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Abstract. Existing dynamic partial order reduction (DPOR) algorithms
scale poorly on concurrent data structure benchmarks because they visit
a huge number of blocked executions due to spinloops.

In response, we develop Awamoche, a sound, complete, and strongly op-
timal DPOR algorithm that avoids exploring any useless blocked execu-
tions in programs with await and confirmation-CAS loops. Consequently,
it outperforms the state-of-the-art, often by an exponential factor.

1 Introduction

Dynamic partial order reduction (DPOR) [13] has been promoted as an effective
verification technique for concurrent programs: starting from a single execution
of the program under test, DPOR repeatedly reverses the order of conflicting
accesses in order to generate all (meaningfully) different program executions.

Applying DPOR in practice, however, reveals a major performance and scal-
ability bottleneck: it explores a huge number of blocked executions, often out-
numbering the complete program executions by an exponential factor. Blocked
executions most commonly occur in programs with spinloops, i.e., loops that do
not make progress unless some condition holds. Such loops are usually trans-
formed into assume statements [18, 14], effectively requiring that the loop exits
at its first iteration (and blocking otherwise).

We distinguish three classes of such blocked executions.

The first class occurs in programs with non-terminating spinloops, such as
a program awaiting for x > 42 in a context where x = 0. For this program,
modeled as the statement assume(x > 42), DPOR obviously explores a blocked
execution as the only existing value for x violates the assume condition. Such
blocked executions should be explored because they indicate program errors.

The second class occurs in programs with await loops. To see how such loops
lead to blocked executions, consider the following program under sequential con-
sistency (SC) [23] (initially x=y=0),

x := 2
assume(y ≤ 1)

y := 2
assume(x ≤ 1)
y := 1
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where each assume models an await loop, e.g., do a := y while (a > 1) for the
assume of the first thread. Suppose that DPOR executes this program in a left-to-
right manner, thereby generating the interleaving x := 2, assume(y ≤ 1), y := 2.
At this point, assume(x ≤ 1) cannot be executed, since x would read 2. Yet,
DPOR cannot simply abort the exploration. To generate the interleaving where
the first thread reads y = 1, DPOR must consider the case where the read of x
is executed before the x := 2 assignment. In other words, DPOR has to explore
blocked executions in order to generate non-blocked ones.

The third class occurs in programs with confirmation-CAS loops such as:

do

a := x
b := f(a)

while (¬CAS(x, a, b))

which is modeled as:
a := x
b := f(a)
assume(CAS(x, a, b))

Consider a program comprising two threads running the code above, with a and
b being local variables. Suppose that DPOR first obtains the (blocked) trace
where both threads concurrently try to perform their CAS: a1 := x, a2 := x,
CAS(x, a1, b1), CAS(x, a2, b2). Trying to satisfy the blocked assume of thread 2 by
reversing the CAS instructions is fruitless because then thread 1 will be blocked.

In this paper, we show that exploring blocked executions of the second and
third classes is unnecessary.

We develop Awamoche, a sound, complete, and optimal DPOR algorithm
that avoids generating any blocked executions for programs with await and
confirmation-CAS loops. Our algorithm is strongly optimal in that no explo-
ration is wasted: it either yields a complete execution or a termination violation.
Awamoche extends TruSt [15], an optimal DPOR algorithm that supports weak
memory models and has polynomial space requirements, with three new ideas:

1. Awamoche identifies certain reads as stale, meaning that they will never be
affected by a race reversal due to TruSt’s maximality condition on reversals,
and avoids exploring any executions that block on stale-read values.

2. To deal with await loops, since it cannot completely avoid generating execu-
tions with blocking reads, Awamoche revisits such executions in place if a
same-location write is later encountered. If no such write is found, then the
blocked execution witnesses a program termination bug [21, 25].

3. To effectively deal with confirmation-CAS loops, Awamoche only considers
executions where the confirmation succeeds, by reversing not only races be-
tween conflicting instructions, but also speculatively revisiting traces with
two reads reading from the same write event to enable a later in-place revisit.

As we shall see in §5, supporting these DPOR modifications is by no means
trivial when it comes to proving correctness and (strong) optimality. Indeed,
TruSt’s correctness proof proceeds in a backward manner, assuming a way to
determine the last event that was added to a given trace. The presence of in-place
and speculative revisits, however, makes this impossible.

We therefore develop a completely different proof that works in a forward
manner: from each configuration that is a prefix of a complete trace, we construct
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a sequence of steps that will lead to a larger configuration that is also a prefix
of the trace. Our proof assumes that same-location writes are causally ordered,
which invariably holds in correct data structure benchmarks, but is otherwise
more general than TruSt’s assuming less about the underlying memory model.

Our contributions can be summarized as follows:

§2 We describe how and why DPOR encounters blocked executions.
§3 We intuitively present Awamoche’s three novel key ideas: stale reads, in-

place revisits, and speculative revisits.
§4 We describe our algorithm in detail in a memory-model-agnostic framework.
§5 We generalize TruSt’s proof and prove Awamoche sound, complete, and

strongly optimal.
§6 We evaluate Awamoche, and demonstrate that it outperforms the state-of-

the-art, often by an exponential factor.

2 DPOR and Blocked Executions

Before presenting Awamoche, we recall the fundamentals of DPOR (§2.1), and
explain why spinloops lead to blocked explorations (§ 2.2).

2.1 Dynamic Partial Order Reduction

DPOR algorithms verify a concurrent program by enumerating a representa-
tive subset of its interleavings. Specifically, they partition the interleavings into
equivalence classes (two interleavings are equivalent if one can be obtained from
the other by reordering independent instructions), and strive to explore one in-
terleaving per equivalence class. Optimal algorithms [2, 15] achieve this goal.

DPOR algorithms explore interleavings dynamically. After running the pro-
gram and obtaining an initial interleaving, they detect racy instructions (i.e.,
instructions accessing the same variable with at least one of them being a write),
and proceed to explore an interleaving where the race is reversed.

Let us clarify the exploration procedure with the following example, where
both variables x and y are initialized to zero.

if (x = 0)
y := 1

x := 1
x := 2

(rw+ww)

The rw+ww program has 5 interleavings that can be partitioned into 3 equiv-
alence classes. Intuitively, the y := 1 is irrelevant because the program contains
no other access to y; all that matters is the ordering among the x accesses.

The exploration steps for rw+ww can be seen in Fig. 11. DPOR obtains a
full trace of the program, while also recording the transitions that it took at each
step at the respective transition’s backtrack set (traces 0 to 2 ). After obtaining

1 The exploration procedure has been simplified for presentational purposes. For a full
treatment, please refer to [15, 2].
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0init

⇝ · · ·⇝

1init

(rx) if (...)

(wy) y := 1

{rx}

{wy}
⇝ · · ·⇝

2init

(rx) if (...)

(wy) y := 1

(w1) x := 1

(w2) x := 2

{rx, w1}

{wy}

{w1}

{w2}

bt

3init

(w1) x := 1
{w1, rx}

⇝ · · ·⇝

4init

(w1) x := 1

(rx) if (...)

(w2) x := 2

{w1, rx}

{rx, w2}

{w2}

bt

5init

(w1) x := 1

(w2) x := 2

{rx, w1}

{rx, w2} ⇝

6init

(w1) x := 1

(w2) x := 2

(rx) if (...)

{rx, w1}

{rx, w2}

{rx}

Fig. 1. A DPOR exploration of rw+ww

a full trace, it initiates a race-detection phase. During this phase, DPOR detects
the races between rx and the two writes w1 and w2. (While w1 and w2 also write
the same variable, they do not constitute a race, as they are causally related.)
For the first race, DPOR adds w1 in the backtrack set of the first transition, so
that it can subsequently execute w1 instead of rx. For the second one, while w2

is not in the backtrack set of the first transition, w2 cannot be directly executed
as the first transition without its causal predecessors (i.e., w1) having already
executed. Since w1 is already in the backtrack set of the first transition, DPOR
cannot do anything else, and the race-detection phase is over.

After the race-detection phase is complete, the exploration proceeds in an
analogous manner: DPOR backtracks to the first transition, fires w1 instead of
rx (trace 3 ), re-runs the program to obtain a full trace (trace 4 ), and initiates
another race-detection phase. During the latter, a race between rx and w2 is
detected, and w2 is inserted in the backtrack set of the second transition.

Finally, DPOR backtracks to the second transition, executes w2 instead of
rx (trace 5 ), and eventually obtains the full trace 6 . During the last race-
detection phase of the exploration, DPOR detects the races between rx and the
two writes w1 and w2. As rx is already in the backtrack set of the first two
transitions, DPOR has nothing else to do, and thus concludes the exploration.

Observe that DPOR explored one representative trace from each equivalence
class (traces 2 , 4 , and 6 ). To avoid generating multiple equivalent interleav-
ings, optimal DPOR algorithms extend the description above by restricting when
a race reversal is considered. In particular, the TruSt algorithm [15] imposes a
maximality condition on the part of the trace that is affected by the reversal.
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while (x=0) {}
y := 1

x := 1
x := 2

(rw+ww-l)
assume(x ̸=0)
y := 1

x := 1
x := 2

(rw+ww-a)

Fig. 2. A variation of rw+ww with an await loop (left) and an assume (right)

2.2 Assume Statements and DPOR

To see how assume statements arise in concurrent programs, suppose that we
replace the if-statement of rw+ww with an await loop (Fig. 2). Although
the change does not really affect the possible outcomes for x, it makes DPOR
diverge: DPOR examines executions where the loop terminates in 1, 2, 3, . . .
steps. Since, however, the loop has no side-effects, we can actually transform it
into an assume(x) statement, effectively modeling a loop bound of one.

Doing so guarantees DPOR’s termination but not its good performance. The
reason is ascribed to the very nature of DPOR. Indeed, suppose that DPOR
executes the first instruction of the left thread and then blocks due to assume

statement. At this point, DPOR cannot simply stop the exploration due to the
assume statement not being satisfied; it has to explore the rest of the program,
so that the race reversals make the assume succeed. All in all, DPOR explores
2 complete and 1 blocked traces for rw+ww-a.

In general, DPOR cannot know whether some future reversal will ever make
an assume succeed. Worse yet, it might be the case that there is an exponential
number of traces to be explored (due to the other program threads), until DPOR
is certain that the assume statement cannot be unblocked.

To see this, consider the following program where rw+ww-a runs in parallel
with some threads accessing z:

rw+ww-a z := 1 a1 := z ... aN := z (rw+ww-a-par)

For the trace of rw+ww-a where the assume fails, DPOR fruitlessly explores
2N traces in the hope that an access to x is found that will unblock the assume
statement.

Given that executing an assume statement that fails leads to blocked exe-
cutions, one might be tempted to consider a solution where assume statements
are only scheduled if they succeed. Even though such a solution would elimi-
nate blocking for rw+ww-a, it is not a panacea. To see why, consider a vari-
ation of rw+ww-a where the first thread executes assume(x = 0) instead of
assume(x ̸= 0). In such a case, the assume can be scheduled first (as it succeeds),
but reversing the races among the x accesses will lead to blocked executions. It
becomes evident that a more sophisticated solution is required.

3 Key Ideas

Awamoche, our optimal DPOR algorithm, extends TruSt [15] with three novel
key ideas: stale-read annotations (§ 3.1), in-place revisits (§ 3.2) and speculative
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revisits (§ 3.3). As we will shortly see, these ideas guarantee that Awamoche
is strongly optimal : it never initiates fruitless explorations, and all explorations
lead to executions that are either complete or denote termination violations. In
the rest of the paper, we call such executions useful.

3.1 Avoiding Blocking due to Stale Reads

Race reversals are at the heart of any DPOR algorithm. TruSt distinguishes two
categories of race reversals: (1) write-read and write-write reversals, (2) read-
write reversals. While the former category can be performed by modifying the
trace directly in place (called a “forward revisit”), the latter may require remov-
ing events from the trace (called a “backward revisit”). To ensure optimality for
backward revisits, TruSt checks a certain maximality condition for the events
affected by them, namely the read, which will be reading from a different write,
and all events to be deleted.

An immediate consequence is that any read events not satisfying TruSt’s
maximality condition, which we call stale reads, will never be affected by a
subsequent revisit. As an example, consider the following program with a read
that blocks if it reads 0:

x := 1 assume(x = 1) (w+r)

After obtaining the trace x := 1; assume(x = 1), TruSt forward-revisits the read
in-place, and makes it read 0. At this point, we know that (1) the assume will
fail, and (2) that both the read and the events added before it cannot be back-
ward-revisited, due to the read reading non-maximally (which violates TruSt’s
maximality condition). As such, no useful execution is ever going to be reached,
and there is no point in continuing the exploration.

Leveraging the above insight, we make Awamoche immediately drop traces
where some assume is not satisfied due to a stale read. To do this, Awamoche
automatically annotates reads followed by assume statements with the condition
required to satisfy the assume, and discards all forward revisits that do not satisfy
the annotation.

Even though stale-read annotations are greatly beneficial in reducing block-
ing, they are merely a remedy, not a cure. As already mentioned, they are only
leveraged in write-read reversals, and are thus sensitive to DPOR’s exploration
order. To completely eliminate blocking,Awamoche performs in-place and spec-
ulative revisits, described in the next sections.

3.2 Handling Await Loops with In-Place Revisits

Awamoche’s solution to eliminate blocking is to not blindly reverse all races
whenever a trace is blocked, but rather to only try and reverse those that might
unblock the exploration.

As an example, consider rw+ww-a-par (Fig. 3). After Awamoche obtains
the first full trace, it detects the races among the z accesses, as well as the ⟨rx, w1⟩
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1init

(rx) asm(x)

(w1) x := 1

(w2) x := 2

(z1) z := 1

(a1) a1 := z

(aN ) aN := z

{rx, w1}

{w1}

{w2}

{z1, a1, ... , aN}
ir

2init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(z1) z := 1

(a1) a1 := z

(aN ) aN := z

{rx, w2}

{w1}

{w2}

{z1, a1, ... , aN}
bt · · ·

3init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(aN ) aN := z

(z1) z := 1

(aN−1) aN−1 := z

{rx, w2}

{w1}

{w2}

{z1, a1, ... , aN}

Fig. 3. Key steps in Awamoche’s exploration of rw+ww-a-par

1init

(rx) asm(x)

(w1) x := 1

(w2) x := 2

(z1) z := 1

(zn) z := n

{rx, w1}

{w1}

{w2}

{z1, z2, ... , zn}

{zn}

ir

2init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(z1) z := 1

(zn) z := n

{rx, w1}

{rx, w2}

{w2}

{z1, z2, ... , zn}

{zn}

ir

3init

(w1) x := 1

(w2) x := 2

(rx) asm(x)

(z1) z := 1

(zn) z := n

{rx, w1}

{rx, w2}

{w2}

{z1, z2, ... , zn}

{zn}

bt · · ·

Fig. 4. An Awamoche exploration of rw+ww

race. (Recall that Awamoche is based on TruSt and therefore does not consider
the ⟨rx, w2⟩ race in this trace.) At this point, a standard DPOR would start
reversing the races among the z accesses. Doing so, however, is wasteful, since
reversing races after the blockage will lead to the exploration of more blocked
executions.

Instead, Awamoche chooses to reverse the ⟨rx, w1⟩ race (as this might make
the assume succeed), and completely drops the races among the z accesses. We

call this procedure in-place revisiting (denoted by
ir

in Fig. 3). Intuitively,
ignoring the z races is safe to do as they will have the chance to manifest in the
trace where the ⟨rx, w1⟩ race has been reversed.

Indeed, reversing the ⟨rx, w1⟩ does make the assume succeed, at which point
the exploration proceeds in the standard DPOR way. Awamoche explores 2N

traces where the read of x reads 1, and another 2N where it reads 2. Note that,
even though in this example Awamoche explores 2/3 of the traces that standard
DPOR explores, as we show in §6 the difference can be exponential.
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1init

(r1) a1 := x

(c1) CAS(x, a1, b1)

{r1}

⇝ · · ·⇝

2init

(r1) a1 := x

(c1) CAS(x, a1, b1)

(r2) a2 := x

(c2) CAS(x, a2, b2)

{r1, r2}

{r2}

bt

3init

(r2) a2 := x

{r1, r2}

⇝ · · ·⇝

4init

(r2) a2 := x

(c2) CAS(x, a2, b2)

(r1) a1 := x

(c1) CAS(x, a1, b1)

{r1, r2}

{r1}

Fig. 5. An Awamoche exploration of the confirmation-CAS example.

Suppose now that we change the assume(x) in rw+ww-a-par to assume(x
= 42) so that there is no trace where the assume is satisfied. The key steps of
Awamoche’s exploration can be seen in Fig. 4. Upon obtaining a full trace, all
races to z are ignored and Awamoche revisits rx in place. Subsequently, as the
assume is still not satisfied, Awamoche again revisits rx in place (trace 2 ). At
this point, since there are no other races on x it can reverse, Awamoche reverses
all the races on z, and finishes the exploration.

In total, Awamoche explores 2N blocked executions for the updated ex-
ample, which are all useful. As rx is reading from the latest write to x in all
these executions and the assume statement (corresponding to an await loop)
still blocks, each of these executions constitutes a distinct liveness violation.

3.3 Handling Confirmation CASes with Speculative Revisits

In-place revisiting alone suffices to eliminate useless blocking in programs whose
assume statements arise only due to await loops. It does not, however, eliminate
blocking in confirmation-CAS loops. Confirmation-CAS loops consist of a spec-
ulative read of some shared variable, followed by a (possibly empty) sequence of
local accesses and other reads, and a confirmation CAS that only succeeds if it
reads from the same write as the speculative read.

As an example, consider the confirmation-CAS example from §1 and a trace
where both reads read the initial value, the CAS of the first thread succeeds, and
the CAS of the second thread reads the result of the CAS of the first. Although
this trace is blocked and explored by DPOR (since the CAS read of the second
thread is reading from the latest, same-location write), it does not constitute
an actual liveness violation. In fact, even though the CAS read that blocks does
read from the latest, same-location write, the r := x read in the same loop
iteration does not. In order for a blocked trace (involving a loop) to be an actual
liveness violation, all reads corresponding to a given iteration need to be reading
the latest value, and not just one.

To avoid exploring blocked traces altogether for cases likes this, we equip
Awamoche with some builtin knowledge about confirmation-CAS loops and
treat them specially when reversing races. To see how this is done, we present a
run of Awamoche on the confirmation-CAS example of §1 (see Fig. 5).



Unblocking Dynamic Partial Order Reduction 9

While building the first full trace (trace 1 ), another big difference between
Awamoche and standard DPOR algorithms is visible: Awamoche does not
maintain backtrack sets for confirmation CASes. Indeed, there is no point in
reversing a race involving a confirmation CAS, as such a reversal will make the
CAS read from a different write than the speculative read, and hence lead to an
assume failure.

After obtaining the first full trace (trace 2 ), Awamoche initiates a race-
detection phase. At this point, the final big difference between Awamoche
and previous DPORs is revealed. Awamoche will not reverse races between
reads and CASes, but rather between speculative reads. (While speculative reads
are not technically conflicting events, they conflict with the later confirmation-
CASes.) As can be seen in trace 3 , Awamoche schedules the speculative read
of the second thread before that of the first thread so that it explores the sce-
nario where the confirmation of the second thread succeeds before the one of the
first.

Finally, simply by adding the remaining events of the second thread before
the ones of the first thread, Awamoche explores the second and final trace of
the example (trace 4 ), while avoiding having blocked traces altogether.

4 Await-Aware Model Checking Algorithm

Awamoche is based on TruSt [15], a state-of-the-art stateless model checking
algorithm that explores execution graphs [9], and thus seamlessly supports weak
memory models. In what follows, we formally define execution graphs (§ 4.1),
and then present Awamoche (§ 4.2).

4.1 Execution Graphs

An execution graph G consists of a set of events (nodes), representing instruc-
tions of the program, and a few relations of these events (edges), representing
interactions among the instructions.

Definition 1. An event, e ∈ Event, is either the initialization event init, or
a thread event ⟨t , i , lab⟩ where t ∈ Tid is a thread identifier, i ∈ Idx

△
= N is a

serial number inside each thread, and lab ∈ Lab is a label that takes one of the
following forms:

– Block label: B representing the blockage of a thread (e.g., due to the condition
of an “assume” statement failing).

– Error label: error representing the violation of some program assertion.
– Write label: Wkw(l , v) where kw ⊆ Wattr

△
= {excl} denotes special attributes

the write may have (i.e., exclusive), l ∈ Loc is the location accessed, and
v ∈ Val the value written.

– Read label: Rkr(l) where kr ⊆ Rattr
△
= {awt, spec, excl} denotes special at-

tributes the read may have (i.e., await, speculative, exclusive), and l ∈ Loc
is the location accessed. We note that if a read has the awt or the spec at-
tribute, then it cannot have any other attribute.
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We omit the ∅ for read/write labels with no attributes. The functions tid, idx,
loc, and val, respectively return the thread identifier, serial number, location,
and value of an event, when applicable. We use R, W, B, and error to denote
the set of all read, write, block, and error events, respectively, and assume that
init ∈ W. We use superscript and subscripts to further restrict those sets (e.g.,
Wl

△
= {init} ∪ {w ∈ W | loc(w) = l}).
In the definition above, read and write events come with various attributes.

Specifically, we encode successful CAS operations and other similar atomic op-
erations, such as fetch-and-add, as two events: an exclusive read followed by an
exclusive write (both denoted by the excl attribute). Moreover, we have a spec
attribute for speculative reads, and write Rconf for the corresponding confirma-
tion reads (i.e., the first exclusive, same-location read that is po-after a given
r ∈ Rspec). Finally, we have the awt attribute for reads the outcome of which
is tied with an assume statement, and write Rblk for the subset of Rawt that are
reading a value that makes the assume fail (see below).

Definition 2. An execution graph G consists of:

1. a set G.E of events that includes init and does not contain multiple events
with the same thread identifier and serial number.

2. a total order ≤G on G.E, representing the order in which events were incre-
mentally added to the graph,

3. a function G.rf : G.R → G.W, called the reads-from function, that maps each
read event to a same-location write from where it gets its value, and

4. a strict partial order G.co ⊆
⋃

l∈Loc G.Wl ×G.Wl , called the coherence order,
which is total on G.Wl for every location l ∈ Loc.

We write G.R for the set G.E ∩ R and similarly for other sets. Given two events
e1, e2 ∈ G.E, we write e1 <G e2 if e1 ≤G e2 and e1 ̸= e2. We write G|E for the
restriction of an execution graph G to a set of events E, and G\E for the graph
obtained by removing a set of events E.

Based on the above graph representation, we define G.po, which orders events
in the same thread according to their i component, and porf, which is the causal
order among the graph events, as follows:

G.po
△
={⟨init, e⟩ | e ∈ G.E \ {init}}
∪{⟨e, e′⟩ ∈ G.E×G.E | tid(e) = tid(e′) ∧ idx(e) < idx(e′)}

G.porf
△
=(G.po ∪G.rf)+

The semantics of a program P under a memory model m is the set of execu-
tion graphs corresponding to the program that satisfy the consistency predicate
of m. Consistency predicates generally constrain the possible choices of co and
rf, thereby indirectly constraining the possible final values of memory locations
and the values that reads can return.

TruSt (and by extension, Awamoche), assumes some properties on the mem-
ory model [15]: porf acyclicity, porf-prefix-closedness, co-maximal-extensibility.
Intuitively, extensibility captures the idea that executing a program should never
get stuck if a thread has more statements to execute.
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Algorithm 1 Awamoche’s exploration algorithm

1: procedure Verify(P)
2: VisitP(G∅)

3: procedure VisitP(G)

4: if ¬consistentm(G) ∨ ∃b ∈ G.Rblk.¬maximal(G, b) then return

5: switch a← nextP(G) do

6: G← G++ a
7: case a = ⊥
8: return “Visited full execution graph G”

9: case a ∈ error

10: exit(“error”)

11: case a ∈ Rconf

12: e← maxpo{r ∈ Rspec | tid(r) = tid(a)}
13: VisitP(SetRF(G, a,G.rf(e)))

14: case a ∈ R \Rconf

15: for w ∈ G.Wloc(a) do
16: if a ∈ G.Rspec ∧ ∃b ∈ G.Rspec. ⟨w, b⟩ ∈ G.rf then
17: MaybeBackwardRevisitP(SetRF(G, a,w), {b}, a)
18: else
19: VisitP(SetRF(G, a,w))

20: case a ∈ W

21: if WWRace(G) then exit(“Write-write race”)

22: VisitP( IPR (G, a))
23: Revs ← G.Rloc(a) \ dom(G.porf; [a])
24: MaybeBackwardRevisitP(G,Revs, a)

25: case
26: VisitP(G)

4.2 Awamoche

Similarly to TruSt, Awamoche verifies a concurrent program P by enumerating
all of its consistent execution graphs (see Algorithm 1). In contrast to TruSt,
however, Awamoche is strongly optimal : it never explores an execution G where
there exists some blocked read r ∈ G.Rblk that is reading from a non-co-maximal
write. In other words, Awamoche only visits graphs that lead to useful execu-
tions2. In order to be able to do so, Awamoche makes stronger assumptions on
the underlying memory model m, namely that there are no write-write races,
and that m does not allow porf to contradict co (i.e., that co ⊆ porf).

Next, we first describe how TruSt works, and then proceed withAwamoche’s
modifications .

Given a program P, Verify visits all consistent execution graphs of P by
calling Visit on the execution graph G∅ containing only the initialization event.

2 Recall that blocked reads that read from maximal writes are useful, as they denote
liveness violations.
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At each step (Line 4), as long as the current graph remains consistent un-
der the specified memory model m, Visit obtains a new event a via nextP(G)
(Line 5), and extends the current graphG with a (Line 6). We assume thatG++a
adds a to G.E, and also to G.co, in case a is a write. (Recall that co ⊆ porf and
so a’s co-placing is unique.)

If there are no more events to add to the graph, then G is complete, and
Visit returns (Line 7). If a denotes an error, then it is reported to the user and
verification terminates (Line 9).

If a is a read, Visit needs to examine all possible places where a could
read from. To that end, for each same-location write w in G (Line 15), Visit
recursively explores the possibility that a reads from w (Line 19). Formally,
SetRF(G, r, w) returns a graph G′ that is identical to G except for its rf com-
ponent:

G′.rf = G.rf \ (G.E× {r}) ∪ {⟨w, r⟩}

If a is a write, Visit examines both the case when a is simply added to G
(Line 22) and the “backward-revisit” cases for each existing same-location read
in G that could read from a (Line 5). When a backward-revisits a read r, the
resulting graph G′ only contains the events that were added before r, or are porf-
before a, and updates r to read from a. Since, however, there might be many
backward revisits that lead to the exact same graph G′, to ensure optimality,
G′ is visited only when the current graph G forms a maximal extension of G′.
We do not provide TruSt’s definition of maximal extensions here, as Awamoche
modifies it to achieve strong optimality.

Let us now move to the parts of Algorithm 1 that are Awamoche-specific.
First, Awamoche discards all graphs where some blocked read is reading

non-maximally (Line 4). As explained in §3.2, such reads cannot be revisited and
will thus only lead to blocked executions. In addition, to guarantee correctness,
Awamoche raises an error if it detects unordered writes (Line 21).

Second, whenever a write event a is added, Awamoche revisits all same-
location blocked reads in place making them read from a (Line 22) and excluding
them from the normal backward-revisit procedure (Line 5). Formally, we define
IPR(G, a) to return a graphG′ that is identical toG apart from its rf component:

G′.rf = G.rf \ (G.E×G.Rblkloc(a)) ∪ ({a} ×G.Rblkloc(a))

Third, whenever a confirmation read a is added (Line 11), i.e., an exclusive
read that succeeds an unmatched speculative read e, Awamoche only explores
the execution where a reads from the same write as e (Line 13): any other write
would make the confirmation CAS fail.

Fourth, whenever a speculative read a is added to read from a candidate
write w and there is another speculative read b reading from the same write w
(Line 16), Awamoche backward-revisits b to read from a. Note that, due to the
atomicity of the confirming CASes, there can be at most one other speculative
read b reading from w, and so Awamoche revisits it to read from a, making it
blocked, so that it get revisited in place when the confirming CAS of a is added
to the graph. (To ensure graph well-formedness, we assume that IPR(G, b) does
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Algorithm 2 Awamoche’s backward-revisit algorithm

1: procedure MaybeBackwardRevisitP(G,Revs, a)
2: for r ∈ Revs do
3: [d1, ... , dn]← sortG<({e ∈ G.E | r < e ∧ ⟨e, a⟩ ̸∈ G.porf})
4: if ∃G′, G′′ such that G′ r

⇝ G′′ d1⇝ · · · dn⇝ G|G.E\{a} and r ̸∈ G′′.Rblk then
5: VisitP(IPR(SetRF(G

′ ++ [r, a], r, a), a))

not modify G when called with a read argument b, and that SetRF(G, b, ) makes
b read from ⊥, which IPR also considers.)

Finally, similarly to TruSt, Awamoche only performs a backward revisit if
G forms a maximal extension, though Awamoche employs a slightly different
definition of maximal extensions. Awamoche’s backward-revisit algorithm can
be seen in Algorithm 2.

Roughly, Awamoche performs a backward revisit from a to r that leads to
a graph IPR(Gr, a) if, starting from Gr without r and a, and adding r and all
the deleted events in a co-maximal way (and performing in-place revisits along

the way), leads to G. Formally, we write G1
e
⇝ G2 if there exists G′

1 such that
G2 = IPR(G′

1, e), G
′
1 = G1 ++ e and:

G′
1.rf = G1.rf ∪ {⟨maxG.coe , e⟩} G′

1.co = G1.co if e ∈ R

G′
1.rf = G1.rf G′

1.co = G1.co ∪
{
⟨w, e⟩ w ∈ G.W

}
if e ∈ W

G′
1.rf = G1.rf G′

1.co = G1.co otherwise

We note that, for the special case where e ∈ Rspec and there is e′ ∈ G.Rspec
loc(e)

such that e′ is not followed by the matching confirmation CAS, we consider ⊥
as the maxG.coe . As a final remark, note that, Awamoche modifies nextP(G)
so that (a) after scheduling a speculative read, it keeps scheduling events in
the same threads until the respective confirming CAS is added, and (b) it does
not schedule events from a thread whose last (speculative) read reads ⊥. These
modifications ensure that the confirmation patterns are added one at a time,
and that in-place revisits take place among confirming CASes and speculative
reads.

5 Correctness and Optimality

Proving Awamoche correct is non-trivial, as we had to develop a novel proof
strategy. In what follows, we first review TruSt’s proof argument, show why it
is inapplicable for Awamoche. Then, we explain our proof strategy (§ 5.1) and
state our completeness and optimality results (§ 5.2).

5.1 Approaches to Correctness

TruSt The proof of TruSt proceeds in a backward manner. Specifically, TruSt’s
proof is based on a procedure Prev that, given an execution G, recovers the
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assume(x ̸= 0)
y := 1

a := y x := 1

init

R(x)

W(y, 1)

R(y) W(x, 1)

Fig. 6. TruSt: In-place revisits make it impossible to determine the last step taken

unique “previous” execution Gp that the algorithm must reach in order to visit
G. To do so, assuming a left-to-right addition order of events, Prev(G) finds
the rightmost porf-maximal event e of G, and decides whether e was added in
a non-revisit step, or e is a read that was just revisited by a write event located
to its right. If e was added in a non-revisit step, then Gp is simply G without e.
Otherwise, Prev obtains Gp from G in the following way: it removes e along with
the write w that e reads from, and then iteratively adds the leftmost available
event to G in a co-maximal way, until w is about to be added.

TruSt’s completeness and optimality are proved using Prev. For the former,
one can show that each consistent final execution can reach the initial empty
execution through a series of Prev steps, and each of these steps is matched by
a forward step of TruSt. For the latter, one can show that each step of TruSt is
matched by the (unique) Prev step.

To see why we cannot follow a similar approach for Awamoche, consider
the program of Fig. 6, along with one of its executions. We will show that in-
place revisits make it impossible to trace the algorithm’s last step merely by
inspecting the execution. Assuming a left-to-right addition order, Awamoche
will reach this execution as follows: it first adds R(x), R(y) and W(x, 1) (notice that
at this point the first read is blocked), then in-place revisit R(x), and finally add
W(y, 1) and backward-revisit R(y). This last revisit, however, creates a problem:
TruSt’s proof assumes that a backward revisit ⟨r, w⟩ implies that w is located
at the right of r, which is clearly not the case here. The fact that in Awamoche
backward revisits can happen in both directions, makes it impossible to trace
the algorithm’s last step simply by inspecting an execution.

Awamoche In contrast to TruSt, Awamoche’s proof proceeds in a forward
fashion. For each consistent final execution Gf we show 1. which steps are taken
by the algorithm in order to reach Gf , and 2. that these are the only possible
ones that lead to Gf . To do so, we first define a notion of a prefix : we say that
an execution G is a prefix of G′ (written G ⊑ G′), if G′ can be reached from G
with a series of operational steps. In turn, we define an operational step to be a
step that the algorithm may take in the non-revisit case (without demanding it
is the one actually taken by the algorithm), that may perform in-place revisits
as well.

Using this notion of prefixes, our proof defines a procedure Succs that, given
a consistent execution Gf and an execution G produced by the algorithm such
that G ⊑ Gf , Succs returns the minimal sequence of algorithm steps that reach
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some execution G′ for which it is G ⊑ G′ ⊑ Gf . Concretely, if nextP(G) can
be added to G such that the resulting execution G′ is a prefix of Gf , Succs
returns this addition step. Otherwise, nextP(G) is a read event r that must be
first revisited by an event e in order to reach an execution that is a prefix of Gf .
Succs then returns the sequence of algorithm steps that reach the execution
resulting from extending G with the porf-prefix of e and setting r to read from
e (or from ⊥, if e is a speculative read). Both completeness and optimality follow
from Succs’s properties, as well as from the observation that every consistent
final execution can be reached by a series of operational steps.

5.2 Awamoche: Completeness, Optimality, and Strong Optimality

Before stating our results, we first formally define useful executions. Recall that
these are executions where all blocking reads corresponding to await loops are
reading maximally (such executions denote liveness violations), and no confir-
mation CAS fails.

Definition 3. A consistent execution G is useful if every read in G.Rblk reads
from a G.co-maximal write and no confirmation CAS fails.

Next, we define the class of input programs that satisfy our assumptions.

Definition 4. A program P is well-formed if every speculative read is followed
by a confirmation CAS with no write in-between, and all writes to locations
accessed by speculative reads write distinct values.

Completeness and Optimality Completeness guarantees that every useful
final execution is explored. Awamoche is complete for well-formed programs
that do not exhibit write-write races.

Theorem 1 (Completeness). Given a well-formed program P, Verify(P) ei-
ther detects a write-write race and exits, or visits every useful final execution of
P.

Optimality states that (1) no equivalent final executions are explored, (2)
there are no fruitless explorations that never lead to a consistent final execution.

Definition 5. We call an execution G visited by Awamoche fruitless if it does
not recursively lead to any Visit(P, Gf ) call, for any consistent final execution
Gf .

Awamoche is optimal for well-formed programs.

Theorem 2 (Optimality). Given a well-formed program P (1) Verify(P)
never visits two equivalent final executions, and (2) if Visit(P, G) directly leads
to a call to Visit(P, G′) with G being fruitless, then Visit(P, G′) will not initiate
any other Visit calls.
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Observe that in the optimality theorem above, fruitless exploration can lead
to an extra Visit step. The reason for that is the treatment of CASes: the read
part of a CAS c can be added so that it reads from the same write as a different
(successful) CAS. In such a case, there is no way to consistently add the pending
write of c without revisiting, which in turn may not be able to happen due to
Awamoche’s maximality condition.

Strong Optimality Strong optimality states that, apart from being opti-
mal, only useful executions are visited. Awamoche is strongly-optimal for well-
formed programs.

Theorem 3 (Strong Optimality). Given a well-formed program P, Verify(P, G)
only visits useful executions.

6 Evaluation

We implemented Awamoche as a tool that verifies C/C++ programs under the
RC11 memory model [22]. Similarly to other stateless model checkers,Awamoche
works at the level of the LLVM Intermediate Representation (LLVM-IR).

In what follows, we evaluate the effectiveness of Awamoche’s key ideas
(namely, stale-read annotations, in-place revisiting and speculative revisiting)
both individually, and as a whole. To that end, we evaluate Awamoche on a set
of benchmarks that both amplify the weaknesses of standard DPOR, as well as
demonstrate the applicability of our approach in realistic workloads. In all our
tests, we compare Awamoche against a vanilla version of TruSt, a version of
TruSt that employs stale-read annotations (TruStstale), and a version of TruSt
that employs both stale-read annotation and in-place revisiting (TruStIPR).

Even though there are other stateless model checking tools that can be used
to verify C/C++ programs (namely, GenMC [19] and Nidhugg [1]), we do
not compare against them here, as we care about Awamoche’s performance
compared to TruSt. We only mention in passing that we expect GenMC’s per-
formance to be similar to that of TruStstale (as its implementation incorpo-
rates various optimizations for assume statements), and Nidhugg’s similar to
TruStIPR (as it employs an optimization with a similar effect to in-place revisit-
ing [14]). We also note that comparing with Nidhugg is difficult since it operates
under a different memory model, and does not transform the same types of loops
to assume statements as Awamoche (also see §7).

We draw two major conclusions from our evaluation. First, Awamoche’s op-
timization yields exponential performance benefits compared to standard DPOR
approaches. Second, these benefits do not only apply to small synthetic bench-
marks, but also extend to realistic concurrent data structures.

Experimental Setup We conducted all experiments on a Dell PowerEdge M620
blade system, running a custom Debian-based distribution, with two Intel Xeon
E5-2667 v2 CPU (8 cores @ 3.3 GHz), and 256GB of RAM. We used LLVM
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11.0.1 for Awamoche. Unless explicitly noted otherwise, all reported times are
in seconds. We set a timeout limit of 30 minutes.

Table 1. Synthetic benchmarks

TruSt TruStstale TruStIPR Awamoche

Executions Blocked Time Blocked Time Blocked Time Blocked Time

orch-run(4) 1 15 0.01 0 0.01 0 0.01 0 0.01
orch-run(5) 1 31 0.01 0 0.01 0 0.01 0 0.01
orch-run(6) 1 63 0.01 0 0.01 0 0.01 0 0.01

wait-workers(4) 24 96 0.03 96 0.02 0 0.01 0 0.01
wait-workers(5) 120 600 0.09 600 0.09 0 0.03 0 0.03
wait-workers(6) 720 4320 0.56 4320 0.56 0 0.14 0 0.14

nr+nw(3,2) 0 27 0.01 10 0.03 1 0.01 1 0.01
nr+nw(5,4) 0 3125 0.1 126 0.03 1 0.01 1 0.01
nr+nw(6,5) 0 46 656 1.32 462 0.06 1 0.01 1 0.01

conf-loop(4) 24 256 0.04 176 0.03 124 0.03 0 0.01
conf-loop(5) 120 3905 0.09 2010 0.10 1185 0.06 0 0.02
conf-loop(6) 720 75 156 1.40 26 916 0.96 13 086 0.54 0 0.08

orch-run:N threads are spawned and wait to be signaled before they start performing
thread-local computations.

wait-workers:A worker thread waits for N workers to publish their results before it
starts running.

nr+nw:A synthetic benchmark where K reader threads wait until a variable written L
times by a writer thread satisfies some condition (which cannot be satisfied).

conf-loop:N threads perform a confirmation-CAS loop similar to the one of §1.

6.1 Results

Let us first focus on some benchmarks that help us better understand where each
of Awamoche’s components can be applied (Table 1). Starting with orch-run,
we see that even though blocked executions greatly outnumber complete ex-
ecutions, stale-reads annotations alone suffice to bring the number of blocked
executions down to zero. This, however, is partly due to luck: in orch-run,
main() spawns a number of workers that do not execute until they are signaled
by main() using a special variable. In turn, because TruStstale follows a left-to-
right scheduling, when DPOR encounters the worker threads, the scenario where
they are not signaled is not considered, since it implies reading a stale value.

By contrast, in wait-workers and nr+nw, stale-reads annotations are insuf-
ficient to eliminate blocking. In these benchmarks, some designated threads wait
for the rest of the workers to perform some tasks before proceeding. However, it
is not guaranteed that these designated threads are going to be always processed
after the rest of the threads by DPOR, and thus stale-reads annotations have
little to no effect. Employing in-place revisiting, on the other hand, leads to a
dramatic performance improvement: the number of blocked executions is effec-
tively eliminated (the single blocked execution in nr+nw is a liveness violation).
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Table 2. Real-world benchmarks

TruSt TruStstale TruStIPR Awamoche

Executions Blocked Time Blocked Time Blocked Time Blocked Time

mpmc-enq(4) 576 1084 0.25 710 0.22 532 0.17 0 0.12
mpmc-enq(5) 7200 31 325 4.12 16 382 3.27 12 205 2.72 0 1.48
mpmc-enq(6) 86 400 730 626 82.28 303 362 51.29 227 766 42.14 0 19.71

treiber-push(4) 24 256 0.07 176 0.04 124 0.04 0 0.04
treiber-push(5) 120 3905 0.41 2010 0.29 1185 0.19 0 0.05
treiber-push(6) 720 75 156 7.49 26 916 3.61 13 086 1.85 0 0.23

m-enq(4) 24 124 0.05 124 0.04 124 0.04 0 0.02
m-enq(5) 120 1185 0.11 1185 0.14 1185 0.13 0 0.04
m-enq(6) 720 13 086 1.04 13 086 1.05 13 086 1.18 0 0.24

mpmc-enq:N threads enqueue an item in a multiple-producer multiple-consumer queue.
treiber-push:A lock-free stack implementation. N threads are pushing an item.
m-enq:A modification of the Michael-Scott queue without the tail pointer. N threads

are enqueueing an item.

Analogously to wait-workers and nr+nw, conf-loop demonstrates why in-
place revisiting is insufficient when the success of an assume does not depend
on a single load, but rather on a sequence of actions (as is the case in confirma-
tion loops). As it can be seen, TruStIPR still explores blocked executions, which
Awamoche manages to eliminate thanks to speculative revisits.

Moving to the final part of our evaluation, Table 2 demonstrates that the
benefits of Awamoche extend to realistic workloads as well. As can be seen from
Table 1, none of Awamoche’s optimizations is redundant, as they are often all
required to eliminate the exploration of blocked executions. Observe, however,
that our benchmarks only exercise push or enqueue operations. This is because
the respective pop or dequeue operations contain assume statements in their
confirmation-CAS loops, and therefore cannot be optimized by Awamoche.

7 Related Work

The seminal work of Flanagan and Godefroid [13] has spawned a number of
papers on DPOR. Among these, Optimal-DPOR [2] and TruSt [15] stand out,
as they provide the first optimal DPOR algorithm, and the first optimal DPOR
algorithm with polynomial memory consumption, respectively. TruSt is based
on [17] and thus has the extra advantage of being parametric in the choice of
the underlying weak memory model.

A lot of works improve on DPOR one way or another. Many techniques in-
troduce coarser equivalence partitionings to combat the state-space explosion
problem (e.g., [3, 10, 11, 12, 6, 8, 7]). Other works focus on extending it to
weak memory models [1, 4, 5, 24, 17, 20], while others try to leverage partic-
ular programming patterns [16, 18, 14]. Kokologiannakis, Ren, and Vafeiadis
[18] in particular, deal with transforming spinloops into assume statements, the
handling of which we optimize in this paper.
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Among those, the work that is closest to ours is Godot [14]. Godot is an
extension to DPOR that has a similar effect to in-place revisiting in the sense
that it only explores executions that are either complete, or denote program
termination errors. That said, Godot only works under SC, and cannot handle
stale-read annotations or confirmation loops (which are instrumental in scaling
the verification of concurrent data structures, as we saw in §6). In addition,
Godot’s loop transformation is static (in contrast to Awamoche’s, which is
dynamic), making it easy to construct examples where Godot’s transformation
does not work. Finally, even though Godot does not impose a “no write-write
race” restriction on the input programs, this restriction is trivially satisfied for
models like SC or TSO [26]: in such models, it is sound to transform writes to
atomic exchange statements that write the value they read, thereby ordering all
writes to each location.

8 Conclusion

We presented Awamoche, the first memory-model-agnostic DPOR algorithm
that is sound, complete, and strongly optimal for programs with await and
confirmation-CAS loops. Awamoche avoids blocked executions that arise due
to await loops by revisiting blocking reads in-place, and deals with confirmation-
CAS loops by also considering revisits whenever two speculative reads read from
the same write.

As our theoretical and experimental results demonstrate, Awamoche yields
exponential benefits over the current state-of-the-art. Yet, it does not support
certain more advanced patterns commonly appearing in concurrent programs,
the handling of which we leave as future work. Examples of such patterns include
confirmation-CAS loops with assume statements between the speculative and
the confirmation reads (such statements may arise due to break/continue in-
structions), elimination backoff data structures, and await loops that use CASes
instead of plain reads. We also believe that our key ideas for achieving strong
optimality in these cases should be applicable in other scenarios as well, such as
in programs with mutual exclusion locks or transactions.
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Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak,
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