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Abstract
Online services often use replication for improving the
performance of user-facing services. However, using
replication for performance comes at a price of weak-
ening the consistency levels of the replicated service. To
address this tension, recent proposals from academia and
industry allow operations to run at different consistency
levels. In these systems, the programmer has to decide
which level to use for each operation. We present SIEVE,
a tool that relieves Java programmers from this error-
prone decision process, allowing applications to auto-
matically extract good performance when possible, while
resorting to strong consistency whenever required by the
target semantics. Taking as input a set of application-
specific invariants and a few annotations about merge
semantics, SIEVE performs a combination of static and
dynamic analysis, offline and at runtime, to determine
when it is necessary to use strong consistency to preserve
these invariants and when it is safe to use causally con-
sistent commutative replicated data types (CRDTs). We
evaluate SIEVE on two web applications and show that
the automatic classification overhead is low.

1 Introduction

To make web services more interactive, the providers of
planetary-scale services—such as Google, Amazon, or
Facebook—replicate the state and the application logic
behind these services either within a data center or across
multiple data centers, and direct users to a single (and
preferably the closest or least loaded) replica [11, 27,
14]. Gaining performance through replication, however,
comes at a price. To avoid the high cost of coordinat-
ing among replicas, the infrastructures that provide repli-
cated services resort to weak consistency levels such as
causal consistency [22, 4], eventual consistency [11], or
timeline consistency [10]. Under these weak consistency
models, good performance is extracted by the fact that
only a small number of replicas needs to be contacted

for the execution of each operation before producing a
reply to the user. However, this adaption also modifies
the semantics provided by the replicated service, when
compared to strong consistency models like serializabil-
ity [35] or linearizability [13], where a replicated system
behaves like a single server that serializes all operations.
Using weak consistency models requires special care, be-
cause their semantics may violate user expectations, for
example by allowing an auction service to declare two
different users to be the winners of the same auction.

Recognizing this tension between performance and
meeting user expectations, many research [18, 29, 20,
32] and commercial [30, 12, 24] systems offer the choice
between executing an operation under a strong or a weak
consistency model. All of these proposals require the ap-
plication programmer to declare which operations should
run under which consistency level. In most cases this
is done explicitly by extending the interface for opera-
tion execution with an indication of the desired consis-
tency level, while in a recent proposal this is done im-
plicitly by associating a consistency SLA to each oper-
ation, ranking and assigning utility values to the various
consistency levels [32]. The problem with these strate-
gies is that they impose on the application programmer
the non-trivial burden of understanding the semantics of
each operation and how the assignment of different con-
sistency levels to different operations influences overall
semantics that are perceived by the users.

In this paper, we address this problem by automating
the process that assigns consistency levels to the vari-
ous operations, focusing on an important and widely de-
ployed class of applications, namely Java-based applica-
tions with a database backend. To achieve this goal, we
build on prior work [20] that defines sufficient proper-
ties for safely using a weak consistency model (namely
causal consistency), and changes the replication model
to separate the generation of the side effects of an opera-
tion from their application to the state of the replicas. To
adapt existing applications to this model requires a sig-



nificant amount of non-trivial manual work that can be
challenging and error-prone. First, one must transform
every application operation into a generator and a com-
mutative shadow operation. Second, one must correctly
identify which shadow operations may break some ap-
plication invariant, and label them appropriately so that
they execute under strong consistency.

In order to ease the burden on the programmer, we
have designed SIEVE, a tool which automates this adap-
tation. Using SIEVE, we require the programmer to only
specify the application invariants that must be preserved
and to annotate a small amount of semantic information
about how to merge concurrent updates. SIEVE achieves
this automation by addressing the two identified chal-
lenges using the following approach:

First, to ensure convergence under weak consistency,
SIEVE automatically transforms the side effects of ev-
ery application operation into their commutative form.
To this end, we build on previous work on commutative
replicated data types (CRDTs) [28, 25], i.e., data types
whose concurrent operations commute, and apply this
concept to relational databases. This allows program-
mers to only specify which particular CRDT semantics
they intend by adding a small annotation in the database
schema, and SIEVE automatically generates the shadow
operation code implementing the chosen semantics.

Second, SIEVE uses program analysis to iden-
tify commutative shadow operations that might vio-
late application-specific invariants when executed un-
der weak consistency semantics, and runs them under
strong consistency [20]. To make the analysis accurate
and lightweight, we divide it into a potentially expensive
static part and an efficient check at runtime. The static
analysis generates a set of abstract forms (templates) that
represent the space of possible shadow operations pro-
duced at runtime, and identifies for each template a logi-
cal condition (weakest precondition) under which invari-
ants are guaranteed to be preserved. This information is
then stored in a dictionary, which is looked up and evalu-
ated at runtime, to determine whether each operation can
run under weak consistency.

We evaluate SIEVE using TPCW and RUBiS. Our re-
sults show that it is possible to achieve the performance
benefits of weakly consistent replication when it does not
lead to breaking application invariants without imposing
the burden of choosing the appropriate consistency level
on the programmer, and with a low runtime overhead.

2 Background

Before presenting the various aspects of SIEVE, we first
introduce the system model it builds upon, and the oper-
ation classification methodology it relies on.

In previous work [20], we defined RedBlue consis-

tency, where operations can be labeled red (strongly con-
sistent) or blue (weakly consistent). Red operations are
totally ordered with respect to each other, meaning that
they execute in the same relative order at all replicas, and
therefore no two Red operations execute concurrently.
(This corresponds to the requirements of serializability.)
In contrast, blue operations can be reordered with re-
spect to other operations, provided they preserve causal-
ity (corresponding to causal consistency).

A pre-requisite to being able to label operations as
blue is that operations should commute, so that execut-
ing them in a different order at various replicas does not
lead to a divergent replica state. To increase the space
of commutative operations, we proposed a change in the
state machine replication model such that operations are
split between a generator operation running only on the
replica that first receives the operation and producing no
side effects, and a shadow operation sent to all repli-
cas, which effectively applies the side effects in a com-
mutative way. More formally, in the original state ma-
chine replication model, an operation u deterministically
modifies the state of a replica from S to S′ (denoted as
S+ u = S′). In the proposed model, the application pro-
grammer decomposes every operation u into generator
and shadow operations gu and hu(S), respectively, where
S is the replica state against which gu was executed.
The pair of generator and shadow operations must sat-
isfy the following correctness requirement: for any state
S, S+gu = S and S+hu(S) = S+u.

Given this system model, we defined sufficient condi-
tions for labeling operations in a way that ensures that
application invariants are not violated. In particular, a
shadow operation can be labeled blue if it commutes
with all other shadow operations, and it is invariant safe,
meaning that if states S and S′ preserve the invariants,
then the state S′+hu(S) does so as well.

3 Overview

Using RedBlue consistency requires the programmer to
generate commutative shadow operations and identify
which can be blue and which must be red. Our goal is
to automate these two tasks, to the extent possible.

For the first task, we leverage the rich commuta-
tive replicated data type (CRDT) literature [28, 25],
which defines a list of data types whose operations com-
mute. CRDTs can be employed to produce commuta-
tive shadow operations that converge to identical final
states, independent of the order in which they are applied.
Shadow operations are thus constructed as a sequence of
updates to CRDT data types that commute by construc-
tion.

The challenge in developing shadow operations based
on CRDTs is that the programmer must explicitly trans-
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form the applications to replace all the application state
mutations by calls to the appropriate CRDT object. This
involves not only identifying the parts of the programs
that encode these actions, but also understanding the cat-
alogue of CRDT structures and choosing the appropriate
one. To minimize this programmer intervention, we fo-
cus on two-tier architectures that store all of the state that
must persist across operations in a database. This gives us
two main advantages: 1) We can automatically identify
the actions that mutate the state, namely the operations
that access the database. 2) We can reduce the user in-
tervention to small annotations referring to the database
data organization.

The second challenge SIEVE addresses is automati-
cally labeling commutative shadow operations. To this
end, for each shadow operation that is generated, we need
to decide whether it is invariant safe, according to the
definition in Section 2. (Commutativity does not need to
be checked since the previous step ensures that shadow
operations commute by design.) To automate the classifi-
cation process, two design alternatives that represent two
ends of a spectrum: (1) a dynamic solution, which de-
termines at runtime, when the shadow operation is pro-
duced, whether that shadow operation meets the invariant
safety property, and (2) a fully static solution that deter-
mines which combinations of initial operation types, pa-
rameters, and initial states they are applied against lead to
generating a shadow operation that is invariant safe. The
problem with the former solution is that it introduces run-
time overheads, and the problem with the latter solution,
as we will detail in Section 5, is that the static analysis
could be expensive and end up conservatively flagging
too many operations as strongly consistent.

To strike a balance between the two approaches, we
split the labeling into a potentially expensive static part
and a lightweight dynamic part. Statically, we generate a
set of templates corresponding to different possible com-
binations of CRDT operations that comprise shadow op-
erations, along with weakest preconditions for each tem-
plate to be invariant safe. Then, at runtime, we perform
a simple dictionary lookup to determine which template
the shadow operation falls into, so that we can retrieve
the corresponding weakest precondition and determine
whether it is met.

These two main solutions lead to the high level sys-
tem architecture depicted in Figure 1. The application
programmer writes the application code as a series of
transactions written in Java, which access a database
for storing persistent state. Beyond the application code,
the only additional inputs that the programmer needs
to provide are CRDT annotations specifying the se-
mantics for merging concurrent updates and a set of
application-specific invariants. The static analyzer then
creates shadow operation templates from the code of
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Figure 1: Overview of SIEVE. Shaded boxes are system
components comprising SIEVE. (WP stands for weakest
precondition.)

each transaction, where these templates represent differ-
ent sequences of invocations of functions in a CRDT li-
brary. The analyzer also computes the weakest precon-
ditions required for each template to be invariant safe.

At runtime, application servers run both the Java logic
and the runtime checker, and interact with a database
server (not shown in the figure) and the replication tier
(not shown in the figure). While executing a transaction,
the application server runs the generator operation in-
side a shadow operation creator, which, instead of di-
rectly committing side effects to the database, generates
a shadow operation consisting of a sequence of invoca-
tions from the CRDT library. This shadow operation is
then fed to the weakest precondition checker to decide
which static template it falls into, and what is the pre-
condition required for the operation to be invariant safe,
which allows the runtime to determine how to label the
operation. The labeled shadow operation is then fed to
the replication system implementing multi-level consis-
tency. In the following sections we further discuss the
design and implementation of the main components of
this architecture.

4 Generating shadow operations

This section covers how we automate the conversion of
application code into commutative shadow operations.

4.1 Leveraging CRDTs
We leverage several observations and technologies to
achieve a sweet spot between the need to capture the
semantics of the original operation when encoding its
side effects and the desire to minimize the amount of
programmer intervention. First, we observe that many
applications are built under a two-tier model, where all
the persistent state of the service is stored in a relational
database accessed through SQL commands. Second, we
leverage CRDTs [25], which construct operations that
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SQL
type CRDT Description

FIELD*
LWW Use last-writer-wins to solve

concurrent updates
NUMDELTA Add a delta to the numeric value

TABLE

AOSET,
UOSET,
AUSET,
ARSET

Sets with restricted operations
(add, update, and/or remove).
Conflicting ops. are logically
executed by timestamp order.

Table 1: Commutative replicated data types (CRDTs)
supported by our type system. * FIELD covers primitive
types such as integer, float, double, datetime and string.

commute by design by encapsulating all side effects into
a library of commutative operations.

These two concepts allow us to achieve commutativity
while overcoming the disadvantage of CRDTs, namely
the need to adapt applications. This is because the state
of two-tier applications is accessed through the narrow
SQL interface, and therefore we can focus exclusively
on adapting the implementation of SQL commands to ac-
cess a CRDT. For example, database tables can be seen
as a set of tuples, and therefore all the calls in the orig-
inal operation to add or remove tuples in a table can be
replaced in the shadow operation with a CRDT set add
or remove, which, in turn, is implemented on top of the
database. The programmer only has to select the appro-
priate merging strategy (i.e., the adequate CRDT type) to
encode these operations, without being required to pro-
gram these CRDT transformations or to change the code
of each operation.

However, it is impossible to completely remove the
programmer from the loop, due to the choice of which
CRDT to use for encoding appropriate merging seman-
tics. For instance, when an integer field of a tuple is writ-
ten to in a SQL update command, the programmer could
have two different intentions in terms of what the update
means and how concurrent updates should be handled:
1) the update can represent a delta to be added or sub-
tracted from the current value (e.g., when updating the
stock of a certain item), in which case all concurrent up-
dates should be applied possibly in a different order at
all replicas to ensure that no stock changes are lost, or
2) it can be overwriting an old value with a new value
(e.g., when updating the year of birth in a user profile),
in which case an order for these updates should be ar-
bitrated, and the last written value should prevail. Even
though both strategies ensure convergence, their seman-
tics differ significantly. For example, the second strategy
leads to a final state that does not reflect the effects of all
update operations.

Since the appropriate merging strategy is application-
specific, the programmer has to convey this decision.
To minimize this input, we only require the program-
mer to declare such semantics on a per-table and per-
attribute basis. In more detail, we provide programmers

@AUSET CREATE TABLE exampleTable (
objId INT(11) NOT NULL,
@NUMDELTA objCount INT(11) default 0,
@LWW objName char(60) default NULL,
PRIMARY KEY (id)

) ENGINE=InnoDB

Figure 2: Annotated table definition schema.

a number of CRDT types (shown in Table 1). These
types form two categories: field, which is the small-
est component of a record and defines its commuting
update operation in the presence of concurrency, and
set, which is a collection of such records plus the sup-
port for commutative appending or removing. Program-
mers only need to annotate the data schema with the de-
sired CRDT type using the following annotation syntax:
@[CRDT Name][TableName|DataFieldName]

Figure 2 presents a sample annotated SQL table cre-
ation statement. We assign exampleTable the type
AUSET (Append-Update Set), a CRDT set that only al-
lows append and update operations, thus precluding the
concurrent insertion and deletion of the same item (less
restrictive CRDT sets also exist). The field objCount as-
sociated with NUMDELTA always expects a delta value to
be added or subtracted to its current value. By default, if
no annotations are provided, we conservatively mark the
corresponding table or field to be read-only.

4.2 Runtime creation of shadow operations
With these schema annotations in place, it is easy to gen-
erate commutative shadow operations at runtime. The
idea is to invoke the original operation upon the ar-
rival of a new user request (as would happen in a sys-
tem that does not make use of shadow operations) but
with the difference that all the calls to execute com-
mands in the database are intercepted by a modified
JDBC driver that builds the sequence of CRDT opera-
tions that comprise the shadow operation as the original
operation progresses. Furthermore, using the schema an-
notations, SIEVE maps each database update to an appro-
priate merge semantics and replaces the operations on a
certain table with the appropriate operations over the cor-
responding CRDT type.

For instance, to create a shadow operation for a trans-
action that updates objCount in Figure 2, when an up-
date is invoked, we first query the old value s, and then,
given the new value s′, we compute a delta by subtract-
ing s from s′. Finally, we use delta and the primary key
pk of the corresponding object to parameterize a CRDT
operation that reads the tuple identified by pk and then
adds delta to it.

Finally, when the initial operation issues a commit to
the database, the tool outputs a shadow operation con-
taining the accumulated sequence of CRDT operations.
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1 Beg in transaction;

f o r (int i = 0; i < x.length; i++){

3 i f (x[i] < 100)

x[i]++;

5 e l s e
x[i] = -100 }

7 End transaction;
(a) Original code

1 func txnShadow(int[] obsX , int[] deltaA){

f o r (i = 0; i < obsX.length; i++){

3 i f (obsX[i] < 100)

CRDT_x[i]. applyDelta(deltaA[i]);

5 e l s e :
CRDT_x[i]. applyDelta(deltaA[i]); }

7 }
(b) Possible corresponding shadow template

Figure 3: Code snippet of a transaction and a possible template for the corresponding shadow operation.

5 Classification of shadow operations

In this section we explain how we automatically label
shadow operations as strongly or weakly consistent.

5.1 Overview
As mentioned in Section 3, a possible solution would
be to statically compute the combinations of opera-
tion types, parameters, and initial states that gener-
ate invariant-safe shadow operations. This can be done
by performing a weakest precondition computation—a
common PL technique for which some tool support al-
ready exists—which enables us to statically compute,
given the code of each operation, a precondition over the
initial state and operation parameters that ensures the in-
variant safety property. However, this raises the follow-
ing two important problems.

First, there is a scalability problem, which is exempli-
fied by the following hypothetical code for the generator
operation, assuming an invariant that the state variable
x should be non-negative. (For simplicity, we write con-
ventional Java code accessing variable x instead of SQL.)

void generator(string s) {

if (SHA-1(s)==SOME_CONSTANT) {

if (x>=10)

x -= 10;

} else

x +=10;

}

The problem is that a weakest precondition analysis
to determine which values of s lead to a negative (non-
invariant-safe) delta over x is computationally infeasible,
since it amounts to inverting a hash function. As such,
we would end up conservatively labeling the shadow op-
erations generated by this code as red (i.e., the weakest
precondition would be FALSE). Even though this is an
extreme example, it highlights the difficulty in handling
complex conditions over the input, even when the side
effects are simple.

However, the above example also highlights that a
simple analysis of the code can lead to the conclusion
that only shadow operations with a negative delta have
to be strongly consistent. We can further observe that
there are only three patterns of side-effects introduced

by this generator, regardless of the inputs provided to the
generator operation. Based on this observation, to sim-
plify the weakest precondition computation and to mini-
mize the space of strongly consistent shadow operations,
our static analysis is conducted over the set of possible
sequences of CRDT operations that can be generated,
which is the same as saying that we analyze all possi-
ble shadow operations. We call each possible sequence
of shadow operations that can be generated by a given
generator operation a template. In the above example,
there are only three sequences of shadow operations that
can be generated: the empty sequence, adding a delta of
10, and adding a delta of −10. From these three possible
sequences, only a delta of−10 leads to a weakest precon-
dition of FALSE, i.e., is always non-invariant-safe. The
remaining ones have a weakest precondition of TRUE.

The second challenge that needs to be overcome is re-
lated to handling loops. The generator code in Figure 3(a)
illustrates that the number of iterations in the loop can be
unbounded, which in turn leads to an unbounded num-
ber of CRDT operations in the shadow operation. To ab-
stract this, we could produce a template that preserves
the loop structure, such as the one in Figure 3(b). How-
ever, when computing a weakest precondition over this
piece of code, verification tools face a scalability prob-
lem, which is overcome by requiring the programmer to
specify loop invariants that guide the computation of this
weakest precondition [17]. This would however require
non-trivial and likely error-prone human intervention.

To address this challenge, we note that in many cases
(including all applications that we analyzed), loop itera-
tions are independent, in the sense that the parts of the
state modified in each iteration are disjoint. Again, this is
illustrated by the example in Figure 3, where the loop is
used to iterate over a set of items, and each iteration only
modifies the state of the item being iterated.

This iteration independence property enables us to
significantly simplify the handling of loops. In particu-
lar, when generating the weakest precondition associated
with a loop, we only have to consider the CRDT opera-
tions invoked in two sets of control flow paths, one where
the code within the loop is never executed, and another
with all possible control flow paths when the loop is ex-
ecuted and iteration repetitions are eliminated. (We will
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explain in detail how to handle loops using an example
in the following subsection.) This condition can then be
validated against each individual iteration of the loop at
runtime and, given the independence property, this vali-
dation will be valid for the entire loop execution.

In our current framework, the iteration independence
property is validated manually. In all our case-study ap-
plications, it was straightforward to see that this property
was met at all times. We leave the automation of this step
as future work.

Reduced path abstraction Description
2 ·3 ·4 ·2 only if
2 ·3 ·6 ·2 only else

2 ·3 ·4 ·2 ·3 ·6 ·2 else follows if
2 ·3 ·6 ·2 ·3 ·4 ·2 if follows else

Table 2: Distinct sequential paths obtained for the trans-
action (Figure 3(a)).

5.2 Generating templates
Instead of reasoning about the generator code, our anal-
ysis is simplified by reasoning about the side-effects of
each code path taken by the generator operation. Further-
more, we can cut the number of possible code paths by
eliminating code sections that are repeated due to loops.

Therefore, we need an algorithm for extracting the set
of sequential paths of a transaction and eliminating loop
repetition. The high level idea of this algorithm is to
split branch statements and replace loops with all non-
repeating combinations of branches that can be taken
within a loop. The algorithm works as follows. First,
for every transaction, we create a path abstraction for it,
which encodes all control flow information within that
transaction in a condensed way. In the example shown
in Figure 3(a), its path abstraction is 2 · (3 · (4|6) · 2)∗,
where numbers represent the statement identifiers shown
in the figure, · concatenates two sequential statements, |
is a binary operator that indicates that the statements at
its two sides are in alternative branches, and ∗means that
the sequence of statements that it refers to is in a loop.
Second, we recursively apply the following two steps to
simplify a path abstraction until it is sequential (i.e., no
∗ and |). For a path abstraction containing ∗, we create
two duplicated abstractions, where one excludes the en-
tire loop, and the other simplifies the loop into its body.
For a path abstraction containing the operator |, we cre-
ate two duplicated path abstractions, where one excludes
the right operand and the other excludes the left operand.
Additionally, if such | is affected by a ∗, then we have
to create another path abstractions combining both alter-
natives, i.e., where the if and the else sides are executed
sequentially.

In the previous example, the set of sequential paths

that is produced is shown in Table 2. By ignoring the
read-only path where the loop is not executed, we only
consider four cases, namely only the if or the else path,
and the two sequences including both if and else. Be-
cause of the loop independence property, these cases are
able to capture all relevant sequences of shadow opera-
tions. Note that we would only require considering one of
the two orderings for the if and the else code within the
loop, since their side effects commute, but taking both
orderings into account simplifies the runtime matching
of an execution to its corresponding path.

Given a set of sequential paths for a transaction, creat-
ing shadow operation templates become straightforward.
For each path, we collect a sequence of statements spec-
ified by the identifiers in the abstraction from the cor-
responding control flow graph. Then, we translate ev-
ery database function call into either a CRDT opera-
tion by following the instructions stated in Section 4,
or a no-op operation (for read queries). Finally, all these
CRDT operations are packed into a function, which de-
notes the shadow operation template. These CRDT oper-
ations are parameterized by their respective arguments,
and the static analysis computes a weakest precondition
over these arguments for the template to be invariant safe.

The final output from the static analysis is a dictionary
consisting of a set of < key,value > pairs, one for each
previously generated shadow operation template, where
key is the unique identifier of the template, and value is
the weakest precondition for the template. The unique
identifier of the template is generated by concatenating
the signatures of CRDT operations only.

5.3 Runtime evaluation
Template/shadow operation matching. At runtime, it
is necessary to evaluate the weakest precondition to clas-
sify operations as red or blue. To this end, we must
lookup in the dictionary created during the static analysis
the template corresponding to each shadow operation as
it is produced.

The challenge with performing this lookup is that it
requires determining the identifier of the template corre-
sponding to the path taken, but this must be done by tak-
ing only into account the operations that are controlled
by the runtime, i.e., the CRDT operations. This explains
why the dictionary keys consist only of CRDT opera-
tions. With these keys, matching the path taken at run-
time with the keys present in the dictionary is done effi-
ciently by using a search tree.
Weakest precondition check. Finally, once the weak-
est precondition for the template that corresponds to
a particular shadow operation is retrieved, we evaluate
that precondition against the CRDT parameters of the
shadow operation. This is achieved by simply replacing
the variables in the precondition with their instantiated
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App Invariants
TCPW ∀item ∈ item table. item.stock ≥ 0

RUBiS
∀item ∈ item table. item.stock ≥ 0
∀u,v ∈ user table.

u.uname = v.uname =⇒ u = v

Table 3: Application-specific invariants

values and evaluating the final expression to either true or
false. If the weakest precondition is evaluated to true the
shadow operation is labeled blue, otherwise the shadow
operation in labeled red.

After this step, the shadow operation is delivered to
the replication layer, which replicates it using different
strategies according to its classification.

6 Evaluation

In this section, we report our experience with implement-
ing SIEVE, adapting existing web applications to run with
SIEVE, and evaluating these systems.

6.1 Implementation
We implemented most of our tool using Java (15k lines
of code), and changed parts of the Jahob code to obtain
weakest preconditions in OCaml (553 lines of code). The
backend storage system we used was a MySQL database.
We used an existing Java parser [1] to parse java files. Fi-
nally, we connected our tool to the Gemini replication/-
coordination system [20] to enable both consistency clas-
sification and operation replication.

6.2 Use cases
To adapt an application to use SIEVE, one has to annotate
the corresponding SQL schema with the proper CRDT
semantics, specify all invariants, and finally the original
JDBC driver must be replaced by the driver provided by
SIEVE, to enable SIEVE to intercept interactions between
the application and the database.

We applied SIEVE to two web application benchmarks,
namely TPCW [9] and RUBiS [7]. Both of them simulate
an online store and the interactions between users and the
web application. There are two main motivations for se-
lecting these use cases: 1) both have been widely used
by the community to evaluate system performance; and
2) both have application-specific invariants that can be
violated under weak consistency. (In our prior work [20]
a social application is evaluated, but it made no sense to
include this application because it did not contain any in-
variants that could be violated under weak consistency.)

For TPCW, we use AOSET, AUSET, UOSET and ARSET

to annotate the database tables, no annotations for un-
modified attributes, NUMDELTA for stock, and LWW for
the remaining attributes. For RUBiS, we annotate its ta-
bles with AUSET and AOSET. We use NUMDELTA as an-

notations for both quantity and numOfBids, and no
annotations or LWW for the remaining attributes. Identi-
fied invariants in these two applications are summarized
in Table 3. For additional details, we refer the interested
reader to the code available in [2].

In terms of the time required to do this adaptation, we
do not report results for TPCW as we relied on this use
case during the design and development phase of SIEVE.
However for the RUBiS use case, the entire process was
concluded in only a few hours. An interesting point to
highlight is that SIEVE is able to detect inconsistencies
between these annotations, enabling programmers to cor-
rect mistakes such as type omissions in the SQL schema
that are inconsistent with the CRDT annotations.

In both our prior work [20] and the current work, the
effort we made to analyze application code to determine
invariants and merge semantics is unavoidable. In our
prior work, however, we additionally spent a significant
amount of time manually implementing merge seman-
tics, and classifying shadow operations by taking into ac-
count their properties, for every application. SIEVE elim-
inates all this manual work, and limits human error.

6.3 Experimental setup
All reported experiments were obtained by deploying ap-
plications on a local cluster, where each machine has
2*6 i7 cores and 48GB RAM, and runs Linux 3.2.48.1
(64bit), MySQL 5.5.18, Tomcat 6.0.35, and Java 1.7.0.

6.4 Experimental results
Our experimental work aims at evaluating both the static
analysis component of SIEVE and also the runtime com-
ponent, which includes a performance comparison be-
tween each system using our tool, its unmodified version,
and its version under RedBlue consistency where the en-
tire classification is done manually and offline.

Concerning the static analysis component we focus on
the following main questions: i) How long does the static
analysis process take to complete? ii) What is the scala-
bility of the static analysis component in relation to the
size of the code base?

For the runtime component of SIEVE we focus on
the following main questions: i) Is the runtime classi-
fication of shadow operations accurate? ii) What is the
(runtime) overhead for adapted applications compared to
their stand-alone unmodified counterparts? iii) What are
the performance gains obtained through weakly consis-
tent replication using SIEVE?

6.4.1 Static analysis

As mentioned before, taking the application source code
and CRDT annotations as input, SIEVE first maps each
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Transaction name #paths #templates Transaction name #paths #templates Transaction name #paths #templates
read-only TXs (13) 1 0 createNewCustomer 2 2 doBuyConfirm-A 32 32
createEmptyCart 1 1 adminUpdate 4 4 doCart 36 36
refreshSession 1 1 doBuyConfirm-B 16 16

Transaction name #paths #templates Transaction name #paths #templates Transaction name #paths #templates
ViewUserInfo 6 0 PutComment 10 0 PutBid 14 0
BrowseRegions 5 0 StoreComment 11 3 StoreBid 17 5
BuyNow 7 0 ViewBidHistory 11 0 AboutMe 37 0
SearchItemsByRegion 20 0 StoreBuyNow 13 6 RegisterItem 59 24
SearchItemsByCategory 20 0 BrowseCategories 13 0
ViewItem 10 0 RegisterUser 14 3

Table 4: Number of reduced paths and templates generated for each transaction in TPCW (top) and RUBiS (bottom).

transaction into a set of distinct paths, and automatically
transforms each path into a shadow operation template.

Table 4 summarizes the number of paths (excluding
loops) and the corresponding number of shadow oper-
ation templates that were produced by SIEVE for both
TPCW and RUBiS. For TPCW, 15 out of the total 20
transactions only exhibit a single path, as the code of
these transactions is sequential. The two most complex
transactions in this use case are doBuyConfirm and
doCart, which are associated with the user actions of
shopping and purchasing. In contrast, most transactions
in RUBiS have a more complex control flow, which gen-
erated a larger number of possible execution paths.

Note that the majority of transactions in both use cases
do not lead SIEVE to produce any template. This happens
when the transactions are read-only, and therefore do not
have side effects. Additionally, in TPCW every path in
an update transaction generates a shadow operation tem-
plate, since system state is always modified. However,
this is not true in RUBiS, because its code verifies sev-
eral conditions, some of which lead to a read-only trans-
action.

As depicted in Table 5, the execution of SIEVE gen-
erated a total of 92 and 41 shadow operation templates
for TPCW and RUBiS, respectively. In addition to these
templates, our tool also generates automatically a set
of Java classes that represent database data structures,
which are necessary for computing weakest precondi-
tions.

Table 6 depicts a full list of the different weakest pre-
conditions generated by SIEVE for both use cases. These
weakest preconditions alongside their respective shadow
operation template identifiers are used by the runtime
logic to classify shadow operations as either blue or red.

App #code templates #db code #specsnum #code
TPCW 8.3k 92 1554 879 730
RUBiS 9.8k 41 251 477 371

Table 5: Overview of the output produced by the static
analysis. “db code” refers to the Java classes represent-
ing database structures required for computing weakest
preconditions.

WP Comments

TPCW True Not influencing invariants
delta≥ 0 Non-negative stock

RUBiS

True Not influencing invariants
False Nickname must be unique

delta≥ 0 Non-negative quantity
quantity≥ 0 Non-negative quantity (new item)

Table 6: Weakest preconditions (WP)

App JahobSpec Template WP Total
TPCW 9.1 ± 0.1 3.8 ± 0.1 3.3 ± 0.1 16.2 ± 0.3
RUBiS 8.9 ± 0.0 3.3 ± 0.3 0.9 ± 0.1 13.2 ± 0.3

Table 7: Average and standard deviation of latency in
seconds for static analysis tasks (5 runs).

A weakest precondition denoted by True implies that
any shadow operation associated with that template is
always invariant-safe and therefore labeled blue. In con-
trast, a weakest precondition denoted by False implies
that shadow operations associated to that template must
always be classified as red. The remaining non-trivial
conditions must be evaluated at runtime by replacing
their arguments with concrete values. For instance, when
a doBuyConfirm transaction produces a negative delta,
then the condition will be evaluated to False and the
corresponding shadow operation will be classified as red,
otherwise the condition will be evaluated to True and the
shadow operation will be classified as blue.

Cost of static analysis. A relevant aspect of the static
analysis component in SIEVE is the time required to exe-
cute it. To study this we have measured the time taken by
the static analysis and present the obtained results in Ta-
ble 7. We not only measured the end-to-end completion
time, but also the time spent for each step, namely, creat-
ing database data structures required by Jahob (Jahob-
Spec), template creation (Template), and weakest pre-
condition computation (WP). Overall, we can see that
the execution time of the static component of SIEVE is
acceptable, as less than 20 seconds are required to ana-
lyze both TPCW and RUBiS. The code generation phase
including both JahobSpec and Template dominates the
overall static analysis. Compared to TPCW, the time
spent computing weakest precondition is shorter in RU-
BiS, due to the fewer number of templates in Table 5.
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Figure 4: Static analysis time vs. code base size.

Scalability. The codebase size of TPCW and RUBiS
is somewhat small when compared to deployed applica-
tions. This raises a question concerning the scalability
of the static analysis component of SIEVE with respect
to the size of the code base. In order to analyze this as-
pect of SIEVE we have artificially doubled and tripled the
size of each use case code base and measured the time
spent to analyze these larger code-bases when compared
with the original. The results are shown in Figure 4. The
time spent generating the data structures required by Ja-
hob is constant, since we did not change the database
schema. However, the time spent to compute the weak-
est preconditions for templates in TPCW grows exponen-
tially, and the time taken for the remaining steps presents
a sub-linear increase. These results lead us to conclude
that the static analysis of SIEVE may scale to reasonable
code sizes, especially taking into account that this pro-
cess is executed a single time when adapting an applica-
tion through the use of SIEVE.

6.4.2 Runtime logic

We evaluated the runtime performance of our example
applications using SIEVE on top of Gemini, which is a
coordination and replication layer supporting generator
and shadow operation execution [20].

Configurations. We populated the dataset for TPCW
using the following parameters: 50 EBS and 10,000
items. For RUBiS we populated the dataset with 33,000
items for sale, 1 million users, and 500,000 old items. We
exercised all TPCW workloads, namely browsing mix,
shopping mix, and ordering mix, where the purchase ac-
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Figure 5: Throughput-latency graph without replication

tivity varies from 5% to 50%. For RUBiS, we ran the
bidding mix workload, in which 15% of all user activi-
ties generate updates to the application state.

Correctness validation. To verify that SIEVE labels
operations correctly for both case studies, we inspected
the log files generated by running SIEVE with TPCW
and RUBiS, and we found that SIEVE conducts the same
classification that was achieved manually in our previous
work [20].

SIEVE runtime overhead. Next we compared the per-
formance (throughput vs. latency) of the two applica-
tions across three single-site deployments: 1) SIEVE, 2)
Original—the original unreplicated service without any
overheads from creating and applying shadow opera-
tions, and 3) Manual—the RedBlue scheme with all la-
beling performed offline by the programmer. The ex-
pected sources of overhead for SIEVE are: i) the dynamic
creation of shadow operations; and ii) the runtime classi-
fication of each shadow operation. The results in Figure 5
show that the performance achieved by SIEVE is similar
to the one obtained with a manual classification scheme,
and therefore the overheads of runtime classification are
low. The comparison with the original scheme in a sin-
gle site shows some runtime overhead due to creating
and applying shadow operations (which is required for a
replicated deployment so that all operations commute).

To better understand the sources of overhead imposed
by SIEVE we measured the latency contribution of each
runtime step executed by SIEVE and compared it with
the latency contribution of these steps when relying on a
manual adaptation. In particular, we focused on the fol-
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lowing tasks: generator execution (producing a shadow
operation), classification (determining shadow operation
colors), and shadow execution (applying shadow opera-
tions).

Figure 6 shows the average contribution to request
latency of each of these steps (Only update requests
are considered since read-only queries do not generate
side effects.) For the manual adaptation, there is no la-
tency contribution to classify shadow operations, since
the classification of all shadow operations is pre-defined.
In contrast, SIEVE performs a runtime classification, but
the results show that the time consumed in this task is
negligible. In particular, SIEVE takes 0.064 ± 0.002 ms
and 0.072 ± 0.001 ms for looking up the dictionary and
evaluating the condition for TPCW and RUBiS, respec-
tively. Regarding the generator execution and shadow ex-
ecution, both manual work and SIEVE present the same
latency overheads.

Replication benefits. The results previously discussed
in this section have shown that the use of SIEVE imposes
a small overhead when compared to a standalone execu-
tion of the unmodified use cases, mostly due to runtime
classification. However, SIEVE was designed to allow
replication to bring performance gains through the use
of weak consistency in replicated deployments. To eval-
uate these benefits, we conducted an experiment where
we deployed the two applications (1) without replica-
tion, (2) using manual classification in Gemini, and (3)
using SIEVE, with two replicas in the same site for the
last two options. (The use of single site replication in-
stead of geo-replication makes our results conservative,
since the overheads of runtime classification become di-
luted when factoring in cross-site latency.)

The results in Figure 7 show that weakly consistent
replication for a large fraction of the operations brings
performance gains. In particular, one observes that the
peak throughput with 2 replicated Gemini instances run-
ning TPCW is improved by 59.0%, and the peak through-
put for RUBiS in this setting is improved by 37.4%. The
additional latency introduced in this case is originated by
the necessity of coordination among replicas to totally
order red shadow operations. The results also confirm
that the overhead of runtime classification when com-
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Figure 7: Throughput-latency graph with two replicas.

pared to the manual, offline classification are low. Note
that there is a point where the throughput goes down
while there is still an increase in latency in Figure 7(b).
This happens because the database becomes saturated at
this point.

7 Related work

We summarize and compare previous work with SIEVE
according to the following categories:

Eventual consistency and commutativity. A large
number of replicated systems have relied on eventual
consistency for supporting low latency for operations by
returning as soon as an operation executes in a single
replica. These systems must handle conflicts that may
arise from concurrent operations. In some systems, such
as Bayou [33], Depot [23], and Dynamo [11], applica-
tions must provide code for merging concurrent versions.
Other systems, such as Cassandra [19], COPS [21],
Eiger [22] and ChainReaction [4], use a simple last-
writer-wins strategy for merging concurrent versions.
This simple strategy may, however, lead to lost updates.

Some systems have explored using operation commu-
tativity to guarantee that all replicas converge to the same
state, regardless of operation execution order. For exam-
ple, Walter [31] includes a single pre-defined data type
with commutative operations, cset. This system could be
extended for supporting other data types with commuta-
tive operations proposed in the literature [25, 28]. Lazy
replication [18] and RedBlue [20] support unordered ex-
ecution of commutative operations defined by program-
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mers. Furthermore, RedBlue [20] extends the space of
commutative operations by decoupling operation gener-
ation and application, requiring only that operation ap-
plication code is commutative.

Unlike these systems, SIEVE automatically adapts ap-
plications so that commutativity is obtained without
modifying existing application code or adopting a new
programming model – a commutative operation that en-
codes the operation side-effects is automatically gener-
ated from the application code.

Multi-level consistency. As some application oper-
ations cannot execute correctly under eventual consis-
tency, a few multi-level consistency models that com-
bine eventual and strong consistency have been pro-
posed [31, 20, 18, 32]. The properties of these models
overlap with each other, and differ mainly in the compo-
sition of the different consistency levels. For instance,
some work [31, 20] has found that it is sufficient to
categorize operations into strong and weak consistency.
Some other work [32] presents a more fine-grained di-
vision for read-only operations, which includes consis-
tent prefix read, monotonic reads, and so on. We build on
these models, and, in order to keep our design and our
presentation simple, we follow the two-level consistency
model proposed by RedBlue consistency [20].

Classification for multi-level consistency. In order to
help developers adopt different proposals for multi-level
consistency models, their creators introduced a few in-
structions to guide how to use their work. Relying on
a probabilistic model, consistency rationing [16] asso-
ciates different consistency levels with different states,
instead of operations, and allows states to switch from
one level to another at runtime. Unlike this approach,
we partition operations into strong and eventual con-
sistency groups. Both RedBlue consistency [20] and I-
confluence [6] define conditions that operations must
meet in order to run under weak consistency, i.e., without
coordination. We build on this line of work and extend it
so that an automatic tool, and not the programmer, is re-
sponsible for determining whether the operations meet
these conditions.

To free programmers from the classification process,
some researchers have attempted to apply program anal-
ysis techniques to reason about the consistency require-
ments of real applications. Alvaro et al. [5] identify code
locations that need to inject coordination to ensure con-
sistency, while Zhang et al. [35] inspect read/write con-
flicts across all operations. However, they focus on com-
mutativity, and ignore application invariants, which are
very important and taken into account by our solution.
Very recently, Roy et al. [26] use program analysis to
summarize transaction semantics and extract invariant-
like information by analyzing code. Then, based on the
identified results, transactions are executed either with or

without coordination. However, this work does not ex-
plore operation commutativity to minimize the space of
strongly consistent operations.

Commutativity and classification beyond eventual
consistency. Commutativity has been explored in other
settings to improve performance and scalability – e.g.
in databases [34] and in OS design for multi-core sys-
tems [8]. Program analysis techniques have also been
used to identify commuting code blocks. Aleen et al. [3]
proposed a new approach to find commutative functions
automatically at compile time for allowing legacy soft-
ware to extract performance from many-core architec-
tures. Kim et al. [15] used the Jahob verification sys-
tem to determine commuting conditions under which two
operations can execute in different orders. Unlike these
two prior solutions that focus on identifying commuta-
tive code blocks, our tool automatically transforms oper-
ations by decoupling operation generation and applica-
tion, which makes more operations commute [20], and
we also focus on determining invariant safety.

8 Conclusion

In this paper we presented SIEVE, the first system to auto-
mate the choice of consistency levels in a replicated sys-
tem. Our system relieves the programmer from having to
reason about the behaviors that weak consistency intro-
duces, only requiring the programmer to write the system
invariants that must be preserved and provide annotations
regarding merge semantics. Our evaluation shows that
SIEVE labels operations accurately, incurring a modest
runtime overhead when compared to labeling operations
manually and offline.
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