
Pesos: Policy Enhanced Secure Object Store

Robert Krahn†, Bohdan Trach†, Anjo Vahldiek-Oberwagner‡, Thomas Knauth⋆,
Pramod Bhatotia∗, Christof Fetzer†

†TU Dresden ‡MPI-SWS, Saarland Informatics Campus ⋆Intel Corporation ∗University of Edinburgh

ABSTRACT

Third-party storage services pose the risk of integrity and con-
fidentiality violations as the current storage policy enforce-
mentmechanismsare spread acrossmany layers in the system
stack. To mitigate these security vulnerabilities, we present
the design and implementation of Pesos, a Policy Enhanced
Secure Object Store (Pesos) for untrusted third-party storage
providers. Pesos allows clients to specify per-object security
policies, concisely and separately from the storage stack, and
enforces these policies by securely mediating the I/O in the
persistence layer through a single unified enforcement layer.
More broadly, Pesos exposes a rich set of storage policies
ensuring the integrity, confidentiality, and access accounting
for data storage through a declarative policy language.

Pesos enforces these policies on untrusted commodity plat-
forms by leveraging a combination of two trusted comput-
ing technologies: Intel SGX for trusted execution environ-
ment (TEE) and Kinetic Open Storage for trusted storage. We
have implemented Pesos as a fully-functional storage system
supporting many useful end-to-end storage features, and a
range of effective performance optimizations. We evaluated
Pesos using a range of micro-benchmarks, and real-world
use cases. Our evaluation shows that Pesos incurs reasonable
performance overheads for the enforcement of policies while
keeping the trusted computing base (TCB) small.

CCS CONCEPTS

• Information systems → Cloud based storage; • Secu-
rity and privacy→ Trusted computing;

KEYWORDS

Storage security, policy language, Intel SGX, Kinetic disks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190518

ACMReference Format:

RobertKrahn†,BohdanTrach†,AnjoVahldiek-Oberwagner‡,Thomas
Knauth⋆, Pramod Bhatotia∗, Christof Fetzer†. 2018. Pesos: Policy
Enhanced Secure Object Store. In EuroSys ’18: Thirteenth EuroSys
Conference 2018, April 23–26, 2018, Porto, Portugal.ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3190508.3190518

1 INTRODUCTION

With the growth in popularity of Internet services, online
data stored in datacenters is growing at an ever-increasing
rate [16]. To tap into this vast market, many third-party on-
line services such as Amazon S3 [1], Azure Blob Storage [7],
Google Cloud Storage [27], or EMCElastic Cloud Storage [14]
offer consolidated storage at scale. These storage systems are
ubiquitously used by Internet services to store data with a
very high degree of availability and reliability at low cost.

At the same time, due to the complexity associated in de-
signing large-scale storage systems, the risk of confidentiality
and integrity violations has increased significantly. Many
anecdotal pieces of evidence show that software bugs, con-
figuration errors, and security vulnerabilities pose a serious
threat to these storage systems [4, 11, 22, 28]. Furthermore, un-
trusted third-party cloud platforms expose an additional risk
of unauthorized data access by amalicious administrator [59].
These threats are due to the fact that modern storage sys-

tems are quite complex [4, 52, 58, 73]. Currently, storage sys-
tems are characterized by multiple layers of software and
hardware stacked together to enable a data path from the ap-
plication to thestoragepersistence layer.This transitdatapath
requiresmultiple layers ofmanipulation from the application-
specific object database, through the POSIX interface, filesys-
tem, volumemanager, and drivers [30]. As a result, the access
policies for ensuring confidentiality, integrity, and access ac-
counting are scattered across different codepaths and configu-
rations. Thereby, the enforcement of access policies is carried
out by many layers in the software stack; thus, exposing the
data to security vulnerabilities. Furthermore, since the stored
data is outside the control of the data owner, the third-party
storage platforms provide an additional attack vector. The
clients currently have limited support to verify whether the
third-party operator, even with good intentions, can handle
the data with confidentiality and integrity guarantees.

To address these challenges, we present Pesos, a Policy En-
hanced Secure Object Store (Pesos) for untrusted third-party

https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3190508.3190518

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

storage services. Pesos allows clients to specify per-object
security policies concisely and separately from the remaining
storage stack, and enforces these policies by securely medi-
ating the I/O in the storage layer. Further, Pesos provides
cryptographic attestation for the stored objects and their as-
sociated policies to verify the policy enforcement.
To achieve these goals, Pesos provides a unified interface

for the client based on a declarative policy language to effi-
ciently express a wide range of storage policies regarding
data integrity, confidentiality, access accounting, and many
other workflows. The declarative abstraction is imperative to
minimize the complexity in specifying and auditing policies
via a single unified interface. In particular, a policy specifies
the conditions under which an object can be read, updated or
have its policy changed; thismay, in turn, depend on client au-
thentication, object metadata, content, or a signed certificate
from a trusted third-party. Pesos stores the specified policy
as part of the object metadata and ensures that each access
to the object complies with the associated policies.
The policy enforcement is carried out by Pesos through

a combination of two trusted computing technologies: Intel
SoftwareGuardExtensions (SGX) [2, 48] for trusted execution
environments (TEE) and Kinetic Object Storage [54, 63] for
trusted storage. The basic idea is quite straightforward: Pe-
sos carefully structures a policy-compiler, its binary-format
interpreter, per-object policy metadata, and the enforcement
logic into a single layer of the storage stack. Since the pol-
icy enforcement is unified in this single layer—i.e., the TCB
for policy enforcement is reduced to the single layer as op-
posed to multiple code paths and configuration files—the
security scope solely reduces to protecting this layer. Pesos
protects this TCB layer by leveraging the recently released
Intel SGX ISA extensions for TEE. Fromwithin the protected
layer, Pesos connects directly to the Kinetic disk through an
encrypted Ethernet connection. The secure connection termi-
nates within the disk’s controller and allows Pesos to transfer
the data from the TEE directly onto the drives without any
intermediate layers in the storage stack.
Pesos’ end-to-end workflow is as follows: When Pesos is

started, an attestation service verifies that Pesos is executed
on the correct hardware and that the binary executable has
not been altered. Afterwards the attestation service provides
authentication and encryption keys used by Pesos during the
runtime. Pesos uses the provided information to connect to a
set of Kinetic disks and acquires exclusive access by removing
any other user accounts on the disks. Clients can now con-
nect to Pesos and transfer objects and policies. The object
policies are compiled through a policy-compiler to produce
a binary format, which allows for fast permission checking.
Upon upload, objects are paired with policies based on the

client’s request. Future requests to objects with attached poli-
cies require a positive evaluation by the policy checker with
regard to the anticipated operation on the objects.
We implemented a fully-functional prototype of Pesos

based on the Intel Skylake micro-architecture with SGX ISA
extensions and Seagate Kinetic drives. Furthermore, we im-
plemented four important use-cases based on Pesos (§5), in-
cluding a content server, a verisoned object, a time-protected
object storage system, and amandatory access logging (MAL)
storage system.
We evaluated Pesos using a wide range of micro-bench-

marks, and aforementioned use-cases using YCSB workloads
[9]. To realistically asses the performance of our system, in
addition to using Seagate Kinetic HDD, we further examined
the performance of Pesoswith theKinetic disk simulator. Our
evaluation shows that Pesos achieves a peak performance
similar to the native version: throughput is at least 85% of
native and often better. Latency is less impacted and within
5% of native before Pesos becomes overloaded.

2 BACKGROUND

Pesos uses shielded execution in combination with Kinetic
storage drives to build a secure policy-based object store. In
this section, we first provide the relevant background about
these building blocks. Thereafter,we explain our threatmodel.

2.1 Shielded Execution

Shielded execution [3, 5, 65, 80] provides strong confidential-
ity and integrity guarantees for legacy applications running
on untrusted platforms. Our work builds on Scone [3]—a
shielded execution framework based on Intel Software Guard
Extensions (SGX) [2, 10, 32, 48].
Intel SGX, released as part of the Skylake architecture, ex-

tends the x86 instruction set with a processor mode and in-
structions to provide a trusted execution environment (TEE).
SGX provides a hardware-protected memory region called
secure enclave, which contains the trusted code and data, in
combination with a call-gate mechanism to control entry and
exit into the trustedexecutionenvironment.Theenclavemem-
ory can only be accessed by the enclave it belongs to, i.e., the
enclave memory is protected from concurrent enclaves and
other (privileged) code on the platform. SGX protects the ap-
plication against a powerful adversary controlling the entire
system stack, including theOSor the hypervisor, and is able to
launch physical attacks, such as performing memory probes.

However, a significant drawback of the SGX architecture is
the limited enclave memory of 128MB (only 96MB are avail-
able to applications). To alleviate the problem, SGX supports
paging of enclave memory to regular systemmemory, while

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

maintaining the memory’s confidentiality, integrity and pro-
tecting against replay attacks. However, the enclave memory
paging can be significantly expensive (2×—2000×) [3].

For buidling SGX-based applications, Intel software devel-
opment kit (SDK) provides tooling and software infrastruc-
ture. Essentially, the application developer splits the applica-
tion into a trusted and untrusted part and defines the interface
between them. Code generators create stubs and boilerplate
code to move data between the trusted and untrusted portion
of the program. This programming model centered around
pieces of application logic (PAL) forces the application de-
veloper to think carefully about the functionality to include
in the trusted environment, increasing the development ef-
fort significantly. To ease the development and deployment
of SGX-based applications, a number of shielded execution
frameworks have been built based on SGX to provide strong
confidentiality and integrity properties for running legacy
applications [3, 5, 65, 80].

PesosbuildsontheSconeshieldedexecution framework[3]
to run thePesos controller inside anSGXenclave.More specif-
ically, we leverage Scone’s support for remote attestation and
user-level multithreading, and container support for the ap-
plication deployment. We have adapted and optimized many
of Scone’s features in the context of Pesos (§4.6).

2.2 Kinetic Storage

In the cloud, applications are increasingly adopting the object
storagemodel to store data [1, 20, 50]. For Pesos, we use a par-
ticular implementation of object storage that removes many
of the traditional software and hardware pieces involved in
a “classic” object storage implementation. Figure 1 (left) illus-
trates the traditional storage stack with the many hardware
and software layers involved between an application issu-
ing a write request and the data being written to physical
media. The Kinetic storage drive, shown in Figure 1 (right),
removes some of these layers entirely and consolidates oth-
ers. The Kinetic drives bundle a traditional hard drive with
a System-on-Chip (SoC) and an Ethernet interface. The disks
are directly connected to the existing Ethernet network and
applications use the Kinetic disks via an HTTP/S interface.

In the context of Pesos, Kinetic disks are particularly com-
pelling. In combination with the trusted Pesos controller
based on shielded execution running inside an Intel SGXhard-
ware enclave, the disks represent the only other trusted com-
ponent in our design. With Kinetic disks deployed in a cloud
datacenter and exclusively accessed by the Pesos controller,
the surrounding hardware and software cloud infrastructure
remains outside the trusted computing base (§2.4). Because
the disks are exclusively accessed via encrypted and authenti-
cated communication channels, potential man-in-the-middle

Figure 1: Traditional block storage (left) vs. Kinetic

storage (right) [37].

attacks are thwarted. Further, Pesos transparently encrypts
objects using AES-GCM before storing them.
Section 3 and Section 4 will detail how Pesos utilizes the

unique characteristics of Kinetic disks to provide a secure
object storage in the cloud. In our prototype implementation,
we build on the Kinetic disks from Seagate. However, Pesos’
design is general enough to work with Ethernet drives from
other vendors as well. For instance, Samsung and Toshiba
also announced to work on similar disks [56, 76].

2.3 Policy-based Storage Systems

In today’s systems, confidentialityand integritydependon the
intricate synergy of the entire software stack. Applications or
databases enforce invariants (i.e., user authentication), file sys-
tems enforce access control, OS/VMM isolate data and special
purpose storage systems guard persistent data. While pro-
tection in upper layers may depend on application-specific
information (such as a user session), lower layers enforce
storage invariants (such as append-only files). Compared to
application-layer techniques, lower layers offer a more com-
prehensive protection against circumvention.

Storing data in untrusted cloud storage services increases
the software stack’s complexity and requires trust in a third-
partyorganization.Whilecommercialandresearchsystems[5,
35, 61, 80] exist to protect computation in an untrusted cloud
environmentusing, e.g., SGX,dataprotection reliesonencryp-
tion and Merkle trees to provide confidentiality and integrity.
More complex guarantees have to be enforced by the appli-
cation which spreads the enforcement logic and increases
the burden on the developer. Also, cloud providers and in
particular their employees may circumvent any application
enforcement. Hence, invariants such as access logs or a time-
based data release are out of scope for such storage systems.
Pesos addresses these challenges by providing a general tech-
nique to associate policies to data objects and enforces these
policies upon access.

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

In this respect, policy-based access control to secure stor-
age systems is receiving increasingly more attention [23, 47,
66, 75]. The state-of-the-art system Guardat [82] protects the
data confidentiality and integrity by enforcing client specified
security policies. Guardat enforces policies at the lowest level
within the storage stack tominimize the risk of circumvention.
Pesos adopts this approach and extends Guardat. Instead of
operating at the block-layer, Pesos operates on the common
key-value interface [12, 13, 18, 86].WhereasGuardat assumed
a physically protected machine room, Pesos relies on trusted
hardware and a trusted execution environment allowing its
deployment in the cloud. Furthermore, Guardat couples the
data storage and policy enforcement controller in a single
machine. Using Intel SGX, Pesos separates the data storage
and the controller offering better scalability and flexibility.

2.4 Threat Model

We assume a typical SGX threat model (e.g., [5]) in which we
trust the Intel processor and its SGX implementation.We also
trust the Kinetic disk. Everything else in the cloud provider’s
hard- and software stack is untrusted.

Deviating frompreviouswork,wedotrust thecloudprovider
with physical security. In particular, we assume that an adver-
sary cannot mount physical attacks on the otherwise trusted
Kinetic disk. We believe this is a reasonable assumption since
access to cloud data centers is strictly regulated.

WedisregardphysicalattacksontheKineticdisksince inter-
posing between the system-on-chip and the drive controller
may compromise security. Since clients communicate with
the disk over amutually authenticated and encrypted channel,
we view physical attacks as the only practical attack vector.
While Pesos can detect if entire disks are replaced (a type of
rollback attack) based on each disk’s unique X.509 certificate,
physical attacks may rollback state at a finer granularity, e.g.,
for single objects. Confidentiality of objects is guaranteed be-
cause Pesos encrypts objects before sending them to the disk.
We consider side-channel attacks on SGX out-of-scope even
though it is currently an area of active research (e.g., [29, 84]).

3 DESIGN

Pesos is a policy enhanced secure object store designed to
operate in untrusted cloud environments. Clients connect to
the Pesos controller to issue storage operations such as create,
delete, and update objects. An object is referenced through
a key. The key and object are essentially arbitrary sequence
of bytes to Pesos. Each operation modifies the state of an ob-
ject in its entirety, i.e., partial updates are not supported. (We
do support ACID transactions for updating multiple objects
together.) The connection between a client and the Pesos
controller is established over a mutually authenticated chan-
nel after performing remote attestation. This ensures that

Figure 2: Pesos’ general architecture.

the client is connected to the correct Pesos controller, while
the controller uses the client’s certificate to perform access
control. We explain the controller (§3.1) and the request flow
(§3.2) in more detail later in this section.

Besides securely storing objects, Pesos offers the ability to
associate policies with objects (§3.3) in a 1:M relationship, i.e.,
one policy to many objects. The Pesos controller unifies the
policy enforcement. For each operation, the controller checks
the associated policy of the accessed object. Anoperation only
succeeds, if the policy complies. Pesos’ unique advantage is
the ability to perform this policy compliance checking in an
untrusted cloud environment by running inside a hardware-
enforced trusted execution environment (TEE).

3.1 Pesos Controller

The central component of Figure 2 illustrates themain parts of
the Pesos controller. The controller runs in the TEE based on
Intel SGX [3, 5, 65, 80]. Clients communicate over a standard
mutually authenticated encrypted channel, i.e., Transport
Layer Security (TLS), with the controller. Importantly, the
channel is terminated inside the TEE. At no time is the data
exchanged between the client and the controller visible in
clear text to any outsider.

The client sendsHTTP requests over the trusted channel to
the controller. The controller includes a small web server [53]
to perform the connection handling and HTTP request pars-
ing. The web server passes individual requests over to the re-
quest handler, which implements the actual request logic. The
request handler, in turn, invokes the policy engine (compiler
and interpreter) and various caches to speed up the request

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

handling. If the object or policy is not present in the cache, the
controller uses a library to communicate with the Ethernet-
attached Kinetic disks over an authenticated channel.
Bootstrap process. To incorporate the hardware features
provided by Intel SGX, we built Pesos based on Scone [3].
Besides efficiently handling system calls, the Scone frame-
work includes a service for remote attestation and secure
deployment of binaries. For remote attestation (RA) an en-
clave generates a signed measurement representing its iden-
tity [2, 40]. A third party can verify the enclave’s genuineness
using the signature and inspect particular enclave properties
by examining the measurement. The Scone attestation ser-
vice, created to launch SGX-based applications in large-scale
environments, incorporates RA and can securely launch an
application inside an enclave. Only after successful attesta-
tion, the application is provided with the encrypted secrets
required at runtime. For Pesos, the necessary information at
application start-up time includes the TLS key-pair as well as
credentials to access the disks.

In our design, the Pesos controller uses a configurable set of
Kinetic disks topersistently storeobjects.As theveryfirst step
when bootstrapping the system, the controller takes exclusive
control of all its assigned disks. It removes all existing user
accounts and sets up a single administrative account which
only this Pesos instance can access. This effectively locks
out any other user, including the cloud provider. While the
current prototype uses a static configuration, support for dy-
namically adding and removing disks to a controller instance
can be added in the future (e.g., using consistent hashing [42]).
Session context.When anewclient connects, as determined
by its certificate, the controller creates a session context. The
session context stores per-client soft-state required to exe-
cute requests, such as the state of asynchronous requests and
policy-related metadata. The session context persists past a
disconnect and only expires some time after. If a client recon-
nects while its session context still exists, it is reused.
Requestmodes. Pesos supports synchronous and asynchro-
nous requests, while the later is only available where it is
sensible (e.g., a put or a transaction). For synchronous re-
quests, the client receives a response only once the handler is
done with the request. For asynchronous requests, the client
immediately receives a response. Within the response, there
is an identifier that the client can subsequently use to inquire
about the status of its asynchronous operation. Supporting
both operational modes allows the client more flexibility to
implement its application logic.
Policies. The client submits policies to the controller in a
human-readable format. Afterwards, the policy is converted
into a compact binary representation by the policy compiler.
The policy compiler uses the integrated lists of available

predicates, literals and function implementations to parse

and compile the submitted policy. The policy compiler relies
on Flex [21] for lexical analysis and Bison [25] for input to-
kenization. Upon successful compilation of a policy, Pesos
creates a unique policy identifier that is sent to the client. To
accelerate policy checks, recently created policies are held in
the policy cache. For persistence, the policies are also stored
on the Ethernet-attached Kinetic disks.

After the successful submission of a policy, clients can start
to associate installed policies with objects by including the
policy identifier in the put request for objects. If the client
accesses an object with an associated policy, the policy inter-
preter determines if the access is granted. In case the access is
denied due to a policy violation, the client is notified through
an appropriate response. The policy interpreter also deter-
mines if a client may associate a new policy to an existing
object based on the currently associated policy.

Currently, Pesos relies on the client tomanage, track andas-
sign policies. In the future, we plan to extend the API towards
policy management within Pesos. With regard to addressing
clients or user-groups within policies, we designed the pol-
icy language to support integration of third-party services
through certificates. A policy may state that the client has to
present a certificate includinggroupmembership information
that is signed by a specific authority.
Object cache. The object cache is a global in-memory data
structure that allowsPesos toquickly fetchpreviouslywritten
objects. Additionally, for use cases that involve content-based
policy checks (§5.4), the object cache supports the policy inter-
preter with fast data lookups. For future work, we are inves-
tigating support to securely store cached objects in untrusted
memory (§2.1) to increase the effective cache size without
enclave memory paging.
Kinetic library. Interaction with the Kinetic disks happens
through an adapted C library originally provided by Sea-
gate [36]. The library provides an abstract interface to the
disks, hiding the details of the underlying communication
protocol (based on Google Protocol Buffers). Requests and re-
sponses are decoupled from each other by using a ring buffer
and a thread pool to receive messages from the disk. In the fu-
ture, itmaybebeneficial to further customize the library to the
specifics of the SGX framework to achieve better performance.

3.2 PesosWorkflow

We next explain the request/response flow using Figure 2. Ini-
tially, the client establishes a persistent connection to Pesos
throughHTTPS (step 1○). The client’s request is first handled
by the Scone framework and passed to theOpenSSL library.
TheAPIof theSSL libraryhasnotbeenaltered, andconnection
establishment through the integratedwebserver is equivalent
to non-SGX implementations (step 2○). After thewebserver
receives a client request, it invokes the message processing in

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

the request handler (step 3○). The request handler parses the
message (REST) and extracts the type and parameters of the
client’s request; for example, method: put, key: name, value:
Bob (step 4○). Based on the extracted method, corresponding
sub-routines are called to execute the request. During the ex-
ecution of a request (e.g., put), the request handler queries the
policy cache for an existing policy to the object’s key (step 5○).
Uponacachehit, thepolicy interpreter (step 6○) uses thepolicy
and information from the client’s request to derive whether
the request complies with the policy. The request handler, if
the permission is granted, executes the request (put) by, e.g.,
storing the key-value pair in the object cache (step 5○). Objects
and policies are additionally stored on disk (write-through
semantic) using the Kinetic library (step 7○). Messages to
the disk are handled, similar to client requests, through the
OpenSSL library and the Scone framework (steps 2○, 8○). The
request handler parses responses from the disk and creates the
corresponding responses for the client requests. Responses
may be sent to the client prior to the interaction with the disk
if (a) the policy check failed, or if (b) Pesos’ asynchronous
API is used. Requests that store a policy within Pesos take
a similar path with the exception that Pesos compiles the
policy using the policy compiler before storing the policy in
the cache and on the disk.

3.3 Pesos Policy Language

Pesos’ declarative policy language concisely specifies a re-
quest permission to read, update or delete an object. Updating
the policy of an object is a special case of the object update
request while maintaining the same content. Our policy lan-
guage supports a wide range of use-cases (§5) while relying
only on a basic set of predicates.
Declarative languages have been widely used as policy

languages (e.g., Guardat [82], Thoth [17], Binder [15]). More
specifically, Pesos’ policy language is adapted based on Guar-
dat [82]. In principle, the policy engine integrated in Pesos
is equally powerful as in Guardat. However, the policy lan-
guages of Pesos and Guardat differ by the number of policy
predicates that have been enabled in Pesos to support object-
basedapplications.Theseapplicationsaccess thedata through
a coarse-grained key-value API, where they always read and
write objects as a whole. Guardat offers, in comparison, data
access based on the POSIX file API (e.g., byte-offset and block
addresses) for a fine-grained management. As such, policy
predicates that make use of the POSIX file API were not in-
tegrated into Pesos as they are not applicable to objects. If
fine-grainedmanipulation of objects is desirable in the future,
we can add the related policy predicates offered by Guardat.

Each Pesos policy consists of three permissions (read, up-
date and delete) to control confidentiality, integrity andwhen
an object name can be reused. Permissions take the form of

Predicate Meaning

Relational predicates

eq(x,y) x = y
le(x,y) x <= y
lt(x,y) x < y
ge(x,y) x >= y
gt(x,y) x > y

Certificate predicates

certificateSays Authority a certifies tuple k(v1, ...)
(a, f , key(v1, ...)) given freshness f

Session predicates

sessionKeyIs(k) Client is authenticated with key k
Object predicates

objId(obj, id) Compares or sets object id for object obj
currVersion(obj,v) Compares or sets versionv of object obj
nextVersion(v) Compares or sets the version argumentv of

a put/update request
objSize(obj,v , s) Compares or sets size s of obeject obj in ver-

sionv
objPolicy(obj,v , ph) Compares or sets the hash of the policy ph

associated with object obj in versionv
objHash(obj,v ,h) Compares or sets hashh of object obj in ver-

sionv
objSays Compares or sets contents of object obj

(obj,v , key(v1, ...)) (versionv) with tuple key(v1, ...)

Table 1: Pesos’ policy language predicates.

perm : condition. A condition is a disjunctive normal form of
predicates. Table 1 describes the semantic of each predicate.
A permission successfully evaluates, if the disjunctive nor-
mal form of predicates is successfully evaluated. Arguments
of predicates are variables or explicit values. Variables (start
with uppercase letters) stand for arbitrary values and are set
when first used. The language supports five value types (in-
teger, string, hash, public key, tuples). Tuples take the form
of key(v1, ...), where key is a string andv1 tovn can be one of
the five types.

An example access control policy is shown below in which
user Alice can read the object, user Bobmay update the object
and the admin can delete the object.

read :− sessionKeyIs(Kalice)

update :− sessionKeyIs(Kbob)

delete :− sessionKeyIs(Kadmin)

More complex policies are described in the case studies of
section (§5); for example, access to objects is restricted within
a time window, every version of an object is maintained, or
accesses to objects require prior logging. To support such poli-
cies, predicates in the Pesos policy language provide access to
information about objects, session and external certified facts
from cryptographic certificates. Besides the version or size of
an object, permissions also reason about the content (objSays)
or hash (objHash) of the contents of an object. This allows

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

policies to rely on state and alter their behavior based on prior
object updates as described in the mandatory access logging
use-case (§5.4). A client authenticated session is identified
by its public key in sessionKeyIs. External facts such as time
are queried using the predicate certificateSays which relies
on a client to provide a cryptographically signed certificate
to Pesos. The predicate certificateSays may also be used to
establish a chain of trust to a certificate authority.

4 IMPLEMENTATION

Pesos (without third-party libraries) consists of 23,943 lines
of code with the following distribution: the REST interface
8, 167, the policy handling and compiler 6, 355, and lastly,
the controller 9,421. Third party libraries include OpenSSL,
the SGX framework, and the Kinetic disk library. The policy
interpreter, compiler and caches have been adapted based
on previous work [82] to Pesos’ unique environment and to
comply with the semantics of the key-value interface.
In total, the statically linked executable is 16MB large, of

which 15MB are loaded into the enclave. Code external to the
enclave (e.g., enclave management and system call interface)
occupies the remaining 1MB.

4.1 Pesos API

Pesos does not require clients to use a special library to access
its functionality. Instead, we solely rely on a regular REST
interface on top of HTTPS. The client sends all request data in
theHTTPPOST request, and theTLS libraryprovides a secure
channel to Pesos. This interface allows a large variety of appli-
cations to use Pesos without a need for external components.
A Pesos POST request contains at most four parameters:

a method, a key (part of the URL), a value, and a policy identi-
fier. Themethod parameter defines the function that is called
within the application to handle the key and the value. De-
pending on themethod, the key identifies an object or a policy.
The value parameter contains an object or policy data. When
the clientsuploadanewobject, theyattachapreviously stored
policy to the object through the policy parameter.
Asynchronous interface. Pesos features a synchronous
communication scheme for requests that return immediately,
reporting operation results after the request has been com-
pleted. Additionally, an asynchronous interface is available
for requests which would cause a long delay if the client
would wait for their completion. Instead, upon receiving an
asynchronous request, Pesos will immediately respond with
an HTTP acknowledgment that includes a unique identifier.
Clients may query Pesos for the result of the asynchronous
request using this identifier. Due to the limited available en-
clave memory, Pesos stores the results of the last 2048 re-
quests, while discarding older ones. The status and result of
a request are stored in memory within the client’s session

context. The described asynchronous interface takes into ac-
count that write operations to the disks are slow, and allows
the client to progresswhile also having an option to verify the
result of an operation. Put, update and delete requests may be
executed asynchronously. Other requests, like data retrieval
(GET) or session management, are always synchronous.

The communication mode directly influences fault toler-
ance: If the Pesos controller crashes during an asynchronous
operation, the API offers no direct notification to the client.
The client has to query Pesos to learn that the last request
has no result and re-transmit the initial request.

Sessionmanagement. Pesos strongly relies on secure and
mutually authenticated communication channels between
the client and Kinetic disks. When a client connects to Pesos,
it presents a TLS certificate to authenticate itself. Through-
out the client’s session and also afterwards, Pesos uses the
certificate to map data to a client. For example, the buffered
results of asynchronous write requests are organized based
on the client’s certificate.

4.2 CacheManagement

Pesos uses caching and buffering to improve various aspects
of the object store:
(1) Result buffer (final results for persistent operations)
(2) Buffer for pending operations
(3) In-memory storage for policies
(4) In-memory storage for session keys
(5) Buffer for transactions

The cache implementation approximates a least-frequently-
used eviction policy. Pesos maintains separate memory re-
gions for different request types (object, policies, and indices).
Due to the asynchronous communication scheme used

in Pesos, it is necessary to incorporate a short-term result
buffer. Considering a write request issued by a client, Pesos
immediately replies with an acknowledgment (HTTP 200)
that includes an operation identifier. Afterwards, Pesos will
handle this request in parallel with others, and execute the
operation on the disk. When the disk has finished the opera-
tion and returned a result, Pesos stores the result in the result
buffer. The client that issued the request can ask Pesos for the
result using the operation identifier.

When a client sends a read request, Pesos first has to fetch
the corresponding policy to verify whether the client is al-
lowed to access the object. In this case, Pesos first consults
the cache. On a cache miss, the policy is read from the disk.
Some policies require additional disk accesses, for example,
to fetch other objects. To avoid a performance hit in this case,
we cache objects accessed during policy evaluation. Then, in
case of the permitted read request, Pesos looks up the object
in the object cache before doing a disk read, which can also

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

result in a cache hit. This way, we can eliminate multiple disk
accesses that would have happened serially otherwise.
The enclave page cache (EPC) available to applications is

limited to 96MB in current SGX implementations [10]. The
SGX kernel driver transparently transfers pages between the
EPC and main memory (at additional cost) for SGX applica-
tions that exceed the EPC size. We restrict Pesos to not use
more than the EPC size for its internal data structures and
caches. Per connected client, Pesos allocates a session object
with a default size of 30 KB. The global cache for policies is
bounded to 5MBbydefault. Additionally, Pesos keeps a cache
of used object keys to improve performance (600 KB).

Buffers for currently requested objects and internal buffers
of OpenSSL and Kinetic library consume the remaining mem-
ory. During start-up Pesos pre-allocates message buffers
to hold objects for the transformation from the Kinetic li-
brary’s internal data representation (Google Protocol Buffers)
to the client’s format (HTTP). The message buffers occupy
the largest chunk of EPCmemory, because they need to keep
up to 1MB large objects, and are independently allocated by
multiple connection-handling threads.

4.3 Kinetic Library Changes

Seagate provides Kinetic disk client libraries for different
programming languages. These libraries contain features for
simple session management, data manipulation, replication
management, device statusmonitoring, etc.We have used the
C client library to develop Pesos.
We have applied numerous optimizations to the library

to better exploit asynchronous system calls and userspace
threading. We have replaced pipe-based thread synchroniza-
tion with concurrent data structures to reduce the communi-
cation between cores in some common situations. Also, we re-
duced thenumberof service threads spawned, and thenumber
of request/reply structures preallocated to reduce EPC usage.

4.4 Transaction Interface

Pesos provides a transaction interface to ensure atomic up-
dates to multiple objects wrapped in a transaction with full
ACID semantics. As distributed transactions and high net-
work scalability are not required, we implement them using
a simple and high-performance algorithm. In case distributed
transactions are required, an additional transactional layer
such as [74] can add them on top of Pesos. We rely on repli-
cation to recover from disk crashes, as we have no access to
the internals of the Kinetic disks. Some advanced features
of Pesos, such as append-only storage and mandatory ac-
cess logging, are not supported inside transactions. We pro-
vide the following operations in our API: createTx, abortTx,
commitTx, addRead, addWrite, and checkResults.

Pesos uses a modified variant of the VLL locking algo-
rithm [57] tailored towards our anticipated use-cases. VLL
tries to lock all requested objects prior to executing the trans-
action.While transactions that acquired all locks successfully
execute immediately, blocked transactions remain in the trans-
action queue where they eventually move to the front of the
queue. If the queue is not empty, the transaction at the front of
thequeue is unblockedandexecuted.VLL’s designguarantees
that once ablocked transaction reaches thequeue’s front all its
keysarenowunlocked.Deviating fromtheoriginalVLL imple-
mentation, Pesos maintains a small data structure for storing
keys and locks. This is required since the original implemen-
tation was designed for (in-memory) database systems.

We assume that only a fraction of all keys will be accessed
via the transaction interface.Therefore,weallowmixing trans-
actional and non-transactional accesses to keys. As an opti-
mization, Pesos clients can use the non-transactional API to
access the same values as the transactional interface does,
including locked values (thus, we do not enforce concurrency
control strictly). If such accesses overlap in time, the outcome
is unspecified. Ensuring that such accesses do not overlap is
the responsibility of the Pesos client. Non-overlapping ac-
cesses can, for example, be trivially ensured using the policy
language. In the current version of Pesos, all policy language
checks are supported within transaction, but we allow only
simple object operations. Removing this restriction is part of
our future work.

4.5 Replication Interface

Pesos provides a set of commands to clients for securely man-
aging the replication and migration of objects across a set of
Kinetic disks. Pesos regards a write operation and its replica-
tions asone request. Therefore, the result of a client’s request—
that Pesos stores in the client’s session context—is successful
only if all the replicas persist the value.

Pesos uses the following replication placement algorithm
to avoid metadata synchronization between instances and
to simplify the design: We map objects to disks through a
deterministic hash function that takes the object’s key and a
list of available disks as input. A position in the list of disks is
selected based on the object’s hash. If replication is enabled,
additional disks will be selected from that list starting at the
position after the previously selected disk. If an object A is
stored on diskDi , its replicas are stored on disksDi+1,Di+2,
..., Di+N−1 where N is the replication factor. Upon disk fail-
ure, Pesos selects the next available disk to access the replica.
While this approach may increase the load on some disks, de-
pending on the distribution of keys, it does not require Pesos
to keep any replication-related metadata.

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

4.6 Optimizations

We next describe some optimizations applied to the Pesos
architecture to improve the performance.
Multithreading support.One of the restrictions of the cur-
rent SGX implementation is the necessity to specify the max-
imum number of threads inside the enclave during the build
process.This limits theflexibilityofSGXenclaves in situations
where this number is unknown, and allocate a number of data
structures per each thread. We circumvent this restriction by
using application-level scheduling provided by Scone.
In order to implement userspace threading, we multiplex

userspace threads onto each enclave hardware thread. A
userspace thread always runs to the next preemption point
and thenswitchesback to the internal scheduler. Inoursystem,
only system call submissions are preemption points as only
they can be supported without compiler instrumentation.

Because we switch to another thread instead of waiting for
a system call result, we further improve the efficiency of the
system calls. In order to exploit this potential improvement,
a sufficiently large number of threads have to be running.
Pesos achieves this through multiple threads handling client
connections andmultiple threads interactingwith the Kinetic
disks via the Kinetic client library.
Memorymanagement.ThecurrentversionofSGXrequires
the application to specify the enclave memory range during
the enclave initialization. It provides nomechanisms for mod-
ifying enclave memory range during the enclave execution.
On the other hand, POSIX applications commonly use facil-
ities that dynamically modify their address space, namely the
mmap and munmap system calls.
To overcome this issue, Scone preallocates all code, data

and heap memory when creating the enclave. We implement
a simple bitmap-based memory allocator for enclave mem-
ory,which emulates POSIX-requiredmmap/munmap semantics.
Our malloc implementation uses this allocator to request or
return memory. We note that memory protection features
of POSIX can only be provided in future versions of SGX,
and all types of accesses, i.e., read, write and execute, to the
preallocated pages are currently allowed.

The amount of EPCmemory is limited. Current processors
provide up to 96MB of end-user-usable EPC memory. Ag-
gressive caching and inefficient memory usage can lead to
page accesses that belong to the enclave address space, but
do not fit into the EPC. In this case, SGX-protected pages will
be swapped out by the kernel paging mechanism. Encryption
of the swapped pages provides confidentiality and storing a
Merkle leaf hash inside the enclave ensures integrity.
I/O interface. To carry out I/O operations, Pesos must in-
voke system calls. A common way to do this is trap-based: an
application sets up system call arguments in CPU registers
and executes an instruction that transfers control to the OS

system call handler. These control transferring instructions
are forbidden inside SGX enclaves, forcing the application
to exit and re-enter the enclave to execute a system call. In
practice, enclave exits incur prohibitively large overheads. To
overcome this issue, we use an asynchronous system call in-
terface as proposed by FlexSC [69] and adopted by Scone [3].
The asynchronous interface consists of the system call

wrappers inside the enclave and system call threads in the
untrusted runtime outside. The enclave communicates with
the untrusted runtimeusing shared-memory data structures—
systemcall slots and system call queues. The systemcallwrap-
per populates a slot with system call arguments and sends
slot index to the untrusted runtime via a submission queue. A
systemcall thread dequeues the slot index from the thread and
invokes the system call using arguments found in the system
call slot. Once the system call has finished, its return value is
written in the system call slot and its index is enqueued into
the return queue. Thewrapper examines this queue and gives
the return value to the caller. Using asynchronous system call
interface allows Pesos to maintain high I/O rate in spite of
the SGX overhead.
In addition to the passing of system calls, Scone incorpo-

rates shields that transparently encrypt systemcall arguments
suchasdatawritten to the localfile system.Furthermore, these
shields perform basic verification of arguments to prevent
information leakage and Iago attacks [8].

5 USE CASES

To demonstrate the flexibility of the policy language and the
performance of Pesos, we have implemented several real-
world storage systemusage scenarios,whichwedescribenext.

5.1 Content Server

Cloud-based storage systems serve content to clients subject
to an access control check. Pesos uses its policy engine to im-
plementper-object access control lists granting readandwrite
access to an object only to a specified, authenticated client.
Clients are uniquely identified based on their X.509 certificate
used to establish a TLS connection to Pesos. The example
policy below allows Alice and Bob to read, but only Alice to
update the object and an administrator to delete the object.

read :−sessionKeyIs(Kalice) ∨ sessionKeyIs(Kbob)

update :−sessionKeyIs(Kalice)

destroy :−sessionKeyIs(Kadmin)

5.2 Time-based Storage

In addition to restricting access based on a client’s identity, a
content server may restrict access during a pre-defined time
interval. For instance, objects containing secret information
may not be released until a pre-defined date (time capsule),

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

while other objects are preserved until their legally mandated
storage lease expires (no updates before a certain date).
Time-based policies require a trusted time source to en-

sure the current time falls into the defined interval. A trusted
time source is either available via the Intel SGX SDK [33]
(provides the sgx_get_trusted_time function to receive a
trusted time) or any other third-party time server specified
as an authority in the policy. In the latter case, clients pro-
vide a time certificate from a time authority including a nonce
generatedbyPesos toensure freshnessof thecertificate.Time-
based policies mandate the authority as well as the freshness
of the certificate.
The following example policy allows updates only after a

specified date passed. In this example, we also demonstrate
a chain of trust where a certificate authority (denoted byKCA)
authorizes the time server to sign the tuple time.

update :−certi f icateSays(KCA,
′ts ′(tskey))

∧ certi f icateSays(tskey,′time ′(t))
∧ дe(t ,DATETIMESTAMP)

5.3 Versioned Store

Object versioning is useful to preserve the history of an object.
If, for example, an object is corrupted, previous versions can
be retrieved to find when and where the corruption occurred.
Versioned storage as implemented by Pesos’ policies al-

lows objects to define an index for the value. Using a version
storage policy, Pesos restricts access to objects by the index,
e.g., allowingwrites only if the to-be-written index is an incre-
ment of themost recently stored index. Privileged clientsmay
read the complete history of an object while regular clients
could have limited access to only the latest index. The pol-
icy includes an exception allowing the initial creation of the
object at version 0. The policy is expressed as follows:

update :−
(
objId(this,o) ∧ currVersion(o,cV)

∧ nextVersion(cV +1)
)

∨
(
objId(this,NULL) ∧ nextVersion(0)

)
5.4 Mandatory Access Logging

Mandatory Access Logging (MAL) combines access control,
versioning, and information provenance to enforce logging
accesses before performing the access. The client has to (1)
append the intentionof anoperation into a log, and (2) execute
the operation. A log is a separate object with a version storage
policy. For each access to an MAL protected object, Pesos
checks the log for an entry with the matching intent. Access
is only granted, if the log contains the matching entry. The
expected format of a log entry is defined by the MAL policy.

In the following example a log entry is a tuple of the opera-
tion, index, previous object-hash, new object-hash and client
id. The log preserves a history of operations including the act-
ing client. The following formula shows a simplified version

of a MAL-policy which includes the version storage policy in
the update permission (nextIndex = currentIndex +1):

read :−objId(THIS,o) ∧ objId(LOG,l) ∧ currIndex(o,v)
∧ sessionKeyIs(u) ∧ objSays(l ,v,′read ′(o,v,u))
update :−objId(THIS,o) ∧ objId(LOG,l) ∧ sessionKeyIs(u)
∧ currIndex(o,v) ∧ nextIndex(o,v+1) ∧ objHash(o,v,cH)

∧ objHash(o,v+1,nH) ∧ objSays(l ,lv,′write ′(o,v,cH ,nH ,u))

6 EVALUATION

We first describe the experiment setup including the hard-
ware/software configuration, workloads and experiment de-
sign (§6.1). Next we evaluate Pesos raw performance without
the policy enforcement (§6.2), and Pesos replication (§6.3).
To demonstrate the functionality of Pesos and its end-to-end
performance, we conclude by evaluating two use cases (§6.4).

6.1 Experiment Setup

Hardware.We use an Intel Xeon E3-1270 v5 CPU (v1 SGX)
with 64GB of main memory to run the Pesos controller. A
dual-socket server (two Intel Xeon E5-2683 v3 CPUs, 128GB
of memory) hosts the workload generator. The Pesos con-
troller connects to the workload generator via a dedicated
switched 10Gbit Ethernet network. In addition, we use three
Seagate Kinetic drives [39] (4 TB per drive) assembled in an
enclosure (Seagate’s EmberUnit [62]). The enclosure includes
an Ethernet switch that makes the disk’s two Ethernet ports
accessible to the outside. Seagate distributed the enclosures
for testing and evaluation only. A production systemwould
connect the disk’s Ethernet ports directly into a SAS/SAN
backplane. We connect one of the enclosure’s 1 Gb Ethernet
port to the Pesos controller machine over the switched net-
work. In addition to the Kinetic disks, we repeat the same
measurements against the Kinetic disk simulator [38]. We do
this to show the Pesos controller’s performance independent
of the physical disk’s (limited) performance and in anticipa-
tion of hardware improvements in the future. The simulator
exposes the same API as the actual disks but runs entirely
in-memory, collocated with the workload generator. For each
physical disk, we use one simulator instance.
Software. Our server machines run Ubuntu 16.04 with a
generic kernel (version 4.4). The Kinetic simulator and YCSB
(version 0.4) execute in anOracle Java 8 runtime environment.
For the compilation of Pesos, we use the GNU Compiler Col-
lection (GCC) 7.2.0 usingOpenSSL 1.1.0 and the latest version
of Scone (February 2018).
Workloads. Our workload generator creates YCSB-based
traces [9] and stores them persistently before running the
experiment. To optimize performance, we use an adapted
client [18] to replay the traces to Pesos. We added a custom
connector to the client to work in combination with Pesos’

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300
 0

 1000

 2000

 3000

T
h

ro
u
g

h
p

u
t

S
im

u
la

to
r,

 K
IO

P
/s

T
h

ro
u

g
h

p
u

t
D

is
k
,
IO

P
/s

Clients

Native Sim Pesos Sim Pesos Disk Native Disk

Figure 3: Pesos throughput with an increasing num-

ber of clients. (SD < 3.0%)

REST interface. YCSB comes with four stock workloads (A
– D) each with its own key popularity distribution and read-
/write ratio.Duringour experiments,we found that the results
were similar in each case, hence, we only present graphs for
YCSB workload A. YCSB workload A distributes read and
write operations in a 50/50 split. We configure YCSB to gen-
erate workloads with 100,000 operations and 100,000 unique
objects with a 1 KB payload.
Methodology.We report throughput (MB/s) and operations
per second (IOP/s) as the basis of our performance evaluation.
We evaluate a total of four different combinations of the Pesos
controller and storage backend. First, we build two versions
of the Pesos controller: a native version without SGX and a
version with SGX (referred to as Pesos). By comparing Pesos
(with Scone) to its native variant, we provide insight into the
overhead that the secure execution environment imposes on
an I/O-heavy application. Second, we evaluate two storage
backends: one uses the simulator instead of actual Kinetic
disks. The second storage backend uses the Kinetic disks. This
setup allows us to eliminate the Kinetic disks as a potential
performance bottleneck and achieve better visibility into the
performance of the Pesos controller itself.

The graph’s left axis present the performance numbers for
simulated disks while the right axis shows the performance
against the actual Kinetic disks. For each benchmark, we re-
port the overall standard deviation (SD) beneath the plot. The
client, Pesos controller and the storage backend all use TLS
to secure their communication.

6.2 Performance

A first micro-benchmark gradually increases the number of
clients to evaluate Pesos under load. We use an object size
of 1 KB to focus on the sustained I/O operations per second.
Large objects allow the system to amortize the per-object
overheadmore easily since Pesos copies more data per object.
Hence, small objects are the more interesting workload.

Figure 3 depicts the throughput for four different configura-
tions.Weobserve that thenativevariant scalesup to95 KIOP/s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300
 0

 100

 200

 300

 400

 500

 600

L
a

te
n

c
y
 S

im
u

la
to

r,
 m

s

L
a

te
n

c
y
 D

is
k
,

m
s

Clients

Native Sim Pesos Sim Pesos Disk Native Disk

Figure 4: Pesos latency with an increasing number

of clients. (SD < 3.0%)

executing against simulated disks. Pesos, including the SGX
overhead, achieves a throughput of 85 KIOP/s. To put this
into perspective: Scone [3] reports around 40,000 requests
per seconds for the Apache web server which also uses one
thread per client connection. Arnautov et al. in Scone also
benchmarked an event-driven, single-threaded web server
(Nginx)whichexhibitedbetter resourceefficiency.To increase
performance in the future, we may introduce a similar non-
blocking, single-threaded design in Pesos. Amore immediate
solution to increase the overall system throughput is to run
multiple Pesos instances in parallel behind a load balancer
while sharding the object space among them.

Running the same measurement against the real Kinetic
disks, the peak throughput is at 1,080 IOP/s on average. This
result is not surprising since the real disks are severely limited
by the seek times of the disk head. Achieving performance
similar to the simulated disk scenario requires using many
more real Kinetic disks as the back end.
Figure 4 shows the average latency for each of the above

cases. When running against the disk simulator, the latency
is slightly elevated for only one client (0.75ms for Pesos and
0.86ms for native). This is an implementation artifact of the
simulator that is only meant to test functionality but not
designed for optimal performance. As the number of concur-
rent clients increases, the latency drops to 0.5ms (Pesos) and
0.6ms (native) at 20 clients against the simulated disks. Notice
that the impact of SGX on the latency is negligible as the na-
tive variant only has a slightly smaller latencywith 40 ormore
clients. The latency increases linearly as client requests are
queued past the maximum throughput point. When running
against physical disks the latency increases gradually starting
from a single client since even a single client creates more
requests than the disks can handle.
Figure 5 shows the throughput measurements with an in-

creasing number of disks. For this experiment,we connected a
single Pesos instancewith one disk and increased the number
of Pesos instances. Due to limitations of available hardware
(three Seagate Kinetic disk and four SGX-capable servers),

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

 0

 50

 100

 150

 200

 250

 300

1 2 3 1.5 2.5 3.5
 0

 1000

 2000

 3000

 4000

T
h

ro
u
g

h
p

u
t

S
im

u
la

to
r,

 K
IO

P
/s

T
h

ro
u

g
h

p
u

t
D

is
k
,
IO

P
/s

Disks

Native Sim Pesos Sim Native Disk Pesos Disk

Figure 5: Scalability number of disks, 1KB payload.

(SD < 3.9%)

were not able to fully evaluate Pesos on a larger scale. The
measurement shows that Pesos scales almost linearlywith an
increasingnumberof controller instances.Thecombinedmax-
imum throughput when using three simulated disks reaches
242KIOP/s from 89KIOP/s with one simulated disk for Pe-
sos and 280KIOP/s from 95KIOP/s for native. Similarly, the
throughput increases from 823 IOP/s to 2,439 IOP/s for the
measurements with the Kinetic disks for Pesos and from
818 IOP/s to 2,427 IOP/s for native.

Next, we measure the overhead caused by payload encryp-
tion. By default, Pesos encrypts the data before storing it on
the disks, besides communicating with the clients through
an encrypted channel. In this experiment, we used one Pe-
sos instance connected to the simulator and measured the
throughput with an increasing number of clients. At 1 KB
payload size, payload encryption imposes a 1.5% overhead
across 1-300 clients.

We conclude the section on Pesos micro-benchmarks with
Figure 6. We increase the object size from 128 B up to 64KB.
At 256 B payload size, the throughput starts to gradually de-
creases towards larger object sizes. For small object sizes we
observe CPU-bound workloads, whereas larger object sizes
amortize theper-requestprocessingandsaturate the I/Opaths
decreasing the performance further. At 128 B objects, Pesos
Sim achieves a maximum of 105KIOP/s. In general Pesos
overhead for object sizes smaller than 4KB is within 4%.

6.3 Replication

As mentioned earlier (§4.5) the Kinetic disks offer an API
to copy objects directly between disks without a third party
relaying the communication. However, due to the limited
performance of the P2P API, the Pesos controller instead co-
ordinates replication and issues additional writes against the
Kinetic disks.

Figure7 showshowenabling replicationaffectsPesos’over-
all throughput. Since Pesos has to issue multiple writes to the
disks for eachwrite froma client,we expect the overall system
throughput to decrease. We only report numbers against the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

128 256 512 1K 2K 4K 8K 16K 32K 64K
 0

 1000

 2000

 3000

T
h

ro
u
g

h
p

u
t

S
im

u
la

to
r,

 K
IO

P
/s

T
h

ro
u

g
h

p
u

t
D

is
k
,
IO

P
/s

Payload Size, bytes

Native Sim Pesos Sim Native Disk Pesos Disk

Figure 6: Evaluation of value sizes on overall system

throughput using 100 clients. (SD < 8.4%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 2 3 4

T
h

ro
u

g
h

p
u

t
S

im
u

la
to

r,
 K

IO
P

/s

Disks

Native Sim Pesos Sim

Figure 7: Effect of replication on the overall system

throughput. Each object is replicated on all disks.

(SD < 2.2%)

simulator to highlight the effect of replication on the Pesos
controller. Running these experiments against the real disks
would reveal no useful results, since the disks quickly become
a bottleneck.
We increase the number of the simulated disks from 1 to

4 and replicate every object onto all available disks. We ob-
serve that the overall throughput in the native variant only
decreases by 12% for each additional replication. In contrast,
Pesos exhibits a larger decline in throughput of 30% between
1 and 2 disks and of 13% for more disks. The decrease in total
system throughput is present, since the Pesos controller has
to coordinate multiple backend writes for each client write.

6.4 Evaluation of Use Cases

Next we quantify the effect of policy enforcement. We begin
the use case evaluation by measuring the effectiveness of the
policy cache. The effectiveness of the cache depends on the
number of policies in-use by Pesos. For instance, version stor-
age policies can be reused by multiple objects lowering the
number of policies in the Pesos controller. On the other hand
complex policies like mandatory access logging policies are
assigned per object.

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

T
h

ro
u
g

h
p

u
t

S
im

u
la

to
r,

 K
IO

P
/s

Policies per 100K Objects

Native Sim Pesos Sim

Figure 8: Effect of policy to object mapping with re-

gard to caching and system throughput. (SD < 6.1%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300
 0

 1000

 2000

 3000

T
h

ro
u

g
h

p
u

t
S

im
u

la
to

r,
 K

IO
P

/s

T
h

ro
u

g
h

p
u

t
D

is
k
,

IO
P

/s

Clients

Native Sim Pesos Sim Native Disk Pesos Disk

Figure 9: Effect of policy checking on overall

throughput, verisoned storage use-case. (SD < 3.9%)

Figure 8 shows the system throughput while varying the
number of unique policies. We associate a variable number of
policies (x-axis) to a set of 100,000 objects. The policy cache
has a capacity of 50,000 entries. With one policy attached
to all objects, the performance overhead stays below 5.5%
compared to results without policy checking.

If the number of policies exceeds the policy cache size, Pe-
sos has to fetch the policy from the simulator. The results in-
dicate that while all policies fit into the cache, the throughput
is nearly unaffected by the policy enforcement. At 60,000 poli-
cies the cachehit rate drops and theoverall systemthroughput
starts to decrease, due to additional disk accesses. We do not
report measurements with the Kinetic disks as their overall
slow performance does not benefit from policy caching.

Versioned storage. The versioned storage policy preserves
the history of objects. To preserve the history, Pesos main-
tains a counter (version number) for the object. A client may
only update a versioned object, if it provides the correct ver-
sion number in its update request. The policy enforces that
the client supplied version number matches what Pesos ex-
pects. Internally, Pesos creates a new key for each version of
an object. The overhead imposed by the versioned storage is
negligible as Figure 9 illustrates. Pesos achieves a maximum
throughput of 82 KIOP/s against the simulator, which is 2.3%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100

T
h

ro
u
g

h
p

u
t

S
im

u
la

to
r,

 K
IO

P
/s

Granularity of writes per log entry

Native Baseline Pesos Baseline Native Sim Pesos Sim

Figure 10: Effect of log granularity on overall

throughput, compared to writes without logging.

(SD < 5.4%)

lower compared to earlier measurements without the policy
checking (84 KIOP/s).
Mandatory access logging (MAL). An MAL policy main-
tains a log of operations performed on an object. The gran-
ularity of the log is a tuning parameter to trade off logging
overhead and detail. In the fine-grained case, each client ac-
cess requires an additional backend write to update the log.
If the log granularityG is more coarse grained, the log must
only be updated everyG entries. We explore this relationship
in Figure 10. The baseline shows the throughput for the MAL
usecase without maintaining a log. At one log entry for every
writeoperation, the effective throughput reduces to 50 KIOP/s.
Logging only every 10th access, achieves 95% (92% native)
of the baseline performance. When increasing the granular-
ity even further, the throughput reaches 66 KIOP/s for Pesos
and 77KIOP/s for native. Compared to previous results, the
additional log appends decrease performance by 23%.

7 RELATEDWORK

Hardwareobject stores.Thegrowingcomplexityof storage
systems has urged developers to seek a solution that would
simplify storage usage and management by extending device
functionalities. While software-based approaches [55, 70, 72]
encapsulate functionality within dedicated servers, hardware
manufacturers have begun to incorporate advanced capabil-
ities into hard drives. The Seagate Kinetic Disk features an
SoC system running a customized Linux kernel, basic man-
agement software, and exports a LevelDB database on the
network [81]. Samsung is developing a similar solution [85].
Although their solution does not have a network interface, it
is designed to simplify and accelerate key-value storage sys-
tems. Pesos leverages such devices to build a policy-enhanced
secure storage.
Secure storage systems. Traditionally commercial file sys-
tems use access control lists to protect against unauthenti-
cated access [1]. In addition, many systems [23, 26, 35, 44,
45, 51, 83] provide secure storage in untrusted environments

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

through software based cryptography.Many of these systems
also incorporate aspects of decentralization, i.e. multi-client
collaboration [6] to provide security. In contrast, Santos et
al. [60] propose to use the trusted platformmodule (TPM) to
bind software to a specific machine configuration and booted
software stack. This ensures that data is only accessed in the
presence of a trusted software stack. Pesos similarly relies
on trusted hardware (SGX) but overcomes the security and
functionality limitations of TPM. In the future Pesos could
combine TPM and SGX to extend its security features.
Policy-based storage systems. Policies allow for data ac-
cess controlmanagement at afinegranularity andhighdegree
of flexibility. Policy languageshavebeenused to express client
capabilities [24], enforce confidentiality and integrity [23],
enable data sharing with strong security guarantees [46], re-
stricting access to rows and columns of relational DBMS [49],
or to define decryption allowance beyond private keys [60].
Guardat [82] and Thoth [17] represent systems that allow
clients to define individual per-data policies with a high de-
gree of flexibility. Pesos has adopted their policy language to
achieve access controlled data security while enabling a large
variety of use cases.
Trusted Execution Environments (TEEs). Before the in-
troduction of Intel SGX, trusted execution environmentswere
built on top of special processors [43, 71] or modules [79]. In-
tel SGX brought a versatile and performant trusted execution
environment to the x86 platform on commodity processors.
Since its public release inOctober 2015, novel use cases [31, 61,
87], weaknesses [29, 84] and countermeasures [64] have been
explored by academics. Various frameworks and tools [3, 5,
65, 80] ease the development effort but make different design
decisions and trade-offs that have to be evaluated carefully.
Pesos relies on Scone [3] which, for example, implements
asynchronous system calls to reduce the number of expen-
sive enclave transitions. Independent of the framework, the
executed code may still expose vulnerabilities through bugs.
Additional measures, such as, formal verification [67, 68],
protection against side-channel attacks [84], and buffer over-
flows [41] are needed to improve safety of enclave code. Pesos
can benefit from all these efforts to improve code safety.
Secure data processing. In the context of using SGX for
secure computing, VC3 [61] is one of the first systems that
incorporates SGX to the domain of big data processing by
applying it to the Hadoop Map/Reduce framework. Likewise,
Opaque [87] uses Intel SGX to provide encryption, oblivious
computing, and integrity protection to a secure distributed
data analytics applications. SGXBOUNDS [41] provides light-
weight memory safety techniques to SGX-based enclaves
for computation in production systems. Likewise, Slick [77]
and ShieldBox [78] leverage SGX to build a secure middle-
box framework for high-performance network processing.

In contrast, Pesos focuses on secure data storage using a
combination Intel SGX and Kinetic storage.

8 CONCLUSIONAND FUTUREWORK

Today’s complex storage systems hosted by untrusted third-
parties are vulnerable to confidentiality and integrity viola-
tions. Pesos, a policy-enhanced secure object store, enforces
data confidentiality and integrity policies while operating
in an untrusted cloud environment. Pesos achieves these
unique properties by leveraging a novel combination of the re-
cent advancements in trusted computing technologies. More
specifically, Pesos exposes a declarative policy language for
concisely expressing a wide range of storage security policies.
Further, Pesos enforces these security policies by leveraging
the combination of shielded execution based on Intel SGX
and Kinetic Open Storage for trusted storage. To its clients,
Pesos provides an interface to verify storage operations via
cryptographic attestation of the stored policies and content.
We built Pesos as a fully functional storage system supporting
many end-to-end important design features, and a range of ef-
fective performance optimizations.We evaluated Pesos based
on micro-benchmarks and case-studies using the YCSB work-
loads. Our evaluation results demonstrate the viability of Pe-
sos by achieving throughput within 85% of its native variant,
while providing stronger security properties and smaller TCB.

For the future work, we plan to pursue mainly three re-
search directions: Firstly, we will extend Pesos with a local
SSD as the untrusted fast caching layer to overcome the limi-
tations of main memory capacity (EPC paging) and slow disk
performance, while protecting against integrity and fresh-
ness attacks. Secondly, Pesos could leverage integration with
the storage performance development kit (SPDK) [34] for the
faster access to storage directly from the userspace; thus by-
passing the OS kernel for improved I/O performance. And
lastly,Kineticdisks couldbeprotectedagainstphysical attacks
by building hardware protections into the SoC [19].
Acknowledgements.WethankPeterDruschel,DeepakGarg,
Rodrigo Rodrigues, and our shepherd Sonia Ben Mokhtar
for their helpful comments. We would also like to thank
Franz Gregor and Sergei Arnautov for their continuous sup-
port for the Scone framework. Furthermore, we would like
to thank Seagate for providing the Seagate Kinetic disks. This
project was funded by the European Union’s Horizon 2020
research and innovation programunder grant agreements No.
645011 (SERECA), No. 777154 (ATOMSPHERE), No. 780681
(LEGaTO), and No. 690111 (SecureCloud).

REFERENCES

[1] Amazon. Amazon S3 Developer Guide. http://aws.amazon.com/
documentation/s3. Last accessed: February, 2018.

[2] I. Anati, S. Gueron, P. S. Johnson, and R. V. Scarlata. Innovative
technology for CPU based attestation and sealing. In Proceedings of

http://aws.amazon.com/documentation/s3
http://aws.amazon.com/documentation/s3

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy (HASP), 2013.

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers
with Intel SGX. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

[4] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dussea. An Analysis of Data Corruption
in the Storage Stack. In Proceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST), 2008.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an
Untrusted Cloud with Haven. In Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 2014.

[6] M. Brandenburger, C. Cachin, and N. Knežević. Don’t trust the
cloud, verify: Integrity and consistency for cloud object stores. ACM
Transactions on Privacy and Security (TOPS), 2017.

[7] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq,
M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas. Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong Consistency. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[8] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface. In Proceedings of the 18th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud computing (SoCC), 2010.

[10] V. Costan and S. Devadas. Intel sgx explained., 2016.
[11] CRN. The tenbiggest cloudoutages of 2013. https://www.crn.com/slide-

shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm,
2013. Last accessed: February, 2018.

[12] B. Debnath, S. Sengupta, and J. Li. FlashStore: High Throughput
Persistent Key-value Store. In Proceedings of the VLDBEndowment, 2010.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP), 2007.

[14] Dell. Elastic Cloud Storage. https://www.dellemc.com/en-us/storage/
ecs/, 2017. Last accessed: February, 2018.

[15] J. DeTreville. Binder, a Logic-Based Security Language. In Procceedings
of the 23rd IEEE Symposium on Security and Privacy (Oakland), 2002.

[16] T. Economist. The data deluge Businesses, governments and society
are only starting to tap its vast potential. http://www.economist.com/
node/15579717, 2010. Last accessed: February, 2018.

[17] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Dr-
uschel. Thoth: Comprehensive Policy Compliance in Data Retrieval
Systems. In Proceedings of the 25th USENIX Security Symposium, 2016.

[18] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing.
In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2013.

[19] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo:
Using Verification to Disentangle Secure-Enclave Hardware from
Software. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[20] B. Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004.

[21] The Fast Lexical Analyzer. https://github.com/westes/flex. Last
accessed: February, 2018.

[22] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[23] D. Garg and F. Pfenning. A proof-carrying file system. In Proceedings
of the 31st IEEE Symposium on Security and Privacy (Oakland), 2010.

[24] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage architecture. In Proceedings of ACMConference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1998.

[25] GNU Bison. https://www.gnu.org/software/bison/. Last accessed:
February, 2018.

[26] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing
remote untrusted storage. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2003.

[27] Google. Cloud Storage. http://www.cloud.google.com/storage, 2017.
Last accessed: February, 2018.

[28] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2014.

[29] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels
for untrusted operating systems. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

[30] T.Harter, C.Dragga,M.Vaughn,A.C.Arpaci-Dusseau, andR.H.Arpaci-
Dusseau. Afile is not afile: understanding the i/o behavior of apple desk-
top applications. ACM Transactions on Computer Systems (TOCS), 2012.

[31] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E.Witchel. Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[32] Intel Software Guard Extensions Programming Reference.
https://software.intel.com/en-us/intel-sgx-programming-reference,
2014. Last accessed: February, 2018.

[33] Intel SoftwareGuardExtensionsSDKforLinuxOS. https://download.01.
org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_
Linux_1.8_Open_Source.pdf. Last accessed: February, 2018.

[34] Intel Storage Performance Development Kit. http://www.spdk.io. Last
accessed: February, 2018.

[35] M. Kallahalla, E. Riedel, R. Swaminathan, Q.Wang, and K. Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST), 2003.

[36] Kinetic C library. https://github.com/Kinetic/kinetic-c. Last accessed:
February, 2018.

[37] Kinetic Data Center Comparison. https://www.openkinetic.org/
technology/data-center-comparison. Last accessed: February, 2018.

[38] Kinetic Disk Simulator. https://github.com/Kinetic/kinetic-java. Last
accessed: February, 2018.

[39] Kinetic HDD Data Sheet. https://www.seagate.com/files/www-
content/product-content/hdd-fam/kinetic-hdd/en-us/docs/kinetic-
ds1835-1-1110us.pdf. Last accessed: February, 2018.

[40] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij.
Integrating Remote Attestation with Transport Layer Security. 2018,
arXiv:1801.05863.

[41] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,
and C. Fetzer. SGXBOUNDS:Memory Safety for Shielded Execution. In
Proceedings of the 12th ACM European Conference on Computer Systems
(EuroSys), 2017.

https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.dellemc.com/en-us/storage/ecs/
https://www.dellemc.com/en-us/storage/ecs/
http://www.economist.com/node/15579717
http://www.economist.com/node/15579717
https://github.com/westes/flex
https://www.gnu.org/software/bison/
http://www.cloud.google.com/storage
https://software.intel.com/en-us/intel-sgx-programming-reference
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
http://www.spdk.io
https://github.com/Kinetic/kinetic-c
https://www.openkinetic.org/technology/data-center-comparison
https://www.openkinetic.org/technology/data-center-comparison
https://github.com/Kinetic/kinetic-java
https://www.seagate.com/files/www-content/product-content/hdd-fam/kinetic-hdd/en-us/docs/kinetic-ds1835-1-1110us.pdf
https://www.seagate.com/files/www-content/product-content/hdd-fam/kinetic-hdd/en-us/docs/kinetic-ds1835-1-1110us.pdf
https://www.seagate.com/files/www-content/product-content/hdd-fam/kinetic-hdd/en-us/docs/kinetic-ds1835-1-1110us.pdf

EuroSys ’18, April 23–26, 2018, Porto, Portugal R. Krahn et al.

[42] A. Lakshman and P. Malik. Cassandra: structured storage system on
a p2p network. In Proceedings of the 28th ACM Symposium on Principles
of distributed computing (PODC). ACM, 2009.

[43] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for Protecting Critical Secrets in Microprocessors. In
Proceedings of the 32nd Annual International Symposium on Computer
Architecture (ISCA), 2005.

[44] A.W. Leung, E. L. Miller, and S. Jones. Scalable security for petascale
parallel file systems. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC), 2007.

[45] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data
repository (SUNDR). In Proceedings of 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2004.

[46] K. Mast, L. Chen, and E. Gün Sirer. Enabling Strong Database Integrity
using Trusted Execution Environments. 2018, arXiv:1801.01618.

[47] M. L. Mazurek, Y. Liang, W. Melicher, M. Sleeper, L. Bauer, G. R. Ganger,
N. Gupta, and M. K. Reiter. Toward strong, usable access control for
shared distributed data. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST), 2014.

[48] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[49] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Druschel. Qapla:
Policy compliance for database-backed systems. In Proceedings of the
26th USENIX Security Symposium, 2017.

[50] Microsoft. Azure Blob Storage. https://azure.microsoft.com/en-us/
services/storage/blobs. Last accessed: February, 2018.

[51] E. L. Miller, D. D. Long, W. E. Freeman, and B. Reed. Strong Security for
Network-Attached Storage. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies (FAST), 2002.

[52] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking Seman-
tic Correctness: The Case of Finding File System Bugs. In Proceedings of
the 25th ACM Symposium on Operating Systems Principles (SOSP), 2015.

[53] Mongoose embedded web server. https://cesanta.com. Last accessed:
February, 2018.

[54] Open Kinetic. https://www.openkinetic.org/. Last accessed: February,
2018.

[55] S. Quinlan and S. Dorward. Venti: A NewApproach to Archival Data
Storage. In Proceedings of the 1st USENIX Conference on File and Storage
Technologies (FAST), 2002.

[56] T. Register. Press release. https://www.theregister.co.uk/2017/08/09/
samsungs_128tb_ssd_bombshell/. Last accessed: February, 2018.

[57] K. Ren, A. Thomson, and D. J. Abadi. VLL: A LockManager Redesign
for Main Memory Database Systems. In The VLDB Journal, 2015.

[58] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell. SibylFS: Formal Specification and Oracle-based Testing for
POSIX and Real-world File Systems. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), 2015.

[59] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud
Computing. In Proceedings of the 1st USENIXWorkshop on Hot Topics
in Cloud Computing (HotCloud), 2009.

[60] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
data: A new abstraction for building trusted cloud services. In
Proceedings of the 21st USENIX Security Symposium, 2012.

[61] F. Schuster, M. Costa, C. Gkantsidis, M. Peinado, G. Mainar-ruiz, and
M. Russinovich. VC3 : Trustworthy Data Analytics in the Cloud using
SGX. In Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), 2015.

[62] Seagate Kinetic Development Chassis (Ember). http://web.archive.
org/web/20160403050114/developers.seagate.com/display/KV/

Development+Chassis. Last accessed: February, 2018.
[63] Seagate Kinetic Enterprise Storage. https://www.seagate.com/support/

enterprise-servers-storage/nearline-storage/kinetic-hdd/. Last
accessed: February, 2018.

[64] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2017.

[65] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. PANOPLY: Low-TCB
Linux Applications with SGX Enclaves. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2017.

[66] J. Shu, Z. Shen, andW. Xue. Shield: A stackable secure storage system
for file sharing in public storage. Journal of Parallel and Distributed
Computing, 2014.

[67] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia, and
K. Vaswani. A Design and VerificationMethodology for Secure Isolated
Regions. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2016.

[68] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying Confi-
dentiality of Enclave Programs. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2015.

[69] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling with
Exception-less System Calls. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2010.

[70] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and
G. R. Ganger. Self-Securing Storage: Protecting Data in Compromised
Systems. In Proceedings of the 4th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2000.

[71] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS:
Architecture for Tamper-evident and Tamper-resistant Processing.
In Proceedings of the 17th ACM Annual International Conference on
Supercomputing (ICS), 2003.

[72] S. Sundararaman, G. Sivathanu, and E. Zadok. Selective Versioning
in a Secure Disk System. In Proceedings of the 17th USENIX Security
Symposium, 2008.

[73] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu. IOFlow: A Software-defined Storage
Architecture. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), 2013.

[74] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.
Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the ACM SIGMOD international Conference
on Management of data (SIGMOD), 2012.

[75] V. Thummala and J. S. Chase. SAFE: A declarative trust management
systemwith linked credentials. CoRR, 2015.

[76] Toshiba. Press release. http://news.toshiba.com/press-release/business-
and-retail-solutions/toshiba-demonstrates-high-performance-
object-storage-tec. Last accessed: February, 2018.

[77] B. Trach, A. Krohmer, S. Arnautov, F. Gregor, P. Bhatotia, and
C. Fetzer. Slick: Secure Middleboxes using Shielded Execution. 2017,
arXiv:1709.04226.

[78] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
ShieldBox: Secure Middleboxes using Shielded Execution. In Proceed-
ings of the ACM SIGCOMM Symposium on SDN Research (SOSR), 2018.

[79] Trusted Computing Group. TPM Main Specification.
https://trustedcomputinggroup.org/tpm-main-specification, 2011.
Last accessed: February, 2018.

[80] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library
OS for unmodified applications on SGX. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2017.

[81] University of Minnesota—Center for Research in Intelligent
Storage. Kinetic Action: Micro and Macro Benchmark-based Perfor-
mance Analysis of Kinetic Drives Against LevelDB-based Servers.

https://azure.microsoft.com/en-us/services/storage/blobs
https://azure.microsoft.com/en-us/services/storage/blobs
https://cesanta.com
https://www.openkinetic.org/
https://www.theregister.co.uk/2017/08/09/samsungs_128tb_ssd_bombshell/
https://www.theregister.co.uk/2017/08/09/samsungs_128tb_ssd_bombshell/
http://web.archive.org/web/20160403050114/developers.seagate.com/display/KV/Development+Chassis
http://web.archive.org/web/20160403050114/developers.seagate.com/display/KV/Development+Chassis
http://web.archive.org/web/20160403050114/developers.seagate.com/display/KV/Development+Chassis
https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/
https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/
http://news.toshiba.com/press-release/business-and-retail-solutions/toshiba-demonstrates-high-performance-object-storage-tec
http://news.toshiba.com/press-release/business-and-retail-solutions/toshiba-demonstrates-high-performance-object-storage-tec
http://news.toshiba.com/press-release/business-and-retail-solutions/toshiba-demonstrates-high-performance-object-storage-tec
https://trustedcomputinggroup.org/tpm-main-specification

Pesos: Policy Enhanced Secure Object Store EuroSys ’18, April 23–26, 2018, Porto, Portugal

http://www-users.cselabs.umn.edu/classes/Spring-2017/csci5980/
files/KVS/bare_conf.pdf, 2017.

[82] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel,
R. Rodrigues, J. Gehrke, and A. Post. Guardat: Enforcing data policies at
the storage layer. In Proceedings of the 10th ACM European Conference
on Computer Systems (EuroSys), 2015.

[83] C. Weinhold and H. Härtig. jVPFS: Adding Robustness to a Secure
Stacked File System with Untrusted Local Storage Components. In
Proceedings of the USENIX Annual Technical Conference (ATC), 2011.

[84] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In Proceedings of

the 36th IEEE Symposium on Security and Privacy (Oakland), 2015.
[85] Yang Seok Ki. Key Value SSD Explained - Concept, Device, System,

and Standard, 2017. Last accessed: February, 2018.
[86] T. Yao, J. Wan, P. Huang, X. He, Q. Gui, F. Wu, and C. Xie. A

Light-weight Compaction Tree to Reduce I/O Amplification toward
Efficient Key-Value Stores. In Proceedings of the 33rd International
Conference on Massive Storage Systems and Technology (MSST), 2017.

[87] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics
Platform. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

http://www-users.cselabs.umn.edu/classes/Spring-2017/csci5980/files/KVS/bare_conf.pdf
http://www-users.cselabs.umn.edu/classes/Spring-2017/csci5980/files/KVS/bare_conf.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Shielded Execution
	2.2 Kinetic Storage
	2.3 Policy-based Storage Systems
	2.4 Threat Model

	3 Design
	3.1 Pesos Controller
	3.2 Pesos Workflow
	3.3 Pesos Policy Language

	4 Implementation
	4.1 Pesos API
	4.2 Cache Management
	4.3 Kinetic Library Changes
	4.4 Transaction Interface
	4.5 Replication Interface
	4.6 Optimizations

	5 Use cases
	5.1 Content Server
	5.2 Time-based Storage
	5.3 Versioned Store
	5.4 Mandatory Access Logging

	6 Evaluation
	6.1 Experiment Setup
	6.2 Performance
	6.3 Replication
	6.4 Evaluation of Use Cases

	7 Related Work
	8 Conclusion and future work
	References

