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Abstract
Designing machine learning algorithms that are
reliable, safe, and trustworthy is an important
factor when using predictions to make critical
decisions in real-world applications including
healthcare, law, and self-driving cars. A funda-
mental challenge faced by a practitioner is how
to trade-off higher accuracy of a complex model
with more reliability of a simpler, trusted model.
In this paper, we propose a novel learning frame-
work to tackle this challenge—our key idea is to
safely explore the space of complex models by
subsuming a base model which is already trusted.
We achieve this via enforcing a regularization
constraint in the learning process of the com-
plex model based on the predictions of a trusted
model. Our approach is generic, allowing us
to consider different trusted models and differ-
ent ways to enforce the regularization constraint.
We demonstrate these ideas via experiments us-
ing synthetic and real-world datasets.

1. Introduction
State-of-the-art machine learning methods achieve very
good performance across a wide range of real world tasks.
However, these methods often rely on training complex
models, such as deep neural networks or kernel SVMs,
that are hard for humans (even domain experts) to under-
stand. While these models may provide high prediction ac-
curacy in the general case, they may be vulnerable to egre-
gious errors, particularly when presented with data points
that are not well-represented in the training set (Nguyen
et al., 2014). Consequently, in safety-critical domains (e.g.,
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medical diagnosis or recidivism risk predictions), experts
worry about the difficulty of verifying that the behavior of a
trained complex model conforms to important domain spe-
cific knowledge and requirements (Caruana et al., 2015).

1.1. The simple vs. complex models debate

Today, ML practitioners working in safety-critical domains
face a dilemma: they can either use complex (hard to un-
derstand / interpret) models that offer high performance,
but come with the risk of making catastrophic errors. Or,
they could choose to use simple (easy to understand / inter-
pret) models that sacrifice performance (lower prediction
accuracy in the average case) for guarantees on not making
egregious errors (worst case prediction accuracy).

This dilemma is reflected in recent works on training in-
terpretable models that try to build interpretability into the
models itself. These models based on rule lists or decision
trees (e.g., (Lakkaraju et al., 2016)), suggest a direct trade-
off between interpretability and accuracy. In many cases,
interpretability comes at a high cost in prediction accuracy,
as restricting learning to finding a set of decision rules ex-
cludes the potential for leveraging more nuanced patterns
in the data.

In this paper, we propose a way out of this bind. Specifi-
cally, we propose a way to establish reliability (i.e., confi-
dence in avoiding egregious errors) of complex ML models
by ensuring that in a particular way, they must perform at
least as well as simple and easy-to-understand models. Our
approach may be considered a form of safe exploration of
the space of possible models, starting from a base model
which is already trusted.

1.2. Our proposal: Trusted model subsumption

Our proposal relies on the notion of a trusted model, which
is (a potentially simple) model that is trusted by domain ex-
perts (i.e., domain experts have high confidence in its be-
havior) to not make egregious errors. In practice, domain
experts might train such a model themselves as a first step.

We then modify the training process of a complex model
such that, with high probability, it will make correct pre-
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dictions whenever the (simpler and base) trusted model is
correct. Our insight is that the higher complexity of the
model enables better performance on inputs which the sim-
ple model misclassifies, while matching the correct predic-
tions of the simple model ensures that the chances of catas-
trophic errors are quite low. This enables people concerned
about the reliability of a complex model to train and verify
the behavior of a simple, trusted model and use it to es-
tablish a lower bound on the performance of more complex
models, which may be hard to verify, while still gaining the
benefit of better accuracy enabled by higher complexity.

2. Formalizing safe exploration
Let D = {(xi, yi)}Ni=1 denote a dataset of N labeled ex-
amples, where x ∈ X = Rd denotes the feature vector and
y ∈ Y = Z>0 denotes the class label. We define Htrust as
a class of trusted models, satisfying some desirable proper-
ties such as being interpretable or simple (e.g., linear mod-
els); each element of Htrust is a function h : X → Y .
Let ĥ ∈ Htrust denote a model trained on dataset D (for
instance, via empirical risk minimization) or selected by a
domain expert as a trustworthy model. Let Dtrust denote a
subset of examples on which ĥ makes correct predictions,
i.e., Dtrust = {(x, y) ∈ D | ĥ(x) = y)}.

Our goal is to train a model from a complex hypothesis
class (e.g., deep neural network, or kernel SVMs) using
datasetD, while ensuring that the complex model performs
“well” on Dtrust. In other words, we can view Dtrust as a
regularization constraint enforcing us to explore the space
of complex hypothesis class in a safe and trustworthy man-
ner.

In particular, in this paper, we consider a fully connected
neural network consisting of M layers as our complex hy-
pothesis class. Let θj be the parameters for the layer j,
then the function computed by the neural network can be
written as:

F = fM (θM , ...f3(θ3, f2(θ2, f1(θ1,x)))). (1)

where F ∈ R|Y| usually consists of normalized (softmax)
probabilities for each class, that is, Fk = p(ŷ = k|x,Θ)
and (

∑
p∈F p) = 1. One then predicts the class with the

highest probability, that is, ŷ = argmaxFk
k∈Y

. Given D (and

in the absence of Dtrust), one learns the parameters Θ =
{θj}Mj=0 by minimizing the cross entropy loss:

`(Θ,D) =
∑

(x,y)∈D

− log(p(ŷ = y|x,Θ)) (2)

While ` is a non-convex loss function, one can empirically
find “good enough” local minima (Goodfellow et al., 2016)
using backpropagation. Next, we enforce the regularization
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Figure 1. The decision boundary of a trusted baseline model (that
works by thresholding on a single feature) and a relatively com-
plex neural network model (that works by using a non-linear com-
bination of the two features). The accuracy of the baseline model
(Accb) is not very high, but the outcomes are highly interpretable.
On the other hand, the accuracy of the complex neural network
(Accc) is much higher but outcomes are not easily interpretable.
For 24.4% of the dataset (denoted byGainc), the complex model
provides gains over the trusted baseline model, that is, these are
the points that are incorrectly classified by the trusted model, but
correctly classified by the complex model. However, for 3.2%
of the dataset (denoted by Gainb), the complex model gives the
wrong predictions even while the trusted model classifies them
correctly (i.e., even when these points are in Dtrust).

constraint ofDtrust by altering the loss function as follows:

`(Θ,D) =
∑

(x,y)∈D

− log(p(ŷ = y|x,Θ))

+ α
∑

(x,y)∈Dtrust

max(F (x))− Fy(x)
(3)

The second term in the loss function will be positive if an
example fromDtrust is not classified correctly by the com-
plex model. By increasing the strength of α, one can con-
trol how compliant to the constraints the outcomes of the
complex model would be.

Our methodology is partly inspired by similar techniques
used in the area of fairness-aware classification (Goh et al.,
2016; Kamishima et al., 2011; Zafar et al., 2017).

3. Evaluation
In this section, we evaluate the effectiveness of our method-
ology for training fully connected neural networks that ad-
here to the given reliability constraints (Section 2). For il-
lustrative purposes, we take our base trusted model to be a
simple threshold function for the one most informative fea-
ture. We first visually show on a synthetic dataset how the
neural network adjusts its decision boundary to correctly
classify a trusted set. We then demonstrate the effective-
ness of our scheme on real world datasets by conducting
empirical experiments on each of the ProPublica COMPAS
dataset (Larson et al., 2016) and the Adult dataset (Adult,
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(a) α = 5

Accc : 86. 8%Gainb : 0. 4%Gainc : 17. 0%

(b) α = 25

Accc : 81. 9%Gainb : 0. 0%Gainc : 11. 7%

(c) α = 500

Figure 2. Effect of the penalty parameter α on the accuracy (Accc) and misclassification in the trusted set (Gainb) by the complex neural
network model. The hypothesis space of the network model constricts as we increase the value of α. As a result, the misclassifications in
Dtrust go down monotonically as the neural network boundary morphs into a boundary very close to that of the trusted baseline model.

1996). The ProPublica COMPAS dataset consists of 7,214
examples and 9 features (number of prior offenses, gen-
der, etc). The task is to predict whether a criminal defen-
dant would recidivate within two years or not. The Adult
dataset, also called the Census income dataset, consists of
45,222 examples and 14 features (educational level, race,
etc). The task is to predict whether a person earns more
than 50K USD per year (positive class) or not (negative
class).

3.1. Synthetic dataset

To generate a synthetic dataset, we sample 1600 2-D fea-
ture vectors from p(x|y = −1) = N ([0,−3], [4, 0; 0, 4])
and 400 from p(x|y = −1) = N ([−9, 7], [0.5, 0; 0, 0.5]).
Additionally we sample 1000 feature vectors from each of
p(x|y = 1) = N ([5, 0], [4, 0; 0, 4]) and p(x|y = 1) =
N ([−5, 0], [4, 0; 0, 4]).

Trusted model vs. complex model. We train a trusted
baseline model which picks an optimal decision thresh-
old (maximizing accuracy) for each of the individual fea-
tures in the dataset, and selects the feature (along with its
threshold) that maximizes accuracy (i.e., the most informa-
tive feature). We show the decision boundary of such a
trusted model in Fig. 1(a). In this case, this method picks
a threshold on feature f2 (y-axis) and achieves an accuracy
of 70.2%. We chose the single feature thresholding model
to be our trusted baseline since it represents the simplest
sensible such baseline model which is highly interpretable.
We denote the data points correctly classified by the trusted
model as Dtrust.

Next, we train a neural network with one hidden layer con-
sisting of 15 neurons. The decision boundary of the neural
network is shown in Fig. 1(b). We can see that the neural
network clearly outperforms the baseline in terms of accu-
racy. In fact, for 24.4% (which we call Gainc) of the to-

tal data points, the neural network classifies them correctly
whereas the trusted model does not. However, for 3.2%
(which we call Gainb) of the total data points, the neural
network incurs misclassifications while the trusted baseline
model classifiers them correctly – i.e., these points are in
Dtrust.

Constraining the complex model to better match the
trusted model on Dtrust. Next, we enforce the constraint
that all the points in Dtrust be classified correctly by the
complex neural network model. Notice that the complex
model already correctly classifies a majority of the mem-
bers of Dtrust, however, our goal is to correctly classify all
of them.

To this end, we retrain the neural network by using the reg-
ularized loss in Eq. 3 with increasing value of α. A higher
value of α limits the complex model’s hypothesis class fur-
ther to the space of models where an increasing number of
the members of the set Dtrust are correctly classified.

The results in Fig. 2 show that with an increasing value of
α, the neural network boundary moves in order to correctly
classify the remaining misclassified points in Dtrust. With
a value of α = 25, there are only 0.4% of points left in
the dataset that are in Dtrust yet the neural network mis-
classifies them. Finally, increasing the value of α to 500
reduces this number of 0. By this point the resulting de-
cision boundary for the lower three clusters is close to the
decision boundary of the trusted model. However, the com-
plex model can still classify the upper left cluster correctly
because it is misclassified by the baseline model and there-
fore not in Dtrust. That allows it to outperform in overall
accuracy by 11.7%.

This shows that in general, even for very high values of α,
a more complex model need not be close to replicating the
simple trusted model – it might be able to achieve much
higher overall accuracy while still being correct on almost
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α Accc Gainb Gainc

0.0 67.9% 8.0% 11.7%
0.5 67.7% 6.2% 10.1%
1.0 68.0% 5.6% 8.6%
5.0 66.9% 2.5% 4.8%

10.0 66.4% 2.2% 4.3%
20.0 65.2% 1.4% 2.3%

Table 1. [COMPAS dataset] Accuracy achieved by a neural net-
work with an increasing value of α. Gainb (Gainc) denotes the
percet of the data points, out of all the data, that the truested base-
line model (complex neural network model) classifies correctly
but the neural network (trusted baseline model) does not. The
trusted baseline model achieves an accuracy of 64.5%.

all points within Dtrust.

3.2. Real-world dataset

We now conduct experiments on ProPublica COMPAS
dataset (Larson et al., 2016). For building the trusted
baseline model, we use the threshold on the single fea-
ture “number of prior offenses” (the most informative fea-
ture in the dataset). This classifier leads to an accuracy of
64.5%. We consider all the data points correctly classi-
fied by this trusted classifier asDtrust, that is, any complex
model should aim to classify these points correctly.

We then train a neural network with one hidden layer
having 150 neurons with tanh activation function and a
dropout probability of 0.5. This network leads to an accu-
racy of 67.9%, however, the outcomes of the neural net-
work results in a Gainb of 8%. That is, 8% of all data
points are in Dtrust but are not classified correctly by the
neural network model.

Finally, we retrain the neural network while introducing the
regularization penalty from Eq. 3. The results in Table 1
show that an increasing value of α reduces the misclassi-
fication in the set Dtrust, however, it comes at a cost of
deteriorating accuracy.

We also conduct experiments on the Adult dataset (Adult,
1996). The trusted model in this case uses the optimal
threshold on the (most informative) feature “capital gain”
and achieves an accuracy of 79.6%. The results for the
unconstrained and constrained neural network model yield
insights that are very similar to the ProPublica COMPAS
dataset (Table 2).

4. Conclusion and future work
There are many situations where high prediction accuracy
of an algorithm is of great importance, yet we must also be
able to trust its output. This is very challenging as mod-
els become more complex and hard to understand. Here

α Accc Gainb Gainc

0.0 84.4% 6.0% 10.8%
0.5 84.2% 5.4% 10.0%
1.0 84.1% 5.2% 9.6%
5.0 83.3% 4.7% 8.4%

10.0 80.9% 1.6% 2.9%
20.0 80.0% 1.2% 1.6%

Table 2. [Adult dataset] Accuracy achieved by a neural network
with an increasing value of α. Gainb (Gainc) denotes the
percet of the data points, out of all the data, that the truested base-
line model (complex neural network model) classifies correctly
but the neural network (trusted baseline model) does not. The
trusted baseline model achieves an accuracy of 79.6%.

we have presented preliminary work investigating how we
might safely explore the space of more complex models,
while leveraging our trust in a simple model. A key insight
is that we should like a complex model to achieve correct
predictions at least on all those data points where a trusted
model was already correct. We look forward to developing
this framework further, and extending it to a wider range of
complex models (e.g., kernel SVMs). Other interesting fu-
ture directions would be formalizing the tradeoffs between
the safe exploration and accuracy of the complex model
and exploring the effects of data drift on the trustworthi-
ness of the complex model.
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