Implementation of Harmonic-Percussive Sound Separation for Audacity

Viktor Tamás Erdélyi
National Institute of Informatics
Saarland University*
Tokyo, Japan and Saarbrücken, Germany

Nobutaka Ono
National Institute of Informatics
Tokyo, Japan

Shigeki Sagayama
Meiji University
Tokyo, Japan

Project overview

<table>
<thead>
<tr>
<th>Goal</th>
<th>Possible applications</th>
<th>Our approach</th>
</tr>
</thead>
</table>
| Enable more people to use the Harmonic/Percussive Signal Separation (HPSS) sound effect | • Preprocessing for MIR-related tasks
• New type of music equalization | Implement HPSS as a new effect for Audacity (a popular open source sound editor application) |

Harmonic-percussive sound separation

- Separating the original power spectrogram into harmonic and percussive spectrograms by exploiting their anisotropies (horizontal = harmonic, vertical = percussive)
- Implementation based on sliding updates

![Harmonic and Percussive Components](image)

Implementation in Audacity

Harmonic-Percussive Sound Separation
Separates a waveform into harmonic and percussive components

HPSS-based vocal separation
Applies HPSS twice with different frame sizes in the short-time Fourier transform (STFT) in order to obtain another decomposition for voice and other components

Effect parameters
- **Frame size** (acts as a “separation threshold”)
- **Mask type** (binary or Wiener; for time-frequency masking in STFT domain)
- **Output mode** (keep harmonic only, keep percussive only, or keep both)
- **Final amplification factor** (to avoid clipping)

Effect parameters

![Effect Parameters](image)

Current status and references

We implemented the effects as a patch for Audacity and sent it to the developers.

* work done while at the National Institute of Informatics