
Array-aware Cache Analysis for Write-through

and Write-back Caches

Tobias Blaß

Master Thesis

Real-Time and Embedded Systems Lab

Saarland University

Supervisor: Prof. Dr. Jan Reineke

Advisor: Sebastian Hahn

Reviewers: Prof. Dr. Jan Reineke

Prof. Dr. Sebastian Hack

Submitted: December 2016

s9toblas@stud.uni-saarland.de
http://http://embedded.cs.uni-saarland.de/
http://www.uni-saarland.de/

Declaration of Authorship

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Datum/Date:

Unterschrift/Signature:

i

SAARLAND UNIVERSITY

Abstract

Real-Time and Embedded Systems Lab

Master of Science

by Tobias Blaß

Caches are an important component of modern computers, bridging the performance

gap between processor and memory. Consequently, cache analysis is a crucial part of

precise worst-case execution time (WCET) analysis. Prior work has focused on write-

through caches, which directly relay stores to main memory. In this thesis, we develop

an analysis for write-back caches, which handle stores locally and forward them later.

While write-back caches avoid slow memory accesses, they are also harder to analyze

since the memory access is decoupled from the store instruction. We identify dirtifying

stores as an upper bound to the number of write backs in the program. In many of

our testcases the analysis predicts lower WCET bounds than for an equally-sized write-

through cache. However, memory accesses to unknown locations turn out to pose a

serious threat to write-back analysis precision. We therefore also develop array-aware

variations of traditional cache analyses (namely must analysis and persistence analysis).

While the array-aware must analysis is comparatively ineffective, identifying persistent

arrays reduces the number of misses by more than 60% on half our benchmarks. In

combination, array-aware write-back analysis improves on the write-through analysis in

all but two of our testcases.

http://www.uni-saarland.de/
http://http://embedded.cs.uni-saarland.de/
s9toblas@stud.uni-saarland.de

Acknowledgements

First and foremost I thank Sebastian Hahn for many fruitful discussions and his vast

knowledge of the llvmta internals.

I also thank Prof. Jan Reineke for his supervision and for always asking the right

questions.

I thank Prof. Sebastian Hack for reviewing this thesis.

I thank Tomasz Dudziak for many helpful discussions about C++, abstract interpreta-

tion and polish grammar.

Finally, I want to thank Kathrin Stark for proofreading this thesis. I simply cannot

overstate how many completely useless filler words are on your conscience by now.

Content

1 Introduction 1

2 Background 3

2.1 Static WCET Analysis . 5

2.1.1 Abstract Interpretation . 8

2.2 Cache Analysis . 9

2.2.1 Must and May Analysis . 9

2.2.2 Persistence Analysis . 10

2.2.3 Persistence Scopes . 13

2.3 Unknown Accesses . 14

3 WCET Analysis by Abstract Interpretation 16

3.1 Compilation . 17

3.2 Value and Loop Bound Analysis . 17

3.3 Microarchitectural Analysis . 18

3.4 Path Analysis . 18

4 Write-back Cache Analysis 21

4.1 Dirtiness Analysis . 22

4.2 Dirtifying Stores . 23

4.3 Evaluation . 25

4.3.1 Write-back versus Write-through 26

4.3.2 The Initial Cleanness Assumption 29

4.3.3 The analysis components . 31

4.3.4 Analysis Cost . 32

5 Array-aware Cache Analysis 35

5.1 Improving the Must Analysis . 37

5.1.1 The Status Quo . 37

5.1.2 Array-Aware Must . 37

5.2 The Conflict Powerset Approach . 41

5.3 Array-aware Persistence . 44

iv

v

5.3.1 Handling Accesses to Arrays . 44

5.3.2 Declaring Arrays Persistent . 45

5.4 Evaluation . 46

5.4.1 Array-aware Must Analysis . 47

5.4.2 Array-aware Persistence Analysis 48

5.4.3 Analysis Cost . 49

5.4.4 Array-aware Write-back analysis 50

6 Conclusion and Future Work 52

Bibliography 55

Chapter 1

Introduction

Many of today’s safety-critical systems are controlled by microprocessors. In this do-

main, timeliness is an essential part of correctness: programs not only have to compute

correctly, they also have to finish in time. For example, the airbag in a car has to

deploy within 15-25 milliseconds after the impact [1]; any later reaction is useless or

even harmful. In many jurisdictions, the car manufacturer therefore has to prove to

the certification authorities (and the customers) that the controller always inflates the

airbag within this timeframe.

An integral part of this proof is computing an upper bound on the worst-case execution

time (WCET) of the control program. This bound is often determined by measuring

the executing time with as many inputs and in as many situations as possible. However,

this technique is potentially unsafe. As indicated in Figure 1.1, the gap between the

best-case runtime and the worst-case runtime can be large, and measuring might fail to

find the rare outliers that have a significantly higher execution time.

The WCET estimation in this thesis is based on static analysis. Unlike measurement-

based analysis (also called “dynamic analysis”), static analysis looks at the program

itself without assuming any particular input or sequence of events. It therefore never

F
re

q
u

en
cy

Execution
time

BCET

bound

BCET Measured

WCET

WCET WCET

bound

Predicted Runtime

Possible Runtime Overest.

Figure 1.1: Potential probability distribution of runtimes for a given program.

1

2

overlooks any program paths and always yields sound results. On the downside, static

analysis always errs on the side of caution and overestimates the true WCET. Minimizing

the amount of overestimation while still being efficient is one of the greatest difficulties

in static WCET analysis.

Contributions

The execution time of a program heavily depends on the underlying hardware; every

program ends up as a sequence of assembly instructions interpreted by the processor.

Of all processor components, caches are arguably one of the most important sources of

overestimation. In this thesis, we develop a novel analysis for write-back caches. The

write-back policy promises to reduce the number of main memory accesses and thereby

increase performance. However, it is difficult to analyze and, to our knowledge, there is

no analysis that can do so without tremendous overestimation.

Further, motivated by difficulties in the write-back analysis, we turn towards dynamic

array accesses. A dynamic array access is a memory access into an array where the

address is only computed at runtime. This thesis presents techniques allowing different

cache analyses to retain more information across dynamic accesses.

Structure Chapter 2 introduces caches and how to analyze them. We then (Chap-

ter 3) present our timing analyzer llvmta, which we use to implement and evaluate our

analyses. We also explain step by step how we compute a WCET bound for a given

program. Chapters 4 and 5 present the write-back cache analysis and the array access

analysis, respectively. As they are independent of each other, they can be read in any

order.

Chapter 2

Background

Due to the ever-increasing gap between processor and memory speed modern computer

systems use local caches. These caches are small and fast memories, which contain a

small subset of the data in main memory. If the core requests a piece of data which

is cached (i.e. available in the cache), the request can be served much faster than an

equivalent request to a non-cached location. Caches are subject to a range of design

tradeoffs:

Line Size. Memory instructions usually access memory on a byte or word granularity.

Requesting only a word of memory at a time is natural for a processor, as it has to fit

the data into a register. Main memory, on the other hand, is optimized for throughput.

Although it is expensive to load a piece of data, loading additional contiguous data is

cheap. By eagerly loading more than requested, the cache can quickly serve subsequent

requests for data in the close vicinity. According to the principle of spatial locality [2,

p. 45], this is a worthwhile tradeoff.

Caches implement this technique by operating on a larger granularity than words, so-

called cache lines. To optimally exploit spatial locality, the cache line should be as large

as possible. However, increasing the line size has its cost: First, one has to transfer more

data per memory access. Since the memory bus has a fixed width this requires more

cycles per transfer and thereby higher access latencies. Second, the size of cache lines also

determines their number; a cache containing few but large lines can only hold a limited

number of separate memory locations. It therefore might be forced to evict useful data

to make room for speculatively loaded useless data. As a compromise between these

conflicting goals, 32 and 64 byte are popular line size choices [2, p. B-28].

An important consequence of operating at larger granularities than words is false shar-

ing. If two variables fall into the same cache line, they are indistinguishable from the

perspective of the cache. To avoid this technical detail we only consider variables at

3

4

cache line granularity in this thesis. Our implementation does not have this restriction.

We denote the set of cache line-sized memory blocks as B.

Associativity (k) and Cache Sets. When a memory block is loaded into the cache,

the cache has to choose a place for it. One possible strategy is to allow cache lines to

hold any block. However, caches critically depend on a low access latency. As the cache

gets larger, finding a memory block under this policy becomes more and more costly as

more cache lines have to be searched.

Another strategy is to map each memory block to a single cache line. Finding the block

then becomes trivial, i.e. access latency is as low as it can be. On the other hand, the

cache loses all flexibility which cache lines to hold: if two heavily-used blocks map to

the same cache line, they evict each other repeatedly, even if the rest of the cache is

empty. As a compromise, the cache is usually split into multiple cache sets. Depending

on its address, the memory block can only be placed in a subset of the available cache

lines, namely those reserved for the cache set of the block. At lookup time only the

corresponding cache set has to be searched. The number of cache blocks reserved for

each cache set is called the associativity of the cache. Since the associativity plays a

paramount role in cache analysis we concisely refer to it by the letter k. The two extreme

cases elaborated above are the special cases where there is only one cache set (“fully

associative”) and where associativity is one (“directly mapped”) .

Replacement Policy. Unless the cache is directly mapped, there is a choice which

block to evict when the cache has to make room for a new memory block. In this thesis

we only consider the Least-Recently-Used replacement policy (LRU). Under LRU, caches

evict the memory block not accessed for the longest time. Temporal locality [2, p. 45]

suggests that this is the block least likely to be needed in the near future.

To implement this policy, the cache has to remember the most recent access to each

block. This state can be modelled as a function age : B → N≤k. The age of a block b

states how many different blocks have been accessed since the last access to b. After an

access to block x the age of b changes as follows:

update(age, x) = λb.

0 x = b

age(b) age(b) > age(x)

min(k, age(b) + 1) otherwise

As the cache set can only hold k blocks, only the blocks with an age between 0 and k−1

are present in the cache. It is therefore unnecessary to distinguish ages larger than k.

5

So far we (implicitly) assumed that all memory accesses are loads. Stores are different

in that the processor is not interested in the current data but only wants to overwrite

it. This opens up two new degrees of freedom:

Write-hit Policy. If the destination of the store is already present in the cache, one

either updates the original block in main memory together with the local copy (“write-

through”) or one defers updating main memory and just updates the local copy. Since

future loads always ask the cache first, the program can never observe the outdated

original. The change is only applied to main memory if and when the block is evicted

from the cache. This policy is called write-back.

The advantage of the write-back strategy is that multiple stores to the same cache line

are handled in the fast cache, requiring only a single access to the slow memory to

write back the final result. In exchange, the cache becomes more complex as it has

to differentiate dirty data that disagrees with the version in main memory from clean,

unchanged data. The former has to be written back while the latter can be safely

overwritten.

Write-miss Policy. If the destination of the store is not cached, loading the data is

optional. Instead, the cache can relay the store to main memory, avoiding an allocation

and therefore a possible eviction. This policy is called “non-write-allocate”, while the

opposite policy is called “write-allocate”.

Even though there are four potential combinations of these policies, only two are

commonly found in practice. Write-back caches usually follow the write-allocate policy,

hoping that future stores to the same cache line can be handled locally. Write-through

caches on the other hand enjoy no such performance benefit on future stores and therefore

often follow the non-write-allocate policy. We will omit the write-miss policy throughout

this thesis and assume the usual combination.

2.1 Static WCET Analysis

In the early days of computing, worst-case execution time calculation was simple. Pro-

cessors came with handbooks containing execution times for all supported instructions

[3, p. 8], and computing the WCET consisted of summing up the lengths of the individual

instructions. But in the perpetual quest for ever-increasing performance, this simplicity

has long been lost. As early as 1968, high-end mainframe computers had gained caches

6

and overlapped consecutive instructions. For such a system it is impossible to give per-

instruction worst-case execution times without extreme overestimation, and a computer

reference manual from the time has to state that “specific programs evaluated to date

have shown the time computed from the list to vary from the actual time by as much

as 28.5 percent.” [4, p. 27]. By now, virtually all processors are equipped with pipelines

and caches, and the resulting system complexity has rendered the simple approach to

worst-case execution time analysis useless.

The only way to give reasonable bounds in modern systems is by taking the hardware

state into account. If the system contains a pipeline, the analysis must remember the

previously executed instructions still in flight. If the system contains a cache, the analysis

must always remember the currently cached memory blocks. Unfortunately, tracking

the hardware state this way carries a whole series of additional complications. These

complications are best explained by example:

/* a is cached */

if (...) access(b)

else complex_calculation ();

access(a);

Assume that a memory access takes 20 clock cycles and the complex calculation requires

30 cycles. For the sake of simplicity, we only consider the data memory accesses.

Without a cache we could compute the WCET using the 1960’s approach:

max(20, 30)︸ ︷︷ ︸
if

+ 20︸︷︷︸
a

= 50 cycles

However, assume the system contains a cache containing one line. Which block is cached

after the if statement has been executed? If the then branch has been executed it is b,

but if the else branch has been executed it is a.

It is tempting to follow either the then branch or the else branch, depending on which

takes longer. This approach is overly simplistic and in fact produces incorrect results,

as our example shows:

With 30 cycles, the else branch is longer than the then branch. Afterwards, a is cached.

The memory access therefore hits the cache and we compute a WCET bound of

30︸︷︷︸
else

+ 1︸︷︷︸
a

= 31cycles

7

If the program executes the then branch instead, b would be cached.

20︸︷︷︸
then

+ 20︸︷︷︸
a

= 40cycles > 31cycles

The then case, despite taking less time than the else case, causes a cache misses in

the future that more than offsets the original difference. Clearly, assuming that a was

cached is unsound. Yet assuming the worst cache state possible instead yields 50 cycles

again, meaning that the cache does not improve our WCET at all. In our case, the

bound is only 10 cycles higher than the true WCET. In real programs, though, this

overestimation quickly grows.

To sum up, there are two sound ways of handling control flow: For one, the analysis

assumes nothing about the hardware state after the two paths merge. It assumes the

slower branch in the if as well as the higher execution time after the merge, a path never

occurring in actual execution.

Alternatively, the analysis remembers the hardware state through the if-statement, al-

lowing it to recognize the infeasible path. However, this requires the analysis to track

both paths of the if, since only the seemingly faster path leads to the true worst-case

execution time. In general, the analysis has to follow each of the exponentially-many

paths in the program.

As it turns out, having to follow all paths is not limited to control-flow induced decisions.

In many processor-internal decisions, the seemingly faster option can be slower on a

global scale: a cache hit worse than a cache miss, overtaking a pending memory access

in the pipeline might be worse than waiting for the access to finish, etc. These effects are

also called timing anomalies. They make the number of paths not only exponential in

the number of decisions made by the program but exponential in the number of decisions

made by the processor, i.e. roughly exponential in the number of assembly instructions

in the program.

Although following exponentially many paths is infeasible in general, it can be done in

special cases. When two paths reach the exact same state they behave identically in

the future and can be collapsed into one path again. The number of paths is therefore

bounded by the number of states of the processor. An in-order pipeline, for example,

can only be in a very limited number of states at each program point, making it likely

that two paths end up in the same state. Caches, however can be in at least |B|!
(|B|−k)!

different states per cache set. Experimental evidence further suggests that the number

of possible cache states is too large to handle; when Dalsgaard et al. explicitly modeled

two 16 KiB 64-way caches in their METAMOC paper [5], the tool ran into their 4 GiB

8

memory limit while analyzing the bsort100 benchmark1. Clearly, cache analysis requires

a different approach.

2.1.1 Abstract Interpretation

Abstract interpretation [6] is a formal static analysis framework popular in compiler

research and formal software verification. It provides a way to reduce the number of

states to a manageable level without sacrificing too much analysis precision. Instead of

modelling the complex hardware, it defines an abstract machine whose states correspond

to multiple hardware states at once. Each operation in the real hardware has a corre-

sponding operation on the abstract machine (often called update). The most important

feature of the abstract machine is the ability to join two states, forming a new state

that overapproximates the union of the two concrete state sets. Whenever there are

two possible successors to a state, the analysis cuts the size of the state space in half

by joining them into a single state. It pays for this reduction with a loss of analysis

precision, i.e. there are properties unfulfilled by the abstract machine but true for the

concrete machine.

As a simplified example, let the concrete hardware state be the value of a single register.

To avoid dealing with 22
n

possible states, we might choose our abstract state to be an

interval of possible values. If the register can have any value from 1 to 5, we represent

this set of hardware states by [1, 5]. Note that there are many sets of hardware states

that cannot be described precisely – the set {1, 3} has to be approximated by [1, 3].

When asked whether the value of the register is always odd, the analysis has to concede

that it does not know, even though the property holds.

For reasons of space we only give a short introduction into the underlying mathematics.

The abstract interpretation framework requires the abstract states to form a lattice

under a partial order v. Two states can be joined by taking their least upper bound

t. The translation between abstract states and sets of concrete states is performed by

an abstraction function α : P(ConcreteStates) → AbstractStates and a concretization

function γ : AbstractStates → P(ConcreteStates). The correctness of the analysis hinges

on two basic properties. First, the abstraction function has to perform an overestimation,

i.e. must not lose any concrete states.

∀S ∈ P(ConcreteStates). γ(α(S)) ⊇ S
1The testcase sorts a 100-element list using bubblesort. For comparison, our tool requires 54 MiB in

this setup.

9

Second, the operations of the abstract machine have to be consistent with the ones on

the concrete machine. This guarantees that a correct abstraction stays correct across

state transitions.

∀S ∈ P(ConcreteStates). γ(update(α(S)) ⊇
⋃
s∈S

concreteupdate(s)

2.2 Cache Analysis

As far as WCET estimation is concerned, caches are arguably the most critical compo-

nent in the processor – the difference between a cache hit and a cache miss can easily

amount to a factor of 20 or more [7, p. 132]. The central goal of cache analysis is to

statically prove that a memory access hits the cache. As a secondary goal, proving that

an access misses the cache reduces the number of paths and therefore benefits analysis

runtime, even though it usually does not improve the WCET estimate. Since cache

analysis is a large field we only present a short summary of the cache analyses required

for the understanding of our work. A more complete and detailed overview can be found

in [8].

2.2.1 Must and May Analysis

The must analysis [9] is an analysis aimed at proving cache hits. It does so by over-

estimating the age of memory blocks. Thus, whenever a block has an age < k in the

must cache it also must be in the concrete cache. We formalize this property by the

concretization function

γ(S) = {age | ∀b ∈ B. age(b) ≤ S(b)}

The analysis operates on B → N≤k, mapping each block to an upper bound on its age.

The update function closely resembles the update function for concrete LRU caches but

two blocks can have the same age.

update(S, x) = λb.

0 x = b

S(b) S(x) ≤ S(b)

min(k, S(b) + 1) S(x) > S(b)

10

Since we maintain upper bounds, the join function takes the maximum of both bounds,

guaranteeing that both incoming states are still represented by the new state.

S t T = λb.max(S(b), T (b))

The may analysis complements the must analysis by providing a lower bound on the age

of a memory block. It therefore states which blocks may be in the cache at any given

time or – by complement – which blocks are definitely not cached. Its concretization

function is the must concretization with ≤ replaced by ≥.

The update function looks similar to the must update function. It only differs if two

blocks have the same age bound.

update(S, x) = λb.

0 x = b

S(b) S(x) < S(b)

min(k, S(b) + 1) S(x) ≥ S(b)

The join function takes the minimum of both bounds.

S t T = λb.min(S(b), T (b))

For reasons of brevity and clarity, we use a graphical notation for must and may states.

Instead of mapping blocks to ages, the notation turns the mapping around and maps

ages to blocks. In addition to being easier to read, this notation avoids enumerating all

blocks in B. Furthermore, the number of sets implicitly encodes the associativity of the

cache.

[{set0}, {set1}, . . . , {setk−1}] := λb.

0 b ∈ set0

1 b ∈ set1

. . .

k otherwise

2.2.2 Persistence Analysis

The two previous analyses operate on abstracted cache states, trying to prove or disprove

the presence of a block in the cache at a given program point. However, this is not always

enough. Consider Figure 2.1: For a cache of associativity 2, this loop can only have up

to two misses. As soon as both elements have been loaded into the cache they will not

11

[{}, {}]

[{a}, {}] [{b}, {}]

[{}, {}]

a b

Figure 2.1: The must analysis predicts a miss in each loop iteration for this program.
The loop can only produce one miss for a and one for b, independently of the number

of iterations

get evicted and thus will persist in the cache. However, the must-analysis is unable to

prove this. This is unsurprising, since both program locations can cause a cache miss.

The observation, that both blocks can be missed only once but we do not know when is

inexpressible in the framework of the must-analysis.

Persistence analysis takes a different approach. It does not decide between miss and hit

locally by only considering the current state. Instead, it takes a more global perspective

and gives bounds on the total number of cache misses in an execution of the loop,

irrespective of where they are. In this framework, the above issue is resolved by stating

that this loop only produces up to two misses whenever entered. This is realized by

adding the following two constraints:

The edge corresponding to accessing a (resp. b) and then missing the cache can only

be taken as often as the edges entering the loop from the outside.

Since this type of constraint is linear, it can be enforced by adding it to the Path Analysis

ILP. See Section 3.4 for details.

In the literature, analyses defined by only considering local state are called state-based,

while analyses that state properties about execution paths are called trace-based [10].

These names refer to the concrete domain the analysis abstracts from. It is outside of

the scope of this thesis to formally define traces. We will therefore not give explicit

concretization or abstraction functions for the persistence analyses.

The example above proves that limiting misses this way works in principle, yet it still

remains unclear how to find persistent elements automatically. There are two basic

techniques: conflict sets (also called conflict counting) and conditional must (both first

published in [11]). Both are based on the idea that a block b is persistent if no valid

path through the loop that starts with an access to b and ends with the eviction of b.

In LRU, an element is evicted if k different blocks are accessed without an intervening

12

refresh of b. It thus suffices to prove that there is no valid path that starts at an access

to b and then encounters k different blocks without encountering b again.

Conflict sets

Conflict sets exploit that the processor needs to access different blocks to evict b. These

different blocks are also called conflicting blocks since they compete with b for space in

the cache. If we count the number of conflicting blocks and notice that there are less

than k on any path, eviction of b is impossible.

As an example, consider again Figure 2.1. A conflict set analysis yields the set {a, b} in

all program points. Therefore, both a and b are persistent for any cache of associativity

≥ 2.

There are two flavors of conflict-set based persistence analysis: First, one maintains a

single global conflict set in an all-or-nothing approach - if the loop only accesses ≤ k

different memory blocks, the analysis classifies all blocks as persistent, else none. If a

more expensive analysis is acceptable, one can also track a conflict set per memory block,

the so-called block-wise conflict set approach. Whenever the block itself is accessed the

conflict set can be cleared as we are only interested in paths without an intervening

refresh to b.

Conditional must

Conditional must exploits that the processor needs to access k blocks to evict b. Con-

sequently, the analysis counts how many blocks have been accessed since the last access

to b. If this value never reaches k, b cannot be evicted and must therefore be persistent.

The analysis domain is B → N≤k ∪ {−∞}. The −∞ serves as the initial age, signal-

ing that a block has never been encountered before. The update function counts all

intervening accesses without remembering the block that caused the aging.

update(S, x) = λb.

0 x = b

min(k, S(b) + 1) else

This update function also hints at the origin of the name: it is almost identical to the

must update function. The join is identical and consists of taking the maximum of both

counts.

How is this analysis different from the normal must? The decisive difference is the initial

state of the blocks. The must analysis initializes blocks with the maximal possible age

13

∅

{a}

{a, b} {a, c}

{a, b, c} = >

a

b c

[{}, {a}, {b, c}]

[{a}, {}, {b, c}]

[{b}, {a}, {c}] [{c}, {a}, {b}]

[{}, {a}, {b, c}]

a

b c

Figure 2.2: Conflict sets do not dominate conditional must. Note that only the last
iteration is shown

[{a, b}, {}, {}]

[{a}, {b}, {}] [{b}, {a}, {}]

[{}, {a, b}, {}]

a b

→ . . .→

[{}, {}, {a, b}]

[{a}, {}, {b}] [{b}, {}, {a}]

[{}, {}, {a, b}] = >

a b

Figure 2.3: Conditional must does not dominate conflict sets. Note that this is the
introductory example for which conflict sets were able to prove persistence for a and b.

while the conditional must analysis initializes blocks with the minimal possible age. This

is only sound because we change our interpretation of the state as well: the analysis

bounds the age under the condition that the block has already been seen (i.e. has been

loaded into the cache). In particular, the analysis can claim anything as long as the

precondition is not fulfilled.

Surprisingly, none of the two analyses dominates the other. Figure 2.2 and 2.3 show two

programs where persistence is proven by one analysis but not the other. Only running

both analyses ensures maximal effectiveness.

2.2.3 Persistence Scopes

So far we only talked about single loops. However, applying persistence analysis to an

entire program is bound to fail as memory blocks rarely remain in the cache for so long.

Instead, persistence analysis is often performed on contiguous parts of the program called

persistence scopes. There is no restriction on what constitutes a scope, only that the

probability of benefiting from persistence analysis is high enough to justify the analysis

effort. In our timing analyzer, all loop bodies are persistence scopes – they are executed

14

a[∗] −→

a[0]

a[1]

. . .

a[N]

Figure 2.4: Handling Array accesses

more than once and likely reuse memory blocks in each iteration. More sophisticated

heuristics are possible.

This idea of running the analysis on small parts of the program is only enabled by the

conditional nature of the analysis. An unconditional analysis, like the must analysis,

starts in the worst possible state to accommodate an arbitrary and unknown history.

It is essential to remember as much history as possible and to avoid resetting the state.

Consequently, these analyses are performed on the entire program.

A Conditional analysis, on the other hand, does not claim anything about the unknown

history and therefore starts in the best possible state. Consequently, there is no harm

in starting and stopping the analysis anywhere in the program. The results of the

conditional analysis only apply to the part of the program the analysis ran on. The per-

sistence scope heuristic therefore has to make the scopes large enough for the persistence

constraint to matter but small enough to allow persistence at all.

2.3 Unknown Accesses

All analyses considered so far had an update function of the form state → B → state,

which implicitly assumes that we know the memory block we are accessing. Consider

the following program:

int index = read_sensor ();

return array[index];

Static analysis is unable to determine which memory block the return statement accesses

because the value of index is only known at runtime. However, the access clearly influ-

ences the cache so it is unsound to ignore it. We define an update function to handle

this case.

15

As shown in Figure 2.4, this new update function takes a set of blocks instead of a single

block and joins all potential results.

update(S,B) =
⋃
b∈B

update(S, b)

However, this definition is hard to compute and hard to reason about. For specific anal-

yses, we give simpler but equivalent formulas:

Must update(S,B) = λb.min(S(b) + 1, k)

Conditional must update(S,B) = λb.min(S(b) + 1, k)

May update(S,B) = λb.

0 b ∈ B

S(b) otherwise

Conflict counting update(S,B) = S ∪B

These unknown accesses pose a significant danger to precision: Especially for the latter

two, the loss of information is enormous. One of the central goals of this thesis is to make

these accesses more tangible and reduce their harmful impact on analysis precision.

Chapter 3

WCET Analysis by Abstract

Interpretation

In this chapter, we present our timing analyzer llvmta. All analyses developed in this

thesis were implemented and evaluated using this tool. It supports the ARM instruction

set. As an academic tool we chose not to model any particular hardware. Instead our

target hardware is freely configurable and supports different generic hardware concepts.

In order to understand the inner workings of our analyzer, we follow a small example

program as it passes through the four stages of analysis.

c = 0

/* loop bound: 100 */

while (x > 0) {

c++;

}

...

→

mov r0 0
str r0 [c]
b cond

ldr r1 [x]
cmp r1 0
ble end
b body

ldr r0 [c]
add r0 r0 1
str r0 [c]
b cond

. . .

Figure 3.1: Compilation

16

17

mov r0 0

{r0 = 0}
str r0 [c]

{r0 = 0, [c] = 0}
b cond

ldr r1 [x]

{r0 = 0, [c] = 0}
cmp r1 0

{r0 = 0, [c] = 0}
ble end

{r0 = 0, [c] = 0}
b body

ldr r0 [c]

{r0 = 0, [c] = 0}
add r0 r0 1

{r0 = 1, [c] = 0}
str r0 [c]

{r0 = 1, [c] = 1}
b cond

... →

mov r0 0

{r0 = 0}
str r0 [c]

{r0 = 0, [c] = 0}
b cond

ldr r1 [x]

{}
cmp r1 0

{}
ble end

{}
b body

ldr r0 [c]

{}
add r0 r0 1

{}
str r0 [c]

{}
b cond

...

Figure 3.2: Value Analysis

3.1 Compilation

Most timing analyzers perform their analysis on the machine language binary, applying

decompilation techniques to recover high-level properties like control-flow graphs. How-

ever, performing timing analysis as part of the compilation has many advantages: we

can easily exploit the high-level description of the program and reuse analyses already

performed by the compiler. Our analyzer is therefore implemented inside the LLVM

compiler framework [12].

This first step transforms the example code into ARM assembly language (Figure 3.1).

High-level features (like global variable names and the control flow graph) have been

retained. The program is now in a form our analysis can operate on.

3.2 Value and Loop Bound Analysis

We then perform a value analysis (Figure 3.2). In our tool, this is a constant propagation

analysis on register contents and memory. The most important class of constants are

addresses – knowing the target address of memory accesses is paramount (Section 2.3).

18

The other purpose of the value analysis is to determine loop bounds, i.e. upper bounds

on the number of loop iterations. Although loop bounds can and sometimes must be

specified manually, the analysis automatically infers them where possible as a matter of

convenience. Our tool uses LLVM’s Scalar Evolution analysis pass for this purpose.

The result is depicted in Figure 3.2. Our example program is tagged with constant

value annotations. The example also demonstrates the fixed-point iteration technique:

in the initial iteration, the analysis determines wrong information that is corrected by

the subsequent iterations.

3.3 Microarchitectural Analysis

The program is analyzed at the microarchitectural state level (Figure 3.3). For the sake

of clarity we only present a data cache must analysis, ignoring other components like

instruction caches and pipelines. Every memory access that cannot be unanimously

classified as a hit leads to a state graph split. Afterwards, the states are joined again in

order to keep the number of states at bay. Where a hit can be guaranteed (e.g. the loop

body), the graph stays linear and the hit access time can be assumed.

In reality, the states not only contain the must cache state but also pipeline state, must

and may cache state for the instruction and the data cache, persistence state for the

instruction and data cache, etc. Computing one state graph for each component and

combining the results in the end unfortunately introduces too much overestimation to

be worthwhile [13].

The state graph is further complicated by trace partitioning [14], which we use to peel

the first loop iteration (virtual loop peeling) and to distinguish multiple calls of the same

function. For the sake of simplicity we ignore trace partitioning in this thesis.

3.4 Path Analysis

Finally, the tool determines the worst-case path through the state graph (Figure 3.4).

In order to do so, we encode the state graph as an integer linear program (ILP) and

then maximize the execution time. We encode the graph by a frequency variable f(e)

for each edge indicating how often the edge is taken and a path constraint for each node,

forcing the result to be a valid path (i.e. if the program flow enters a node n times it

also has to leave the node n times). The loop bounds constrain the number of times

a backwards edge can be taken to be proportional to the number of times the loop is

entered. Other analyses may add further constraints, e.g. persistence constraints.

19

[{}, {}]

[{}, {}]

[{c}, {}]

[{c}, {}]

[{c}, {}]

[{c}, {}]

[{x}, {c}]

[{x}, {c}]

[{x}, {c}]

[{x}, {c}] . . .

[{x}, {c}]

[{c}, {x}]

[{c}, {x}]

[{c}, {x}]

[{c}, {x}]

1 cycle

10 cycles

0 cycles

1 cycle

0 cycles

1 cycle

10 cycles

0 cycles

1 cycle

0 cycles

1 cycle

2 cycles

1 cycle

1 cycle

1 cycle

1 cycle

1 cycle

1 cycle

Figure 3.3: Microarchitectural Analysis

20

1

2

3

4

5

6

7

8

9

10 . . .

11

12

13

14

15

1 × 1 cycle

1 × 10 cycles

1 × 0 cycles

0 × 1 cycle

0 × 0 cycles

1 × 1 cycle

1 × 10 cycles

1 × 0 cycles

100 × 1 cycle

100 ×0 cycles

101 ×1 cycle

100 ×2 cycles

100 ×1 cycle

100 ×1 cycle

100 ×1 cycle

100 ×1 cycle

100 ×1 cycle

1 ×1 cycle

maximize
∑

e∈edges
cost(e)f(e)

subject to:

Flow Constraints
. . .

f(4, 6) + f(15, 6) = f(6, 7) + f(6, 9)
. . .

Loop Bound
f(15, 6) ≤ 100f(4, 6)

Persistence Constraint
f(6, 7) ≤ f(4, 6)

Start Constraint
f(1, 2) = 1

Figure 3.4: Path Analysis

Chapter 4

Write-back Cache Analysis

Despite their performance benefits, write-back caches are mostly ignored in static WCET

estimation. The main reason is that write-back caches are more difficult to analyze.

Knowing when a store ends up accessing memory requires knowing when the corre-

sponding cache line is evicted from the cache. Unfortunately, there are often multiple

possible eviction points due to uncertainty about the state of the cache. Without a ded-

icated analysis, the analysis is forced to assume a write back on each possible eviction

point (i.e. on each cache miss). This significantly overestimates the WCET, defeating

the point of using a write-back cache in the first place.

In 1996, Alt et al [9] published the first and to our knowledge only abstract interpretation-

based write-back analysis. It is based on the must and may analyses and attempts to

track which cache lines are dirty and which are clean. However, 8 years later Stephan

Thesing states that “Write-back cannot be analyzed precisely due to the bad worst-case

behavior” [15, p. 69]. And indeed, as we will see in the evaluation, the analysis is often

ineffective. In this thesis we develop and evaluate a novel analyses for write-back caches.

In addition to the “dirtiness analysis”, a slight variation of the analysis by Alt et al.,

we perform a trace-based analysis we call the “store bound”. It exploits that all write

backs are only delayed executions of earlier stores. The number of stores in the program

thereby bounds the number of write backs. Since this observation is a linear constraint

over edge frequencies, the path analysis can efficiently enforce it.

Both analyses give poor results on their own. They unlock their true potential when

combined. Storing to an already dirty cache line cannot cause additional write backs,

allowing us to ignore these stores in our bound. Our analysis therefore employs the

dirtiness analysis to identify provably dirty cache lines in addition to its original purpose.

Notation Write-back caches have to differentiate between loads and stores. The fol-

lowing analyses will therefore have two update functions instead of one: The function

21

22

updateL performs a load of the given block while the function updateS performs a store

to the given block.

4.1 Dirtiness Analysis

One central purpose of the Dirtiness Analysis is to statically prove or refute whether a

given memory access causes a write back. This part is already handled by Alt et al.’s

analysis [9], which contains three parts:

1. A function mapping blocks to a boolean lattice {C,>}1, (where C stands for clean

and > stands for potentially dirty),

2. A must analysis, and

3. A may analysis.

For notational convenience we only describe the update function for the first part and

assume that the may and the must analysis are updated independently. We use the

terms S.may and S.must to refer to the state of the may and must analysis before the

current update. Furthermore, we define the following helper function:

victims(S, x) := {b ∈ B|S(b) < k ∧ update(S, x)(b) = k}

The analysis follows two rules: a cache element is clean until there is a store to it and

it becomes clean again when it is provably evicted (i.e. evicted from the may state).

Formally:

updateL(S, x) = λb.

C if b ∈ victims(S.may, x)

S(b) else
(4.1)

updateS(S, x) = λb.

> if b = x

updateL(S, x) otherwise
(4.2)

The join is the point-wise join of the functions.

The core part of the analysis is the write-back classification function, which states

whether an access writes back. We classify an access as potential write back if it might

evict a potentially dirty element.

1Names are changed to our notation for consistency.

23

may-wb(S, x) = ∃b ∈ B.may-evict(S, x, b) ∧ S(b) 6= C

The predicate may-evict(S, x, b) states whether accessing x might evict b from cache

state S. In our implementation

may-evict(S, x, b) = S.may(b) < k ∧ update(S.must, x)(b) = k

Improving this classification (e.g. by taking persistence into account) remains future

work.

The dirtiness analysis also identifies provably dirty cache lines. For this purpose, the

per-block classification is supplemented with an additional lattice element D (“dirty”).

To obtain a lattice, we additionally define a ⊥ element. This is just a technicality – no

block is ever mapped to ⊥. With > := {D,C} and ⊥ := ∅ our domain is P({D,C})
ordered by the subset-relation.

The update function changes in two ways: First, we assign an element to D if it is

written to. Second, a block might become clean if it is evicted from the must cache as

only cached blocks can be dirty.

updateL(S, x) = λb.

C if b ∈ victims(S.may, x)

S(b) ∪ C if b ∈ victims(S.must, x) ∧ b /∈ victims(S.may, x)

S(b) otherwise

(4.3)

updateS(S, x) = λb.

D if b = x

updateL(S, x) otherwise
(4.4)

The may-wb classification function remains unchanged. For now, the only improvement

due to the D-classification is the ability to detect guaranteed write-backs.

must-wb(S, x) = ∀b ∈ blocks.may-evict(S, x, b)⇒ S(b) = D

4.2 Dirtifying Stores

The biggest weakness of the dirtiness analysis becomes apparent in the following example

program. Assume a directly mapped cache where x, a, b, and c map to the same cache

24

set.

/* The cache is clean at this point */

store(x);

if (...) load(a);

if (...) load(b);

if (...) load(c);

...

Our dirtiness-analysis states that every single memory access can be a write back. This

is impossible since the cache only defers stores, it does not generate new ones. With

only one store, there can only be one write back. In general, the number of write backs

in the program is upper-bounded by the number of stores in the program.

The constraint is as a linear relationship between state graph edges: the sum of all

edges representing stores is larger than the sum of all edges representing write backs.

We formulate this constraint in the path analysis ILP, making the solver pick the worst-

case locations for the write backs automatically. All other accesses are safely assumed

not to write back. We write down the constraint formally, with WB referring to the set

of write-back edges and STR referring to the set of store edges:

∑
e∈WB

f(e) ≤
∑

e∈STR

f(e) (store bound)

The above constraint is only applicable in limited circumstances, as the cache is assumed

to be clean at the beginning of the program. We refer to this as the initial cleanness

assumption. In a multi-tasked system (which includes most real-time systems) it is

unfortunately false. Previous tasks might have deferred some stores beyond their own

runtime by leaving dirty data in the cache.

There are two ways to handle task interference. First, one can assume it does not happen

and account for it later. This usually involves a response time analysis that knows about

the different tasks in the system and determines how they can interfere. In the context

of the write-back analysis, this means that the WCET analysis assumes a clean cache

while the higher-level analysis determines how many and which additional write backs

can occur.

The alternative is to already assume arbitrary interference during the WCET analysis.

In our case, this means that the dirtiness analysis has to initially assume that all cached

blocks might be dirty. We also generalize the store bound to take third-party induced

write backs into account.

∑
e∈WB

f(e) ≤
∑

e∈STR

f(e) + IDCB (generalized store bound)

25

IDCB is an upper bound on the initially d irty cacheblocks. In our case it will always

be the size of the cache, but a more sophisticated analysis might be able to determine a

better bound.

While the store bound successfully limits the number of write backs, it fails to make

a strong argument for write-back caches. After all, a write-through cache causes one

memory access per store as well while being much simpler to analyze. Where is the

advantage of the write-back mechanism? Let us recall the core idea of write-back: when

a store happens, the result is not written to memory immediately. Instead, the modified

data is kept in the cache until the cache line is evicted, getting further stores into this

cache line for free. To prove that these free stores happen (which is the only way to carry

over the performance benefit into WCET reductions), we need to identify provably dirty

cache lines. Luckily, we already have the tool for this: the dirtiness analysis. The analysis

can separate stores that go to provably dirty cache lines from stores to potentially clean

cache lines (which we call “dirtifying stores” as they might turn a cache line dirty).

As the former stores are for free, the ILP constraint only needs to consider the latter

ones. This insight leads to the final ILP constraint (DFS being the set of dirtifying store

edges): ∑
e∈WB

f(e) ≤
∑

e∈DFS

f(e) + IDCB (dirtifying store bound)

4.3 Evaluation

In this section, we evaluate our write-back analysis. First, we compare the bounds on a

write-back system with the bounds on a write-through system. We show that write-back

caches lower bounds by 20% or more in many cases, making write-back caches not only

possible but also desirable for hard real-time systems.

Next, we evaluate the initial cleanness assumption. We define cleanup costs as the

number of cache lines still dirty at the end of the program. Taking these hidden costs

into account, we show that neither assumption consistently yields better results. The

optimal choice varies from program to program.

Third, we show that the dirtifying store bound is superior to both its constituents. To

this end we also prove our claim that the dirtiness analysis is ineffective on its own.

Fourth and last we evaluate the analysis cost of our write-back analysis. We show that

the analysis introduces reasonable cost (it takes twice as long in the worst observed

testcase) and is sometimes even cheaper than a write-through analysis.

26

Preliminaries

Our evaluation is based on the Mälardalen benchmark suite [16]. We additionally gener-

ated seven testcases2 with SCADE [17], an industry-strength commercial model-based

design tool.

For reasons of space and clarity, we cannot present all testcases for a given measurement.

However, omitted benchmarks are still included in the geometric mean. The complete

evaluation data can be found online3

All evaluation results were generated by our timing analyzer llvmta. For this evaluation,

we model a 2-way and an 8-way LRU data cache with a cache line size of 16 bytes and

32 cache sets (for a total of 1 and 4 KiB). The modelled machine contains a 5 stage

inorder pipeline and a dedicated 2-way LRU instruction cache (also with a line size of 16

bytes and 32 cache sets). Unless explicitly stated otherwise, we assumed nothing about

the initial cache state.

Since our analyzer cannot handle some of the more involved features used by the LLVM

optimizer, all testcases are compiled without optimization. This is not necessarily un-

realistic [18]. However, the lack of efficient register allocation frequently causes needless

spills and reloads. While a write-back cache can handle both accesses inside the cache,

a write-through cache waits for memory on each register spill. For optimized programs,

our evaluation should therefore be taken with a grain of salt.

4.3.1 Write-back versus Write-through

Before delving into any details, we first present that the dirtifying store bound reduces

the WCET bounds compared to the write-through case (Figure 4.1). The y-axis is

normalized to the WCET bound of the write-through case. The bars show the bound

increase in percent (i.e. lower is better). The graph shows that most testcases profit

from the write-back cache, with an average bound reduction of 15-20%. The graph also

exhibits two surprising properties:

Increasing the cache size sometimes increases the worst-case execution time.

This can be observed in insertsort, for example. The reason for this increase is that

we assume nothing about the initial cache. In particular, the dirtifying store bound

assumes it has to write back the entire initial content of the cache unless it can prove

otherwise. Increasing the size of the cache from 1 KiB to 4 KiB adds 192 potentially

2cruise-control, digital-stopwatch, es-lift, flight-control, pilot, roboDog, trolleybus
3http://embedded.cs.uni-saarland.de/data/tblass_master.tar.gz

http://embedded.cs.uni-saarland.de/data/tblass_master.tar.gz

27

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p

in
t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n

n
e-

co
m

p
le

x

jf
d

ct
in

t

lm
s

m
at

m
u

lt

m
in

ve
r

n
d

es

n
si

ch
n

eu

p
ri

m
e

q
u

rt

se
le

ct

sq
rt

st
at

em
at

e

cr
u

is
e-

co
n
tr

ol

d
ig

it
al

-s
to

p
w

at
ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

M
al

ar
d

al
en

-G
eo

m
ea

n

S
C

A
D

E
-G

eo
m

ea
n

−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70

W
C

E
T

in
cr

ea
se

ov
er

w
ri

te
-t

h
ro

u
g
h

(p
er

ce
n
t)

2-way cache (1 KiB)

8-way cache (4 KiB)

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p

in
t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n

n
e-

co
m

p
le

x

jf
d

ct
in

t

lm
s

m
at

m
u

lt

m
in

ve
r

n
d

es

n
si

ch
n

eu

p
ri

m
e

q
u

rt

se
le

ct

sq
rt

st
at

em
at

e

cr
u

is
e-

co
n
tr

ol

d
ig

it
al

-s
to

p
w

at
ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

M
al

ar
d

al
en

-G
eo

m
ea

n

S
C

A
D

E
-G

eo
m

ea
n

−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70

W
C

E
T

in
cr

ea
se

ov
er

w
ri

te
-t

h
ro

u
gh

(p
er

ce
n
t)

Figure 4.1: Effectiveness of the write-back analysis. Both diagrams are normalized
to the write-through case. Top: blocking stores, Bottom: unblocked stores

dirty cache lines. However, virtually all memory accesses in insertsort are unknown and

therefore do not benefit from the write-back policy. In the end, the analysis predicts

104 additional write backs (the other 88 lines are never written back). These additional

write backs cancel out the reduced number of misses caused by the larger cache. The

write-through system, on the other hand, is only affected positively by the larger cache

and therefore improves compared to the write-back system.

Write-through often achieves lower bounds than write-back. This mainly con-

cerns the testcases that also become worse with a greater cache size. Figure 4.2 shows

the underlying cause: the left side contains the testcases that worsened under the write-

back analysis while the right side contains the testcases that improved or stayed the

same. Performing badly under write-back apparently correlates with performing many

unknown accesses. The testcases on the right side that also have low address precision

tend to have only small improvements as well. This difference is probably due to un-

known stores. In a write-through cache, the cache state is only influenced by the store if

the access was a cache hit. An unknown store can therefore never evict an element from

the cache. For a write-back cache, on the other hand, an unknown store is disastrous:

not only does it fail to gain any advantage over write-through (an unknown store is

28

b
so

rt
10

0
co

m
p
re

ss

fd
ct

in
se

rt
so

rt
jf

d
ct

in
t

m
at

m
u
lt

m
in

ve
r

n
si

ch
n
eu

se
le

ct

a
d
p

cm b
s

cn
t

cr
c

ff
t1 fi
r

lc
d
n
u
m

lm
s

lu
d
cm

p

n
d
es n
s

q
so

rt
-e

x
a
m u
d

d
ig

it
a
l-

st
op

w
at

ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

p
il
ot

ro
b

oD
og

tr
ol

le
y
b
u
s

0

10

20

30

40

50

60

70

80

90

100

M
em

or
y

ac
ce

ss
es

w
it

h
p
re

ci
se

ly
k
n
ow

n
ad

d
re

ss
(p

er
ce

n
t)

Figure 4.2: Diagram of the address precision distribution

always dirtifying), it also has to mark all memory blocks as potentially dirty, crippling

the dirtiness analysis.

The bottom part of Figure 4.1 contains the WCET bounds if the unblocked stores option

is enabled. In the default machine model the processor waits for stores to complete.

The unblocked stores option allows the processor to asynchronously schedule the store

and immediately continue execution. It only has to wait if another memory access is

performed before the store completes, as only one memory access can be in flight at any

time.

Allowing the processor to do useful work instead of waiting for the store reduces the lead

of the write-back system. Write-through now performs its stores almost for free as well,

assuming the stores are sufficiently far away from other memory accesses. Write-through

therefore benefits more from the unblocked stores than write-back. The graph clearly

shows that the write-back bound grows relative to the write-through bound.

In conclusion, we claim that using a write-back cache together with our analysis improves

the bounds on all programs that do not have too many unknown accesses. Our evaluation

also shows that adding a store buffer already achieves a sizeable WCET improvement

while avoiding the complexity of write-back caches.

It is striking, though, that testcases like the insertsort benchmark perform so poorly

under write-back caches. The testcase consists of two nested loops that operate on a 44

29

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p

in
t

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

lm
s

lu
d

cm
p

m
a
tm

u
lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu

p
ri

m
e

q
so

rt
-e

x
a
m

q
u

rt

se
le

ct u
d

cr
u

is
e-

co
n
tr

ol

d
ig

it
al

-s
to

p
w

at
ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

o
l

p
il

ot

ro
b

oD
og

tr
ol

le
y
b

u
s

−8,000

−6,000

−4,000

−2,000

0
−832

832

W
C

E
T

in
cr

ea
se

in
cy

cl
es

2-way associative

Initially clean
With cleanup costs

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p

in
t

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

lm
s

lu
d

cm
p

m
a
tm

u
lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu

p
ri

m
e

q
so

rt
-e

x
a
m

q
u

rt

se
le

ct u
d

cr
u

is
e-

co
n
tr

ol

d
ig

it
a
l-

st
op

w
at

ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

o
l

p
il

ot

ro
b

oD
og

tr
ol

le
y
b

u
s

−8,000

−6,000

−4,000

−2,000

0

2,000

4,000

−3,328

3,328

W
C

E
T

in
cr

ea
se

in
cy

cl
es

8-way associative

Figure 4.3: The effect of assuming an initially clean cache. The baseline is the write-
back WCET assuming a potentially dirty initial cache. The left bar shows the change of
bound after assuming the initially clean cache while the right bar additionally accounts

for the cost of writing back all outstanding dirty lines at the end of the program

byte array. The program does not touch more than three cache lines and extensively

writes on them. One would expect write-back caches to excel in this scenario; they

handle all stores in the cache, thereby reducing the number of memory access from over

a hundred to three. In the next section, we present an array-aware cache analysis that

addresses this issue.

4.3.2 The Initial Cleanness Assumption

In Section 4.2 we presented two possible assumptions for the initial cache state. Either

we assume the cache is initially clean or we assume the cache might initially contain

dirty cache lines (i.e. assume nothing). In this section, we evaluate the effect of these

assumptions on the WCET bound.

The WCET of the program only increases if we assume the cache might contain dirty

lines. However, it does not make sense to directly compare these WCET bounds anyway:

assuming a clean cache and leaving dirty lines in the cache allows a program to avoid

ever storing the data to memory. A rental car has to be returned at the same fuel level

as when it was borrowed; the customer cannot use up all the fuel and then avoid ever

filling the tank. In the same vein, programs should either accept a dirty cache in the

beginning or clean it up in the end. This is accounted for in the cleanup cost, which

30

states how many cache lines are still dirty by the end. Technically, we compute the

cleanup cost during the path analysis(cf. Section 3.4) as

min(FDCB,
∑

e∈DFS

f(e)−
∑

e∈WB

f(e))

FDCB (F inal D irty C acheblocks) is defined as the number of cache lines the dirtiness

analysis considers potentially dirty at the end of the program. Figure 4.3 shows the

WCET bound under both assumptions. The baseline assumes nothing about the initial

cache. The left bar present the WCET under the clean-cache assumption, whereas the

right bar additionally takes the cleanup costs into account. Note that the diagram

shows the absolute difference in cycles rather than the relative difference we usually

show to account for the different testcase sizes. In this case, the absolute value is more

appropriate because the initial cache state represents a one-time cost that does not scale

with program size.

We can see that many programs apparently account for writing back the entire cache.

There are 32 · 2 = 64 lines in the cache and writing back one of them takes 13 cycles

in our model4, so writing back the entire cache takes 13 · 64 = 832 cycles, which is the

most common bound reduction. We can also see that the cleanup costs do not make

any difference in these cases. For those testcases, assuming an initially clean cache is

a net win. For es-lift the difference is even too large to include into the diagram and

amounts to 19000 cycles including cleanup costs. The reason for this extreme difference

is that the dirtiness analysis is crucial for es-lift (Figure 4.4): on a 2-way cache, it refutes

almost 90% of the potential write backs. Without the initial cleanness assumption, if

only refutes about 2%. Testcases like compress, on the other hand, do not benefit at

all from the assumption. For these testcases, assuming a clean cache is a net loss as it

needlessly weakens the dirtifying store bound.

As we see in the lower part of Figure 4.3, increasing the associativity to 8 aggravates

these effects. Since it quadruples the number of lines in the cache, writing back the entire

cache now takes 3328 cycles. Consequently, the cleanup costs grow as well. About a third

of the testcases perform worse under the clean-cache assumption. However, roboDog and

cruise-control reduce their bound by more than 8000 cycles if the cache can be assumed

clean. Apparently, it depends on the program whether assuming the cache to be initially

clean increases or reduces the bound.

49 cycles per memory access + 1 cycle per word

31

b
s

b
so

rt
10

0

co
m

p
re

ss

fd
ct fi
r

in
se

rt
so

rt

lc
d

n
u

m

lm
s

lu
d

cm
p

m
at

m
u

lt

m
in

ve
r

n
d

es

q
u

rt

se
le

ct

sq
rt u
d

cr
u

is
e-

co
n
tr

ol

es
-l

if
t

ro
b

oD
o
g

tr
ol

le
y
b

u
s

0

10

20

30

40

50

60

70

80

90

100

R
ef

u
te

d
w

ri
te

b
a
ck

s
(p

er
ce

n
t)

Dirtiness analysis
Store bound

Dirtifying store bound

b
s

b
so

rt
1
00

fd
ct fi
r

in
se

rt
so

rt

lc
d

n
u

m

lm
s

lu
d

cm
p

m
at

m
u

lt

m
in

ve
r

n
d

es

q
u

rt

se
le

ct

sq
rt u
d

cr
u

is
e-

co
n
tr

ol

es
-l

if
t

ro
b

oD
og

tr
ol

le
y
b

u
s

0

10

20

30

40

50

60

70

80

90

100

R
ef

u
te

d
w

ri
te

b
ac

k
s

(p
er

ce
n
t)

Figure 4.4: Comparison of the sub-analyses. The diagram shows for how many cache
misses the analysis proved a write back impossible.

Top: Initially unknown, Bottom: Initially clean

4.3.3 The analysis components

After evaluating the analysis as a whole, we now focus on the two components of the

dirtifying store bound: the dirtiness analysis and the store bound. The upper part of

Figure 4.5 shows the bound increase compared to the combined analysis. Running the

Dirtiness Analysis on its own means allowing the analysis to predict more write backs

than the sum of stores in the program and initially dirty cache lines. Running only

the store bound means that the analysis does not attempt to track dirty cache lines; it

assumes that each store may cause a write back.

The graph clearly shows that combining the two analyses is beneficial. Both sub-analyses

perform significantly worse in isolation. This confirms that the dirtifying store bound

is necessary for tight WCET estimation: while the dirtiness analysis is too sensitive to

unknown accesses, the store bound fails to take advantage of multiple stores onto the

same cache line.

32

b
s

b
so

rt
10

0

co
m

p
re

ss

fd
ct fi
r

in
se

rt
so

rt

lc
d
n
u
m

lm
s

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es

q
u
rt

se
le

ct

sq
rt u
d

cr
u
is

e-
co

n
tr

ol

es
-l

if
t

ro
b

oD
og

tr
ol

le
y
b
u
s

0

10

20

30

5

R
el

at
iv

e
W

C
E

T
in

cr
ea

se
(p

er
ce

n
t)

Dirtiness Analysis
Store Bound

b
s

b
so

rt
10

0

co
m

p
re

ss

fd
ct fi
r

in
se

rt
so

rt

lc
d
n
u
m

lm
s

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es

q
u
rt

se
le

ct

sq
rt u
d

cr
u
is

e-
co

n
tr

ol

es
-l

if
t

ro
b

oD
og

tr
ol

le
y
b
u
s

0

10

20

30

5

R
el

at
iv

e
W

C
E

T
in

cr
ea

se
(p

er
ce

n
t)

Figure 4.5: Relative WCET increase of the dirtiness analysis and the store bound
compared to the dirtifying store bound. Testcases differing from the baseline by less
than 5% have been left out. Top: initially unknown 2-way cache, Bottom: initially

clean 2-way cache

Another observation is that the store bound acts as a safety net. If the dirtiness analysis

produces extremely bad results (like in insertsort), the store bound prevents the bound

from growing too high. In particular, the store bound never allows more memory accesses

than the same program on a write-through, write-allocate cache.

4.3.4 Analysis Cost

Finally, we present the analysis runtime costs of our write-back analysis. Even though

we did not focus on performance, it is important that the analysis is not prohibitively

expensive. Figure 4.6 shows the change in analysis runtime. As expected, write back

analyses takes longer in most testcases, taking on average about 15% additional run-

time with a maximum of about 40%. The memory consumption (Figure 4.7) increases

by averagely 3-5%, ranging up to 20% for some testcases. Interestingly, the memory

consumption and the runtime are even reduced in some cases. The write-back system

probably produces a state graph that allows for more joins and is consequently smaller.

33

a
d
p

cm b
s

b
so

rt
1
0
0

cn
t

co
m

p
re

ss cr
c

ex
p
in

t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n
n
e-

co
m

p
le

x

jf
d
ct

in
t

lc
d
n
u
m

lm
s

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

p
ri

m
e

q
so

rt
-e

x
am

q
u
rt

se
le

ct

sq
rt

st
at

em
at

e

u
d

cr
u
is

e-
co

n
tr

o
l

d
ig

it
a
l-

st
op

w
a
tc

h

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

p
il
o
t

ro
b

o
D

o
g

tr
ol

le
y
b
u
s

M
a
la

rd
al

en
-G

eo
m

ea
n

S
C

A
D

E
-G

eo
m

ea
n

−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

A
d
d
it

io
n
a
l

A
n
a
ly

si
s

T
im

e
(p

er
ce

n
t)

2 ways (1 KiB)

8 ways (4 KiB)

a
d
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p
in

t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n
n
e-

co
m

p
le

x

jf
d
ct

in
t

lc
d
n
u
m

lm
s

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

p
ri

m
e

q
so

rt
-e

x
a
m

q
u
rt

se
le

ct

sq
rt

st
at

em
a
te u
d

cr
u
is

e-
co

n
tr

o
l

d
ig

it
a
l-

st
o
p
w

at
ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

o
l

p
il
ot

ro
b

o
D

o
g

tr
o
ll
ey

b
u
s

M
al

a
rd

a
le

n
-G

eo
m

ea
n

S
C

A
D

E
-G

eo
m

ea
n

−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

A
d
d
it

io
n
a
l

A
n
al

y
si

s
T

im
e

(p
er

ce
n
t)

Figure 4.6: Analysis runtime. The graphs are normalized to the write-through case.
Top: blocked stores, Bottom: unblocked stores

a
d
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p
in

t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n
n
e-

co
m

p
le

x

jf
d
ct

in
t

lc
d
n
u
m

lm
s

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

p
ri

m
e

q
so

rt
-e

x
am

q
u
rt

se
le

ct

sq
rt

st
at

em
at

e

u
d

cr
u
is

e-
co

n
tr

ol

d
ig

it
a
l-

st
o
p
w

a
tc

h

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

p
il
o
t

ro
b

o
D

o
g

tr
o
ll
ey

b
u
s

M
a
la

rd
a
le

n
-G

eo
m

ea
n

S
C

A
D

E
-G

eo
m

ea
n

−20

−10

0

10

20

30

40

50 2 ways (1 KiB)

8 ways (4 KiB)

a
d
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

ex
p
in

t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt

ja
n
n
e-

co
m

p
le

x

jf
d
ct

in
t

lc
d
n
u
m

lm
s

lu
d
cm

p

m
a
tm

u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

p
ri

m
e

q
so

rt
-e

x
am

q
u
rt

se
le

ct

sq
rt

st
at

em
at

e

u
d

cr
u
is

e-
co

n
tr

o
l

d
ig

it
al

-s
to

p
w

a
tc

h

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol

p
il
ot

ro
b

oD
og

tr
o
ll
ey

b
u
s

M
al

a
rd

al
en

-G
eo

m
ea

n

S
C

A
D

E
-G

eo
m

ea
n

−20

−10

0

10

20

30

40

50

P
ea

k
M

em
or

y
U

sa
ge

(p
er

ce
n
t)

Figure 4.7: Peak memory consumption. The graphs are normalized to the write-
through case. Top: blocked stores, Bottom: unblocked stores

Both, the path analysis and the microarchitectural analysis scale with the size of the

graph; it therefore dominates analysis runtime.

We also present the changes in runtime and memory consumption if we enable the un-

blocked stores mechanism. Enabling this option has an important effect on the microar-

chitectural state graph: two microarchitectural states that disagree about the pending

memory accesses cannot be joined. In particular, the write-back and no write-back paths

are joined much later, increasing the computational load of the analysis. The bottom

part of Figure 4.6 shows how the write back analysis performs under this machine model.

The runtime cost stays at 10-20% on average, reaching up to 100% for some testcases.

34

The change mainly seems to increase the variance of the runtime. Memory consumption

behaves similarly, confirming our hypothesis that a larger state graph is the underlying

cause.

Chapter 5

Array-aware Cache Analysis

Real-world programs often contain memory accesses whose address is computed at run-

time. These dynamic accesses occur in a variety of circumstances. The most common

ones are (from less structured to more structured): absolute addressing, pointer accesses,

and array addressing. Examples for each are shown in Figure 5.1. Absolute addressing

only occurs in low-level code, which sometimes circumvents the type system and other

high-level language features. Unless the address computations can be performed stati-

cally by the value analysis, there is no way to determine the target of the access. In this

case we cannot do better than the general unknown access update (Section 2.3).

The other two access types are both core features of many higher-level languages. Point-

ers are a common abstraction for addresses and allow type-safe and platform-agnostic

use of indirection. Arrays, a fundamental data structure in imperative languages, repre-

sent a fixed-size collection of equal elements. Unlike pointers, arrays are restricted to a

statically known interval [base, base + size] in a well-defined program1. Only the exact

1This observation might not hold on systems that load data speculatively. In Section 6 we discuss
solutions to this problem

unsigned char Get_Data_Byte (uint32_t addr)

{

return *(unsigned char *)(DATA_MEM_BASE+addr);

}

(a) Absolute Addressing

ptr = cond ? &x : &y;

value += *ptr;

*ptr = 0;

(b) Pointer Access

for (int i=0; i<N; i++)

sum += array[i];

(c) Array Access

Figure 5.1: Kinds of dynamic accesses

35

36

destination of the access inside this interval is unknown. It is this restriction we exploit

in our array-aware analyses. We therefore disregard pointers in this thesis.

Prior work on improving unknown-address handling has concentrated on devising new

analyses capturing the relation between two accesses. Simon Wegener [19] developed an

analysis that virtually unrolled loops to identify array accesses in subsequent iterations

targeting the same block. In Figure 5.1(c), the analysis discovers that a[i + 1] targets

the same block as a[i]2 and therefore always hits the cache. No knowledge about the

address a[i] refers to is required.

Another branch of research focuses on understanding the array access pattern. Huynh

et al. [20], for example, developed an analysis based on Cache Miss Equations [21]. By

analysing the loop iteration variables, they determine fine-grained persistence informa-

tion.

Both approaches are highly dependent on a regular loop structure. In contrast, our

analyses make no assumptions about the shape of loops; they do not even recognize

loops. Instead, they are based on conflict sets of arrays. By tracking conflicting array

accesses, they restrict how often an array can age other memory blocks. In this thesis,

we develop an array-aware must analysis based on this principle. We also develop an

array-aware persistence analysis that is able to prove persistence of regular memory

blocks as well as entire arrays. These analyses are less powerful since they are oblivious

to the loop iteration order. In exchange, they are able to analyze structured as well as

unstructured code without depending on any patterns.

Notation We refer to the set of all arrays by A. An array is defined as a contiguous

chunk of memory with a known starting address. It is important that accesses to this

array can be identified. We define a function blocks : A → P(B) to map all arrays to the

set of their blocks and the inverse function arrayof : B → P(A) that maps all blocks to

the arrays it belongs to (potentially ∅). For now, we assume that no block belongs to

more than one array. We discuss this restriction in Section 6.

In order to formalize abstract domains without excessive case distinctions, we addition-

ally define bounded multisets. These are sets that might contain elements multiple times

(i.e. {x} 6= {x, x}), but for each element there is a bound function that limits how often

an element might occur (i.e. bound(x) = 2⇒ {x} 6= {x, x} = {x, x, x}).

A bounded multiset SM is modeled by a multiplicity function. The usual set operations

are defined in Figure 5.2. To avoid confusion with traditional sets we add the subscript

M to all multiset operations.

2Assuming i is aligned to the cache line and elements of a are smaller than cache lines.

37

SM := S → N (5.1)

x ∪M y := λs.min(x(s) + y(s), bound(s)) (5.2)

x ∩M y := λs.min(x(s), y(s)) (5.3)

x ⊆M y := ∀s.x(s) ≤ y(s) (5.4)

x−M y := λs.max(x(s)− y(s), 0) (5.5)

Figure 5.2: Definition of bounded multisets

In addition, we define a saturated predicate that is true iff the multiset is saturated

with a given element.

saturated(SM , x) :⇔ (SM ∪M {x} = SM) (5.6)

5.1 Improving the Must Analysis

First, we present how dynamic array accesses affect the traditional must analysis and

point out the specific problems we want to tackle. Subsequently we present our first

approach and explain the subtle issues that make it unsuitable for a robust and precise

analysis. Finally, we present our revised analyses.

5.1.1 The Status Quo

The principal mechanism for dealing with unknown accesses has already been presented

in Section 2.3. However, the must update function completely ignores the accessed blocks

and unconditionally ages all blocks by one. Consider again the example in Figure 5.1(c).

Assume that the array consists of exactly two memory blocks per cache set and N > k.

After the loop, the must analysis will have aged all blocks N times, i.e. no previously

cached element will survive the loop. In reality, each block can only be aged once,

though, namely by the one block of the array that falls into the same cache set. In

the remainder of the chapter, we present a new analysis based on conflict sets which

prevents this over-aging and retains valuable must information across array-accessing

loops.

5.1.2 Array-Aware Must

Recall that the must analysis tracks the maximal age of a memory block (domain B →
N≤k). Additionally, the new analysis remembers a conflict (multi-)set of arrays that have

38

aged the block in the past. This allows us to recognize them and avoid the double-aging

discussed above. The domain is thus extended to B → N≤k × PM (A). For the sake of

clarity and brevity, we denote the elements of the per-block information as f(b).maxage

and f(b).conflict , respectively.

Before formally defining the analysis we explain it by example. We apply the analysis

to Figure 5.1(c). Recall that we assumed the array to occupy two blocks per cache set.

This implies that the array can only age each block in the cache twice. This relationship

is expressed in the conflict set. We define bound(array) := 2. Whenever the array is

accessed it is also added to the set. If the set is already saturated, we know that the

block has already been aged twice and cannot be aged further. If, for example, the block

x maps to (0, ∅) before the loop, the first iteration ages it to (1, {array}M). the next

iteration ages it to (2, {array , array}M). Subsequent iterations, however, do not age x

further since array is already saturated in the conflict set.

We specify our abstraction by a concretization function. The meaning of the maxage

bound remains the same as in the must analysis. The conflict multiset then restricts

the concretization. By our considerations above we know that the revised concretization

must fulfill two properties

1. If S(b).conflict = ∅, the concretization is identical to the must analysis

2. If saturated(S(b).conflicts,X) holds it must be impossible to age b beyond S(b).maxage

by accessing X arbitrarily often. In particular, this means that the analysis can

ignore accesses to X.

In addition, we require that any other values of the conflict set provide a smooth tran-

sition between the extreme values. This means that the age bound should only grow by

one after each access. Bounded multisets suit this requirement; elements can be added

one by one until the saturation point is reached, at which the set does not grow any

more.

At a first glance, the requirements above suggest that any element A in the conflict set of

block x translates to a block of A being younger than x. However, in this concretization

joining could only result in the intersection of the two conflict sets. In particular, the

analysis allows unlimited aging in the example above: after the first iteration, the state

at the end of the loop (1, {array}) is joined with the state at the beginning of the loop

(0, ∅). Since the latter contains a state where all elements of array are older than x, the

join of the two states must be (1, ∅); all the progress of the conflict set is erased.

This behaviour is clearly undesirable, in particular because the bound of the joined state

has increased compared to the initial state. Effectively, the analysis has paid a cache

39

slot for the array but has not gotten anything in return. To avoid this issue, we allow

the analysis to pay in advance for future array accesses. This allows the join partner

with lesser maxage to achieve a more favorable conflict set just before the join.

We model this prepayment by adding an additional term to the must concretization: an

abstract state maps to all concrete states that honor the maxage bound even if all the

prepaid accesses are redeemed.

γ(S) ={age : ∀b ∈ B. age(b) ≤ S(b).maxage︸ ︷︷ ︸
Must concretization

− |S(b).conflict −M arrayof(youngerage(b))|︸ ︷︷ ︸
prepaid array accesses not yet redeemed

}

where youngerage(b) := {b′ ∈ B : cacheset(b) = cacheset(b′) ∧ age(b′) < age(b)}

The update function looks like the must update function if the program accesses a

regular block. Accesses to arrays are handled differently. To simplify notation, we

define a separate update function for each case. As a convention, we refer to concrete

blocks by lowercase letters and to arrays by uppercase letters.

update(S, x) = λb.

(0, ∅) x = b

S(b) S(x).age ≤ S(b).age

(S(b).age+ 1, S(b).conflict) S(x).age > S(b).age

(5.7)

update(S,X) = λb. (min(k, S(b).age+ δ), S(b).conflicts ∪M {X}) (5.8)

where δ is 0 iff saturated(S(b).conflicts,X) and 1 otherwise

Unfortunately, trying to formulate an abstraction function α (or equivalently, a join

function t) gives rise to some ambiguities: Given a set of concrete states, it is not clear

whether one should prioritize a large conflict set or a low age bound, or anything in

between. Any arbitrary set of concrete states can be represented with any conflict set

by simply adjusting the age bound.

As an example, assume a fully associative 4-way cache and a program with two arrays

A and B, spanning 1 cache line each. Consider the following set of concrete cache states

(where only blocks of interest are shown)

{[A0 → 0, x→ 1, . . .], [B0 → 0, x→ 1, . . .]}

Both, x → (2, {A,B}M) and x → (1, ∅) are valid abstractions of this set. In the first

case, we decided to prioritize the conflict set, while in the second case we decided to

prioritize the age bound and simply dropped the conflict sets.

40

(0, ∅)

(1, {A}M)

(1, ∅)

(2, {A}M)

(1, {B}M)

(2, {A,B}M)

(2, {B}M)

......
Figure 5.3: The array-aware partial order for two arrays of size 1.

This ambiguity would be harmless if one abstraction was inferior to the other, giving a

unique best choice in the matter. However, if both, A and B, are accessed in the future

the large conflict set is advantageous, while the increased age bound is a disadvantage

in other future access patterns.

This issue is also apparent in the canonical partial order3 on the set of abstract states

depicted in Figure 5.3. The least upper bound of (1, {A}M) and (1, {B}M) is not unique,

which means that the abstract domain is not a lattice. While it is technically possible to

perform abstract interpretation on non-lattices, one loses the termination and precision

guarantees of the framework in the process [22].

As a consequence of the ambiguous join, the analysis has to apply heuristics to choose

the best join result. Since this leads to fickle analyses that are hard to reason about,

we avoided any complex join heuristics in this thesis. We did, however, consider two

constant heuristics, namely:

Conflict set union Prioritize the conflict set.

(a1, c1) t (a2, c2) = (max((a1 +
∑

d∈c2−M c1

|d|), (a2 +
∑

d∈c1−M c2

|d|)), c1 ∪M c2) (5.9)

(a1, c1) v (a2, c2)⇔ a1 + |c2 −M c1| ≤ a2 ∧ c1 ⊆M c2 (5.10)

3∀x, y ∈ D.x v y ⇔ γ(x) ⊆ γ(y)

41

Conflict set intersection Prioritize the age bound.

(a1, c1) t (a2, c2) = (max(a1, a2), c1 ∩M c2) (5.11)

(a1, c1) v (a2, c2)⇔ a1 ≤ a2 ∧ c1 ⊇M c2 (5.12)

For both definitions of t we have explicitly specified the induced order

x v y ⇔ x t y = y

Note that the simplicity of the solution comes at the price of precision. The union

approach maximizes the conflict set at all costs, quickly going to > if the set becomes

too large. On the other hand, the intersection approach leads to the ineffective analysis

we tried to avoid with the prepayment mechanic. In particular, it only prevents overaging

in array-traversing loops if the conflict set is already saturated at the beginning of the

loop4.

5.2 The Conflict Powerset Approach

There is another, radical solution to the issues with the array-aware must analysis:

Instead of figuring out the optimal conflict set for a given situation, we try all of them.

If the analysis follows all possible conflict sets it can pick the most advantageous choice

whenever we need to classify an access.

Our abstract state is a maximal age per conflict set, i.e. changes from B → N≤k×PM (A)

to B × P(A)→ N≤k. Note that the multiset has been replaced by a regular set. As we

will see later, the powerset-based analysis already provides a smooth transition between

the different conflict sets.

We interpret each mapping in this function as a bound on the maximal age, i.e. each

mapping (ds, a) provides a bound a that remains valid after accesses to elements in ds.

The concretization is therefore the set of states that fulfill all these bounds:

γ(a) = {age|∀b ∈ B ∀C ∈ P(A) : age(b) ≤ a(b, C)− |olderage(b) ∩
⋃

ds∈C
blocks(ds)|}

4This can often be achieved by virtually unrolling loops sufficiently often.

42

The update function is similar to the single conflict set analysis:

update(a, x) = λb.λc.

min(k,

∑
ds∈c
|ds|) x = b

a(b) a(x, ds) ≤ a(b, ds)

a(b) + 1 otherwise

(5.13)

update(a,X) = λb.λc.

a(b, ds) X ∈ c

min(k, a(b, ds) + 1) X /∈ c
(5.14)

The classification function necessarily differs from the other analyses. The γ-function

already prescribes how to bundle all these bounds: the concrete caches fulfill all of the

constraints, therefore we classify a hit if any constraint is lower than k.

must-hit(b, a) :⇔ ∃c. a(b, c) < k

Similar to the other must analyses, joining consists of taking the point-wise maximum.

x ∪ y = λb.λc.max(x(b, c), y(b, c))

Example

The previous domains are no lattices, leading to ambiguous joins. Even though we

gave two heuristics, both produce suboptimal results. Furthermore, they are somewhat

arbitrary, lacking any formal justification. The powerset approach, on the other hand,

is based on a true lattice. The join is uniquely determined and therefore provably

optimal for this abstract domain. In particular, the analysis never makes a suboptimal

compromise between the conflict set and the age bound. This can be observed in the

following example. For simplicity, we assume a 3-way n-set associative cache.

/* A and B are of size n */

access(x)

if (...) access(A[i]);

else access(B[i]);

if (...) {

access(A[i]);

access(B[i]);

} else access(c);

The graph of age bounds for block x is depicted in Figure 5.4. The states in diagram

(a) show the intersection heuristic on the left and the union heuristic on the right.

Both heuristics fail to prove that x remains in the cache. The intersection heuristic

43

(0, {}) (0, {})

(1, {A}) (1, {A}) (1, {B}) (1, {B})

(1, {}) (2, {A,B})

(2, {A}) (2, {A,B})

(3, {A,B}) (2, {A,B})

(2, {}) (3, {A,B})

intersection fails union fails

A[∗] B[∗]

A[∗] c

B[∗]

(a) Single conflict set

0 : 1 : 1 : 2

1 : 1 : 2 : 2 1 : 2 : 1 : 2

1 : 2 : 2 : 2

2 : 2 : 3 : 2

3 : 3 : 3 : 2

2 : 3 : 3 : 3

intersection fails union fails

A[∗] B[∗]

A[∗] c

B[∗]

(b) 2n conflict sets

Figure 5.4: The microarchitectural state graph in the conflict powerset domain

erroneously ages x three times even though at most 2 blocks can be younger than x.

The union heuristic on the other hand overeagerly ages x by two after the initial if,

anticipating future array accesses. Accessing a non-array block then evicts x from the

must cache. Similar examples can probably be constructed for other heuristics.

Diagram (b) shows the powerset-based analysis for the same program. The different age

bounds are shown in the order ∅ : {A} : {B} : {A,B}. The analysis never evicts x,

proving its superiority over the previous analyses. Even though most bounds grow to k

by the end, the state also contains the one conflict set configuration that yields a better

result.

Unfortunately, this improved solution comes at a price: The domain grows exponentially

with the number of arrays. However, we believe this is not a major hindrance: First,

any conflict set that corresponds to more than k−1 blocks is inherently useless, as it will

already start at >. As the number of arrays grows, so does the number of inherently

useless conflict sets. Second, the analysis can choose to ignore certain arrays: If the

number of arrays becomes overwhelming some arrays can be ignored, their accesses

44

turning unknown. We never assumed that A contains all arrays in the program. A

clever analyzer could, for example, select the most promising arrays per program, per

function or at even smaller granularity based on some heuristic. As simply forgetting a

bound is always safe, it is even possible to change A during the analysis.

In addition, we believe that most programs will only encounter a small subset of this

exponential lattice, meaning that a smart encoding might be able to work around the

exponential growth in the common case. However, the encoding would need to allow

efficient computation of the join, update and classification function, so a simple entropy

coding does not work. Finding such an encoding remains future work.

5.3 Array-aware Persistence

As the must analysis, persistence analysis suffers from precision loss whenever dynamic

addresses are used. Thus, we limit the effect of array accesses to the conflict sets of scalar

variables. Moreover, we declare entire arrays persistent, which improves the WCET of

tight array-sweeping loops that evaded the must analysis.

5.3.1 Handling Accesses to Arrays

Regular persistence analysis ca handle arrays, as the regular must analysis. However,

the usual technique (updating the state with each potential target, then joining the

result) gives unsatisfying results:

• Conflict set persistence immediately takes all the blocks of the array into the set,

quickly exceeding the associativity. It does this even though only one of these

accesses can actually happen

• Conditional must persistence, as the must analysis, ages blocks as often as the

array is accessed, beyond the actual size of the array.

In this thesis, we decided to focus on conflict set persistence analysis. Adding array

awareness to conditional must analysis remains future work.

To avoid the conflict set explosion, the adapted analysis does not remember which

specific array element has been accessed. Instead, it counts how often each array has

been accessed so far, stopping when the array’s size has been reached. We implement

this approach with bounded multisets, as in the array-aware must analysis.

45

x→ {x,A[0], A[1], A[2]}

x→ {x}

x→ {x,A[0], A[1], A[2]}

x

A[*]

x→ {x,A}

x→ {x}

x→ {x,A}

x

A[*]

Figure 5.5: Array accesses in elementwise conflict set analysis

At first, this approach seems unnecessarily complicated; adding the array n times to the

conflict set instead of adding the n constituting blocks of the array looks like it ends up

with the same result. However, the key difference is when these elements are added to

the set. The individual blocks of the array all have to be inserted on the first unknown

access into that array; adding the entire array can be done one at a time. While this

usually does not make a difference in setwise conflict counting, it can be critical in

elementwise conflict counting (Figure 5.5). Using special handling for unknown array

accesses, we can exploit that between any two accesses to x only one access to A is

possible.

5.3.2 Declaring Arrays Persistent

Conveniently, the classical setwise persistence analysis can also be used to declare entire

arrays persistent. An array is persistent if the size of the global conflict set in the scope

is ≤ k in all occupied cache sets. In this context, being persistent means that for each

time the program enters the scope it can only incur |A| misses for the array A.

It seems tempting to extend elementwise conflict counting to arrays. However, we can

never rejuvenate the abstract cache after an access to an array, because we never know

that all its blocks have been accessed. Consequently, the conflict set can never be reset

and the element-wise conflict set becomes completely equivalent to the global conflict

set.

Another improvement that quickly comes to mind is partial persistence, i.e. an array

that is persistent in some cache sets but not in all. This allows the analysis to restrict

the number of misses in the persistent cache sets, possibly improving the state-based

cache analyses. However, this level of interaction between the path analysis and the

microarchitectural analysis is hard to achieve. We would need to split up the state

graph and select one of the paths later. This is prohibitively expensive. Finding a less

expensive solution to partial persistence remains future work.

46

5.4 Evaluation

In this section, we first evaluate the different array-aware must analyses. Our measure-

ments indicate that the array-aware must analysis does not affect the WCET bound in

most cases. In the cases where it does, the intersection heuristic performs worse than the

other two. The union heuristic performs exactly as well as the powerset-based analysis,

although the sample set is too small to draw any definitive conclusions.

Subsequently, we evaluate our array-aware persistence analysis. We show that iden-

tifying arrays as persistent greatly reduces the WCET bound in most cases. It also

subsumes most effects of the array-aware must analysis. It is worth noting, though,

that many testcases are implementations of basic algorithms. In real programs these

algorithms would be subroutines and the overall improvement probably smaller.

The evaluation also shows that array-aware cache analysis has negligible effects on anal-

ysis runtime and memory consumption.

Finally we evaluate the combination of the two contributions of this thesis, the write-

back analysis and the array analysis. We show that array awareness has a greater impact

on write-back systems than on write-through systems. We also show, that, compared

to array-aware write-through, array-aware write-back analysis yields better result on all

but two of our testcases

Preliminaries

The modelled machine has a line size of 16 bytes, 32 cache sets and either 2 or 8 ways. In

all benchmarks we measure the number of cache misses, as this property only depends

on the cache analysis. The cache follows the write-back policy, i.e. the cache does not

differentiate between loads and stores.

Before we begin the evaluation, we first need to consider the address precision distri-

bution in our benchmarks; an array-aware analysis obviously does not change anything

if there are no array accesses in the program. The distribution for our testcases is de-

picted in Figure 5.6. Only the testcases containing array accesses are considered in this

chapter.

So far, we never specified how we recognize array accesses. Since llvmta is integrated into

the compiler, we still have access to high-level information. For example, we can read

the annotations in LLVM’s back-end representation. These annotations contain LLVM’s

knowledge about the target of the memory access, in particular the surrounding array.

47

ad
p

cm b
s

b
so

rt
10

0
cn

t
co

m
p

re
ss cr
c

ex
p

in
t

fd
ct

ff
t1

fi
b

ca
ll fi
r

in
se

rt
so

rt
ja

n
n

e-
co

m
p

le
x

jf
d

ct
in

t
lc

d
n
u

m
lm

s
lu

d
cm

p
m

at
m

u
lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu
p

ri
m

e
q
so

rt
-e

x
a
m

q
u

rt
se

le
ct

sq
rt

st
at

em
a
te u
d

cr
u

is
e-

co
n
tr

ol
d

ig
it

al
-s

to
p
w

at
ch

es
-l

if
t

fl
ig

h
t-

co
n
tr

ol
p

il
ot

ro
b

oD
o
g

tr
ol

le
y
b

u
s

0

20

40

60

80

100

M
em

or
y

ac
ce

ss
es

w
it

h
k
n

ow
n

ta
rg

et
(p

er
ce

n
t)

Address known
Cache line known

Array known

Figure 5.6: Diagram of the address precision distribution

5.4.1 Array-aware Must Analysis

In Figure 5.7 we compare our different array-aware must analyses. The diagram clearly

shows that the array-aware must analysis has no effect on the bound in all but a few

cases. The main reason is that it cannot prove cache hits for arrays; it can only prove

that already cached elements cannot be evicted by arrays. The two cases where the

must analysis achieves a bound reduction of more than 10% are cnt and insertsort.

A simplified version of the cnt core loop is depicted in Figure 5.8. Traditional must

analysis assumes that the condition can age pos arbitrarily often. It concludes that

pos can be evicted if the condition evaluates to false repeatedly. Our array-aware must

analysis, though, recognizes that array has only one cache line in pos’s cache set and

therefore cannot age it more than once. It thereby proves that all accesses to pos are

hits.

The insertsort testcase initializes all the array elements individually before the loop.

The array is therefore guaranteed to be cached and can therefore not be evicted by a

loop that only accesses this array.

48

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d
ct

in
t

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

q
so

rt
-e

x
a
m

se
le

ct u
d

−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10

M
is

se
s

(p
er

ce
n
t)

Intersection
Union

Powerset

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d
ct

in
t

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

q
so

rt
-e

x
a
m

se
le

ct u
d

−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0

M
is

se
s

(p
er

ce
n
t)

Figure 5.7: Comparison of array-aware must analyses. All bars are normalized to the
number of cache misses under traditional cache analysis (i.e. traditional must and May

analysis together with elementwise counting persistence)

/* array spans 1 cache line in each set ,

i, pos and neg are in different cache sets */

pos = 0;

for (i=0; i<N; i++)

if (array[i] > 0) pos ++;

Figure 5.8: The core loop of the cnt benchmark (simplified)

The analysis also shows that the intersection heuristic is inferior to the other two analy-

ses. The union heuristic, however, performs equally well as the more complex and more

expensive powerset-based analysis. This does not suffice to dismiss the powerset-based

analysis as superfluous, though, as the sample size is way too small. These details are

of little concern anyway unless the analysis can be made more effective.

5.4.2 Array-aware Persistence Analysis

Figure 5.9 presents the results of our array persistence analysis. We can see that it out-

performs the array-aware must analysis in every single benchmark except insertsort. As

predicted, its ability to prove entire arrays persistent tremendously reduces the number

of misses. For the sorting benchmarks, for example, the number of misses shrinks from

one miss per loop iteration to one miss per cache line in the array.

It might be surprising at first that bs (which performs binary search on an array) does

not profit from array-aware cache analysis. The reason is that binary search avoids

loading the entire array into the cache. The whole point of binary search is to skip large

49

ad
p

cm b
s

b
so

rt
1
00 cn

t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d
ct

in
t

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

q
so

rt
-e

x
a
m

se
le

ct u
d

−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10

M
is

se
s

(p
er

ce
n
t)

Array-Must
Array-Persistence

Array-Must + Array-Persistence

ad
p

cm b
s

b
so

rt
1
00 cn

t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d
ct

in
t

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

q
so

rt
-e

x
a
m

se
le

ct u
d

−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10

M
is

se
s

(p
er

ce
n
t)

Figure 5.9: Relative WCET increase under array-aware persistence analysis. The
bars are normalized to the array-unaware analysis. For comparison, we also show the
result of the conflict powerset array-aware must analysis. Third, we present the effect

of combining both analyses.
Top: associativity 2, Bottom: associativity 8

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d

ct
in

t

lu
d

cm
p

m
at

m
u

lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu

q
so

rt
-e

x
a
m

se
le

ct u
d

−20

−10

0

10

A
d

d
it

io
n

al
T

im
e

(p
er

ce
n
t)

Runtime

Intersection
Union

Powerset
Persistence

ad
p

cm b
s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d
ct

in
t

lu
d
cm

p

m
at

m
u
lt

m
in

ve
r

n
d
es n
s

n
si

ch
n
eu

q
so

rt
-e

x
a
m

se
le

ct u
d

0

10

A
d
d
it

io
n
al

M
em

or
y

(p
er

ce
n
t)

Peak Memory

Figure 5.10: Effects of the array-aware analyses on analysis runtime and memory
consumption. The bars are normalized to the array-oblivious analysis

parts of the array. Bounding the misses in a O(log n) loop by a value in the order of

O(n) obviously does not improve the WCET bound.

5.4.3 Analysis Cost

Figure 5.10 shows the impact of array-aware cache analyses on the runtime and the

memory consumption of llvmta (at associativity 8). We observe that the exponential

50

a
d

p
cm b

s

b
so

rt
10

0

cn
t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d

ct
in

t

lu
d

cm
p

m
at

m
u

lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu

q
so

rt
-e

x
am

se
le

ct u
d

M
al

a
rd

a
le

n
-G

eo
m

ea
n

−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

W
C

E
T

(p
er

ce
n
t)

Array-oblivious WT
Array-oblivious WB

Array-aware WB

ad
p

cm b
s

b
so

rt
1
00 cn

t

co
m

p
re

ss cr
c

fd
ct

ff
t1 fi
r

in
se

rt
so

rt

jf
d

ct
in

t

lu
d

cm
p

m
at

m
u

lt

m
in

ve
r

n
d

es n
s

n
si

ch
n

eu

q
so

rt
-e

x
am

se
le

ct u
d

M
a
la

rd
al

en
-G

eo
m

ea
n

−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

W
C

E
T

(p
er

ce
n
t)

Figure 5.11: Combining write-back and array-aware analysis. All bars are normalized
to the WCET bound of an array-aware write-through analysis.

Top: associativity 2, Bottom: associativity 8

nature of the conflict-powerset domain has little effect on runtime or memory consump-

tion. On the contrary, the analysis becomes even faster in most cases. The reduction of

the state graph size apparently makes up for the additional analysis effort.

Overall, the change in analysis runtime is small. Ignoring the intersection analysis (which

is inferior anyway), the worst observed runtime increase is at about 5%. The additional

memory consumption is negligible, never exceeding 3%.

5.4.4 Array-aware Write-back analysis

Finally, Figure 5.11 shows the combination of our two contributions. We can see that,

depending on the cache size, write-back caches perform 25% better on average than

equivalent write-through caches. Array-awareness apparently has greater impact on

write-back systems. This phenomenon is best explained by example. Consider Fig-

ure 5.12, which contains the inner loop of the insertsort benchmark. This loop performs

four loads from a and two stores to a. Under write-through, the four loads are cov-

ered by the persistence constraint while the two stores access memory anyway. Under

write-back, though, all six accesses are covered by the persistence constraint, yielding

two memory accesses less per loop iteration as soon as the array is loaded into the cache.

51

while (a[j] < a[j-1])

{

temp = a[j];

a[j] = a[j-1];

a[j-1] = temp;

j--;

}

Figure 5.12: The inner loop of the insertsort benchmark

There still are two testcases that do not perform better under write-back: fdct and

matmult. The former cannot be analyzed properly since it explicitly uses pointers to

walk through the array. Our analysis is not sophisticated enough to detect this. However,

this problem can be easily handled in practice by programmer annotations. Unlike loop

bounds, identifying the array a pointer points into is trivial for the programmer. The

matmult testcase, however, hints at a fundamental weakness of our analysis. The cache

behaviour of matrix multiplication is highly dependent on the iteration order. Since our

analysis is oblivious to this order, it cannot prove anything unless all three arrays fit

into the cache.

Chapter 6

Conclusion and Future Work

In this thesis we developed a new cache analysis for write-back caches. We identi-

fied dirtifying stores as the primary means to bound the number of write backs in a

program. Evaluation showed, that write-back caches together with our analysis often

achieve lower WCET bounds than write-through systems. However, unknown accesses

impact the write-back analysis more than the write-through analysis. Write-through

systems therefore achieve better WCET bounds on programs containing many unknown

accesses. Motivated by this shortcoming, we developed array-aware must and persistence

analyses. While the array-aware must analysis mostly has negligible impact, array-aware

persistence significantly reduces the WCET bound. Our final evaluation shows that this

addresses the shortcomings of the write-back analysis.

Future Work

Exploiting persistence in write-back analysis: Another potential improvement

to the dirtifying store analysis is to take persistence information into account. If a block

is persistent, we can also infer that there can only be one dirtifying store to this block.

Likewise, there can only be |A| dirtifying stores to a persistent array.

Partial array persistence: In this thesis we did not consider partially persistent

arrays, i.e. arrays that are persistent in some but not all cache sets. The main reason is

that we are unable to identify the cache set of an unknown access. For unknown accesses

depending on the loop iteration variable, we can do better. Using an analysis similar

to [20], it might be possible to formulate persistence constraints for a subset of the loop

iterations; in our case, for loop iterations that only access cache sets where the array is

persistent.

52

53

Overlapping arrays: We assumed that no cache line belongs to two arrays at once.

Arrays are not always aligned to cache lines, though, and a cache line might contain the

end of one and the beginning of another array. In this case, one knows that the two

arrays together occupy one cache line less than their sizes indicate. Formalizing and

implementing this behaviour remains future work.

Speculative execution: Our array-aware analysis assumes that array accesses are

always restricted to the interval [base, base + size]. If the underlying processor contains

an out-of-order pipeline, it might speculatively load data after the array. For those

processors, it might be possible to assume a larger size that covers all data loaded as

the result of speculative execution as well.

Store buffers: Besides write-back caches, store buffers are another common processor

component that may delay stores. Store buffers are small waiting queues for store

requests. When the processor performs a store it hands the request to the buffer and

continues executing without delay. As long as there is space in the buffer, stores appear

to complete within a single cycle. The unblocked stores mechanism we used in the

evaluation can be seen as a store buffer of size 1. However, real store buffers are often

more sophisticated. They combine multiple stores into one if possible. They forward

pending stores to the processor if it loads the same address. They might even reorder or

delay pending stores on their own. It would be interesting whether a suitable abstract

domain can be found and, if so, how it performs compared to the write-back analysis.

Relational write-back analysis: Our write-back analysis, as the must and may

analyses it is based on, operate on memory addresses. Relational analyses, on the other

hand, are based on symbolic names. This allows them to prove that two accesses target

the same block without knowing the address of the block (Hahn et al., 2012 [23]). This

same-block relation is also useful for write-back caches: if we know two subsequent stores

target the same unknown block, we can infer that the second store is not dirtifying.

Preemptive multitasking: This thesis focused on WCET estimation of single pro-

grams. For multi-tasked systems this is insufficient. Even if a task provably meets its

deadline in isolation, interference by other tasks might further delay it. For example,

other tasks can preempt the task and place dirty data in the cache. The original task

then has to write back data that was not anticipated by the WCET analysis. There-

fore, WCET estimation has to be embedded into a larger response time analysis that

takes this interference into account. Davis et al. [24] developed such a response time

54

analysis for write-back caches. However, they lacked a suitable WCET analysis and

therefore only evaluated their results using simulated execution traces. Combining the

two approaches allows a more rigorous evaluation.

Bibliography

[1] Honglu Zhang, Deren Ma, and Srini V. Raman. CAE-based side curtain airbag

design. SAE technical paper, Delphi Corporation, 2004.

[2] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 5th edition, 2012.

[3] AGC4 Memo #9 - Block II instructions. MIT Instrumentation Laboratory, July

1966.

[4] IBM System/360 Model 85 – Functional Characteristics, 2nd edition, June 1968.

[5] Andreas E Dalsgaard, Mads Chr Olesen, Martin Toft, René Rydhof Hansen,

and Kim Guldstrand Larsen. Metamoc: Modular execution time analysis using

model checking. In OASIcs-OpenAccess Series in Informatics, volume 15. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2010.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages, pages 238–252. ACM, 1977.

[7] Wayne Wolf. Computers as components: principles of embedded computing system

design. Academic Press, 2001.

[8] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey

on static cache analysis for real-time systems. Leibniz Transactions on Embedded

Systems, 3(1):05–1–05:48, 2016.

[9] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache

behavior prediction by abstract interpretation. In International Static Analysis

Symposium, pages 52–66. Springer, 1996.

[10] Patrick Cousot. Abstract interpretation based formal methods and future chal-

lenges. In Informatics: 10 Years Back, 10 Years Ahead, pages 138–156. Springer,

2001.

[11] Christoph Cullmann. Cache persistence analysis: a novel approachtheory and prac-

tice. ACM SIGPLAN Notices, 46(5):121–130, 2011.

55

Bibliography 56

[12] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong

program analysis and transformation. In CGO, pages 75–88, San Jose, CA, USA,

Mar 2004.

[13] Claus Michael Faymonville. Evaluating compositional timing analyses. Master’s

thesis, Saarland University, 2015.

[14] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.

ACM Transactions on Programming Languages and Systems (TOPLAS), 29(5):26,

2007.

[15] Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpreta-

tion of Pipeline Models. PhD thesis, Saarland University, 2004.

[16] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen

WCET benchmarks – past, present and future. In Björn Lisper, editor, WCET2010,

pages 137–147, Brussels, Belgium, jul 2010. OCG.

[17] SCADE suite. http://www.esterel-technologies.com/products/scade-suite/.

[18] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean

Souyris. Towards formally verified optimizing compilation in flight control software.

In PPES 2011: Predictability and Performance in Embedded Systems, volume 18,

pages 59–68. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2011.

[19] Simon Wegener. Computing same block relations for relational cache analysis. In

12th International Workshop on Worst-Case Execution Time Analysis, volume 23

of OpenAccess Series in Informatics (OASIcs), pages 25–37. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2012.

[20] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache anal-

ysis for wcet estimation. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2011.

[21] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: An

analytical representation of cache misses. In Proceedings of the 11th international

conference on Supercomputing, pages 317–324. ACM, 1997.

[22] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J

Stuckey. Abstract interpretation over non-lattice abstract domains. In International

Static Analysis Symposium, pages 6–24. Springer, 2013.

[23] Sebastian Hahn and Daniel Grund. Relational cache analysis for static timing

analysis. In Proceedings of the 24th Euromicro Conference on Real-Time Systems,

ECRTS ’12, pages 102–111, 2012.

Bibliography 57

[24] Robert I. Davis, Sebastian Altmeyer, and Jan Reineke. Analysis of write-back caches

under fixed-priority preemptive and non-preemptive scheduling. In Proceedings of

the 24th International Conference on Real-Time Networks and Systems, RTNS ’16,

pages 309–318, 2016.

	1 Introduction
	2 Background
	2.1 Static WCET Analysis
	2.1.1 Abstract Interpretation

	2.2 Cache Analysis
	2.2.1 Must and May Analysis
	2.2.2 Persistence Analysis
	2.2.3 Persistence Scopes

	2.3 Unknown Accesses

	3 WCET Analysis by Abstract Interpretation
	3.1 Compilation
	3.2 Value and Loop Bound Analysis
	3.3 Microarchitectural Analysis
	3.4 Path Analysis

	4 Write-back Cache Analysis
	4.1 Dirtiness Analysis
	4.2 Dirtifying Stores
	4.3 Evaluation
	4.3.1 Write-back versus Write-through
	4.3.2 The Initial Cleanness Assumption
	4.3.3 The analysis components
	4.3.4 Analysis Cost

	5 Array-aware Cache Analysis
	5.1 Improving the Must Analysis
	5.1.1 The Status Quo
	5.1.2 Array-Aware Must

	5.2 The Conflict Powerset Approach
	5.3 Array-aware Persistence
	5.3.1 Handling Accesses to Arrays
	5.3.2 Declaring Arrays Persistent

	5.4 Evaluation
	5.4.1 Array-aware Must Analysis
	5.4.2 Array-aware Persistence Analysis
	5.4.3 Analysis Cost
	5.4.4 Array-aware Write-back analysis

	6 Conclusion and Future Work
	Bibliography

