
Proving Lock-Freedom Easily and Automatically

Xiao Jia Wei Li
Shanghai Jiao Tong University ∗

Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)

Abstract
Lock-freedom is a liveness property satisfied by most non-blocking
concurrent algorithms. It ensures that at any point at least one
thread is making progress towards termination; so the system as
a whole makes progress.

As a global property, lock-freedom is typically shown by global
proofs or complex iterated arguments. We show that this complex-
ity is not needed in practice. By introducing simple loop depth
counters into the programs, we can reduce proving lock-freedom
to checking simple local properties on those counters. We have im-
plemented the approach in CAVE and report on our findings.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Concurrency; Lock-freedom; Verification; RGSep

1. Introduction
Non-blocking synchronisation is a style of multithreaded program-
ming that is extensively used in concurrent data structure libraries,
such as java.util.concurrent, to achieve good average per-
formance and progress even under bad schedules. Unlike blocking
synchronisation primitives, such as mutual exclusion locks, which
cannot guarantee progress whenever one thread fails or stalls indefi-
nitely, non-blocking synchronisation ensures some form of system-
wide progress even if some threads of the system are not scheduled
for an indefinitely long time period. In detail, the literature contains
three such liveness properties:

• Wait-freedom [6] is the strongest of the three properties. It re-
quires every operation to terminate provided it is scheduled pos-
sibly intermittently for a sufficient number of steps, irrespective
of any other concurrent operations. Such behaviour is indeed
desirable, but this requirement is very strong and often results
in complicated and inefficient implementations.

• Lock-freedom [11] requires that from each point in time on-
wards, some library operation will be completed provided that
at least one thread executing a library operation is scheduled.
This requirement ensures that the program as a whole makes
progress and is never blocked. From the point of view of an

∗Currently at Google; the work was done during an internship at MPI-SWS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693179

individual thread, however, very little is guaranteed: a thread
executing a certain operation might never terminate if other op-
erations continuously get in its way and are completed instead.

• Obstruction-freedom [8] is the weakest requirement, guarantee-
ing progress only if a thread is run in isolation for a sufficiently
long amount of time. In the presence of contention, the entire
system can livelock with each thread undoing the work done by
other threads.

In this paper, we concentrate on lock-freedom, for two rea-
sons. First, it is the most practically relevant property of the three,
because it provides both a reasonably strong progress guarantee
and allows for efficient implementations in practice. As a point
of reference, most non-blocking concurrent algorithms in the “Art
of Multiprocessor Programming” book [7] are lock-free, but not
wait-free. Second, as noted by Gotsman et al. [4], proving lock-
freedom is more challenging than the other two properties, because
whereas wait-freedom and obstruction-freedom concern the termi-
nation of one thread, lock-freedom is a global property concerning
the progress of the system as a whole.

The literature contains a few approaches for verifying lock-
freedom, but these are unnecessarily complicated and difficult to
automate. We discuss them in detail in Section 6, but it suffices to
say that they involve either a global termination argument (e.g.,
[1, 2]) or non-trivial extensions to previously known concurrent
program logics (e.g., [4, 9, 10]).

We propose a simpler method for verifying lock-freedom,
which does not require a new program logic or any sophisticated
program analysis. We instrument the source code with assignments
to certain auxiliary variables and add assertions to each back-edge
of the program’s control flow graph. We prove in Coq that if all
these assertions are never violated, then the program is lock-free.
Using an off-the-shelf program analysis or program logic, we can
then verify these assertions, thereby establishing lock-freedom.

1.1 A Simple Example: the Read-Compute-Update Pattern
To illustrate our proof technique for proving lock-freedom, as a first
example, let us consider the “read, compute and update” (hence-
forth, RCU) pattern that lies at the core of many non-blocking al-
gorithms, such as the Treiber stack [13]. This pattern consists of
a loop first reading a shared variable X , then doing some compu-
tation, and finally checking whether the value of X has changed:
if it has, we ignore the results of the computation and restart the
loop, otherwise, if the value of X has not changed, we update X
and return. (Typically, the check that X has the same value and the
update both happen in one atomic step using a CAS instruction.
We elide these details, as the atomicity is irrelevant for the progress
argument.)

op
def
=

while(true) {
t := X; . . . ;
if (X == t) {X := . . . ; break; }
}

Consider now a system with multiple threads that repeatedly ex-
ecute this operation. We can immediately observe that the opera-

tion is not wait-free: there exist executions that always happen to
change the value ofX between the initial read and the equality test,
thereby making the operation potentially loop forever. The opera-
tion, however, is lock-free. The only reason why the loop might fail
to terminate is if another thread writes to X . But the only way a
thread can write to X is by then exiting and finishing its operation.
Thus, at all times, if a thread performing op is scheduled, then at
least one thread is making progress towards finishing its ongoing
operation.

To capture this global argument, our idea is to instrument the
code with an auxiliary variable, P , counting the number of times
progress towards an operation’s completion is made. That is, we
increment P at every program step that does not appear on a
looping path. By this we mean any program step that either (1)
is not inside a loop, or (2) that is inside only one loop, but on a
path that will exit the loop, such as the assignment to X in op. (In
the instrumented pseudocode, we use angle brackets to denote that
the assignment to X and the auxiliary increment of P are executed
together atomically.)

while(true) {
r := P ; t := X; . . . ;
if (X == t) {〈X := . . . ; ++P 〉; break; }
assert(P > r);
}

For each loop, we check that for every time the operation goes
round a loop (and hence might not terminate), P was incremented
(and hence some other operation made progress towards termina-
tion). The introduced code does not change the behaviour of the
program inasmuch as the assertion checks succeed. The proof obli-
gation that the assertion checks always succeed can be discharged
by standard thread-modular reasoning techniques.

1.2 Contribution and Paper Outline
In the remainder of this paper, we formalise the construction just
described and generalise it to handle operations with nested loops
and more subtle local termination arguments. The beauty of our
technique is that by introducing auxiliary code, we reduce the
global nature of lock-freedom proofs to checks that can be dis-
charged by thread-modular techniques.

We have also automated our approach by building on an exist-
ing verification tool, CAVE [14], a sound but incomplete thread-
modular verification tool suitable for verifying fine-grained con-
current linked list algorithms. We have mildly adapted the frontend
of CAVE to instrument the given concurrent library with the ap-
propriate auxiliary variables and assertions needed to prove lock-
freedom, before calling the backend to prove that these assertions
are never violated, which in turn means that the original concurrent
library is lock-free.

In more detail, in Section 2, we introduce a simple concurrent
programming language and formally define lock-freedom. Then, in
Section 3, we present the essence of our technique, formalise and
prove its soundness, and discuss its implementation in CAVE. Next,
in Section 4, we present a more refined version that is necessary for
dealing with more advanced lock-freedom arguments. In Section 5,
we present our experimental results, and then, in Section 6, we
discuss related work, and conclude in Section 7.

2. Background
2.1 Programming Language
For the purposes of this paper, we will consider a minimal imper-
ative programming language with an unspecified set of basic com-
mands,BC, sequential and parallel composition, non-deterministic
choice, a looping construct, and a break statement that terminates

(σ, σ′) ∈ [[BC]]

〈BC , σ〉 → 〈skip, σ′〉
〈C1, σ〉 → 〈C ′1, σ′〉

〈C1;C2, σ〉 → 〈C ′1;C2, σ′〉

〈skip;C2, σ〉 → 〈C2, σ〉 〈break;C2, σ〉 → 〈break, σ〉

〈C1, σ〉 → 〈C ′1, σ′〉
〈C1 ‖C2, σ〉 → 〈C ′1 ‖C2, σ′〉

〈C2, σ〉 → 〈C ′2, σ′〉
〈C1 ‖C2, σ〉 → 〈C1 ‖C ′2, σ′〉

〈skip ‖ skip, σ〉 → 〈skip, σ〉 〈C1⊕C2, σ〉 → 〈C1, σ〉

〈C1⊕C2, σ〉 → 〈C2, σ〉 〈Ln(break,C), σ〉 → 〈skip, σ〉

〈Ln(skip,C), σ〉 → 〈Ln(C ,C), σ〉

〈C1, σ〉 → 〈C ′1, σ′〉
〈Ln(C1,C2), σ〉 → 〈Ln(C ′1,C2), σ′〉

Figure 1. Operational semantics of the language.

the innermost loop. Commands, C, in our language are given by
the following grammar:

C ::= skip | break | BC | C1;C2 | C1 ‖C2 | C1⊕C2

| Ln(C1,C2)

Here, BC ranges over basic commands, such as assignments
and “assume” statements. The combination of “assume” statements
and non-deterministic choice allows us to encode conditionals in
the standard way:

if(B) C1 else C2
def
= (assume(B);C1)⊕ (assume(¬B);C2)

The final construct, Ln(C1, C2) is a somewhat non-standard
looping construct that represents a partially executed loop, where
C2 is the loop body and C1 is the remainder of the current loop
iteration. (The n subscript will be used to record the value of a
certain auxiliary program variable, but can be ignored for the time
being.) The construct therefore first executes C1 and then proceeds
to executeC2 repeatedly in a loop. The only way to exit a loop is by
encountering a break statement. Normal while loops and standard
non-deterministic loops, C∗, can be encoded as follows:

while(B) C
def
= L0(skip, if(B) C else break)

C∗
def
= L0(skip, C ⊕ break)

Operational Semantics Figure 1 presents the small-step opera-
tional semantics for our language as a reduction relation between
configurations. Configurations are pairs, 〈C, σ〉, consisting of a
command, C ∈ Cmd and a program state, σ ∈ State.

The evaluation rules are standard. For basic commands, we as-
sume their semantics is given by the function, [[]] : BasicCmd →
P(State× State), and we pick an arbitrary new state σ′ such that
(σ, σ′) ∈ [[c]]. This allows us to model both non-deterministic and
blocking commands. The rules for sequential composition, paral-
lel composition, and non-deterministic choice are straightforward:
one point to note is that break commands propagate over sequential
compositions. Finally, Ln(C1, C2) executes the current loop iter-
ation, C1, as long as possible. If C1 = break, the loop is exited,
whereas if C1 = skip, it is restarted.

2.2 Specifying Lock-Freedom
A concurrent library consists of some initialisation code Cinit and a
collection of concurrent operations C1, . . . , Cn.

We define the most general client of the library to be a program
that calls the library’s initialisation code, and then creates k threads,
each of which executes an unbounded number of the library’s
operations in any order inside a loop.

MGCk(Cinit, C1, . . . , Cn)
def
=

Cinit; ((C1 ⊕ . . .⊕ Cn)∗ ‖ . . . ‖ (C1 ⊕ . . .⊕ Cn)∗)︸ ︷︷ ︸
k threads

This client is most general in the sense that if we record the traces
of calls to the library’s operations from any concrete client of
the library, the set of recorded traces would be a subset of those
produced by the most general client.

Definition 1. We say that a library is lock-free if every non-
terminating execution of its most general client (for any k) has an
infinite number of completed calls to the library’s operations.

Gotsman et al. [4] and later Hoffmann et al. [9] reduced proving
lock-freedom to showing termination of a certain bounded most
general client. Here, we use the theorem of Hoffmann et al. [9],
as it is more general. (Gotsman et al.’s reduction is incorrect for
implementations using thread identifiers or thread-local state.) The
bounded most general client of a program is defined as follows:

BMGCk,m(Cinit, C1, . . . , Cn)
def
=

Cinit;
(
(C1 ⊕ . . .⊕ Cn)≤m ‖ . . . ‖ (C1 ⊕ . . .⊕ Cn)≤m

)
︸ ︷︷ ︸

k threads

where

C≤m
def
= skip ⊕ C ⊕ (C;C) ⊕ . . . ⊕

m times︷ ︸︸ ︷
(C; . . . ;C) .

The definition is very similar to that of the most general client,
except that the the number of calls to the library’s operations per
thread are bounded by m. Now we can state the reduction theorem
as follows.

Theorem 1 (Hoffmann et al. [9]). A concurrent library, Lib, is
lock-free iff its bounded most general client, BMGCk,m(Lib), ter-
minates for all k and m.

3. The Basic Scheme for Proving Lock-Freedom
Our proof technique for establishing termination and thereby lock-
freedom consists of recording the auxiliary progress counters and
proving that the program does not have any assertion violations.
In this section, we first explain our technique by applying it on a
more advanced example (§3.1). We then formalise it using an in-
strumented operational semantics (§3.2) and prove it suffices for
verifying lock-freedom (§3.3). We finally discuss its implementa-
tion within the CAVE verifier (§3.4).

3.1 A Motivating Example: The Elimination Stack
We start with another motivating example, the elimination stack of
Hendler et al. [5], that demonstrates the need for a slightly more
advanced technique than what was needed for the simple “read-
compute-update” (RCU) example of the introduction.

Abstracting over all details that are irrelevant for lock-freedom,
the code of the elimination stack is shown in Figure 2. Both stack
operations, push and pop, have the same structure. Within a loop,
they first perform the RCU pattern trying to update S, the shared
pointer to the top of the stack. When the check that the shared
pointer has not changed succeeds, the operation terminates. When,
however, the check fails (because of contention), the algorithm does
not immediately try the same pattern again, but rather takes part in
the elimination scheme. This scheme consists of a (nested) RCU
loop, where the operation tries to register itself at some random

push/pop
def
=

while(true) {
t := S; . . . ;
if(S == t) { S := . . . ; break; }
i := . . . ; . . . ;
while(true) {
c := C[i]; . . . ;
if(C[i] == c) { C[i] := . . . ; break; }
}
. . . ;

}

Figure 2. The essential part of the elimination stack.

while(true) {r1 := P1;
〈t := S; ++P2〉; . . . ;
if(S == t) { 〈S := . . . ; ++P1; ++P2〉; break; }
〈i := . . . ; ++P2〉; . . . ;
while(true) {r2 := P2;
c := C[i]; . . . ;
if(C[i] == c) { 〈C[i] := . . . ; ++P2〉; break; }
assert(P2 > r2);
}
. . . ;
assert(P1 > r1);
}

Figure 3. Instrumentation of the elimination stack.

index i in the collision array, C. After it successfully does so, it
waits a while and determines whether it collided with another oper-
ation of the opposite kind, in which case both operations terminate;
otherwise, the operation goes round the outer loop and attempts to
update S again.

To verify lock-freedom of this program, it is clear that we cannot
simply use one auxiliary variable for counting the progress outside
looping paths, because in this way we will not be able to show that
the nested loop terminates. Instead, we need one auxiliary variable
for each loop nesting depth. For the outer loop, we use P1, which
we increment on every atomic statement that does not appear on
a looping path, while for the inner loop, we use P2 which gets
incremented on statements that do not appear on looping paths
through nested loops.

Figure 3 shows the instrumented code for the elimination stack
example. In general, our instrumentation requires one auxiliary
variable per loop nesting depth. These variables get incremented on
every atomic step at smaller loop nesting depths. So, for example in
Figure 3, the assignment to S increments both P1 and P2, because
it is on an exit path of the outer loop, whereas the assignment to i
increments only P2 because it is inside a looping path of depth one.

3.2 Instrumented Operational Semantics
We now make this auxiliary variable instrumentation formal. Given
a function P : N → N representing the values of the auxiliary
progress counters and a natural number d representing the current
loop depth, we define Cinc(P, d) : N → N to increment all
counters above d:

Cinc(P, d)
def
= λx.

{
P (x) if x ≤ d
P (x) + 1 if x > d

In essence, Cinc(P, d) is the same as P except that all progress
counters at depths greater than d have been incremented by one.

(σ, σ′) ∈ [[BC]]

d ` 〈BC , σ, P 〉 → 〈skip, σ′,Cinc(P, d)〉
d ` 〈C1, σ, P 〉 → 〈C ′1, σ′, P ′〉

d ` 〈C1;C2, σ, P 〉 → 〈C ′1;C2, σ′, P ′〉 d ` 〈skip;C2, σ, P 〉 → 〈C2, σ, P 〉

d ` 〈break;C2, σ, P 〉 → 〈break, σ, P 〉
d ` 〈C1, σ, P 〉 → 〈C ′1, σ′, P ′〉

d ` 〈C1 ‖C2, σ, P 〉 → 〈C ′1 ‖C2, σ′, P ′〉
d ` 〈C2, σ, P 〉 → 〈C ′2, σ′, P ′〉

d ` 〈C1 ‖C2, σ, P 〉 → 〈C1 ‖C ′2, σ′, P ′〉

d ` 〈skip ‖ skip, σ, P 〉 → 〈skip, σ, P 〉 d ` 〈C1⊕C2, σ, P 〉 → 〈C1, σ, P 〉 d ` 〈C1⊕C2, σ, P 〉 → 〈C2, σ, P 〉

d ` 〈Ln(break,C), σ, P 〉 → 〈skip, σ, P 〉 d ` 〈Ln(skip,C), σ, P 〉 → 〈LP (d)(C ,C), σ, P 〉

d + ldinc(C1) ` 〈C1, σ, P 〉 → 〈C ′1, σ′, P ′〉
d ` 〈Ln(C1,C2), σ, P 〉 → 〈Ln(C ′1,C2), σ′, P ′〉

d ` 〈C1, σ, P 〉 → abort

d ` 〈C1;C2, σ, P 〉 → abort

d ` 〈C1, σ, P 〉 → abort

d ` 〈C1 ‖C2, σ, P 〉 → abort

d ` 〈C2, σ, P 〉 → abort

d ` 〈C1 ‖C2, σ, P 〉 → abort

d + ldinc(C1) ` 〈C1, σ, P 〉 → abort

d ` 〈Ln(C1,C2), σ, P 〉 → abort

P (d) ≤ n

d ` 〈Ln(skip,C), σ, P 〉 → abort

Figure 4. Instrumented operational semantics of the language.

We say that a command, C, is loop-free if it does not syntacti-
cally contain any loop. Formally, this is defined by structural recur-
sion as follows:

lpFree(Ln(C1,C2))
def
= false

lpFree(C1;C2)
def
= lpFree(C1) ∧ lpFree(C2)

lpFree(C1 ‖C2)
def
= lpFree(C1) ∧ lpFree(C2)

lpFree(C1⊕C2)
def
= lpFree(C1) ∧ lpFree(C2)

lpFree(Cother)
def
= true

We say that a command, C, is loop exiting, whenever it can be
syntactically determined that all executions ofC will terminate and
end with break (and not skip). This is formally defined by structural
recursion as follows:

lpExit(break)
def
= true

lpExit(C1;C2)
def
= lpExit(C1) ∨ (lpFree(C1) ∧ lpExit(C2))

lpExit(C1⊕C2)
def
= lpExit(C1) ∧ lpExit(C2)

lpExit(Cother)
def
= false

Finally, we define ldinc(C) to return the loop depth increment
needed when considering a loop whose current iteration is C. The
function returns 0 if C is loop exiting and 1 otherwise.

ldinc(C)
def
=

{
0 if lpExit(C)

1 if ¬lpExit(C)

Figure 4 presents the small-step operational semantics for our
language as a reduction relation between extended configurations
and indexed by the current loop depth, d. Extended configurations
are triples, 〈C, σ, P 〉, consisting of a command, C ∈ Cmd, a pro-
gram state, σ ∈ State, and a function, P ∈ N → N, representing
the auxiliary progress counters. (Recall that there is one progress
counter per loop nesting depth.)

The rules in Figure 4 follow those of Figure 1 and except as
noted below simply pass the P and d components around. The
exceptions are:

• The rule for basic commands calls Cinc(P, d) to increment all
the progress counters at depths greater than the current one.

• When going round through the loop, the value of the current
progress counter, P (d), is recorded in the annotation of the loop
command.

• The rule for evaluating the body of the loop does so at depth
d + ldinc(C1); that is, at the same depth for loop exiting C1

and at depth d+ 1 otherwise.

In addition to normal configurations, we also have a special
abort configuration for detecting assertion violations. The only
assertion violation of interest here is when a loop fails to make
progress. Progress is checked in the last rule of Figure 4, which
fails in case the current progress counter, P (d), is not greater than
the recorded one, n. The other aborting rules ensure that violations
are propagated to the top level.

3.3 Soundness of the Instrumentation
We now turn to proving soundness of the instrumented semantics,
that programs with no assertion violations always terminate.

First, we relate the instrumented and the normal semantics.
We define the erasure, |C| of a command C to replace all the n
annotations in all Ln(,) subterms of C with 0.

Definition 2 (Erasure). Given a command,C, we define its erasure,
|C|, by structural recursion on the command as follows:

|Ln(C1,C2)|
def
= L0(|C1|, |C2|)

|C1;C2|
def
= |C1|; |C2|

|C1 ‖C2|
def
= |C1| ‖ |C2|

|C1⊕C2|
def
= |C1| ⊕ |C2|

|Cother|
def
= Cother

We can prove the following proposition:

Proposition 2 (Instrumentation Erasure).

• If d ` 〈C, σ, P 〉 → 〈C′, σ′, P ′〉, then 〈|C|, σ〉 → 〈|C′|, σ′〉.
• If 〈|C|, σ〉 → 〈C′, σ′〉, then for all d, P , there exist C′′, P ′

such that d ` 〈C, σ, P 〉 → 〈C′′, σ′, P ′〉 and C′ = |C′′|.

We continue with some auxiliary definitions. We define the loop
depth of a command to be its maximum loop nesting depth.

C v C skip v BC

C1 v C ′1
C1;C2 v C ′1;C2

C2 v C ′2
¬ lpExit(C ′1)
C2 v C ′1;C

′
2

break v C1

break v C1;C2

C1 v C ′1
C2 v C ′2

C1 ‖C2 v C ′1 ‖C ′2

skip v C1 ‖C2

C v C1

C v C1⊕C2

C v C2

C v C1⊕C2

break v C2

skip v Ln(C1,C2)

C1 v C2

Ln(C1,C2) v Ln′(C ′1,C2)

Figure 5. Auxiliary reduction relation, C v C′.

Definition 3 (Loop Depth). Given a command, C, we define its
loop depth, 〈|C|〉depth, by structural recursion as follows:

〈|Ln(C1,C2)|〉depth
def
= 1 +max (〈|C1|〉depth, 〈|C2|〉depth)

〈|C1;C2|〉depth
def
= max (〈|C1|〉depth, 〈|C2|〉depth)

〈|C1 ‖C2|〉depth
def
= max (〈|C1|〉depth, 〈|C2|〉depth)

〈|C1⊕C2|〉depth
def
= max (〈|C1|〉depth, 〈|C2|〉depth)

〈|Cother|〉depth
def
= 0

Next, in Figure 5, we define when a command, C, is a reduction
of another command, C′, which we denote as C v C′. The
v relation is reflexive and includes a case C′ v C whenever
〈C, σ〉 → 〈C′, σ′〉. A few rules are noteworthy:

• The first interesting case is the rule deducing C2 v C′1;C
′
2.

This checks that C1 is not loop exiting, because otherwise C′2
is never executed.

• The next interesting case is the second to last rule. According
to this rule, skip v Ln(C1, C2) holds only if the loop may be
exited, i.e. if break is a reduction of the entire loop body, C2.

• The final rule deduces Ln(C1, C2) v Ln′(C′1, C2) by ignoring
the current loop iteration C′1 and just checking that C1 v
C2. This is because the current iteration might terminate and
another iteration may start from C2. For the same reason, the
recorded progress counter may differ.

We show that v is transitive, relates commands as reduced by the
operational semantics, and preserves loop depths.

Proposition 3 (Properties of v).

• If C1 v C2 and C2 v C3, then C1 v C3.
• If 〈C, σ〉 → 〈C′, σ′〉, then C′ v C.
• If C1 v C2 then 〈|C1|〉depth ≤ 〈|C2|〉depth.

We move on to some well-formedness properties of commands.
We define user commands to have no partially executed loops, and
well-formed commands to only have partially executed loops that
could arise from a full loop.

Definition 4 (User Command). A command, C, is a user com-
mand, denoted U(C), iff for every loop Ln(C1, C2) it contains,

C1 = skip and n = 0. Formally,

U(L0(skip,C2))
def
= U(C2)

U(Lp(C1,C2))
def
= false

U(C1;C2)
def
= U(C1) ∧ U(C2)

U(C1 ‖C2)
def
= U(C1) ∧ U(C2)

U(C1⊕C2)
def
= U(C1) ∧ U(C2)

U(Cother)
def
= true

Definition 5 (Well-Formed Command). A command, C, is well-
formed iff it contains partially executed loops only at evaluated
positions and for every such loop Ln(C1, C2), we have C1 v C2

or C1 = skip. Formally,

WF(Lp(C1,C2))
def
= WF(C1) ∧ U(C2) ∧ (C1 v C2 ∨ C1 = skip)

WF(C1;C2)
def
= WF(C1) ∧WF(C2)

WF(C1 ‖C2)
def
= WF(C1) ∧WF(C2)

WF(C1⊕C2)
def
= WF(C1) ∧WF(C2)

WF(Cother)
def
= true

We say that a configuration is safe at a given loop nesting depth
if it contains a well-formed command and the configuration can
never reach an aborting state.

Definition 6 (Safety). A configuration, 〈C, σ, P 〉, is safe at depth
d iff C is well-formed and ¬(d ` 〈C, σ, P 〉 →∗ abort).

From Propositions 2 and 3, we deduce that safety is preserved
by steps of the operational semantics.

Lemma 4 (Preservation). If 〈C, σ, P 〉 is safe at loop depth d and
d ` 〈C, σ, P 〉 → 〈C′, σ′, P ′〉, then 〈C′, σ′, P ′〉 is also safe at d.

We move on to the metric we use to prove termination. We take
the domain of our termination metric to be infinite sequences over
natural numbers, which we represent as functions N→ N.

Definition 7 (Lexicographic Ordering). Given two sequences
P, P ′ : N → N, we define ≺k to be the strict lexicographic or-
der on the first k elements of P and P ′.

P ≺k P ′
def⇐⇒ ∃i ≤ k. P (i) < P ′(i) ∧ ∀j < i. P (j) = P ′(j) .

It is easy to show (by induction on k and well-foundedness of
< on N) that our lexicographic order, ≺k, is well-founded.

Given a command, C, counters, P : N → N, and the current
depth d ∈ N, we define 〈|C,P |〉d : N → N to be the ‘size’ of a
configuration 〈C, σ, P 〉 at loop depth d.

Our goal is to show that the size of safe configurations decreases
by each execution step according to the lexicographic order we
have just defined. Formally, we want to establish the following.

Lemma 5. If d ` 〈C, σ, P 〉 → 〈C′, σ′, P ′〉 and 〈C, σ, P 〉 is safe
at depth d, then 〈|C′, P ′|〉d ≺d+〈|C|〉depth 〈|C,P |〉

d.

We now proceed to the definition 〈|C,P |〉d. Intuitively, the size
of a command records the number of nodes in the command’s
abstract syntax tree at each loop nesting level.

The formal definition, found in Figure 6, is quite subtle in order
to deal with partially executed loops and break statements, and
ensure that Lemma 5 holds.

• In the sequential composition case, 〈|C1;C2, P |〉d, if C1 is a
loop exiting command, then C2 is dead code and hence we do
not count its size.

• In the case for loops, 〈|Ln(C1, C2), P |〉d(m), there are four
subcases. If the current iteration, C1, is bound to exit, then we
return its size at the current depth d. Otherwise, we return some

〈|skip, P |〉d(m)
def
= 0

〈|break, P |〉d(m)
def
= 1

〈|BC , P |〉d(m)
def
= 1

〈|C1;C2, P |〉d(m)
def
=

{
〈|C1, P |〉d(m) + 1 if lpExit(C1)

〈|C1, P |〉d(m) + 〈|C2, P |〉d(m) + 1 if ¬lpExit(C1)

〈|Ln(C1,C2), P |〉d(m)
def
=

〈|C1, P |〉d(m) if lpExit(C1)

〈|C2, P |〉d+1(m) else if m < d

〈|C1, P |〉d+1(m) + 〈|C2, P |〉d+1(m) + 〈|C2, P |〉d+1(m) + 1 else if n < P (d)

〈|C1, P |〉d+1(m) + 〈|C2, P |〉d+1(m) otherwise

〈|C1 ‖C2, P |〉d(m)
def
= 〈|C1, P |〉d(m) + 〈|C2, P |〉d(m) + 1

〈|C1⊕C2, P |〉d(m)
def
= 〈|C1, P |〉d(m) + 〈|C2, P |〉d(m) + 1

Figure 6. Definition of 〈|C,P |〉d : N→ N representing the size of the configuration 〈C, σ, P 〉 at loop depth d.

combination of the sizes of C1 and C2 at depth d + 1. More
specifically, if m < d (i.e., we are calculating the size of the
loop at a depth smaller than the current depth), then we return
a constant response, the size of C2. (We chose the size of C2

and not some other constant because the size must decrease
whenever a transition makes C1 loop exiting. So, we chose C2

whose size is greater or equal to that of C1.)
Now, if m ≥ d, then we have to take the current loop iteration
into account. To do so, we look at the current progress counter,
P (d), to determine whether the current loop iteration is the last
one or not. If P (d) is larger than n (the recorded of the counter
when the iteration started), the loop is allowed to go round once
again; otherwise, the current iteration is the last one.

In the latter case (i.e., P (d) ≤ n), we just take the total
size of C1 and C2. We take into account the size of C2

because we also want the size of a configuration, 〈|C,P |〉d,
to be monotonic (with respect tom) assuming that P is also
monotonic.

In the former case (i.e., if n < P (d)), we must define the
size to be even bigger so that the size decreases when going
round the loop (i.e., Ln(skip, C) → LP (d)(C,C)). That is
how we end up with the size of C1 plus twice the size of C2

plus 1.

To prove Lemma 5, we perform an induction over the reduction
relation of the operational semantics. However, for the induction to
work out, we first prove a stronger version of the lemma with the
same premises and a stronger conclusion. The conclusion of the
stronger version is that there exists i ≤ d+ 〈|C|〉depth such that:

• for all j ≤ i, P (j) = P ′(j); and

• for all j ≤ i, 〈|C′, P ′|〉d(j) ≤ 〈|C,P |〉d(j); and
• for all k ≥ i, if P (j) = P ′(j) holds for every j ≤ k, then
〈|C′, P ′|〉d(k) ≤ 〈|C,P |〉d(k).

Lemma 5 then follows as a corollary of this stronger version.
As a consequence of Lemma 5 and the well-foundedness of ≺,

we can prove that any program without assertion violations always
terminates.

Theorem 6 (Termination). If 〈C, σ, λx. 1〉 is safe at depth 0, then
〈C, σ〉 always terminates.

As a corollary of this theorem and Theorem 1, we conclude
that a library is lock-free if its bounded most general client has
no assertion violations.

Corollary 7 (Lock-freedom). Given a concurrent library, Lib, if
〈BMGCk,m(Lib), σ0, λx. 1〉 is safe for all k and m, and valid
initial states σ0, then the library is lock-free.

3.4 Implementation within CAVE

To automate proving lock-freedom, we have mildly adapted the
implementation of CAVE [14]. CAVE takes as its input a program
consisting of some initialisation code and a number of concurrent
methods, which are all executed in parallel an unbounded number
of times each. When successful, it produces a proof in RGSep [16]
that the program has no memory errors and none of its assertions
are violated at run time. Internally, it performs a thread-modular
program analysis, RGSep action inference [15], that figures out
a set of actions abstracting the updates to shared memory cells
performed by the various operations.

We first run CAVE’s action inference algorithm, which gives us
a set of actions abstracting over the shared state changes performed
by the program threads. CAVE also returns a mapping from the
individual atomic program commands to the actions that they are
responsible for.

We then calculate the maximum loop nesting depth of the pro-
gram, M , and create a fresh auxiliary variable level t,d for each
thread t and each loop nesting level 1 ≤ d ≤M . We use this vari-
able to record whether the progress variable P (d) was incremented
since the start of the loop at depth d by thread t. We then perform
the following instrumentation.

• At each loop header, we add the auxiliary assignment

level t,k := false

where t is the identifier of the current thread and k is the loop’s
nesting depth.

• At each loop back edge, we add the assertion check

assert(level t,k)

where t and k are as before.
• For each action inferred by CAVE, we calculate the maximum

loop nesting depth under which it is performed. Let that level
be k. Then, we modify the action to set level t′,i := true for
every t′ and for every i such that k < i ≤M . For example, an
action performed only outside loops would have k = 0, and can
therefore set all the level variables to true. On the other hand,
an action that may be performed inside a single loop will have
k = 1, and therefore cannot set the level1 to true because that
would enable a loop at the same level to avoid terminating.

typedef struct Node s {
int val;
Node tl;

} *Node;

typedef struct Queue s {
Node head, tail;

} *Queue;

Queue new queue(void) {
Queue Q = malloc(...);
Node nd = malloc(...);
nd->tl = NULL;
Q->head = nd;
Q->tail = nd;
return Q;

}

void enqueue(Queue Q, int value) {
Node node, next, tail;
node = new node();
node->val = value;
node->tl = NULL;
while(true) {

tail = Q->tail;
next = tail->tl;
if (Q->tail == tail) {
if (next == NULL) {
if (CAS(&tail->tl,next,node))
break;

} else {
CAS(&Q->tail,tail,next);

}
}

}
CAS(&Q->tail,tail,node);

}

int tryDequeue(Queue Q) {
Node next, head, tail;
int pval;
while(true) {
head = Q->head;
tail = Q->tail;
next = head->tl;
if (Q->head == head) {

if (head == tail) {
if (next == NULL) return EMPTY;
CAS(&Q->tail,tail,next);

} else {
pval = next->val;
if (CAS(&Q->head,head,next))
return pval;

}
}

}
}

Figure 7. The Michael and Scott non-blocking queue implementation.

Finally, we rerun CAVE to verify the modified program thread-
modularly under the updated set of actions. This, in effect, means
that CAVE will check that the appropriate value level t,k variable
was set in every loop iteration, meaning that there was interference
by a statement from a concurrent thread that was at a lower loop
nesting level, which as we have shown suffices to prove lock-
freedom.

We note that since CAVE is both thread- and procedure-modular,
it suffices to check each operation on its own, under the assumption
they could be arbitrarily many other concurrent operations. We
never need to explicitly quantify over the parameters k and m of
the bounded most general client.

4. A Refined Scheme for Proving Lock-Freedom
The basic proof technique presented in the previous section works
well for programs following the RCU pattern, such as the examples
from Sections 1.1 and 3.1, but has a clear limitation that prevents
its applicability to more complex examples.

The main problem is that it requires loops to terminate in a sin-
gle iteration when there is no contention. While this assumption
holds for the RCU patterns, it is clearly not true in general. Con-
sider, for instance, the program:

i := 0;
while(i < 2) {i++; }

While this program clearly always terminates, instrumenting the
program as discussed in Section 3 leads to the following program

〈i := 0;++P1〉;
L0(skip, p := P1;

if(i < 2) i++; else break;
assert(P1 > p);)

that has an obvious assertion violation.
In the remainder of this section, we discuss a refined proof tech-

nique that overcomes this evident limitation of the basic scheme.

4.1 Another Example: The Michael and Scott Queue
Before delving into our refined proof technique, let us first consider
another motivating example. Figure 7 presents a concurrent non-
blocking queue implementation due to Michael and Scott [12].

The queue is represented by two pointers into a null-terminated
singly-linked list. The first pointer (Q->head) points to the begin-

ning of the list and is updated by dequeueing operations. The sec-
ond pointer (Q->tail) is used to find the end of the list so that
enqueue can locate the last node of the list. It does not necessarily
point to the last node of the list, but it can lag behind. This is be-
cause enqueue first appends a node onto the list with its first CAS
instruction, and then modifies Q->tail with its final CAS instruc-
tion.

Whenever an enqueue or a dequeue operation notices that the
tail pointer lags behind, it firsts perform a CAS to advance the
tail pointer it forward (cf. the underlined instructions in Figure 7)
before proceeding with doing its own work. What complicates the
lock-freedom proof is that this advancement of the tail pointer
happens inside a loop and can prevent a concurrent dequeue from
terminating.

However, one can easily argue that if no further elements are
added to the queue, the tail pointer cannot lag behind more than the
number of elements that have been ever added to the queue, which
for any given point in time is some finite number. The tail pointer
can therefore be advanced at most a finite number of times. (With a
more careful argument, one can show that the tail pointer can only
be at most one node behind the real tail of the list, but we do not
need such a precise bound for proving lock-freedom.)

4.2 The Refined Proof Method
To reason about the aforementioned examples, we therefore also
need to take into account loops that in the absence of contention
do not terminate immediately, but for which we can still argue that
they will eventually terminate.

To do so, we adopt one of the standard techniques for proving
termination of sequential programs, namely the use of ranking
functions. A ranking function, f , is a function from program states
to a well founded domain (typically, N with <) such that whenever
executing the body of a loop changes the state from σ to σ′, we
have that f(σ′) < f(σ).

We assume that a ranking function is attached to each loop.
When executing a loop (i.e., in the L(C1, C2) construct), we now
record not only the value of the progress counter at the beginning
of the loop iteration, but also the state at that time, as well as the
ranking function. When having to check whether the loop can be
restarted or not, we relax the check to allow reentering the loop if
the ranking of the state has decreased. Formally, we replace the last

rule of Figure 4 with the following:

P (d) ≤ n f(σ′) 6< f(σ)

d ` 〈Lf,n,σ(skip, C), σ′, P 〉 → abort

We have added another premise to the rule, thereby making pro-
grams abort less frequently. One can show that even with this
stronger abort rule, if a certain program never aborts, then it al-
ways terminates. To prove this statement, however, we need a more
complex termination metric, a lexicographic product that combines
the metric on the progress variables and on the recorded states.

Returning to Michael and Scott queue, which function should
we choose as a ranking function? Naturally, we could take the
length of the path through the heap following the next fields from
Q->tail to NULL. The length of this path is decremented whenever
the tail pointer is advanced, and is unaffected by local accesses; the
only access that may increase this path length is enqueueing a new
node, but this only happens on a loop-free code path.

A bit more generically, we can take as a ranking function the
sum of the lengths of all distinct acyclic paths between any two
pairs of nodes in the heap. We can further instrument the program to
track how that sum is affected by individual heap updates. Specif-
ically, whenever we have the field assignment x → f := y, and
we know (1) that x is not part of a cyclic data structure and (2) that
there was a path from x to y of at least length two, then we know
that the field assignment decrements the length of heap paths. Oth-
erwise, we conservatively say that the field assignment might in-
crement the length of paths in the heap.

4.3 Implementation within CAVE

For each action that Cave generates, we calculate whether the
action decreases the total length of the heap paths. If so, we call
the action decreasing; we call it possibly increasing otherwise.

• We introduce two additional auxiliary variables, inct,i and
dect,i, for each thread t and each loop nesting depth of the
program, i.e. 1 ≤ i ≤M .

• We augment every decreasing action to set dect,k := true for
every t and every 1 ≤ k ≤ M , and every possibly increasing
one to set inct,k := true for every t and every 1 ≤ k ≤M .

• At the loop header, we initialise the increment and decrement
variables of the current thread’s current loop nesting depth to
false.

• At the loop back edges, we check that either the progress flag
appropriate to the loop level has been set, or the heap paths have
been decremented and not possibly incremented. Formally, we
add the check:

assert(level t,k ∨ (dect,k ∧ ¬inct,k))

where t and k are the current thread identifier and loop nesting
depth respectively.

5. Evaluation
As discussed in Sections 3.4 and 4.3, we have implemented a
tool for proving lock-freedom as an extension of CAVE. We have
applied our tool to verify several concurrent algorithms from the
literature. These include two integer counters: a simple CAS-based
one and one with a secondary counter as a back-off scheme for
high contention cases; three non-blocking stack algorithms: the
Treiber stack [13], a variant of it using a DCAS operation, and the
Hendler et al. [5] elimination stack; a non-blocking counter; and
three concurrent queues: the Michael and Scott queue [12] from
Section 4.1, the DGLM queue [3], and a variant of the Michael and
Scott queue with a simpler tryDequeue implementation.

Algorithm LOC Techniques Time
CAS counter 41 Level 0.02s
Double counter 64 Level 0.11s
Treiber stack 52 Level 0.11s
DCAS stack 52 Level 0.11s
Elimination stack 76 Level 1.22s
MS queue 83 Level+HeapDec 3.01s
DGLM queue 83 Level+HeapDec 3.92s
MSV queue 74 Level+HeapDec 2.85s

Table 1. Experimental results for the automated lock-freedom
prover. For each example, we report the number of lines of code
excluding blank lines and comments, the techniques necessary for
the verification, and the total verification time.

Table 1 reports on our experimental results. The tool has suc-
cessfully proved lock-freedom of all of these algorithms. The basic
loop level technique described in Section 3 was sufficient for veri-
fying the counter and stack implementations, but in order to verify
the concurrent queue algorithms, we needed the refined proof tech-
nique introduced in Section 4. In both cases, taking the lengths of
heap paths as a termination metric was sufficient.

We have also tested our tool on variants of these algorithms that
support blocking methods, such as a dequeue operation that busily
waits whenever the queue is empty. As expected, in all these cases,
the tool failed to prove lock-freedom.

We would also like to stress that our automated proof technique
for proving lock-freedom is heuristic, and while it may work very
well for standard examples, it is easy to defeat it. Specifically, we
calculate loop nesting depths as a heuristic way of detecting when
interference by another thread makes enough progress to block the
termination of a certain loop. This heuristic can easily be confused
by adding a clone of one of the looping methods of a concurrent
library, but wrapping its code inside a terminating loop. Then, our
heuristic will fail to detect this, and will not be able to prove the
modified library lock-free. Needless to say, however, we have not
encountered such cases in practice.

6. Related Work
The literature contains a few approaches for proving lock-freedom.

The most closely related approach to ours is by Colvin and Don-
gol [2]. They verified the MSqueue algorithm shown in Figure 7 by
determining which program statements make progress towards ter-
mination of an operation and constructing a global well-founded
order that is decremented whenever a program makes a step differ-
ent from those statements. This approach is very nice and corre-
sponds closely to ours in the case where the operations do not have
nested loops. For programs with nested loops, such as the HSY
stack, however, coming up with a global well-founded order that
ensures progress can be rather difficult. In such cases, our technique
of having a counter per loop nesting level can substantially sim-
plify the proof. Further, even for algorithms without nested loops,
such as the MSqueue, we do not really need to come up with a
custom global well-founded order because the default heap path
decrementing heuristic explained in Section 4.2 suffices. In an ear-
lier paper [1], the same authors verified the Treiber stack using just
a global well-founded order, but as the authors themselves admit in
their next paper [2] the global approach it too difficult to apply for
more advanced algorithms.

In a very different style, Gotsman et al. [4] presented an auto-
matic approach for verifying lock-freedom by reducing the lock-
freedom problem to termination. They then presented an advanced
combination of separation logic, rely-guarantee, and linear tempo-
ral logic, and used it to prove lock-freedom of the Treiber stack,

the HSY stack and a few more algorithms. They also reported on a
prototype implementation, which is sadly not available.

An instructive example to compare their approach with ours is
the elimination stack [5]. Gotsman et al. [4] prove lock-freedom
in an iterated fashion. First, they show that the bounded most
general client can perform only a finite number of changes to the
central stack object. Next, they show that under the assumption
that the threads eventually stop updating the central stack object,
the number of updates to the collision array is also finite. Finally,
assuming that updates to both the central stack and the collision
array will eventually end, they show that the bounded most general
client program terminates. In our method, however, this iterative
argument is unnecessary, as it is implicitly captured in the different
auxiliary progress variables we introduce per loop nesting depth.

Later, Hoffmann et al. [9] showed that Gotsman et al.’s reduc-
tion is incorrect for implementations using thread identifiers or
thread-local state, and propose an alternative reduction to termina-
tion that is correct for such implementations. They then proposed
an extension of concurrent separation logic with permission tokens
for reasoning about termination. These tokens act like reservations
from a shared pool of fuel. By construction, each loop iteration
consumes one unit of fuel, and so each thread has to have enough
tokens (units of fuel) in its precondition to guarantee that it will
terminate successfully. Threads are allowed to transfer any unused
units of fuel to another thread, thereby allowing that second thread
to run for longer. While the underlying idea of this logic is nice and
clear, unfortunately proofs in this logic are not entirely straight-
forward and currently only manual. The main difficulty is coming
up with the right transfer of fuel reservations between threads and
encoding this using CSL’s resource invariants.

More recently, Liang et al. [10] have developed a program logic
for proving termination-preserving refinement of concurrent pro-
grams, which can be used to prove lock-freedom of concurrent
libraries. As far as proving termination and lock-freedom is con-
cerned, they use a progress token assertion, wf(n), in a similar way
to Hoffmann et al. [9].

While using any of the aforementioned approaches, one can in
principle prove lock-freedom for all our examples, the proofs one
gets are more complicated than necessary and are consequently
hard to derive automatically. In contrast, our approach does not
aim at generality, but is geared towards automation. After the in-
strumentation with auxiliary variables, any existing concurrent pro-
gram verifier can be used to check the absence of assertion viola-
tions, thereby showing lock-freedom.

7. Conclusion
In this paper, we have discussed how to verify lock-freedom by
instrumenting the program with suitable auxiliary variables. Us-
ing our approach we have successfully verified lock-freedom of a
number of stack and queue algorithms. In principle, one can also
apply our technique to other lock-free algorithms, such as list- or
tree-based implementations of sets. Our tool, however, cannot yet
verify such implementations because it does not have any support
for inferring suitable ranking functions.

In the future, it would also be useful to see whether intro-
ducing similar auxiliary variables could assist in proving liveness
properties for locked-based concurrent libraries, such as deadlock-
freedom and starvation-freedom under some fairness assumptions
about the scheduler.

Acknowledgements
We would like to thank Marko Doko and the anonymous CPP’15
reviewers for their helpful feedback. We acknowledge support from
the EC FET project ADVENT.

References
[1] Robert Colvin and Brijesh Dongol. Verifying lock-freedom using

well-founded orders. In ICTAC 2007: 4th International Colloquium
on Theoretical Aspects of Computing, pages 124–138, 2007.

[2] Robert Colvin and Brijesh Dongol. A general technique for proving
lock-freedom. Sci. Comput. Program., 74(3):143–165, 2009.

[3] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir.
Formal verification of a practical lock-free queue algorithm. In
FORTE 2014: Formal Techniques for Networked and Distributed Sys-
tems, volume 3235 of Lecture Notes in Computer Science, pages 97–
114. Springer, 2004. .

[4] Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor
Vafeiadis. Proving that non-blocking algorithms don’t block. In Pro-
ceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2009), pages 16–28. ACM,
2009. .

[5] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free
stack algorithm. J. Parallel Distrib. Comput., 70(1):1–12, 2010. .

[6] Maurice Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 13(1):124–149,
1991.

[7] Maurice Herlihy and Nir Shavit. The art of multiprocessor program-
ming. Morgan Kaufmann, 2008. ISBN 978-0-12-370591-4.

[8] Maurice P. Herlihy, Victor Luchangco, and Mark Moir. Obstruction-
free synchronization: Double-ended queues as an example. In Pro-
ceedings of the 23rd International Conference on Distributed Com-
puting Systems (ICDCS 2003), pages 522–529. IEEE, 2003.

[9] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative rea-
soning for proving lock-freedom. In Proceedings of the 28th Annual
IEEE/ACM Symposium on Logic in Computer Science (LICS), pages
124–133. IEEE, 2013.

[10] Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional verifi-
cation of termination-preserving refinement of concurrent programs.
In Joint Meeting of the 23rd EACSL Annual Conference on Computer
Science Logic and the 29th Annual ACM/IEEE Symposium on Logic
in Computer Science (CSL-LICS 2014). ACM, 2014.

[11] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel.
ACM SIGOPS Operating Systems Review, 26(2):108, 1992.

[12] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In PODC
1996: 15th Annual ACM Symposium on Principles of Distributed
Computing, pages 267–275. ACM, 1996. .

[13] R. K. Treiber. Systems programming: Coping with parallelism. Tech-
nical Report Technical Report RJ 5118, IBM Almaden Research Cen-
ter, April 1986.

[14] Viktor Vafeiadis. Automatically proving linearizability. In CAV 2010:
22nd Int. Conference on Computer Aided Verification, pages 450–464.
Springer, 2010.

[15] Viktor Vafeiadis. RGSep action inference. In VMCAI 2010: 11th Int.
Conference on Verification, Model Checking, and Abstract Interpreta-
tion, pages 345–361. Springer, 2010.

[16] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of
rely/guarantee and separation logic. In CONCUR 2007: 18th Inter-
national Conference on Concurrency Theory, volume 4703 of Lecture
Notes in Computer Science, pages 256–271. Springer, 2007. .

	Introduction
	A Simple Example: the Read-Compute-Update Pattern
	Contribution and Paper Outline

	Background
	Programming Language
	Specifying Lock-Freedom

	The Basic Scheme for Proving Lock-Freedom
	A Motivating Example: The Elimination Stack
	Instrumented Operational Semantics
	Soundness of the Instrumentation
	Implementation within Cave

	A Refined Scheme for Proving Lock-Freedom
	Another Example: The Michael and Scott Queue
	The Refined Proof Method
	Implementation within Cave

	Evaluation
	Related Work
	Conclusion

