

A ROS 2 Response-Time Analysis Exploiting Starvation Freedom and Execution-Time Variance

T. Blass, D. Casini, S. Bozhko, B. Brandenburg

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

BOSCI

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

BOSCH

Background: ROS Callback Graph

Background: Processing Chains

Background: Executing a Callback Graph

CR/AEE1 | 2021-11-29 © Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

CR/AEE1 | 2021-11-29

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Background: The ROS 2 Executor (simplified)

11

Background: The ROS 2 Executor (simplified)

Background: Peculiar Properties of the Executor

13

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

BOSCH

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

Address Large Execution-Time Variance

Problem: scalar WCET is too pessimistic

AMCL /tf callback in the navigation 2 package

Address Large Execution-Time Variance

Problem: scalar WCET is too pessimistic

AMCL /tf callback in the navigation 2 package

Solution: Execution-Time Curves (Quinton et al., 2012)

Bound execution time of multi-instance sequences

More precise execution-time model

More complex analysis

Details in the paper

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

Problem: Bursty Callbacks

Scenario:

- Callback c_1 is triggered periodically
- Callback c₂ triggers bursts of 20 instances
- Assume c_1 's response time $< c_1$'s period

Prior Work:

20 instances of c_2 **in** c_1 **'s busy window.**

Pessimistic! Only one instance of c_2 runs in each processing window.

Solution: Round-Robin Analysis

Incompatible with busy-window principle

Scenario:

- Callback c₁ is triggered periodically
- Callback c₂ triggers bursts of 20 instances
- Assume c₁'s response time < period

Combined Analysis

Round-Robin Analysis

- (+)
- Effective in executors with bursty callbacks
- Lacks busy-window principle

Busy-Window Analysis

Benefits of busy-window principle

Pessimistic in executors with bursty callbacks

Just try both!

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

BOSCH

Activation Curve Propagation within Executors

Activation curves are propagated with response-time jitter (Henia et. al., 2005)

Activation Curve Propagation within Executors

If c_1 , c_2 , c_3 belong to the **same executor** and the Δ -interval starts at a **quiet time**:

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**.

BOSCH

- Turtlebot 3 "Burger" controlled by a Raspberry Pi 4B
- Running various ROS packages
 - Navigation 2 packages
 - Turtlebot 3 drivers
- Callback graph extracted from measurements

See Blass et al., "Automatic Latency Management for ROS 2: Benefits, Challenges, and Open Problems", RTAS *2021*

Casini et. al., "Response-Time Analysis of ROS 2 Processing Chains under Reservation-Based Scheduling", ECRTS 2019

 (\mathbb{H})

BOSCH

 (\square)

BOSCH

Conclusion

ROS 2 is one of the most popular robotics frameworks, with peculiar timing properties.

1. Address large execution-time variance over time

We **improve** upon existing response-time analyses with three techniques.

2. Exploit starvation-freedom in the callback scheduler

3. Improve activation-curve propagation within executors

Experiments show significant improvements (10-80x) in **real-world ROS packages**

ROSCI