
Formal Reasoning about the C11 Weak Memory Model

Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)

viktor@mpi-sws.org

Abstract
This abstract introduces the C11 weak memory model, summarises
known verification results, and discusses some open problems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Concurrency; Weak Memory Models; Program Logic

1. A Primer on Weak Memory Models
The memory model is what defines the semantics of memory ac-
cesses in multithreaded programs. The simplest memory model
is sequential consistency (SC), which interleaves the memory ac-
cesses of each thread to construct a total order among them and re-
quires that memory loads return the value written by the last store
to the same address preceding them in this total order.

Sequential consistency might be a nice and simple way of think-
ing about concurrency, but does not reflect current practice. As an
example, consider the following two-threaded program:

x := 1;
a := y;

y := 1;
b := x;

(SB)

where initially x = y = 0. According to SC, the program can never
terminate with a = b = 0 because at least one of the stores to x and
y has to complete before the loads of y and x. All recent hardware
architectures (e.g., x86, PowerPC, ARM, Itanium), however, do
allow this outcome, and indeed a = b = 0 has been observed
by testing real hardware implementations. At the hardware level,
this is typically explained in terms of store buffering. For example,
in the x86-TSO model [9], the stores to x and y are put into the
corresponding processor’s store buffer and may not be propagated
to the other processors until after the loads have taken place.

Store buffering alone, however, is not sufficient to explain all
observable weak memory behaviours. As an illustration, consider
the independent reads of independent writes (IRIW) program be-
low, where initially x = y = 0.

x := 1;
c := x;
a := y;

d := y;
b := x;

y := 1; (IRIW)

On Power and ARM (but not on x86-TSO), this program may
return c = d = 1 and a = b = 0, indicating that the two middle
threads observed the (independent) stores to x and y happen in a
different order.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3300-9/15/01.
http://dx.doi.org/10.1145/2676724.2693181

2. What is the C11 Memory Model?
The C11 memory model was introduced by the C++ 2011 stan-
dard [6] based on the work of Boehm and Adve [3], and defines the
semantics of concurrent C/C++ programs.

In order to allow maximum flexibility, C11 provides a spec-
trum of memory accesses, each providing different synchronisation
guarantees and having different implementation costs. These range
from cheap normal (non-atomic) accesses to expensive SC-atomic
accesses. On the one end of the spectrum, races on non-atomic ac-
cesses result in completely undefined behaviour (they are treated
as programming errors); on the other end, SC-atomic accesses are
globally synchronised, and so if races are confined to SC-accesses,
then the program behaves as though it were running under inter-
leaving semantics.1

Between the two extremes, C11 provides acquire atomic loads,
release atomic stores, relaxed atomic accesses, and consume loads,
that have weaker synchronisation guarantees. In particular, they
allow the non-SC behaviours of the (SB) and (IRIW) examples.

What makes understanding C11 much more challenging than
hardware memory models such as TSO is not only the many kinds
of accesses it provides, but also the way in which it is defined. In
C11, the meaning of a program is defined to be a set of consistent
executions. An execution can be though of as a generalised program
trace: it is a graph with vertices corresponding to the program’s
memory accesses and with edges corresponding to the various or-
derings guarantees provided by the memory model. These include
the program order, the reads-from relation, each variable’s modifi-
cation order, a total order on SC-accesses, and others. An execution
is called consistent if it satisfies a bunch of constraints (a.k.a., ax-
ioms) specified by the model. A typical such constraint might say
that reads should read from some non-later write to the same ad-
dress that wrote the same value as the one returned by the read. A
formal presentation of the model can be found in Batty et al. [1].

3. Verification Results: Verifying C11 Programs
The constraint-based definition of the C11 model is very global
and, while it may be used to determine whether a given program
outcome is allowed, it does not directly lead to any techniques for
reasoning about program correctness.

Thus, our first objective was to develop such techniques. One
basic property we are aiming for is compositionality: the ability
to decompose a reasoning about a program to reasoning about its
parts. Another is that we want to reason in terms of the source code,
and not by considering all possible executions filtered by those
satisfying the model’s constraints.

In essence, we want to develop a usable axiomatic semantics for
verifying concurrent C11 programs. In our work, we have focused
on the release-acquire fragment of C11, and have developed two
program logics for reasoning about programs in this fragment.

• Relaxed Separation Logic (RSL) [14] is a fairly simple logic that
adapts the notion of ownership found in concurrent separation

1 This is known as the DRF-SC theorem: it holds for a fragment of C11 [3].



logic [8] to the release-acquire fragment of C11. The main idea
is to use separation logic’s rules to ensure the absence of data
races on normal memory accesses, and to introduce special
rules for atomic accesses. An important feature of RSL is that
it allows ownership transfer via release-acquire accesses.

• GPS [13] is a more advanced logic that incorporates the crucial
features found in modern concurrent program logics, namely
ghost assertions, protocols, and separation. GPS goes much
beyond what can be achieved in RSL, and can be used to verify
advanced weak-memory algorithms operating under release-
acquire semantics. As an example, we have recently applied
GPS to verify a weak memory implementation of user-mode
RCU [5], a synchronisation primitive used in Linux.

4. Compilation Results: Verifying C11 Compilers
To ensure that any specifications proved about programs running
over the C11 memory model actually hold when these programs are
run, we also need to verify that the compilers that translate C/C++
down to machine code are faithful to the C11 memory model.

A first set of results in this area was by Batty et al. [1, 2, 10],
who verified the proposed compilations of the C11 atomic primitive
memory accesses to the corresponding code snippets in x86-TSO,
PowerPC, and ARM. These results are very useful, but assume
that the remainder of the compiler preserves the exact pattern of
memory accesses, an assumption that is rarely true in any realistic
scenario.

To deal with compiler transformations that change the memory
access patterns, Sevcik [11] developed a formal model in which he
proved the correctness of a collection of abstract transformations
on programs without data races. Sevcik’s development did not con-
sider the C11 model directly, but rather a trace-based one intended
to be equivalent to the SC+NA fragment of the C11 model. Later,
Morisset et al. [7] adapted this result to actual C11 setting, thereby
handling transformations on non-atomic memory accesses in C11.

More recently, we also considered transformations on atomic
memory accesses [15]. Much to our surprise, we showed that many
of these transformations are actually invalid as C11 source-to-
source transformations. This was largely due to errors in the formal
definition of the C11 memory model. We then considered various
possible fixes to the errors of the C11 model, and showed that
the most of the transformations intended to be correct are indeed
correct in the rectified models.

Following the work on determining which program transforma-
tions are sound, Soham Chakraborty and I are looking at validating
LLVM compiler optimisations with respect to what is allowed by
the C11 memory model.

5. Conclusion: Some Open Problems
In the last few years, a lot of progress has been made in under-
standing and reasoning about weak memory models including C11.
Nevertheless, many difficult problems remain to be solved. At the
semantic level, we need to come up with a decent definition for
C11-style relaxed atomic accesses that do not fall foul of the ‘out
of thin air’ read problem (cf. [14, 15]). We also need to determine
a useful semantics for strong memory fences in C11, as the current
semantics is too weak.

From the verification perspective, there are many interesting
problems to be considered. One should develop proof rules for
reasoning about other features of the C11 model, such as memory
fences, and consume atomic loads. A more challenging problem
might be to develop suitable notions of atomicity and refinement
under weak consistency, or to state and verify liveness properties
in the presence of weak memory consistency. Another direction
would be to develop a verified compiler for C11 in an analogous

way to Sevcik et al. [12] or to verify some important compiler
optimisations with respect to concurrency.

In the remainder, I will briefly discuss one other verification
problem, that of checking robustness. We call a program running
under a memory model X robust against a different memory model
Y , if the program has identical behaviours under X and Y .

While there exist good robustness checking procedures for hard-
ware memory models against SC (e.g., [4]), it is still unknown
whether similar results could be derived for the release-acquire
fragment of the C11 memory model against SC or TSO.

The precise relationship between release-acquire and TSO is
also not fully understood. What is known is that release-acquire
is strictly weaker than TSO. The smallest known examples that can
distinguish release-acquire from TSO are the IRIW program with
two variables and four threads, and the following program with two
variables and only two threads but with store-store races.

y := 2;
x := 1;

x := 2;
y := 1;

a := x;
b := y;

(2+2W)

The outcome a = b = 2 is not possible under TSO, but it is allowed
under C11 release-acquire semantics.

One may therefore conjecture that if the program contains up to
three threads and no store-store races, then its release-acquire and
TSO behaviours coincide. How to prove this conjecture, however,
is not clear.

References
[1] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing

C++ concurrency. In POPL, pages 55–66, 2011.
[2] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying

and compiling C/C++ concurrency: From C++11 to POWER. In
POPL, pages 509–520, 2012.

[3] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In PLDI, pages 68–78, 2008.

[4] A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness
against total store ordering. In ICALP (2), pages 428–440, 2011.

[5] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole. User-level implementations of read-copy update. IEEE
Trans. Parallel Distrib. Syst., 23(2):375–382, 2012.

[6] ISO/IEC 14882:2011. Programming language C++, 2011.
[7] R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a

theory of sound optimisations in the C11/C++11 memory model. In
PLDI, pages 187–196, 2013.

[8] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[9] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In TPHOLs, pages 391–407, 2009.

[10] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
PLDI, pages 311–322, 2012.

[11] J. Sevcik. Safe optimisations for shared-memory concurrent programs.
In PLDI, pages 306–316, 2011.

[12] J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22, 2013.

[13] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In OOPSLA, pages 691–707,
2014.

[14] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In OOPSLA, pages 867–884, 2013.

[15] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid in the
C11 memory model and what we can do about it. In POPL, 2015.


	A Primer on Weak Memory Models
	What is the C11 Memory Model?
	Verification Results: Verifying C11 Programs
	Compilation Results: Verifying C11 Compilers
	Conclusion: Some Open Problems

