
Program Verification under Weak Memory
Consistency using Separation Logic

Viktor Vafeiadis

MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Abstract. The semantics of concurrent programs is now defined by a
weak memory model, determined either by the programming language
(e.g., in the case of C/C++11 or Java) or by the hardware architecture
(e.g., for assembly and legacy C code). Since most work in concurrent
software verification has been developed prior to weak memory consis-
tency, it is natural to ask how these models affect formal reasoning about
concurrent programs.
In this overview paper, we show that verification is indeed affected: for ex-
ample, the standard Owicki-Gries method is unsound under weak mem-
ory. Further, based on concurrent separation logic, we develop a number
of sound program logics for fragments of the C/C++11 memory model.
We show that these logics are useful not only for verifying concurrent pro-
grams, but also for explaining the weak memory constructs of C/C++.

1 Introduction

In a uniprocessor machine with a non-optimizing compiler, the semantics of a
concurrent program is given by the set of interleavings the memory accesses of its
constituent threads, a model which is known as sequential consistency (SC) [15].
In multiprocessor machines and/or with optimizing compilers, however, more
behaviors are possible; they are formally described by what is known as a weak
memory model. Simple examples of such “weak” behaviors are in the SB (store
buffering) and LB (load buffering) programs below:

x := 1;
a := y; //0

y := 1;
b := x; //0 (SB) a := x; //1

y := 1;
b := y; //1
x := 1; (LB)

Assuming all variables are 0 initially, the weak behaviours in question are the
ones in which a and b have the values mentioned in the program comments. In
the SB program on the left this behaviour is allowed by all existing weak memory
models, and can be easily explained in terms of reordering: the hardware may
execute the independent store to x and load from y in reverse order. Similarly,
the behaviour in the LB program on the right, which is allowed by some memory
models, can be explained by reordering the load from x and the subsequent store
to y. This explanation remains the same whether the hardware itself performs
out-of-order execution, or the compiler, as a part of its optimisation passes,
performs these transformations, and the hardware runs a reordered program.

In this paper, we will address two questions:

2 V. Vafeiadis

1. How do such non-SC behaviours affect existing techniques for verifying con-
current programs?

2. How can we verify concurrent programs in spite of weak memory behaviours?

For the first question, we will note that even rather basic proof methods for SC
concurrency are unsound under weak memory. Specifically, in Sect. 2, we will
show that this is the case for the Owicki-Gries (OG) proof method [21].

To answer the second question, there are two main approaches. One approach
is to determine a class of programs for which weak memory consistency does
not affect their correctness. One such a class of programs are data-race-free
(DRF) programs, namely programs that under SC semantics have no concurrent
conflicting accesses (two accesses to the same location, at least one of which
a write). Ensuring that a memory model ascribes only SC behaviours to DRF
programs has become a standard sanity requirement for weak memory models [1].
For specific memory models, one can develop larger classes of programs, whose
behaviour is unaffected by the weak memory consistency (e.g., [20,3,12]).

An alternative approach is to develop proof techniques for reasoning directly
about programs under a certain weak memory model. To do so, we usually take
an existing proof technique that has been developed for SC concurrency and
adapt it to make it sound under a specific weak memory model. We may then
further extend the method to make the proof technique more useful for reasoning
about specific weak memory features. As an example of this approach, in [13],
we applied it to the OG proof method by weakening OG’s non-interference check
to restore its soundness under release-acquire (RA) consistency.

In this paper, we will focus on this latter approach, but apply it to concurrent
separation logic (CSL) [19]. Compared with OG, CSL is much better suited for
reasoning under weak memory consistency, because by default it can reason only
about DRF programs. As such, it is trivially sound under weak memory. We will
then gradually extend CSL with features suitable for reasoning about the various
synchronisation primitives provided by C11, and conclude with a discussion of
some remaining challenges. In order to keep the exposition as simple as possible,
I will elide inessential technical details and not discuss the soundness proofs of
the presented proof rules. The missing details can be found in [28,5,6,27,25].

2 Owicki-Gries is Unsound Under Weak Memory!

To motivate why developing program logics for weak memory consistency is
non-trivial, we start by showing that the Owicki-Gries (OG) system is unsound.

In 1976, Owicki and Gries [21] introduced a proof system for reasoning about
concurrent programs, which formed the basis of rely/guarantee reasoning. Their
system includes the usual Hoare logic rules for sequential programs, a rule for
introducing auxiliary variables, and the following parallel composition rule:{

P1
}
c1

{
Q1

} {
P2

}
c2

{
Q2

}
the two proofs are non-interfering{

P1 ∧ P2
}
c1 ‖ c2

{
Q1 ∧Q2

}

Program Verification under Weak Mem. Consistency using Separation Logic 3{
a 6= 0

}{
a 6= 0

}
x := 1;{
x 6= 0

}
a := y{
x 6= 0

}

{
>

}
y := 1;{
y 6= 0

}
b := x{
y 6= 0 ∧
(a 6= 0 ∨ b = x)

}
{
a 6= 0 ∨ b 6= 0

}

The non-interference checks are straightforward.
For example,

y 6= 0 ∧ (a 6= 0 ∨ b = x) ∧ a 6= 0
` y 6= 0 ∧ (a 6= 0 ∨ b = 1)

and y 6= 0 ∧ (a 6= 0 ∨ b = x) ∧ x 6= 0
` y 6= 0 ∧ (y 6= 0 ∨ b = x)

show stability of the last assertion of thread II
under {a 6= 0}x := 1 and {x 6= 0}a := y.

Fig. 1. OG proof that SB cannot return a = b = 0.

This rule allows one to compose two verified programs into a verified concurrent
program that assumes both preconditions and ensures both postconditions. The
soundness of this rule requires that the two proofs are non-interfering, namely
that every assertion R in the one proof is stable under any {P}x := e (guarded)
assignment in the other and vice versa; i.e., for every such pair, R∧P ` R[e/x].

The OG system relies quite heavily on sequential consistency. In fact, OG is
complete for verifying concurrent programs under SC [22], and is therefore un-
sound under any weakly consistent memory semantics. Auxiliary variables are
instrumental in achieving completeness—without them, OG is blatantly incom-
plete; e.g., it cannot verify that

{
x = 0

}
x := x+ 1 ‖ x := x+ 1

{
x = 2

}
where

“:=” denotes atomic assignment.
Nevertheless, many useful OG proofs do not use auxiliary variables, and one

might wonder whether such proofs are sound under weak memory models. This
is sadly not the case. Figure 1 presents an OG proof that the SB program cannot
return a = b = 0 whereas under all known weak memory models it can in fact do
so. Intuitively speaking, the proof is invalid under weak memory because the two
threads may have different views of memory before executing each command.
Thus, when thread II terminates, thread I may perform a := y reading y = 0
and storing 0 in a, thereby invalidating thread II’s last assertion.

3 RC11 Preliminaries

For concreteness, we will now introduce a simple programming language con-
taining all the features of RC11, the rectified version of the C/C++11 memory
model due to Lahav et al. [14]. Programs are given by the following grammar:

e ::= x | n | e+ e | e− e | e ≤ e | . . .
c ::= skip | c; c | c ‖ c | if e then c else c | while e do c | x := e |

[e]o := e | x := [e]o | x := CASo(e, e, e) | x := alloc | fenceo
o ::= na | rlx | acq | rel | acq-rel | sc

Expressions, e, are built out of program variables, constants and arithmetic
and logical operators. Commands, c, contain the empty command, sequential

4 V. Vafeiadis

and parallel composition, conditionals and loops, assignments to local variables,
memory accesses (loads, stores, und compare and swap), allocation, and fences.

Memory accesses are annotated with an access mode, o, which indicates the
level of consistency guarantees provided by the access, which in turn determines
its implementation cost.

The weakest access mode is non-atomic (na), which is intended for normal
data loads and stores. Races on non-atomic accesses are treated as program er-
rors: it is the responsibility of the programmer to ensure that such races never
occur. The remaining access modes are intended for synchronisation between
threads and, as such, allow races. The strongest and most expensive mode are
sequentially consistent (sc) accesses, whose primary purpose is to restore the
simple interleaving semantics of sequential consistency [15] if a program (when
executed under SC semantics) has races only on SC accesses. Weaker than SC
atomics are acquire (acq) loads and release (rel) stores,1 which can be used to
perform “message passing” between threads without incurring the implemen-
tation cost of a full SC access; and weaker and cheaper still are relaxed (rlx)
accesses, which provide only minimal synchronisation guarantees.

RC11 also supports language-level fence instructions, which provide finer-
grained control over where hardware fences are to be placed and can be used
in conjunction with relaxed accesses to synchronise between threads. Fences are
also annotated with an access mode, o ∈ {acq, rel, acq-rel, sc}.

We will discuss the semantics of these access modes and fences in more detail
as we introduce program logic rules to reason about them.

4 Reasoning about Non-Atomic Accesses using CSL

We start with non-atomics, which have to be accessed in a data-race-free (DRF)
fashion. To reason about them, it is natural to consider O’Hearn’s concurrent
separation logic (CSL) [19], because it rules out data races by construction.
In CSL, accessing a memory location, `, requires the command to have the
permission to access that location in its precondition in the form of a points-to
assertion, ` 7→ v. This formula asserts that the memory at location ` stores the
value v, moreover it gives permission to the bearer of this assertion to access and
possibly modify the contents of memory at location `. Formally, the permission
is generated by the allocation rule and required in the preconditions of the load
and store rules. {

emp
}
x := alloc

{
x 7→

}
(alloc){

` 7→ v
}
x := [`]na

{
` 7→ v ∧ x = v

}
(r-na){

` 7→ v
}

[`]na := v′ {
` 7→ v′} (w-na)

The load rule further asserts that the value read is the one recorded in the
points-to assertion, while the store rule allows one to update this value.
1 The acquire mode is meant to be used for loads, whereas the release mode for stores:

there is also a combined acquire-release (acq-rel) mode that can be used for CAS.

Program Verification under Weak Mem. Consistency using Separation Logic 5

{
P

}
skip

{
P

} (skip){
P

}
c1

{
Q

} {
Q

}
c2

{
R

}{
P

}
c1; c2

{
R

} (seq){
P ∧B

}
c1

{
Q

} {
P ∧ ¬B

}
c2

{
Q

}{
P

}
if B then c1 else c2

{
Q

}
(if){

P ∧B
}
c
{
P

}{
P

}
while B do c

{
P ∧ ¬B

} (while){
P1

}
c1

{
Q1

} {
P2

}
c2

{
Q2

}
fv(P1, c1, Q1) ∩ wr(c2) = ∅
fv(P2, c2, Q2) ∩ wr(c1) = ∅{
P1 ∗ P2

}
c1 ‖ c2

{
Q1 ∗Q2

} (par)

{
[e/x]P

}
x := e

{
P

} (assign){
P

}
c
{
Q

}
P ′ V P QV Q′{

P ′} c{
Q′} (conseq){

P1
}
c
{
Q

} {
P2

}
c
{
Q

}{
P1 ∨ P2

}
c
{
Q

} (disj){
P

}
c
{
Q

}
x /∈ fv(c,Q){

∃x. P
}
c
{
Q

} (ex){
P

}
c
{
Q

}
fv(R) ∩ wr(c) = ∅{
P ∗R

}
c
{
Q ∗R

} (frame)

Fig. 2. Proof rules of CSL (without resource invariants).

The other CSL rules are listed in Fig. 2: these include the standard rules from
Hoare logic (skip, assign, seq, if, while), the parallel composition rule (par),
the consequence rule (conseq), the disjunction and existential elimination rules
(disj, ex), and the frame rule (frame). In our presentation of the rules, we
exclude any mention of “resource invariants” and the rules for dealing with
them, as we will not ever directly use this feature of the logic. In preparation for
the extensions in the next section, our formulation of the consequence rule uses
ghost implication (V) instead of normal logical implication. Ghost implication is
a generalisation of normal implication that in addition allows frame-preserving
updates to any ghost resources mentioned in the assertions.

CSL’s parallel composition rule requires the preconditions of the two threads
to be disjoint (i.e., P1 ∗ P2), which (together with the load and store rules)
precludes the two threads of accessing the same location simultaneously. The
disjointness conditions of the rule check that each thread does not modify any
of the variables appearing in the other thread’s program or specification.

5 RSL: Reasoning about Release-Acquire Synchronisation

Next, let us consider C11’s acquire loads and release stores, whose main mode
of use is to establish synchronisation between two threads. The basic synchroni-
sation pattern is illustrated by the following “message passing” idiom:

[x]na := 1;
[y]rel := 1;

a := [y]acq; //1
if a 6= 0 then b := [x]na; //0 (MP)

6 V. Vafeiadis

Here, assuming that initially [x] = [y] = 0, the program cannot read a = 1 and
b = 0. According to C11, when an acquire load reads from a release store, this
results in a synchronisation. As a result, any memory access happening before
the release store (by being performed previously either by the same thread or
by some previously-synchronising thread) also happens before the acquire load
and any access happening after it. In the MP program, this means that the
[x]na := 1 write happens before the b := [x]na load, and thus the reading thread
must return b = 1 in the case it read a = 1.

To reason about release and acquire accesses, Vafeiadis and Narayan [28]
introduced relaxed separation logic (RSL), which extends CSL assertions with
two new assertion forms:

P,Q ::= . . . |W(`,Q) | R(`,Q)

These represent the permission to perform a release store or an acquire load
respectively, and attach to location ` a mappingQ from values to assertions. This
mapping describes the manner in which the location ` is used by the program.
We can roughly consider it as an invariant stating: “if location ` holds value v,
then the assertion Q(v) is true.”

At any point in time, a non-atomic location may be converted into an atomic
location with the following ghost implication:

` 7→ v ∗ Q(v) V W(`,Q) ∗ R(`,Q) (mk-atom)

In the antecedent of the ghost move, the invariant should hold for the value of
the location; as a result, we get the permissions to write and read that location.

RSL’s release write rule{
W(`,Q) ∗ Q(v)

}
[`]rel := v

{
W(`,Q)

}
(w-rel)

says that in order to do a release write of value v to location `, we need to have
a permission to do so, W(`,Q), and we have to satisfy the invariant specified
by that permission, namely Q(v). After the write is done, we no longer own the
resources specified by the invariant (so that readers can obtain them).

The acquire read rule{
R(`,Q)

}
x := [`]acq

{
R(`,Q[x:=emp]) ∗ Q(x)

}
(r-acq)

complements the release write rule. To perform an acquire read of location `,
one must have an acquire permission for `. Just as with a release permission,
an acquire permission carries a mapping Q from values to assertions. In case of
an acquire permission, this mapping describes what resource will be acquired by
reading a certain value; so if the value v is read, resource Q(v) is acquired.

This rule is slightly complicated by a technical detail. In the postcondition,
we cannot simply retain the full acquire permission for location `, because that
would enable us to read the location again and acquire the ownership of Q(v) a
second time. To prevent this, the acquire permission’s mapping in the postcon-
dition becomes Q[x:=emp] , λy. if y=x then emp else Q(y).

Program Verification under Weak Mem. Consistency using Separation Logic 7{
x 7→ 0 ∗ y 7→ 0

}{
x 7→ 0 ∗W(y,Q) ∗ R(y,Q)

}{
x 7→ 0 ∗W(y,Q)

}
[x]na := 1;{
x 7→ 1 ∗W(y,Q)

}
[y]rel := 1;{

W(y,Q)
}{

>
}

{
R(y,Q)

}
a := [y]acq{

(a = 0 ∨ x 7→ 1) ∗ R(y,Q[a := emp])
}{

a = 0 ∨ x 7→ 1
}

if a 6= 0 then b := [x]na{
a = 0 ∨ (x 7→ 1 ∧ b = 1)

}{
a = 0 ∨ b = 1

}
Fig. 3. Proof outline of MP using the invariant Q(v) , (v = 0 ∨ x 7→ 1).

As a simple application of these rules, Fig. 3 shows a slightly abbreviated
proof of the MP program. Initally, the rule mk-atom is applied to set up the
invariant for location y. By the parallel composition rule, the first thread receives
the permission to access x (specifically, x 7→ 0) and the release write permission
to y, which it uses to transfer away the x 7→ 1 resource. The second thread starts
with the acquire read permission and uses it to get hold of the invariant of y,
which, in the case that a 6= 0, gives enough permission to the thread to access
x non-atomically and establish b = 1. In the proof outline, we often use the
consequence rule to forget permissions that are no longer relevant.

To allow multiple concurrent readers and writers, RSL’s write permissions
are duplicable, whereas its read permissions are splittable as follows:

W(`,Q) WV W(`,Q) ∗W(`,Q) (w-split)
R(`, λv.Q1(v) ∗ Q2(v)) WV R(`,Q1) ∗ R(`,Q2) (r-split)

The reason why read permissions cannot simply be duplicated is the same as
why the read permission is modified in the postcondition of the r-acq rule. If
read permissions were made duplicable, then multiple readers would incorrectly
be able to acquire ownership of the same resource.

6 FSL: Reasoning about Relaxed Accesses and Fences

Next, let us consider relaxed accesses. Unlike release stores and acquire loads,
relaxed accesses do not synchronise on their own, but only when used together
with release/acquire fences. Consider the following variant of the MP example
using relaxed accesses and fences.

[x]na := 1;
fencerel;
[y]rlx := 1

a := [y]rlx; //1
if a 6= 0 then

fenceacq;
b := [x]na

end-if

(MP-fences)

Like MP, MP-fences also satisfies the postcondition, a = 0∨b = 1 (and so do the
variants where either thread is replaced by the corresponding thread of MP), but

8 V. Vafeiadis

if we remove any of the fences, the program will have undefined behaviour. (The
reason for the latter is that in the absence of synchronisation, the non-atomic
x-accesses are racy.)

In essence, we can think of resource transfer in the following way. When
releasing a resource by a combination of a release fence and a relaxed write, at
the fence we should decide what is going to be released, and not use that resource
until we send it away by doing the write. Conversely, when acquiring a resource
using a relaxed read together with an acquire fence, once we do the read, we
know which resources we are going to get, but we will not be able to use those
resources until we reach the synchronisation point marked by the acquire fence.

To formally represent this intuition, fenced separation logic (FSL) [5] intro-
duces two modalities into RSL’s assertion language:

P,Q ::= . . . | 4P | 5P

We use 4 to mark the resources that have been prepared to be released, and 5
to mark those waiting for an acquire fence. We require the invariants appearing
in W(`,Q) and R(`,Q) permissions to contain no modalities, a condition called
normalisability in [5]. In essence, these modalities are meant to appear only in
the proof outlines of individual threads and to never be nested.

FSL supports all the rules we have seen so far. In addition, it has rules for
relaxed accesses and fences. The rule for relaxed writes is almost exactly the
same as w-rel. {

W(`,Q) ∗ 4Q(v)
}

[`]rlx := v
{

W(`,Q)
}

(w-rlx)

As in w-rel, we have to have a write permission as well as the resource specified
by its attached invariant. The only additional requirement is that the latter
resource has to be under the 4 modality stating that it can be released by a
relaxed write. As we will later see, this ensures that any writes transferring away
non-empty resources are placed after a release fence.

Similarly, the rule for relaxed reads differs from r-acq only in a single modal-
ity appearance:{

R(`,Q)
}
x := [`]rlx

{
R(`,Q[x:=emp]) ∗ 5Q(x)

}
(r-rlx)

While after acquire read, we gain ownership of the resource described by the R
permission, in the case of a relaxed read, we get the same resource under the 5
modality. This makes the resource unusable before we reach an acquire fence.

The fence rules simply manage the two modalities as follows:{
P

}
fencerel

{
4P

}
(f-rel)

{5P}
fenceacq

{
P

}
(f-acq)

Release fences protect resources that are to be released by putting them under
the 4 modality, while acquire fences clear the 5 modality making resources
under it usable.

Figure 4 shows a proof outline of MP-fences using the rules presented in this
section. Except for the treatment modalities, the proof itself essentially identical

Program Verification under Weak Mem. Consistency using Separation Logic 9{
x 7→ 0 ∗ y 7→ 0

}{
x 7→ 0 ∗W(y,Q) ∗ R(y,Q)

}
{
x 7→ 0 ∗W(y,Q)

}
[x]na := 1;{
x 7→ 1 ∗W(y,Q)

}
fencerel;{
4x 7→ 1 ∗W(y,Q)

}
[y]rlx := 1;{

W(y,Q)
}{

>
}

{
R(y,Q)

}
a := [y]rlx{
5(a = 0 ∨ x 7→ 1) ∗ R(y,Q[a := emp])

}{
a = 0 ∨5x 7→ 1

}
if a 6= 0 then{

5x 7→ 1
}

fenceacq{
x 7→ 1

}
b := [x]na{
x 7→ 1 ∧ b = 1

}{
a = 0 ∨ (x 7→ 1 ∧ b = 1)

}{
a = 0 ∨ b = 1

}
Fig. 4. Proof outline of MP-fences using the invariant Q(v) , (v = 0 ∨ x 7→ 1).

to that of MP. In the first thread, we use a combination of f-rel and the frame
rule to put only x 7→ 1 under the 4 modality. In the second thread, after the
relaxed load, we use the consequence rule to forget the unnecessary R permission
and push the 5 modality under the disjunction.

7 Reasoning about Read-Modify-Write Instructions

Next, consider compare-and-swap, which is a typical example of a read-modify-
write (RMW) instruction. CASo(`, v, v′) reads the location ` and if its value is
v, it updates it atomically to v′. If CAS reads some value other than v, then
the update is not performed. In either case, CAS returns the value read. The
o ∈ {rlx, rel, acq, acq-rel, sc} tells us the type of event generated by a successful
CAS operation.

To reason about CAS, we introduce a new type of assertion:

P,Q ::= . . . | U(`,Q)

which denotes the permission to perform a CAS on location `. As with the W
and R assertions, it records a mapping from values to assertions, which governs
the transfer of resources via a CAS operation.

The U permission is obtained in a similar fashion as the W and R permissions.
At any point in time, a non-atomic location may be converted into an atomic
location with the following ghost implication:

` 7→ v ∗ Q(v) V U(`,Q) (mk-atom-u)

The update permission U is duplicable, and interacts with the W and R permis-
sions, allowing us to perform not only updates, but also reads and writes, when

10 V. Vafeiadis

holding an update permission.

U(`,Q) WV U(`,Q) ∗U(`,Q) (u-split)
U(`,Q) WV U(`,Q) ∗W(`,Q) (uw-split)
U(`,Q) WV U(`,Q) ∗ R(`, λv. emp) (ur-split)

According to uw-split, when holding the U(`,Q), we also have W(`,Q), al-
lowing us to write to ` using the appropriate atomic write rule. On the other
hand, ur-split tells us that we are allowed to read when holding the U(`,Q)
permission, but we cannot gain any ownership (more precisely, no matter the
value read, the acquired resource will always be the empty resource emp).

We next consider the following rule for the acquire-release CAS.2

Q(v) =⇒ A ∗ T pure(ϕ)
P ∗ T =⇒ Q(v′) P ∗ Q(v) =⇒ ϕ{

U(`,Q) ∗ P
}
x := CASacq-rel(`, v, v′)

{
x = v ∧U(`,Q) ∗A ∧ ϕ ∨
x 6= v ∧U(`,Q) ∗ P

} (cas-ar)

In the precondition, we have permission to perform the CAS and some further
resource, P , to be transferred away if the CAS succeeds.

If the CAS succeeds, we have at our disposal the resource Q(v), which is
split into two parts, A, and T . Resource A is the part that we are going to
acquire and keep it for ourselves in the postcondition. Resource T will remain
in the invariant Q. The second premise requires that the resource P (which we
have in our precondition) together with the resource T (which we left behind
when acquiring ownership) are enough to satisfy Q(v′), thus reestablishing the
invariant for the newly written value. If, in addition to merely reestablishing
the invariant, we manage to prove some additional facts, ϕ, we can carry those
facts into the postcondition. It is required, however, for these facts to be pure,
meaning that the assertion ϕ is a logical fact and does not say anything about
the ownership of resources or the state of the heap.

If the CAS fails, then no resource transfer occurs, and the postcondition
contains the same resources as the precondition.

The rules for the other types of CAS accesses are slight modifications of the
cas-ar rule in the same vein as the ones that get us from r-acq and w-rel to
r-rlx and w-rlx (see Fig. 5). Namely, wherever the access type is relaxed, 4
and 5 modalities are introduce to ensure a proper fence placement. Since the
premises in these rules are the same as in cas-ar, we avoid repeating them.

– A release CAS is treated as a release write and a relaxed read. Therefore, in
cas-rel sends away P without any restrictions, but the acquired resource,
A, is placed under the 5 modality, requiring the program to perform a
acquire fence before accessing the resource.

2 This rule was proposed by Alex Summers and is a slightly stronger than the one in
[6]. Its soundness has been established in Coq alongside with the other FSL rules.

Program Verification under Weak Mem. Consistency using Separation Logic 11

{
U(`,Q) ∗ P

}
x := CASrel(`, v, v′)

{
x = v ∧U(`,Q) ∗ 5A ∧ ϕ ∨
x 6= v ∧U(`,Q) ∗ P

}
(cas-rel)

{
U(`,Q) ∗ 4P

}
x := CASacq(`, v, v′)

{
x = v ∧U(`,Q) ∗A ∧ ϕ ∨
x 6= v ∧U(`,Q) ∗ 4P

}
(cas-acq)

{
U(`,Q) ∗ 4P

}
x := CASrlx(`, v, v′)

{
x = v ∧U(`,Q) ∗ 5A ∧ ϕ ∨
x 6= v ∧U(`,Q) ∗ 4P

}
(cas-rlx)

Fig. 5. Rules for the other kinds of CAS weaker than acq-rel. All of these rules implic-
itly have the same premises as the cas-ar rule.

mk-lock() :{
J

}
res := alloc{

res 7→ ∗ J
}

[res]na := 0{
res 7→ 0 ∗ Q(0)

}{
Lock(res)

}
release-lock(`) :{

Lock(`) ∗ J
}

[`]rel := 0{
Lock(`)

}

acquire-lock(`) :{
Lock(`)

}
x := CASacq(`, 0, 1);{

U(`,Q) ∗ (J ∨ x 6= 0)
}

while x 6= 0 do{
U(`,Q)

}
while x 6= 0 do x := [`]rlx{

U(`,Q)
}

x := CASacq(`, 0, 1);{
U(`,Q) ∗ (J ∨ x 6= 0)

}{
Lock(`) ∗ J

}
Fig. 6. Lock library verification using Q(v) , (J ∨ v 6= 0) and Lock(`) , U(`,Q).

– Conversely, for an acquire CAS, the resource to be transferred away is under
the 4 modality requiring a release fence before the CAS, while the resource
acquired is immediately usable.

– A relaxed CAS is relaxed as both read and write. This is reflected in the
cas-rlx rule by having both modalities in play.

Finally, Fig. 6 presents a proof outline for verifying a spinlock implementation
as an example of using the CAS rules. In these proof outlines, the use of the
consequence rule is left implicit. Specifically, in mk-lock, we apply the mk-atom-
u rule to generate the update permission; in acquire-lock, we apply the ur-split
rule to generate a read permission, while in release-lock, we apply the uw-split
rule to generate a write permission.

8 GPS: Adding Protocols

The assertions so far have attached an invariant, Q, to each location that is
meant to be used atomically. While such simple invariants suffice for reasoning
about simple ownership transfer patterns, on their own they are too weak for
establishing even basic coherence properties. Consider, for example, the following

12 V. Vafeiadis

program, where initially [x] = 0.

[x]rlx := 1;
[x]rlx := 2

a := [x]rlx;
b := [x]rlx

(COH)

Although RC11 ensures that a ≤ b in every execution of this program, it is not
possible to establish this postcondition with the separation logic rules we have
seen thus far. To achieve this, we need a more expressive logic incorporating
some limited form of rely-guarantee reasoning (e.g., as already available in OG).

A convenient way to support such reasoning has emerged in the context of
program logics for SC concurrency, such as CAP [4], CaReSL [26], TaDA [23],
and Iris [9], in the form of protocols. The idea is to attach to each atomic location
an acyclic state transition system describing the ways in which the value of the
location can be updated, and to have assertions talk about the current state of
a location’s protocol. Formally a protocol, τ , is a tuple 〈Στ ,vτ ,Qτ 〉, where Στ
is the (non-empty) set of protocol states, vτ is a partial order on Στ relating
a state to its possible future states, and Qτ is a mapping from protocol states
and values to assertions, attaching an invariant about the value of the location
to each protocol state.

We extend the language of assertions with two new assertion forms:

P,Q ::= . . . |WPτ (`, s) | RPτ (`, s)

which assert that ` is governed by the protocol τ and its current state is reach-
able from the state s. WPτ (`, s) represents an exclusive write permission to the
protocol, whereas RPτ (`, s) is a duplicable read permission. As usual, these per-
missions can be generated from a points-to assertion with a ghost move.

` 7→ v ∗ τ(s, v) V WPτ (`, s)
WPτ (`, s1) ∗WPτ (`, s2)⇒ false
WPτ (`, s1) ∗ RPτ (`, s2)⇔WPτ (`, s1) ∧ s2 vτ s1

RPτ (`, s1) ∗ RPτ (`, s2)⇔ ∃s.RPτ (`, s) ∧ s1 vτ s ∧ s2 vτ s

Consider the following two simplified proof rules for relaxed reads and writes.

emp⇒ Qτ (s′, v) ∧ s vτ s′{
WPτ (`, s)

}
[`]rlx := v

{
WPτ (`, s′)

} ∀s′ wτ s. Qτ (s′, x)⇒ ϕ pure(ϕ){
RPτ (`, s)

}
x := [`]rlx

{
∃s′.RPτ (`, s′) ∧ ϕ

}
To perform a relaxed write, the thread must own the exclusive write permission
for that location; it then has to chose a future state s′ of the current state and
establish the invariant of that state. Since it is a relaxed write, no ownership
transfer is possible (at least without fences). So, in this somewhat simplified
rule, we require Qτ (s′, v) to hold of the empty heap.

Conversely, to perform a relaxed read, the thread must own a shared read
permission for that location stating that it is at least in state s. It then knows
that the location is in some future protocol state s′ of s, and gets to know that
the invariant of Qτ holds for that state and the value that it read. Since the

Program Verification under Weak Mem. Consistency using Separation Logic 13{
x 7→ 0

}{
WPτ (x, 0)

}{
WPτ (x, 0)

}
[x]rlx := 1;{

WPτ (x, 1)
}

[x]rlx := 2;{
WPτ (x, 2)

}
{

RPτ (x, 0)
}

a := [x]rlx{
RPτ (x, a) ∧ 0 ≤ a ≤ 2

}
b := [x]rlx{

RPτ (x, b) ∧ 0 ≤ a ≤ b ≤ 2
}{

WPτ (x, 2) ∧ 0 ≤ a ≤ b ≤ 2
}

Fig. 7. Proof outline of COH using the protocol 〈{0, 1, 2},≤, λ(s, v). s = v〉.

read is relaxed, to avoid incorrect ownership transfers, the postcondition gets
only the pure part of this invariant.

These rules can be extended to use the FSL modalities to allow ownership
transfer in combination with fences, but even these basic rules are sufficient for
verifying the COH example. Returning to the example, we take as the protocol
τ of x to consist of three states ordered linearly (0 vτ 1 vτ 2), each saying that
x has the respective value. Pictorially, we have:

0 1 2 Qτ (s, v) , s = v

The proof outline for COH is rather straightforward and is shown in Fig. 7. In
the writer thread, each write moves to the next state. In turn, the reader can
assert that each read gets a value greater or equal to the last state it observed.

Besides protocols, GPS also introduced ghost state in the form of ghost re-
sources and escrows/exchanges. These features enable GPS to support owner-
ship transfer over release-acquire synchronization. For an explanation of these
features, we refer the reader to [27,25,10].

A Note about the Different Versions of GPS. GPS was initially developed by
Turon et al. [27] for a fragment of the programming language of Sect. 3 con-
taining only non-atomic and release/acquire accesses. It was later extended by
Tassarotti et al. [25] with “exchanges” and used to verify a version of the RCU
algorithm. Later, Kaiser et al. [10] developed a slight variant of GPS within the
Iris framework featuring a simpler “single writer” rule. All these three works had
their soundness proofs verified in Coq, but cannot handle relaxed accesses. In
a different line of work, He et al. [7] have extended GPS to also cover relaxed
accesses albeit without a mechanised soundness proof.

9 Conclusion: Challenges Ahead

In this section, we will review three main challenges in this line of work. The
first two have to do with the soundness of the presented logic, while the third
has to do with their practical usage.

14 V. Vafeiadis {
x 7→ 0 ∗ y 7→ 0 ∗ 4z 7→ 0

}{
W(x,Q) ∗ R(x,Q) ∗W(y,Q) ∗ R(y,Q) ∗ 4z 7→ 0

}{
R(x,Q) ∗W(y,Q) ∗ 4z 7→ 0

}
a := [x]rlx;{
Q(a) ∗W(y,Q) ∗ 4z 7→ 0

}{
a = 0 ∧W(y,Q) ∗ 4Q(1)

}
[y]rlx := 1;{
a = 0 ∧W(y,Q)

}

{
W(x,Q) ∗ R(y,Q)

}
b := [y]acq{

W(x,Q) ∗ Q(b)
}

[x]rel := b{
W(x,Q)

}{
a = 0

}
Fig. 8. FSL proof outline of LB+dep where Q(v) , v = 0 ∨ z 7→ 0.

9.1 Soundness under Weaker Memory Models

All the program logics discussed so far have been proved sound with respect
to the RC11 weak memory model [14], which forbids load-store reordering for
atomic accesses. Reordering a relaxed-atomic load past a later relaxed-atomic
store, however, is allowed in some weaker memory models, such as the “promis-
ing” model of Kang et al. [11], as it is key to explaining the weak behaviour of
the LB example from the introduction.

Extending the soundness of these logics to weaker models permitting the
weak behaviour of LB is rather challenging. In fact, FSL with its current model
of assertions (not discussed in this paper but presented in [5]) is unsound under
such models as shown by the proof outline in Fig. 8.

Under the assumption that z 7→ 0 ∗ 4z 7→ 0 is unsatisfiable (used in the
middle of thread I to deduce that Q(a) ∗4z 7→ 0 =⇒ a = 0∧ z 7→ 0), the proof
establishes that a = 0, whereas the program in question may clearly yield a = 1
if the load and the store of thread I are reordered. Although z 7→ 0 ∗ 4z 7→ 0 is
unsatisfiable in the current model of assertions, it is quite possible to devise a
different model of assertions, according to which the aforementioned assertion is
satisfiable, and thus potentially restore the soundness of FSL under some weaker
memory models.

9.2 Reasoning about SC accesses and fences

As the reader will have noticed, in this paper we have not presented any rules
for reasoning about sc atomics. Naturally, since sc atomics are stronger than
the release/acquire ones, the presented release/acquire rules are also sound for
sc accesses and fences. The question is whether we can get any stronger proof
rules for sc accesses and fences.

For sc fences, it seems quite likely that we can get better rules. An sc fence
can be thought of as a combination of a acq-rel fence and an acq-rel RMW over
a ghost location. Therefore, we should be able to extend the Hoare triples with
a global invariant, J , which can be accessed at sc fences:

J ∗ P ∗ P ′ V J ∗Q ∗Q′

J `
{
P ∗ 5P ′} fencesc

{
Q ∗ 4Q′} (f-sc)

Program Verification under Weak Mem. Consistency using Separation Logic 15

Such an invariant may also be used for providing rules for sc accesses. The
fragment of RC11 restricted to accesses only of na or sc kind corresponds exactly
to the language targeted by CSL [19] (by treating sc accesses as being surrounded
by atomic blocks). Thus, for this fragment at least, one can easily derive sound
rules for sc accesses from the CSL rules involving resource invariants. The open
question is whether one can extend the soundness of such rules to the full RC11
model, especially in cases where the same location may accessed both using sc
and non-sc accesses.

9.3 Tool Support

The soundness proofs of the aforementioned adaptations of separation logic have
all been mechanised in the Coq proof assistant (see RSL [28], FSL [5], GPS [27],
FSL++ [6]) together with some example proofs. Nevertheless, doing proofs in
those program logics in Coq without any additional infrastructure is quite cum-
bersome. What is very much needed is some support for more automated proofs.

Such support already exists for various flavours of (concurrent) separation
logic. There exist a wide range of tools, from fully automated ones for suitable
fragments of the logic to tactic libraries for assisting the manual derivation of
mechanised proofs (e.g., [2,8,16,17,18,9]). For the work described here, the two
most relevant tools are probably Viper [17] and the Iris framework [9].

Viper [17] is a generic program verifier for resource-based logics. Recently,
Summers and Müller [24] have encoded versions of the RSL/FSL proof rules into
Viper and have used them to verify among other examples a slightly simplified
version of the ARC library verified in [6]. While their encoding is not expressive
enough to verify the actual ARC implementation, it is much more convenient to
use for the programs falling in its domain than the FSL’s Coq formalisation.

Iris [9] is a generic logical framework built around a higher-order variant of
separation logic. It is deeply embedded in Coq and comes with a useful set of Coq
tactics for doing proofs in that framework. In recent work, Kaiser et al. [10] have
encoded a slight variant of GPS into Iris (thereby reproving its soundness within
Iris) and have used Iris’s infrastructure to get a convenient way of constructing
GPS proofs in Coq.

Acknowledgments. The work reported here was done in collaboration with a
number of people—Hoang-Hai Dang, Marko Doko, Derek Dreyer, João Fereira,
Mengda He, Jan-Oliver Kaiser, Ori Lahav, Chinmay Narayan, Shengchao Qin,
Aaron Turon—who are coauthors of the relevant publications. I would also like
to thank the CAV’17 chairs for inviting me to write this paper.

References

1. Adve, S.V., Boehm, H.: Memory models: A case for rethinking parallel languages
and hardware. Commun. ACM 53(8), 90–101 (2010)

16 V. Vafeiadis

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.P. (eds.) FMCO 2015. LNCS, vol. 4111, pp. 115–137. Springer (2005)

3. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against tso. In: ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer (2013)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M., Vafeiadis, V.: Concur-
rent abstract predicates. In: ECOOP 2010. LNCS, vol. 6183, pp. 504–528. Springer
(2010)

5. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430. Springer
(2016)

6. Doko, M., Vafeiadis, V.: Tackling real-life relaxed concurrency with FSL++. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 448–475. Springer (2017)

7. He, M., Vafeiadis, V., Qin, S., Ferreira, J.F.: Reasoning about fences and relaxed
atomics. In: PDP 2016. pp. 520–527. IEEE Computer Society (2016)

8. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer (2011)

9. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In: Rajamani, S.K., Walker, D. (eds.) POPL 2015. pp. 637–650. ACM (2015)

10. Kaiser, J.O., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for
weak memory: Reasoning about release-acquire consistency in Iris. In: ECOOP
2017 (2017)

11. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017.
pp. 175–189. ACM (2017)

12. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
POPL 2016. pp. 649–662. ACM (2016)

13. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer (2015)

14. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential con-
sistency in C/C++11. In: PLDI 2017. ACM (2017)

15. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

16. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6355, pp. 348–370.
Springer (2010)

17. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer (2016)

18. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism and
separation. J. Funct. Program. 18(5-6), 865–911 (2008)

19. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271–307 (2007)

20. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer (2010)

21. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6(4), 319–340 (1976)

Program Verification under Weak Mem. Consistency using Separation Logic 17

22. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. Ph.D. thesis,
Cornell University (1975)

23. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer (2014)

24. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs (2017)

25. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for
weak memory. In: PLDI 2015. pp. 110–120. ACM (2015)

26. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: Morrisett, G., Uustalu, T. (eds.) ICFP
2013. pp. 377–390. ACM (2013)

27. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts,
protocols, and separation. In: OOPSLA 2014. pp. 691–707. ACM (2014)

28. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11
concurrency. In: OOPSLA 2013. pp. 867–884. ACM (2013)

	Program Verification under Weak Memory Consistency using Separation Logic

