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Abstract. This paper presents a practical automatic verification proce-
dure for proving linearizability (i.e., atomicity and functional correctness)
of concurrent data structure implementations. The procedure employs a
novel instrumentation to verify logically pure executions, and is evaluated
on a number of standard concurrent stack, queue and set algorithms.

1 Introduction

Linearizability [11] is the standard correctness requirement for concurrent im-
plementations of abstract data structures (such as stacks, queues, sets and finite
maps) packaged into a concurrent library (such as java.util.concurrent). It
requires every library operation to be atomic (behave as if it were executed in
one indivisible step) and to satisfy a given functional correctness specification.

The most common way to prove linearizability is to identify the so-called
linearization points of each operation. These are program points where the en-
tire effect of an operation execution logically takes place. Sadly, however, these
linearization points are often rather complicated: they can depend on a non-
local boolean condition and can even reside within other concurrently executing
threads. This makes a brute force search for the linearization points infeasible.

We observe, however, that in practice such complicated linearization points
arise only in operation executions that do not logically update the library’s
shared state. It is therefore possible to search for the linearization points for op-
erations whose specification is always effectful (i.e., modifies the shared state),
but we need a different approach to verify operations with a possibly pure spec-
ification (i.e., one not modifying the shared state).

This paper presents one such procedure for proving linearizability (see §4).
For operations with a possibly pure specification, it instruments the library code
with a certain ‘pure linearizability checker,’ derived from the specification, and
runs a suitably powerful abstract interpreter to validate that there are no asser-
tion violations. This effectively considers all possible linearization points in one
go and results in a non-constructive linearizability proof. As a result, we have
succeeded in verifying several concurrent stack and queue implementations, and
have obtained mixed results for set implementations (see §5 for details).

Related Work. The related verification work can be classified in three groups.
First, there are various model-checking papers [22, 13, 4]. These do not prove

correctness; they merely check short execution traces of a small number of



Sequence AQ = @empty;

void enqueue(int e) {
atomic {
AQ = @app(AQ, @singl(e));

}
}

int tryDequeue(void) { int ARes;
atomic {

if (AQ == @empty) return EMPTY;
else { ARes = @hd(AQ);

AQ = @tl(AQ);
return ARes; }

} }

Fig. 1. Specification of a concurrent queue object.

threads. On the positive side, such tools do not require linearization points to be
annotated, are good at quickly finding bugs, and return concrete counterexample
traces for failed verifications.

Second, there are static analyses (shape analyses, in particular) [2, 3, 19].
With the exception of [2], these analyses work for an unbounded number of
threads and result in a proof of linearizability. Unfortunately, all of these analyses
require the programmer to specify the linearization points, a task that is quite
difficult when the linearization points are conditional or within the source code
of other concurrently executing operations, as we will shortly see. Our paper
addresses this limitation of the existing static analyses.

Finally, there are manual verification efforts. Some (e.g.,[18]) are pencil and
paper proofs in a particular program logic, others (e.g.,[5]) do a direct simulation
proof in a mechanised proof assistant, while O’Hearn et al. [15] do part of the
proof in a program logic and another part using operational reasoning on traces.

2 A Motivating Example: the M&S Queue

We start with a motivating example for the rest of the paper: the well-known
Michael & Scott non-blocking queue [14] (henceforth referred to as the M&S
queue). Figure 1 contains the specification of the concurrent queue operations
written in C-like pseudocode. The state of the queue is represented by the shared
variable AQ, which holds a sequence of values. We use the following notation for
mathematical sequences: @empty stands for the empty sequence; @singl con-
structs a sequence consisting of one element; @app concatenates two sequences;
@hd returns the first element of a sequence; and @tl returns all but the first
element of a sequence.

The queue supports two operations: (i) enqueue, which adds an item to the
end of the queue, and (ii) tryDequeue, which removes and returns the first
item of the queue if there is one, or returns EMPTY, if the queue is empty. Both
operations are supposed to be atomic; that is, executing in one step.

Figure 2 contains the M&S queue implementation, which is significantly more
complicated than the specification above. The queue is represented by two point-
ers into a null-terminated singly-linked list. The first pointer (Q->head) points
to the beginning of the list and is updated by tryDequeue operations. The sec-
ond pointer (Q->tail) is used to find the end of the list so that enqueue can



typedef struct Node s *Node;

struct Node s {
int val;
Node tl;

}

struct Queue {
Node head, tail;

} *Q;

void enqueue(int value) {
Node node, next, tail;
node = new node();
node->val = value;
node->tl = NULL;
while(true) {
tail = Q->tail;
next = tail->tl;
if (Q->tail != tail) continue;
if (next == NULL) {
if (CAS(&tail->tl,next,node))

break;
} else {
CAS(&Q->tail,tail,next);

}
}
CAS(&Q->tail,tail,node);

}

void init(void) {
Node node = new node();
node->tl = NULL;
Q = new queue();
Q->head = node;
Q->tail = node;

}

int tryDequeue(void) {
Node next, head, tail;
int pval;
while(true) {

head = Q->head;
tail = Q->tail;
next = head->tl;
if (Q->head != head) continue;
if (head == tail) {
if (next == NULL)

return EMPTY;
CAS(&Q->tail,tail,next);

} else {
pval = next->val;
if (CAS(&Q->head,head,next))

return pval;
}

}
}

Fig. 2. The M&S non–blocking queue implementation.

locate the last node of the list. It does not necessarily point to the last node
of the list, but it can lag behind. This is because there is no widely available
hardware instruction that can change Q->tail and append one node onto the
list in one atomic step. Consequently, enqueue first appends a node onto the list
with the underlined CAS instruction, and later updates Q->tail with its final
CAS instruction. In addition, whenever a concurrently executing thread notices
that the tail pointer is lagging behind the end of the list, it tries to advance it
using the CAS(&Q->tail,tail,next) instructions.

In the remainder of this paper we shall define what it means for the imple-
mentation to satisfy its specification and present a method for proving this.

3 Linearizability

We take programs to consist of a sequential initialisation phase followed by a
parallel composition of a fixed (but not statically bounded) number of threads,



T . The state consists of a set of global variables, G, and a set of local variables per
thread, Lt, that includes the thread’s program counter, pct. As a convention, we
will subscript thread-local variables with the corresponding thread identifier to
distinguish them from the global variables. We model each thread as a transition
relation on the valuations of the global and its local variables.

A library, A, consists of a constructor, Ainit, and a number of operations
(a.k.a., methods), A1, . . . , An, each expecting a single argument, argt, and re-
turning their result in the thread-local variable rest. A client of the library is any
program that calls the library’s constructor once in its initial sequential phase,
and then can call any number of the library’s methods possibly concurrently
with one another. Let C[A] be the transition relation denoting the composition
of the client C with the library A. We write C[A]∗ for its reflexive and transitive
closure. In such a composition, we write GC (resp. LC

t ) for the global (resp.
local) variables belonging to the client and, analogously, GA and LA

t for those
belonging to the library. We assume that GC and GA are disjoint, and that
LC
t ∩ LA

t = {argt, rest, pct}.
Linearizability [11] is a formalisation of the concept of atomicity. Briefly, it re-

quires that every execution history consisting of calls to enqueue and tryDequeue
is equivalent (up to reordering of events) to a legal, sequential history that pre-
serves the order of non-overlapping methods in the original history. We say that
a history is sequential if none of its methods overlap in time; moreover, it is legal
if each method satisfies its specification.

In this paper, we prefer a slightly different definition of linearizability given
in terms of instrumented clients.

Definition 1. An instrumented client of a library A is a client annotated with

an auxiliary global variable h as follows: (1) At the initial state, let h = �; (2)
before every call to Ai by thread t, append (call t, i, argt) to h; and (3) after

each return from a call to Ai by thread t, append (ret t, i, rest) to h.

In effect, the auxiliary variable h records the observed execution history. Note
that there is a gap in time between when a method returns and when the return
is recorded in h. This gap allows us to define linearizability as follows:

Definition 2 (Linearizability). A library A is linearizable with respect to a

specification B if and only if for all instrumented clients C and every state s,
if (sinit, s) ∈ C[A]∗, then there exists a state s� such that (s�init, s

�) ∈ C[B]∗ and

s(h) = s�(h), where sinit and s�init are the initial states after calling Ainit and

Binit respectively.

This definition is slightly easier to work with than the original one by Herlihy
and Wing [11], because it uses syntactic equality on the recorded histories rather
than equivalence up to reordering of non-overlapping calls of the actual histories.
It is also more general in the sense that it corresponds to the original definition
only if all of B’s methods are atomic. The same generalisation is found in the
definition of Filipović et al. [7].



3.1 Proving Linearizability Using Linearization Points

The most common way of proving linearizability of a concurrent library is to
find the so-called linearization points of each operation and to demonstrate that
the chosen points are correct. These are points in the source code of the library
which, when executed, are deemed to perform the entire observable effect of the
operation instantaneously, and hence define the order in which the concurrent
operations are to be linearized. Within each operation execution, exactly one
linearization point must occur, but statically there can be multiple such points
along different execution paths of the operation, some of which might not even
be inside the operation’s source code!

Linearization Points of the M&S Queue. The linearization point of enqueue is
the underlined CAS instruction, when it succeeds. Its effect is to link a node to
the end of the concrete list, which logically corresponds to appending an item
to the queue.

The tryDequeue method has two linearization points depending on the re-
sult. The linearization point for the empty case is the underlined assignment
next = head->tl. This is a linearization point only if the same loop iteration
later executes return EMPTY. The second linearization point is the underlined
CAS instruction. Its effect is to advance the Q->head pointer, which logically
removes the first element from the queue.

As presented, these linearization points are conditional: not every time the
underlined instructions are executed, they are linearization points. Fortunately,
the conditions of the two points involving CAS can easily be eliminated by un-
folding the definition of CAS. For example, if we expand out the definition of the
underlined CAS of enqueue, we get:

atomic { if (tail->tl == next) { tail->tl = node; break; } }

Thus, it is easy to identify the linearization point of enqueue with the under-
lined assignment to tail->tl whenever that assignment is executed. We can do
likewise with the second linearization point of tryDequeue.

In contrast, the first linearization point of tryDequeue is truly conditional.
Specifying it formally requires an auxiliary prophecy variable [1] to record whether
the program will later execute return EMPTY in the same loop iteration. The
prophecy variable is needed because when executing the underlined read from
head->tl we cannot tell whether the test Q->head != head on the following
line will succeed. Therefore, the full condition is:

¬prophecy(Q->head!=head) ∧ head==tail ∧ next==NULL .

In §4.2, we will see a technique for proving that tryDequeue is linearizable that
avoids the conditions on this linearization point and the prophecy variable.



4 Automatic Proof Technique

4.1 Key Observation

It is clear from the M&S queue that linearization points are often conditional,
and that some conditions can be quite involved. Searching for such complex
conditions is clearly infeasible. We can, however, observe that

Operations have complex conditional linearization points
only in executions that do not logically modify the state.

For example, at the first linearization point of tryDequeue, the operation does
not logically modify the state. That is, if AQ holds the logical contents of the
queue and we execute the tryDequeue specification at that point, the value
of AQ will not be affected. It is, however, possible that tryDequeue updates
the concrete state (e.g., by performing the CAS(&Q->tail, tail, next) in a
previous loop iteration), but these updates do not affect its logical contents.

Quite surprisingly, this observation holds for most concurrent algorithms in
the literature. To the best of our knowledge, it holds for all but two of the
algorithms in Herlihy & Shavit’s book [12]. A possible explanation as to why
this is so is that logically effectful operation executions are much more difficult
to optimise than the ones that only do not logically modify the state. Therefore,
they tend to have simpler correctness arguments than the more heavily optimised
logically pure executions. Notable exceptions where our observation does not
hold are: (i) the Herlihy & Wing queue [11], (ii) the elimination-based stack
of Hendler et al. [10], and (iii) RDCSS by Harris et al. [9]. Verifying these
algorithms automatically is beyond the scope of this paper.

In the following, we shall distinguish between pure and effectful executions of
the abstract operations, i.e. the operation specifications. We say that an abstract
operation execution is pure if it does not modify the abstract state. Otherwise,
we say that the execution is effectful.

4.2 Dealing with Logically Pure Executions

To verify logically pure executions, we introduce one auxiliary boolean array,
can returnt,op [], per thread and per library operation. Each array is indexed
by the set of possible return values. While thread t is executing the operation
op, then can returnt,op satisfies the following invariant: whenever an entry,
can returnt,op [v], in the array is true, then there exists an instant since the
operation was called at which if the operation’s specification had been executed,
it would not have modified the global (abstract) state and would have returned
v. Therefore, if can returnt,op [rest] is true when the operation returns, we know
that there existed a valid linearization point during the operation’s execution.

To ensure that the aforementioned invariant holds, we set all the elements
of can return[] to false at the beginning of the operation. Then, at any later
point, we can set can return[v] to true provided that executing the operation’s
specification does not modify the global (abstract) state and returns v. This is
the task of the ‘pure linearizability checker,’ which we introduce below.



Pure Linearizability Checker Construction. Assuming that the specifications do
not contain any loops or any function calls, we rewrite each specification as a non-
deterministic choice of a number of execution paths consisting of assignments,
assume statements, and terminated by a return command. For uniformity, we
change specifications that do not return any value to return 0. For example, the
enqueue and tryDequeue specifications become:

enq
def
= AQ=@app(AQ,@singl(e)); return 0

deq(1)
def
= assume(AQ==@empty); return EMPTY

deq(2)
def
= assume(AQ�=@empty); ARes=@hd(AQ); AQ=@tl(AQ); return ARes

where tryDequeue corresponds to the non-deterministic choice among the paths
deq(1) and deq(2). We say that a path is syntactically pure if and only if it has
no assignments to global variables. For example, deq(1) is syntactically pure, but
enq and deq(2) are not.

The pure linearizability checker is constructed by replacing return v with
can return[v]=true along every syntactically pure specification path of the
method, and by truncating the non-pure paths before their first effectful com-
mand (namely, an assignment to a global variable). This construction ensures
that pure linearizability checkers set can return[v] to true only if at the current
point the specification does not modify the global state and returns v.

Going back to the queue specifications, the pure linearizability checker of
enqueue is simply the empty command, because enq is not syntactically pure.
The pure linearizability checker of tryDequeue is

if(*) {assume(AQ==@empty); can return[EMPTY]=true;}
else {assume(AQ!=@empty); ARes=@hd(AQ);}

In this case, as ARes is a dead local variable, the assignment can be removed,
and the checker can be rewritten as follows:1

if(AQ==@empty) {can return[EMPTY]=true;}

Linearization Points in Other Threads. Note that it is sound to execute the
pure checker for a thread, t, at any point in time, even between atomic steps of
other threads. This allows us to handle linearization points that are in the source
code of other concurrently executing operations. Basically, when a verifier checks
one thread with a compositional verification technique, it has a model of what
updates all the other threads can do and how these updates affect the current
thread. Thus, when symbolically evaluating the operation being verified, after
each of its atomic commands, the static analyser also symbolically evaluates
the model of what all the other threads can do, before proceeding with the
operation’s next atomic command. It suffices, therefore, to adapt the verifier to
call the relevant pure linearizability checker is also called after each atomic step

1 This simplification is for presentation purposes only. Our implementation does not
perform such simplifications.



Algorithm 1 ProveLinearizable(opinit, specinit, op1, spec1, . . . , opn, specn)

1: iopinit ← (opinit; specinit)
2: for i ← 1 to n do

3: check i ← GeneratePureChecker(speci)
4: (C, op1, . . . , opn) ← GetCandidateLinPoints(op1, . . . , opn)
5: for all cand ∈ C do

6: for i ← 1 to n do

7: iopi ← InstrumentLinPoints(cand, opi, speci)
8: if Verify(iopinit, iop1, check1, . . . , iopn, checkn) then
9: return ‘Success’
10: return ‘Failure’

of its model of the orther threads. This enables us to establish linearizability
even in cases where some linearization points are within a different thread. The
exact details as to how this is implemented are in §4.5.

4.3 Verification Procedure Outline

Algorithm 1 contains our procedure for proving linearizability. ProveLineariz-
able takes as arguments the library’s constructor (opinit) with its specification
(specinit), and the set of library operations (op1, . . . , opn) with their specifica-
tions (spec1, . . . , specn). The specifications are just normal methods that operate
on the logical state, which is disjoint from the concrete state.

The algorithm consists of two phases. First, it instruments the constructor
of the library, computes the pure checkers for each operation and generates a
set of candidate linearization point assignments, C. Then, it iterates over that
set checking whether any of these assignments is valid. If a valid assignment is
found, the procedure returns ‘Success’ indicating that linearizability has been
proved; otherwise, it returns ‘Failure.’

Preparation Phase. First, the algorithm instruments the library’s constructor:
iopinit is simply the sequential composition of the constructor, opinit, and its
specification, specspec. Next, pure checkers are generated, as described in §4.2.

Then, GetCandidateLinPoints is called. This, first, unfolds the defini-
tions of CAS and DCAS in the various operations. This syntactic transformation
exposes the trivial conditions governing the linearization points of effectful oper-
ations, so that the transformed operation has unconditional linearization points.
For uniformity, it arranges that methods and specifications that do not return
any results, return 0 instead.

Then, along each execution path of each operation, it chooses one command
writing to the shared state as the effectful linearization point. If the opera-
tion’s specification has pure executions (e.g., tryDequeue), it also can choose no
linearization point on some of its execution paths in the hope that the execu-
tion path corresponds to pure execution of its specification. Obviously, memory
writes appearing within loops are discarded since they can be executed mul-
tiple times. This process produces one linearization point assignment: a set of



program points that are to be treated as (unconditional) linearization points of
the method they belong to. GetCandidateLinPoints returns the set, C, of all
possible linearization point assignments.

Checking Phase. Each operation opi is instrumented with its specification speci

by adding the two new auxiliary local variables:

– lres, holding the result of the abstract method call at the effectful lineariza-
tion point if this has occurred, or the reserved value UNDEF otherwise,

– can return, an array storing the allowed return values of any pure lineariza-
tion points that have been executed so far,

and the following code:

– At the beginning of the method, InstrumentLinPoints sets lres to UNDEF.
and all the elements of can return[] to false.

– At the chosen candidate linearization points in cand that are in the source
code of opi, it inserts an assertion checking that the linearization point has
not occurred followed by a call to the abstract method:

assert(lres==UNDEF); lres=speci(args)

where args are the arguments of opi (which we assume are not modified
by opi). The assertion about lres and the subsequent assignment ensure
that the candidate linearization point is executed at most once along every
execution path.

– Finally, at the method’s return point(s), it inserts the following check:

assert(lres==res ∨ (lres==UNDEF ∧ can return[res]))

where res is the variable storing the concrete method’s return value. This
check ensures that either an effectful linearization point has occurred and
that the method returned the same result as its specification, or that no
effectful linearization point has occurred, but there has been a pure lin-
earization point whose return value matches the concrete return value.

The instrumented operations are validated by calling Verify. Verify takes
as arguments the library’s instrumented constructor (iopinit), its instrumented
operations (iop1, . . . , iopn), and one command per operation that is to be in-
serted at each point during the execution of that operation. These are the just
the previously computed pure linearization checkers: check1, . . . , checkn. Note
that these checkers have to be passed as arguments to Verify (and cannot
simply be instrumented in the source code of the operations), because we want
to allow linearization points of pure executions to reside in the code of other
threads. To handle this case, Verify also inserts the checkers in its abstractions
of the other threads’ behaviour. This instrumentation cannot be done statically
before calling Verify because these abstractions have not yet been computed.

Verify constructs the most general client of the library and uses an au-
tomatic static analysis to prove that the library is memory safe and that the



Algorithm 2 Adaptation of Stabilize(S,Rely) within opi with checker check i.

1: S ← Symb-Exec(S, ∅, check i)
2: repeat

3: Sold ← S
4: for all (R | P � Q) ∈ Rely do

5: S ← S ∨Abstract(Symb-Exec(May-Subtract(S, P,R) ∗Q, ∅, check i))
6: until S = Sold

7: return S

assertions in any assert statements in the library are always satisfied. The
most general client is a top-level program which models all possible usages of
the library. It consists of the constructor followed by an unbounded parallel com-
position of threads, each of which non-deterministically executes one of public
methods of the library in a loop. So, if so assertion violations occur for the most
general client of the library, then no library assertion violations will occur for
any client of the library.

4.4 Soundness

To prove soundness of our algorithm, we first show that the instrumentation
described in §4.2 and §4.3 implies linearizability:

Theorem 1 (Instrumentation Correctness). If a library A is instrumented

as described in §4.2 and §4.3 with respect to the specification B, and an execution

of a client of the instrumented library did not violate any of assertions, then that

execution was linearizable.

The proof of this theorem is quite technical and can be found in the technical
report [21]. Briefly, for each operation, we can pick the instant when lres was
set as its linearization point, or if lres was never set, then the point when
can return[r] was first set to true, where r is the eventual return value of the
operation.

The soundness of ProveLinearizable follows directly from Theorem 1 and
the specification of Verify, which ensures that no library assertions are violated
under any execution of any valid client of the library.

Theorem 2 (Soundness). If calling ProveLinearizable with the arguments

(init , init spec, op1, spec1, . . . , opn, specn) returns ‘Success,’ then the library con-

sisting of the constructor init and methods op1, . . . , opn is linearizable with re-

spect to its specification (init spec, spec1, . . . , specn).

4.5 Implementation

We have implemented the algorithm for proving linearizability within Cave,
an automatic verification tool for concurrent algorithms based on RGSep. We



take Verify to be the RGSep action inference algorithm [20], adapted to ex-
ecute the corresponding pure checker, check i, symbolically at every step of the
‘stabilization’ calculations within each instrumented operation, iopi. Formally,
we have changed the implementation of Stabilize(S,Rely) [20, Alg. 1] to the
version shown in Alg. 2. The only changes are the two calls to symbolic execu-
tion, which effectively means that Verify simulates the pure checker after every
atomic command of the current thread accessing the shared state and also after
every atomic command of other concurrently executing threads.

Return Set Abstraction. To ensure that Verify terminates, abstraction must
(under-)approximate the set of values v for which can return[v] is true. While
this may seem unnecessary for tryDequeue because its pure executions can re-
turn only EMPTY, it is crucial for specifications, such as peek on a stack or a queue,
whose pure executions can return an unbounded number of different answers.
Our static analyser abstracts over this set by remembering only which program
variables and program constants are contained in the set. As there is only a finite
set of variables and constants appearing in the input program, the range of this
abstraction is finite, and hence the termination of the underlying static analysis
is not affected. Formally, this is an instance of ‘canonical abstraction’ [16] and
is analogous to the abstraction performed for pointers.

Implementation Optimisations. Before executing Alg. 1, Cave first executes
Verify(init , op1, skip, . . . , opn, skip) to check that the uninstrumented library
is memory safe: that it does not dereference any invalid pointers and that it does
not violate any assertions. The purpose of this initial call is threefold:

1. It aids debugging. If action inference cannot verify that the uninstrumented
program is safe (either because the program is erroneous, or because the
analysis is imprecise), there is no way that it will succeed in verifying the
instrumented programs. Thus, it is better to fail quickly, and give a simpler
error message to the user.

2. It can help quickly prune the search space of linearization point assignments.
Action inference distinguishes updates to shared memory locations from up-
dates to thread-local data, as only the former have an action associated with
them. Thus, we can ignore any candidate linearization point assignments
that involve thread-local accesses.

3. The set of RGSep actions inferred by this phase can then used as a starting
point for the following Verify calls within Alg. 1, thereby making later
action inference calls reach their fix-point in a single iteration.

We can further optimise the call to Verify in Alg. 1 in two ways. First, it can
fail immediately if the correlation between the abstract state and the concrete
state is lost. This allows us to fail much more quickly on erroneous linearization
point assignments. Second, it first tries to prove linearizability by inlining the
instrumented checkers only within the source code of the current thread (i.e.,
only at the beginning of every stabilization), and if that fails to establish lin-
earizability, then also after every stabilization iteration. This alleviates the cost



Data structure Lines Ops Eff Pure LpO Time(s)

DCAS stack 52/100 2/8 2/4 1/5 0/0 0.1/0.3
Treiber stack [17] 52/100 2/8 2/4 1/5 0/0 0.1/0.3
M&S two-lock queue [14] 54/85 2/4 2/3 1/2 0/0 2.0/16.5
M&S non-block. queue [14] 82/127 2/4 2/3 1/2 0/0 1.7/4.9
DGLM non-block. queue [5] 82/126 2/4 2/3 1/2 0/0 1.8/7.6
Pessimistic set [12] 100 3 2 3 0 247.8
V&Y DCAS-based set [22] 101 3 2 3 0 51.0
ORVYY lazy set [15] 94 3 2 3 1 521.5

Fig. 3. Verification statistics for a collection of stack, queue, and set benchmarks.

of inserting the pure checkers within the abstraction of other threads, when this
is not needed to prove linearizability.

5 Experimental Evaluation

We have successfully applied Cave to a number of practical concurrent stack,
queue, and set algorithms from the literature, which are reported in Fig. 3. For
some algorithms, we have considered two versions: one being just core algorithm
as normally published, and one being a mostly straightforward extension of the
algorithm providing supplementary operations. We present our results for both
versions in the same line separating the corresponding numbers with a slash.
For each algorithm, we record the number of lines of code excluding comments,
blank lines, and the specifications (Lines), the number of public methods of the
library (Ops), the number of effectful methods (Eff), the number of methods
with pure executions (Pure), the number of methods with linearization points
in other threads (LpO) and the total verification time in seconds (Time).

Stack & Queue Benchmarks. The stack algorithms use non-blocking synchro-
nisation, performing a DCAS or a CAS to update the top of the stack. The
basic versions of the stack algorithms provide just push and tryPop operations.
The tryPop operation has a pure execution in case the stack was empty, in
which case it returns a special value (similar to the tryDequeue of Fig. 1). The
extended implementations also provide waitPop (which blocks if the stack is
empty), tryPeek, waitPeek, waitEmpty, isEmpty, makeEmpty.

The queue algorithms support enqueue and tryDequeue operations with the
specifications shown in Fig. 1. The extended versions have two further operations:
a blocking dequeue and an emptiness test. The first algorithm is a lock-based
design due to Michael and Scott that uses a different lock to protect each end
of the queue. The second one is due to the same authors and was presented
in Fig. 2. The DGLM queue is a variant of M&S non-blocking queue that was
proposed by Doherty et al. [5] and verified in the PVS theorem prover.

Set Benchmarks. These have three operations: adding an element to the set,
removing one element from the set, and testing for membership in the set. The



first two operations are effectful, but have pure executions whenever the item
to be added (resp. removed) was already in the set (resp. not in the set). In all
cases, the set is represented as a sorted singly linked list with two sentinel nodes.

The pessimistic set has a lock per list node, acquired in a hand-over-hand
fashion. The V&Y DCAS-set [22] traverses the list optimistically (i.e., with no
synchronisation) and then validates that the traversal was correct. The ORVYY
lazy set [15] also performs optimistic traversals and uses a bit for marking nodes
that are about to be deleted. This allows it to have an efficient wait-free contains
implementation. The ORVYY lazy set is particularly interesting, because one of
the linearization points of contains lies within code of a different thread.

We have also run Cave on two further set algorithms: the V&Y CAS-based
set [22] and the HHLMSS lazy set [12, §9.7], but it failed to prove linearizability.
Verification of the first example failed because one of the calls to Verify timed
out, probably due to the current näıve axiomatisation of sorted sequences in the
analyser. In the second algorithm, the correct abstraction map lies outside of
the abstract domain of our implementation of Verify and, hence, was not be
found.2

Discussion. From the verification times, one can observe that the stack algo-
rithms are relatively easy to verify. This is because of the rather simple data
structure invariants (e.g. the stack is represented by a null-terminated singly-
linked list) that Verify has to infer. In contrast, the set algorithms have much
more complicated data structure invariants (e.g. the set being represented by a
sorted list with special sentinel nodes and there can be multiple arbitrarily long
chains of deleted nodes pointing into the sorted list), which take significantly
more effort to infer. In all these algorithms, the search space for the effectful
candidate linearization point assignments was quite small. For the more compli-
cated examples, searching for incorrect assignments took a small fraction of the
whole verification time. The verification time was dominated by the validation
of the correct linearization point assignment.

Since our tool relies on abstract interpretation, our verification procedure
is incomplete: it is unable to verify many correct programs that lie outside its
domain (such as the aforementioned HHLMSS lazy set), and does not provide
concrete counterexample traces when the verification fails. Moreover, Cave can-
not prove linearizability of effectful executions whose linearization points are
inside the code of different threads (such as RDCSS and the elimination-based
stack), unless these linearization points are somehow annotated by the program-
mer. It can, however, prove linearizability of method executions having lineariza-

2 The abstraction map for the HHLMSS lazy set is the set of the values of unmarked
nodes that are reachable from the head of the list. In contrast, the ORVYY lazy set
has a simpler abstraction map: it is the set of the values of all the nodes that are
reachable from the head of the list. While it is plausible to extend the analyser to
infer such complicated abstraction maps automatically, it is probably better to leave
them as input by the programmer.



tion points within different threads, provided that these executions are logically
effect-free, as was the case with the ORVYY lazy set.

The main observation of this paper that enabled these verification results
was to distinguish executions of the abstract operations (i.e., the specifications)
that are pure from those that are effectful. This is related to Elmas et al. [6], who
in the context of runtime refinement-violation detection treat operations with a
pure specification differently than ordinary operations. Flanagan et al. [8] also
had a somewhat related concept of purity, but in their work there is no notion of
an abstract operation, and purity is applied only to the implementation. None
of the algorithms verified here could have been verified with brute-force search
for linearization points.

6 Conclusion

This paper presented a practical technique for automatically proving linearizabil-
ity. This was implemented in a tool, Cave, which expects a library to be verified
together with its atomic functional correctness specification and attempts to
prove that the library is linearizable with respect to its specification. We have
applied our tool to a number of concurrent stack, queue, and set algorithms,
some of which were mechanically verified for the first time.

As this is the first automatic technique for verifying functional correctness
of non-trivial concurrent programs, there are several ways in which it can be
improved. One such way would be to deal with effectful linearization points in
other threads that are ‘similar’ to a linearization point in the thread being veri-
fied (where two program statements are deemed ‘similar’ if they are abstracted
by the same RGSep action). More practically, our prover should be combined
with lightweight methods for proving atomicity (e.g., [8]) and with testing tech-
niques for eliminating incorrect linearization point assignments quickly. Further,
as such provers become increasingly sophisticated, it will be important to gen-
erate proof objects that can be independently checked by a trusted computer
program. Last, but not least, there is a never-ending challenge in devising more
powerful and more efficient abstract domains for the underlying static analyses
used in procedures such as Verify. In particular, improving the support for ar-
rays would enable us to reason about several more concurrent algorithms, such
as concurrent hash tables.
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LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

6. Elmas, T., Tasiran, S., Qadeer, S.: VYRD: verifying concurrent programs by run-
time refinement-violation detection. In: PLDI, pp. 27–37. ACM, New York (2005)
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