(OOPSLA) (nov 2020). https://doi.org/10.1145/3428219, https:
//doi.org/10.1145/3428219

Raad, A., Maranget, L., Vafeiadis, V.: Extending intel-x86 consistency and per-
sistency: formalising the semantics of intel-x86 memory types and non-temporal
stores. Proc. ACM Program. Lang. 6(POPL), 1-31 (2022)

Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: Integrating epoch
persistency with the tso memory model. Proc. ACM Program. Lang. 2(OOPSLA),
137:1-137:27 (Oct 2018). https://doi.org/10.1145/3276507, http://doi.acm.org/
10.1145/3276507

Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency semantics of the
intel-x86 architecture. Proc. ACM Program. Lang. 4(POPL), 11:1-11:31 (2020)
Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the ground
up: Formalising the persistency semantics of ARMv8 and transactional models.
Proc. ACM Program. Lang. 3(OOPSLA), 135:1-135:27 (Oct 2019)

Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rig-
orous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89-97 (Jul 2010). https://doi.org/10.1145/1785414.1785443, http://doi.
acm.org/10.1145/1785414.1785443

Singh, A.K., Lahav, O.: An operational approach to library abstraction under
relaxed memory concurrency. Proc. ACM Program. Lang. 7(POPL) (jan 2023).
https://doi.org/10.1145/3571246, https://doi.org/10.1145/3571246

Stefanesco, L., Raad, A., Vafeiadis, V.: Specifying and verifying persistent li-
braries (with appendix). CoRR abs/2306.01614 (2023). https://doi.org/1e.
48550/ARXIV.2306.01614, https://doi.org/10.48550/arXiv.2306.01614

Wei, Y., Ben-David, N., Friedman, M., Blelloch, G.E., Petrank, E.: Flit: a library
for simple and efficient persistent algorithms. In: Lee, J., Agrawal, K., Spear, M.F.
(eds.) PPoPP ’22. pp. 309-321 (2022)

Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. Proc. ACM Program. Lang. 3(OOPSLA) (Oct 2019). https://doi.
org/10.1145/3360554, https://doi.org/10.1145/3360554

https://doi.org/10.1145/3428219
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3276507
http://doi.acm.org/10.1145/3276507
http://doi.acm.org/10.1145/3276507
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/1785414.1785443
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246
https://doi.org/10.48550/ARXIV.2306.01614
https://doi.org/10.48550/ARXIV.2306.01614
https://doi.org/10.48550/ARXIV.2306.01614
https://doi.org/10.48550/ARXIV.2306.01614
https://doi.org/10.48550/arXiv.2306.01614
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

	Specifying and Verifying Persistent Libraries

