Shaking Up the Foundations of

Modern Separation Logic

Dissertation zur Erlangung des Grades des
DOKTORS DER INGENIEURWISSENSCHAFTEN
der Fakultat fur Mathematik und Informatik
der Universitit des Saarlandes

vorgelegt von
SiMON SPIES

Saarbriicken, 2025

TaG pEs KoLLoQuiums

16. Mai 2025

DEKAN DER FAKULTAT FOUR MATHEMATIK UND INFORMATIK

Prof. Dr. Roland Speicher

PRUFUNGSAUSSCHUSS

Vorsitzende:
Gutachter:

Akademische Mitarbeiterin:

Prof. Dr. Martina Maggio
Prof. Dr. Derek Dreyer
Prof. Dr. Deepak Garg
Dr. Francois Pottier

Dr. Aina Linn Georges

ABSTRACT

The problem of how to scalably verify large, stateful programs is one of the oldest—and still unsolved—challenges of
computer science. Over the last two decades, there has been considerable progress toward this goal with the advent
of separation logic, a verification technique for modularly reasoning about stateful programs. While originally only
developed for imperative, pointer-manipulating programs, separation logic has in its modern form become an essential
tool in the toolbox of the working semanticist for modeling programming languages and verifying programs.

This dissertation presents a line of work that revisits the foundations of modern separation logic in the context
of the separation logic framework Iris. It targets two broader areas: step-indexing and automation. Step-indexing is
a powerful technique for modeling many of the advanced, cyclic features of modern languages. Here, Transfinite
Iris shows how to generalize step-indexing from proving safety properties to proving liveness properties, and Later
Credits enable more flexible proof patterns for step-indexing based on separation logic resources. Automation is
important for reducing the overhead of verification to scale to larger code bases. Here, Quiver introduces a new form
of guided specification inference to reduce the specification overhead of separation logic verification, and Daenerys
develops new resources in Iris that lay the groundwork for automating parts of Iris proofs using SMT solvers.

ZUSAMMENFASSUNG

Wie man skalierbar grofie Programme verifiziert ist eine der altesten, ungeklarten Fragen der Informatik. In den
letzten zwei Jahrzehnten wurde hier deutlicher Fortschritt erzielt mit der Einfithrung von Separationslogik, einer
Technik fiir modulare Programmuverifikation. Separationslogik wurde urspriinglich nur fiir imperative Programme mit
Zeigern entwickelt, ist aber in ihrer modernen Form essenziell geworden, um Programmiersprachen zu modellieren
und Programme zu verifizieren.

Diese Dissertation prasentiert eine Reihe von Arbeiten, die sich im Kontext der Separationslogik Iris mit den Grundla-
gen moderner Separationslogik beschaftigen. Sie fokussiert sich auf zwei Bereiche: Step-Indexing und Automatisierung.
Step-Indexing ist eine wichtige Modellierungstechnik fiir viele der fortgeschrittenen, zyklischen Funktionen moderner
Programmiersprachen. Hier zeigt Transfinite Iris, wie man Step-Indexing nicht nur fiir Sicherheitseigenschaften
verwenden kann, sondern auch um Lebendigkeitseigenschaften zu beweisen, und Later Credits ermoglichen flexiblere
Beweisstrukturen durch die Verwendungen von Separationslogikressourcen. Automatisierung ist wichtig, um den
Aufwand von Verifikation zu senken, um gréflere Programme zu verifizieren. Hier entwickelt Quiver eine neue
Form der Spezifikationsinferenz, um den Aufwand von Separationslogikspezifikationen zu reduzieren, und Daenerys
entwickelt neue Iris-Ressourcen, die den Weg bereiten, um Teile von Iris-Beweisen mit SMT-Solvern zu automatisieren.

ACKNOWLEDGEMENTS

The last few years that I worked toward this dissertation have been some of
the most rewarding years of my life. When I started, I did not yet realize that
my new job would involve traveling the world and making new friends—all
while working on interesting research problems to my heart’s content. For this
experience, I will be eternally grateful, and it would not have been possible
without all the wonderful people in my life.

First and foremost, I want to thank my advisor Derek. His Semantics course
is what excited me to pursue a PhD in the area of programming languages and
verification in the first place. I could not have asked for a better advisor. Derek
has many remarkable qualities—except for punctuality perhaps. The one that
always impressed me the most is his unparalleled ability to extract high-level
ideas from the convoluted, technical explanations of his students. Besides,
who else can teach you how to define intricate logical relations and how to
communicate research ideas clearly, but can also teach you what “Highland
fridge smell” tastes like? I thank you from the bottom of my heart, Derek.

Next, I want to thank Deepak Garg and Francois Pottier for reviewing
this dissertation and Martina Maggio and Aina Linn Georges for serving on
my thesis committee. I also want to thank Gert Smolka for mentoring me
throughout my undergraduate studies and for introducing me to mechanized
theorem proving with Rocq, and Yannick Forster for giving me valuable advice
and guidance over all these years. Moreover, I want to thank the office and
IT staff of MPI-SWS for a seamless experience throughout my PhD. I also
want to thank Lennard Gaher, Janine Lohse, Niklas Miick, Benjamin Peters,
Rose Hoberman, Yannick Forster, and Michael Sammler for proofreading this
dissertation and giving me valuable feedback.

In addition, I want to thank all the fantastic people that I have had the honor
to collaborate with over the last few years. In particular, I want to thank Lennard
Géher, Michael Sammler, Niklas Miick, Haoyi Zeng, Daniel Gratzer, Joseph
Tassarotti, Ralf Jung, Robbert Krebbers, Andrea Lattuada, Peter Miller, Lars
Birkedal, and Derek Dreyer for collaborating with me on the work presented
in this dissertation. I especially want to thank Ralf and Robbert for all the
knowledge about Iris that they have shared with me over the years. Without
their continued irritation over my desire to change fundamental aspects of Iris,
it would have been much less fun to fork Iris for a third time. I also want to
thank Joseph for suggesting the idea of using transfinite step-indices to remodel
Iris, which eventually turned into Transfinite Iris, and for helping me navigate
the depths of Iris when I forked it for the first time. In addition, I want to thank
Google for supporting me with a Google PhD Fellowship and, in particular,

il

Wontae Choi for all of his helpful advice over the years. I also want to thank
Jane Street for giving me the opportunity to visit them for an internship.

Moreover, I want to thank the students at MPI and at Saarland University,
especially all the students and post-docs who have been part of the group over
the years, including Michael Sammler, Lennard Gaher, Kimaya Bedarkar, Laila
Elbeheiry, Niklas Miick, Benjamin Peters, Janine Lohse, Jan Menz, Ralf Jung,
Hoang-Hai Dang, Jan-Oliver Kaiser, Rodolphe Lepigre, Emanuele D’Osualdo,
Youngju Song, Aina Linn Georges, Vincent Lafeychine, Neven Villani, Irene
Yoon, Milijana Surbatovich, Johannes Hostert, and Haoyi Zeng. Thank you for
all the inspiring conversations over the years and for sharing your research ideas
at “tea times”. In particular, I want to thank Michael for teaching me valuable
project management skills, for showing me what proper Swiss Fondue and a
“Weiflwuascht Frithstiick” taste like, and for having common sense whenever
we crossed the US border; Lennard for exploring the depths of the Slovenian
mountains with me and for keeping his faith in the Deutsche Bahn when I had
long lost it; Aina, Andrea, and Benjamin for more coffee trips to the new cafe
on campus than I can count; and Niklas for his willingness to fight the SMT
solver Z3 for a couple of weeks. I also want to thank Johannes and Haoyi. It
was a pleasure to advise you both.

Last but not least, I want to thank my friends and family. It is no secret that
every PhD has its ups and downs. You have stood by my side through the highs
and the lows, and for that, I cannot thank you enough. In particular, I want to
thank Julian and Frederik for countless coffee dates all over Saarbriicken—both
during the pandemic and after—and my oldest friend Max for always being
there when it mattered. I also want to thank my parents Agnes and Martin
and my sister Nora, not only for supporting me all these years, but also for
encouraging me to pursue a Bachelor’s degree in computer science when I was
not yet sure what I wanted to do with my life. Without your encouragement,
this dissertation would probably not exist. My deepest gratitude, however, goes
to my partner Merve. I do not even know where to start, so I will keep it short:
You are the reason that our apartment felt like “home”, even when we both
knew it would only be temporary. Thank you for being by my side these last
few years. I look forward to all the time that is yet to come, be it London or

any other place in the world.

Simon Spies
Saarbriicken, January 2025

iv

CONTENTS

Abstract i
Zusammenfassung i
Acknowledgements iii
1 Introduction 1
1.1 Modern Separation Logic L 1
1.2 Contributions 2
1.3 OVEeIVIEW e e e e 5
1.4 Publications e 6
1.5 Collaborations e e 7
I AnlIris Primer 11
2 Separation Logic 13
2.1 Purely Functional Programs 13
2.2 OwnershipReasoning e 16
3 The Modern Separation Logic Iris 23
3.1 The Weakest Precondition 23
3.2 Step-Indexing 25
3.3 Persistency 28
3.4 Invariants 30
3.5 CONCUITENCY . . . v v v v v et ettt e e e e e e e e e e e e e e e e 35
3.6 GhostState e 39
4 The Model of Iris 43
4.1 TheProgram Logic e 43
42 Resource Algebras 47
43 TheBase LOZIC o i i e 54
44 Adequacy 58
4.5 Impredicative Invariants and Fancy Updates 58
II Transfinite Iris 65
5 Introduction 67
6 The Existential Property 71

6.1 Refinements e 71

6.2 Proving Refinements using Simulations L L L 72
6.3 Step-Indexed Simulations 72
6.4 The Existential Property 73
6.5 Termination 74
6.6 Justifying the Existential Property L 74
7 The Program Logics of Transfinite Iris 77
7.1 Termination-Preserving Refinement L L L L L 78
7.2 Termination 86
7.3 TheLiveness Logic e 88
8 Case Studies 93
8.1 Recursive Memoization 93
82 AReentrantEventLoop. 97
8.3 A Logical Relation for Asynchronous Channels 98
9 Foundations of Transfinite Iris 105
9.1 The Existential Property via Transfinite Step-Indexing 105
9.2 The Base Logic of Transfinite Iris 106
9.3 Invariants and the Recursive Domain Equation 111
10 Related Work 113
III Later Credits 119
11 Introduction 121
12 Later Credits in a Nutshell 125
13 Applications of Later Credits 129
13.1 Later Credits for Reordering Refinements 129
13.2 Later Credits for Logical Atomicity e 138
14 Soundness of Later Credits 145
14.1 Adequacy inIris o .o 145
14.2 Modeling Later Credits« . . e 146
15 Extensions of Later Credits 149
15.1 Flexible Step-Indexing L 149
15.2 Transfinite Step-Indexing L e 151
16 Related Work 153
IV Quiver 157
17 Introduction 159
18 Abductive Deductive Verification 165
18.1 The Essence of Abductive Deductive Verification 166
18.2 Existential Quantification L e 169

vi

19

20

21

22

23

24

25

26

27

28

29

30

18.3 Specification Sketches

The Abduction Engine Argon
19.1 BasicGoals
19.2 AdvancedGoals

The Type System Thorium
20.1 Separation Logic with Refinement Types a la RefinedC
20.2 Abductive Deductive Verification with Types

20.3 Compositional Specification Inference with Thorium
Implementation

Evaluation
22.1 The Vector Case Study
22.2 Aggregate Evaluation

Related Work

Daenerys

Introduction
24.1 Heap-Dependent Expression Assertions
24.2 Daenerys

Heap-Dependent Expression Assertions in Daenerys

25.1 The Evaluation Assertion
25.2 Evaluation and the Program Logic
25.3 Evaluation and First-Order Logic.

Destabilizing the Foundations of Iris

26.1 Unstable Resources
26.2 Extending the Base Logic
26.3 Resource Algebras with Unstable Elements

The Program Logic
27.1 The Agyn Program Logic
27.2 The Language-Generic Weakest Precondition

Almost-Pure Assertions
28.1 The Semantic Type System
28.2 The First-Order Logic Connection

Case Studies
29.1 The Bestof BothWorlds
29.2 Aggregate Evaluation

Connecting Iris with First-Order Logic (Appendix)
30.1 Many-Sorted First-Order Logic
30.2 From First-Order Logic to Iris, Step by Step

173
173
175

179
179
182
183

187

189
189
192

195

199

201
202
203

207
207
208
210

213
213
215
216

223
223
225

227
228
231

235
235
239

vii

31 Related Work 249

32 Conclusion and Future Work 253
32.1 Generalizing Step-Indexing L 253
32.2 Increasing Automation e 255

viil

ix

CHAPTER 1

INTRODUCTION

Over the last two decades, there has been considerable progress on the veri-
fication of large, stateful programs—ranging from low-level systems code in
languages like C,! Rust,? and assembly® to code in high-level languages like
Java,* Python,” Scala,’ Go,” and OCaml.? One of the central catalysts at the
heart of this movement is the development of separation logic,’ a powerful
foundation for modular reasoning about programs with shared state.

The key innovation of separation logic over traditional Hoare logic!? is the
idea of ownership reasoning: assertions not only state facts about the current
program state but also carry permissions to access or modify the state. For
example, the hallmark “points-to assertion” £+ v of separation logic describes
the state of the memory (i.e., location ¢ in the memory currently stores the
value v) and, additionally, conveys ownership of this particular piece of memory
(i.e., it allows reading from and writing to ¢). In particular, if a part of a program
owns a location £, then it can be sure that no other parts of the program interfere
with ¢ unless it explicitly gives them permission to do so.

Ownership reasoning makes the verification of large, stateful programs
modular: it allows one to decompose the program into smaller parts and then
verify each part locally only with respect to the resources that it affects. This is

concisely illustrated by the characteristic frame rule of separation logic:

FRAME

{P}e{Q}
{P* R} e{Q * R}

It means that when we have proven a separation logic triple {P} e {Q} with
precondition P and postcondition Q, then we can “frame on” any additional
resources R, because they are guaranteed to be unchanged by the expression e.
More specifically, if a resource R holds separately from the precondition P,
written P * R, then it is not affected by the execution of e and R still holds
after e has finished executing. Thus, via framing, separation logic allows one
to focus on only the minimal part of the state that is affected by an operation.
Everything that is separate stays unchanged by construction.

1.1 Modern Separation Logic

Separation logic was originally conceived as a verification technique for ideal-
ized imperative, pointer-manipulating code,'! where the separating conjunc-
tion P * Q separates disjoint pieces of memory (e.g., two memory locations
¢ and r in £+ 42 * r+— 0). However, it has since far outgrown these roots.

! Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11]; Appel, “Verified
Software Toolchain”, 2012 [App12];
Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

? Astrauskas et al.,, “Leveraging Rust
types for modular specification and
verification”, 2019 [Ast+19]; Gaher et al.,
“RefinedRust: A type system for high-
assurance verification of Rust programs”,
2024 [Gah+24].

3 Jensen, Benton, and Kennedy, “High-
level separation logic for low-level
code”, 2013 [JBK13]; Chlipala, “Mostly-
automated verification of low-level
programs in computational separation
logic”, 2011 [Chl11].

* Parkinson and Bierman, “Separation
logic, abstraction and inheritance”,

2008 [PB08]; Jacobs et al., “VeriFast: A
powerful, sound, predictable, fast verifier
for C and Java”, 2011 [Jac+11]; Miiller,
Schwerhoff, and Summers, “Viper: A
verification infrastructure for permission-
based reasoning”, 2017 [MSS17].

> Eilers and Miiller, “Nagini: A static
verifier for Python”, 2018 [EM18].

® Giarrusso et al., “Scala step-by-step:
Soundness for DOT with step-indexed
logical relations in Iris”, 2020 [Gia+20].

" Chajed et al., “Verifying concurrent,
crash-safe systems with Perennial”, 2019
[Cha+19a]; Wolf et al., “Gobra: Modular
specification and verification of Go
programs”, 2021 [Wol+21].

8 Mével, Jourdan, and Pottier, “Cosmo: A
concurrent separation logic for multicore
OCaml”, 2020 [M]JP20]; Charguéraud,
“Characteristic formulae for the verifi-
cation of imperative programs”, 2011
[Cha11].

° Reynolds, “Separation Logic: A logic
for shared mutable data structures”, 2002
[Rey02]; O’Hearn, Reynolds, and Yang,
“Local reasoning about programs that
alter data structures”, 2001 [ORY01].

1 Hoare, “An axiomatic basis for com-
puter programming”, 1969 [Hoa69].

' Reynolds, “Separation Logic: A logic
for shared mutable data structures”, 2002
[Rey02].

Modern formulations of separation logic often support more general resources,
more complex programming languages, richer assertion languages, and more
application domains. The core that they preserve is the separating conjunc-
tion P * Q—often for more interesting notions of separation—and its associated

ownership reasoning principles such as framing.

Iris. The perhaps most successful example in this regard is the separation
logic framework Iris'? (which stands on the shoulders of many separation logic
extensions before it, including CaReSL,13 iCAP,'* HOCAP,! Verifast,'® CAP,!7
and VST!3). It improves on the original separation logic!® in four key aspects:

1. Resource Algebras. First, Iris supports a wide variety of resources that go
far beyond the original points-to resources £ — v of separation logic (e.g.,
invariants?? and ghost programs?!). At its foundation is a general model
based on resource algebras, which re-interprets the separating conjunction
P % Q as resource composition and induces new logical connectives like the
frame-preserving update modality |= P and the persistency modality O P.

2. Step-Indexing. Second, Iris integrates a technique called step-indexing®?
to support advanced features of modern programming languages such as
higher-order state (i.e., memory storing functions) and unrestricted recur-
sive types. Step-indexing provides Iris with powerful recursive reasoning
principles that go beyond traditional induction or co-induction.

3. First-Class Weakest Precondition. Third, Iris introduces a language-agnostic
weakest precondition wp e {Q} as a first-class primitive in the logic. By
instantiating it (or modifying its definition), users can derive new program
logics for different languages (or application domains).

4. Rocq Implementation. Fourth, Iris is implemented inside the Rocq proof
assistant and provides an interactive proof mode, the Iris Proof Mode,?? for
mechanizing proofs. The implementation allows others to build on Iris and
it ensures trustworthiness of Iris’s proofs.

By combining all four aspects, Iris has proven to be a versatile founda-
tion for an unusually large number of use cases. There are, by now, over a
hundred projects using and building on Iris, including for fine-grained concur-
rency [VB21; Car+22], time complexity reasoning [MJP19; Pot+24], automated
verification [Sam+21; Gah+24; MKG22], semantic models of languages [Jun+18a;
Gia+20], weak memory models [Kai+17; Dan+20; Ham+24], multi-language
verification [Sam+23; Gué+23], session types [HBK22; JHK23], probabilistic
reasoning [TH19; Gre+24], relational reasoning [FKB18; Gih+22; Tim+24a],
and many more.

1.2 Contributions

But there are also limits to the reach of Iris. In this dissertation, we shine a
light on what could—traditionally—not be done with Iris, and we revisit the
foundations of Iris in order to lift these limitations.

Concretely, the goal of this dissertation is to make Iris more expressive (i.e.,
to verify more advanced programs and properties) and to reduce its verification
overhead (i.e., to verify larger programs more easily). To this end, the disserta-
tion focuses on two broader areas: step-indexing (§1.2.1) and automation (§1.2.2).

CHAPTER 1: INTRODUCTION

2 Jung et al., “Iris: Monoids and in-
variants as an orthogonal basis for
concurrent reasoning”, 2015 [Jun+15];
Jung et al., “Higher-order ghost state”,
2016 [Jun+16]; Krebbers et al., “The
essence of higher-order concurrent sepa-
ration logic”, 2017 [Kre+17]; Jung et al.,
“Iris from the ground up: A modular
foundation for higher-order concurrent
separation logic”, 2018 [Jun+18b].

'3 Turon, Dreyer, and Birkedal, “Unifying
refinement and Hoare-style reasoning

in a logic for higher-order concurrency”,
2013 [TDB13].

!4 Svendsen and Birkedal, “Impredicative
concurrent abstract predicates”, 2014
[SB14].

5 Svendsen, Birkedal, and Parkinson,
“Modular reasoning about separation
of concurrent data structures”, 2013
[SBP13].

' Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11].

7 Dinsdale-Young et al., “Concurrent
abstract predicates”, 2010 [Din+10].

8 Appel, “Verified Software Toolchain”,
2012 [App12]; Cao et al., “VST-Floyd: A
separation logic tool to verify correctness
of C programs”, 2018 [Cao+18].

¥ Reynolds, “Separation Logic: A logic
for shared mutable data structures”, 2002
[Rey02]; O’Hearn, Reynolds, and Yang,
“Local reasoning about programs that
alter data structures”, 2001 [ORY01].

% Jung et al., “Iris: Monoids and in-
variants as an orthogonal basis for
concurrent reasoning”, 2015 [Jun+15].

! Turon, Dreyer, and Birkedal, “Uni-
fying refinement and Hoare-style
reasoning in a logic for higher-order
concurrency”, 2013 [TDB13]; Frumin,
Krebbers, and Birkedal, “ReLoC: A mech-
anised relational logic for fine-grained
concurrency”, 2018 [FKB18].

2 Appel and McAllester, “An indexed
model of recursive types for foundational
proof-carrying code”, 2001 [AMO01];
Ahmed et al., “Semantic foundations

for typed assembly languages”, 2010
[Ahm+10].

Krebbers, Timany, and Birkedal,
“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17].

For each area, it presents two projects. We briefly summarize their high-level
contributions below, and we discuss their underlying technical contributions
at the beginning of the corresponding part of the dissertation.

1.2.1 Generalizing Step-Indexing with Transfinite Iris and Later
Credits

As mentioned above, Iris derives many of its recursive reasoning principles from
a technique called “step-indexing”. Step-indexing?* is—alongside separation
logic—one of the pivotal advances of the last two decades. It provides pow-
erful recursive reasoning principles that—unlike co-induction and induction—
support negative recursive occurrences. It has been essential for many of
Iris’s more advanced applications, including reasoning about languages with
cyclic features such as recursive types?> or higher-order state,?® because the
cycles that arise when modeling these features go beyond standard inductive
or co-inductive reasoning.

Unfortunately, step-indexing comes at a cost. It was carefully designed for
specific use cases (e.g., proving safety of programs in languages with higher-
order state?’) and requires closely following the path forged by its inventors—
leave the beaten path and wilderness awaits. In particular, at a fundamental
level, step-indexing is designed for proving safety properties and, traditionally,
does not apply to proving liveness properties. And for proving safety properties,
the standard path requires a delicate alignment of recursive reasoning in the
logic and program steps. If the alignment does not work out “as usual”, perfectly
natural proof strategies turn into dead ends.

To generalize step-indexing in the context of Iris, this dissertation presents
two projects: Transfinite Iris (Part II) and Later Credits (Part III).

Liveness reasoning with Transfinite Iris. Transfinite Iris brings liveness
reasoning to Iris by generalizing its step-indexing pillar. Traditionally, step-
indexing captures only the finitary behavior of program executions, which
works for safety properties (whose violations are finite execution prefixes) but
falls short for liveness properties (whose violations are infinite executions).
More specifically, with step-indexing, a property ®(e) is typically stratified into
a family of approximations ®;(e) for i : N, where each approximation ®;(e) is
fully determined by the first i steps of the program e. The number i is called
the “step-index”, and the original property ®(e) is the intersection over the
N. @;(e)).
This approach works well for safety properties (because one considers all finite

finite-prefix approximations for all step-indices (i.e., ®(e) iff. Vi :

prefixes), but it falls short for liveness properties.

With Transfinite Iris, we fundamentally change the model of Iris: we move
from finite step-indexing with natural numbers as the step-indices to transfinite
step-indexing with ordinals as step-indices. We then identify a key property, the
“existential property”, as a high-level reasoning principle that makes liveness
reasoning accessible to users of Transfinite Iris without diving into the details
of transfinite step-indices. We demonstrate the effectiveness of Transfinite
Iris by developing two program logics for sequential, higher-order stateful
programs—one for termination and one for termination-preserving refinement.

CHAPTER 1: INTRODUCTION

% Appel and McAllester, “An indexed
model of recursive types for foundational
proof-carrying code”, 2001 [AMO01];
Ahmed, Dreyer, and Rossberg, “State-
dependent representation independence”,
2009 [ADR09]; Ahmed et al., “Semantic
foundations for typed assembly lan-
guages”, 2010 [Ahm+10]; Dreyer, Ahmed,
and Birkedal, “Logical step-indexed
logical relations”, 2011 [DAB11].

% Giarrusso et al., “Scala step-by-step:
Soundness for DOT with step-indexed
logical relations in Iris”, 2020 [Gia+20].

% Jung et al., “RustBelt: Securing the
foundations of the Rust programming
language”, 2018 [Jun+18a]; Guéneau

et al., “Melocoton: A program logic for
verified interoperability between OCaml
and C”, 2023 [Gué+23].

7 Ahmed, “Semantics of types for
mutable state”, 2004 [Ahmo04].

Amortized step-indexing with Later Credits. Later Credits “amortize”
step-indexing by marrying the step-indexing and resource algebra pillars of Iris.
They provide a resource-based approach to step-indexing that complements
Iris’s existing step-indexing mechanism. That is, from a user perspective, the
step-indexing in the model of Iris (i.e., the step-indices i and the stratification
described above) are encapsulated behind the so-called “later modality”?8 » P:
propositions P are modeled as predicates over step-indices i, and > P is defined
to be true at step-index i if P is true at step-index i — 1. Traditionally, the later
modality—a “logical step”—is tightly coupled with program steps (i.e., one later
modality occurs per step of computation) such that > P means that P will hold
after one step of computation. But in practice, this tight coupling is often too
rigid: it complicates proofs, and it even prohibits some proofs entirely.

With Later Credits, we observe that the tight coupling between laters and
program steps is unnecessary. To be sound, it suffices to “amortize” the step-
index decreases over the execution of the program. We take advantage of this
insight by leveraging the resource algebra pillar of Iris: we turn “the right to
eliminate a later” (i.e., to decrease the step-index) into an ownable resource,
a later credit £1, which is subject to all the traditional modular reasoning
principles of separation logic including framing. We demonstrate the usefulness
of Later Credits by using them for several challenging examples and proof
patterns which were previously not possible in Iris.

1.2.2 Improving Automation with Quiver and Daenerys

Iris has been very successful as a foundation for developing new program
logics?” and as a technique for building semantic models of languages.® It has
been used less, ironically, for verifying programs. That is, projects building
on Iris typically come with a handful of examples—intricate, hard-to-verify
examples that go beyond the state-of-the-art—but often stop short of scaling
to larger programs or code bases. A—if not the—limiting factor in this regard
is automation: examples in Iris are almost always verified manually in Rocq
using the Iris Proof Mode. Thus, alongside step-indexing, the second area that
this dissertation focuses on is automation.

Recently, several projects have taken the first steps toward bringing more
automation to Iris, including RefinedC3! (automated C verification), Refine-
dRust®? (automated Rust verification), and Diaframe3? (automated verification
of fine-grained concurrent programs). But their verification overhead remains
considerable. In terms of proof overhead, they still fall short of more automated
techniques like Verifast,3* CN,3° Viper,36 and Verus,?” which leverage SMT
solvers to discharge a significant portion of the proof burden. And besides
proof overhead, they also induce considerable specification overhead: Separation
logic verification proceeds compositionally—function by function—and thus,
typically, requires one to provide one specification per function. These specifi-
cations can be long, complex, or tedious to formulate—forcing the user to supply
mundane side conditions about integer arithmetic, nontrivial preconditions
about pointers, error cases, and conditionals over the return values.

To improve automation in the context of Iris, this dissertation presents two
projects: Quiver (Part IV) and Daenerys (Part V).

CHAPTER 1: INTRODUCTION

% Appel et al., “A very modal model of
a modern, major, general type system”,
2007 [App+07]; Dreyer, Ahmed, and
Birkedal, “Logical step-indexed logical
relations”, 2011 [DAB11].

¥ For example, see Timany et al., “Tril-
lium: Higher-order concurrent and
distributed separation logic for inten-
sional refinement”, 2024 [Tim+24a];
Gibher et al., “Simuliris: A separation
logic framework for verifying concurrent
program optimizations”, 2022 [G&dh+22];
Frumin, Krebbers, and Birkedal, “Re-
LoC: A mechanised relational logic for
fine-grained concurrency”, 2018 [FKB18].

% For example, see Jung et al., “RustBelt:
Securing the foundations of the Rust
programming language”, 2018 [Jun+18a];
Dang et al., “RustBelt meets relaxed
memory”, 2020 [Dan+20]; Guéneau et al.,
“Melocoton: A program logic for verified
interoperability between OCaml and C”,
2023 [Gué+23].

! Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

% Gaher et al., “RefinedRust: A type
system for high-assurance verification of
Rust programs”, 2024 [Gah+24].

3 Mulder, Krebbers, and Geuvers,
“Diaframe: Automated verification of
fine-grained concurrent programs in Iris”,
2022 [MKG22].

* Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11].

% Pulte et al., “CN: Verifying systems C
code with separation-logic refinement
types”, 2023 [Pul+23].

36 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure
for permission-based reasoning”, 2017
[MSS17].

%7 Lattuada et al., “Verus: Verifying Rust
programs using linear ghost types”, 2023
[Lat+23].

Specification inference with Quiver. Quiver reduces the specification over-
head of separation logic by developing specification inference in Iris based on
the weakest precondition pillar of Iris. Quiver is the first technique for inferring
functional correctness specifications in separation logic while simultaneously
verifying foundationally that they are correct. To guide Quiver towards the
final specification, we take hints from the user in the form of a specification
sketch, and then complete the sketch using inference. To do so, we introduce a
new abductive deductive verification technique, centered around the weakest
precondition wp e {Q}. It integrates ideas from abductive inference (for specifi-
cation inference) with deductive separation logic automation (for foundational
verification). The result is that users provide some guidance, but significantly
less than with traditional deductive separation logic verification techniques.
We evaluate Quiver on a range of case studies, including code from popular

open-source libraries.

Destabilizing Iris with Daenerys. Daenerys makes progress toward more
proof automation by bringing heap-dependent expression assertions to Iris via a
generalization of its resource algebra pillar. Heap-dependent expression asser-
tions are logic-level assertions that contain program-level expressions. They
originate from an alternative approach to ownership reasoning called implicit
dynamic frames:3® whereas the resources of separation logic combine own-
ership with memory values (e.g., as in the points-to £+ v), implicit dynamic
frames separate ownership and memory values. As a result, (1) read-only pro-
gram expressions can appear in specifications as heap-dependent expression
assertions and (2) first-order logic can be used to reason about them. Both have
been crucial to the success of the automated verifier family Viper.3

With Daenerys, we set out to relax the coupling between ownership and val-
ues in Iris to (1) define our own notion of heap-dependent expression assertions
and (2) develop a technique for reasoning about them in first-order logic, laying
the groundwork for SMT solver based automation. Unfortunately, this is easier
said than done. At a fundamental level, heap-dependent expression assertions
are incompatible with core reasoning principles of separation logic such as the
central frame rule. To deal with this challenge, we shake up the foundations of
Iris: we generalize its model of resources to encompass “unstable” resources
(which do not survive framing) and define a frame modality BP (which governs
when an assertion is frameable). We then construct an unstable resource—the
unstable points-to assertion £ +—, v—that serves as the foundation of our heap-
dependent expression assertions. We apply Daenerys to several case studies,
including some that go beyond what Viper and Iris can do individually and
others that benefit from the connection to SMT.

1.3 Overview

The dissertation is divided into five parts. It starts with an introduction to
Iris in Part I. Although Iris itself is not a contribution of this dissertation, it is
the basis of all the actual contributions and thus important to review up front.
Subsequently, the dissertation focuses first on step-indexing with Transfinite
Iris (Part II) and Later Credits (Part II) and thereafter on automation with

CHAPTER 1: INTRODUCTION

* Smans, Jacobs, and Piessens, “Implicit
Dynamic Frames: Combining dynamic
frames and separation logic”, 2009
[SJPO9].

% Miiller, Schwerhoff, and Summers,

“Viper: A verification infrastructure

for permission-based reasoning”, 2017
[MSS17]; Astrauskas et al., “Leveraging
Rust types for modular specification
and verification”, 2019 [Ast+19]; Wolf
et al., “Gobra: Modular specification
and verification of Go programs”, 2021
[Wol+21]; Eilers and Miiller, “Nagini: A
static verifier for Python”, 2018 [EM18].

Quiver (Part IV) and Daenerys (Part V). The dissertation concludes in §32 by
summarizing the contributions and providing directions for future work.

1.4 Publications

This dissertation contains text and material from the following publications:

« Spies, Giher, Gratzer, Tassarotti, Krebbers, Dreyer, and Birkedal. “Transfi-
nite Iris: Resolving an existential dilemma of step-indexed separation logic”
[Spi+21b]. 2021. Published in PLDI 2021.

- Spies, Gaher, Tassarotti, Jung, Krebbers, Birkedal, and Dreyer. “Later Credits:
Resourceful reasoning for the later modality” [Spi+22a]. 2022. Published in
ICFP 2022.

« Spies, Gaher, Sammler, and Dreyer. “Quiver: Guided abductive inference of
separation logic specifications in Coq” [Spi+24a]. 2024. Published in PLDI
2024.

- Spies, Miick, Zeng, Sammler, Lattuada, Miiller, and Dreyer. “Destabilizing
Iris” [Spi+25a]. 2025. Published in PLDI 2025. This paper is the basis for
Daenerys.

In addition, it contains text and material from the following notes:

« Dreyer, Spies, Gaher, Jung, Kaiser, Dang, Swasey, Menz, Miick, and Peters.
Semantics of type systems (lecture notes) [Dre+25]. 2025. Unpublished lecture

notes.

The dissertation reuses much of the text of these papers and notes, but it
adapts them into a consistent presentation. More precisely, the provenance of
the text in this dissertation is as follows:

« §1 is largely new text, reusing some material from the introductions of

Transfinite Iris, Later Credits, Quiver, and Destabilizing Iris (aka Daenerys).

« Part I is an adaptation of the sections that 140

authored for Semantics of type
systems (lecture notes). To obtain a self-contained presentation, the text is

modified from the version in the notes and does not follow the same order.

« Part ITis based on the Transfinite Iris paper and appendix.*! The presentation
is adapted to fit the introduction to Iris in Part I. Moreover, the text expands
on several aspects that are kept brief in the original paper: the text in §7.3 is
new, and the text in §7.1, §8.1, and §9.2 significantly expands on the original
version. The section §8.3 has been integrated from the appendix.

« Part Il is based on the Later Credits paper and appendix.*? The presentation
is adapted to fit the introduction to Iris in Part I. Moreover, the text in §12
contains a new example, and the text in §15.2 expands the discussion of

transfinite step-indexing.

. Part IV is based on the Quiver paper and appendix.*> The presentation is
adapted to fit the introduction to Iris in Part I. Moreover, the text in §20.3
is new, and the discussion in §22.1 expands on the original version. The
sections §20.1 and §20.2 are integrated from the appendix.

CHAPTER 1: INTRODUCTION

* Here and in §1.5, I use the first person
singular to distinguish my contributions
from those of my collaborators. The
remainder of the dissertation uses the
first person plural.

! Spies et al., Transfinite Iris appendix and
Rocq development, 2021 [Spi+21a].

* Spies et al., Later Credits Rocq develop-
ment and technical documentation, 2022
[Spi+22b].

** Spies et al., Quiver: Guided abductive
inference of separation logic specifications
in Coq (Rocq development and appendix),
2024 [Spi+24b].

« Part V is based on the Daenerys paper and appendix.** The presentation is
adapted to fit the introduction to Iris in Part I. The text in §26, §27, §29.1, and
§30 is a synthesis of the corresponding parts in the paper and its appendix.
The text also expands on the discussion in §27.

« §32 is mostly new text, but reuses some material and text from the future
work discussed in Transfinite Iris, Later Credits, Quiver, and Daenerys.

1.5 Collaborations

The contributions of this dissertation are the result of many collaborations.
While they were all led by me, they would not have been possible without the
work of my tremendous collaborators. In the following, I describe for each
project my contributions and distinguish them from those of my collaborators.

For Transfinite Iris, I updated most of the model of Iris (except for the
recursive domain equation), developed the program logics and the weakest
precondition, generalized the existential property to large ordinals, led the Rocq
mechanization effort, and led the writing. A first version of the existential prop-
erty was suggested by Joseph Tassarotti for uncountable ordinals. I generalized
it to larger ordinals leveraging the power of Rocq’s universes. Together with
Lennard Géaher, I mechanized the existential property, building on a set theory
mechanization of Kirst and Smolka?® for the definition of ordinals. Lennard
Géher and Daniel Gratzer solved and mechanized the recursive domain equa-
tion of Transfinite Iris; I contributed the insight that it suffices to solve the
equation for functors from OFEs to COFEs instead of COFEs to COFEs, which
was necessary for the model to be sound. Joseph Tassarotti mechanized the
memorec case study, and I mechanized the remaining case studies.

For Later Credits, I developed the definition of the later elimination update
and the later credits, proved their soundness, integrated them into the weakest
precondition, led the Rocq mechanization effort, and led the writing. Joseph
Tassarotti contributed the logical relations for reordering refinements and
reverse refinements. Ralf Jung and Joseph Tassarotti contributed the counter
with a backup, and Ralf Jung removed make-laterable from logically atomic
specifications. Lennard Gaher mechanized the promises example after I had
sketched the key transition system invariant on paper.

For Quiver, I developed the abductive deductive verification technique, de-
signed and implemented most of the abduction engine Argon and the type
system Thorium, verified case studies including the Vector, led the Rocq mecha-
nization, and led the writing. Lennard Géher and Michael Sammler contributed
several case studies. Lennard did the length version of the OpenSSL buffer, and
Michael did the memcached buffer and most of the mutable Hashmap. More-
over, Lennard adapted the frontend of RefinedC* for Quiver, and he built a
large part of the specification sketch machinery (after I had built the machinery
for existential instantiation).

For Daenerys, I developed the initial unstable heap points-to, the evaluation
judgment, the extension of resource algebras, the program logic, the logical
relation, and the first-order logic connection. Moreover, I led the Rocq mecha-
nization effort and the writing. Haoyi Zeng and I jointly developed the resource
algebra combinators for modeling the heap, and we adapted the Iris Proof

CHAPTER 1: INTRODUCTION

* Spies et al., Destabilizing Iris (Rocq de-
velopment and appendix), 2025 [Spi+25b].

Kirst and Smolka, “Categoricity results
and large model constructions for second-
order ZF in dependent type theory”, 2019
[KS19].

 Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

Mode.*” Niklas Miick, Haoyi Zeng, Michael Sammler, and I developed the case
studies. After joint discussions, Haoyi Zeng mechanized the Hashmap, Niklas
Miick mechanized the SMT-based examples and ported most of the existing Iris

examples, and Michael Sammler mechanized the iterative linked list verification.

I mechanized the concurrent checksum example.

Lastly, while Iris is not a contribution of this dissertation, Part I gives an
introduction to Iris. It is based on the second half of Derek’s Semantics course.*
This half was developed while Lennard Géher and I were teaching assistants

for the course. I developed most of the text and structure for this half of the

course, Lennard Gaher mechanized it in Rocq, and Derek presented it in class.

Availability. All projects presented in this dissertation are open source and
mechanized in Rocq. The Rocq implementations can be found at

1. Transfinite Iris (Part II):
https://gitlab.mpi-sws.org/iris/transfinite

2. Later Credits (Part III):
https://gitlab.mpi-sws.org/iris/iris for the latest version, which is
integrated into the main Iris development.*’

3. Quiver (Part IV):
https://gitlab.mpi-sws.org/iris/quiver

4. Daenerys (Part V):
https://gitlab.mpi-sws.org/iris/daenerys

CHAPTER 1: INTRODUCTION

7 Krebbers, Timany, and Birkedal,

“Interactive proofs in higher-order

concurrent separation logic”, 2017
[KTB17].

* Dreyer et al., Semantics of type systems
(lecture notes), 2025 [Dre+25].

% See https://doi.org/10.5281/
zenodo. 6702804 for the original ver-
sion including the applications and
extensions.

https://gitlab.mpi-sws.org/iris/transfinite
https://gitlab.mpi-sws.org/iris/iris
https://gitlab.mpi-sws.org/iris/quiver
https://gitlab.mpi-sws.org/iris/daenerys
https://doi.org/10.5281/zenodo.6702804
https://doi.org/10.5281/zenodo.6702804

PART |

AN IR1S PRIMER

CHAPTER 2

SEPARATION LoGIC

As a foundation for the subsequent parts, we provide a gentle introduction
to Iris. We start by introducing separation logic (in §2), continue with how
Iris goes beyond traditional separation logic (in §3), and finally discuss the
soundness of Iris (in §4). While the original presentation of separation logic
uses an imperative language with local variables,! we will discuss a flavor of
separation logic that is closer to the kinds of separation logics one typically
constructs with Iris. Concretely, we focus on an ML-like functional language
with references, called HeapLang. Readers familiar with separation logic can

skip this chapter but may want to consult it later as a reference for the language.

2.1 Purely Functional Programs

We start simple—with programs that do not even modify state. For our first

example, we verify Euclid’s algorithm.

Example 1 (Euclid). Euclid’s algorithm computes the greatest common divisor
of two numbers a and b by repeatedly computing the modulus of the two:

13

euclid(a,b)
mod(a, b)

if b==0then aelse euclid(b, mod(a, b))
a-(adivb)*b

13

Our goal is to verify the correctness of the algorithm, which means we will

prove the following specification:
{a > 0Ab >0}euclid(a,b) {c. ged(a,b,c)}

It means that if a and b are nonnegative integers, then the result c is the greatest
common divisor, defined by ged(a,b,c) = cla A c|b A (Vd.d|a A d|b = d|c)
where n|m means “n divides m”. .

To verify Euclid’s algorithm, we introduce a program logic.? Its main judg-
ment will be the Hoare triple {P} e {v. Q(v)}, which expresses that if the precon-
dition P is true, then the expression e will execute to a value v (if it terminates)
satisfying the postcondition Q(v). Importantly, we only prove partial correctness,
meaning e is allowed to diverge and, only if it terminates, then the postcon-
dition Q(v) must be satisfied. The pre- and postconditions can contain the

following propositions:
Propositions P,Q,R = ¢ |3Ix.P(x)|Vx.P(x) |PAQ|PVQ] ---

Here, ¢ is an arbitrary meta-level proposition such as True, False, n < 0,
even(n), or ged(a, b, c). (In Iris, pure assertions ¢ correspond to Rocq-level

! Reynolds, “Separation Logic: A logic
for shared mutable data structures”, 2002
[Rey02]; O’Hearn, Reynolds, and Yang,

“Local reasoning about programs that

alter data structures”, 2001 [ORY01].

?To verify purely functional programs,
one can usually use simpler solutions
than a full-blown program logic (e.g.,
reasoning directly about the operational
semantics). We use pure examples here
as an on-ramp to more interesting,
stateful examples that warrant a program
logic.

13

PART I: AN IRIS PRIMER CHAPTER 2: SEPARATION LoGIC

propositions.) We will extend the propositions as we make the program logic
more expressive.

The programming language. The programming language that we consider

is called HeapLang. It is Iris’s “default” programming language.® It is an ML- 3 Iris can be instantiated with different
programming languages. HeaplLang

style functional language with right-to-left evaluation order and recursive progr ; _
is a simple, ML-like language that is

functions fix f x. e, sums, and pairs. commonly used for simple examples. We
use it as the main programming language
Expressions e z=x |v|fix fx.e|eje;| e ©ey|iferthene;elsees in most of this dissertation.

| match e; with inj; x = ez | inj, y = es end
| (ere2) | me | me | inje | injpe | -+

Values v u=fixfx.e|()|n| (v,v2)|injv|injv|true| false|---
Here, © ranges over binary operators (+, -, *, div, ==, ...), and we abbreviate
Ax.e = (fix_x.e), letx =e;ine; = (Ax.ez) e, and e;;e; = let _=ejine,.

For example, we can define the functions euclid and mod as:

euclid £ fix euc x. if 71, x == 0 then ; x else euc(m; x, mod(x))

mod = Ax. (;r; x) = ((;ry x) div (712 x)) * (712 X)

However, for the sake of readability, we will often use notation as in Example 1:
we use pattern matching notation for pairs as opposed to projections and omit
the fixpoint/lambda operators. We also use record notation {f = e;, g = e;,...}
for better readability, which the reader can think of as pairs with named pro-
jections, and we define options as None = inj; () and Some(e) = inj,(e).

The program logic. To prove Hoare triples such as the one in Example 1,
we use the following program logic rules:

HoARE RULES {P} e {v.0(v)} Figure 2.1: Program logic rules

for purely functional programs.
HOARE-CONSEQ

HOARE-VALUE PrP {P'ye{v.0'"(v)} (Vv.Q'(v) F Q(v))
{P(W)}v{w.P(w)} {Pte{v.Q)}

HOARE-BIND

{Pre{v.0m)} W.AQW)} K[v] {w.R(w)}
{P} K[e] {w.R(w)}

HOARE-EXISTS HOARE-PURE-STEP

Vx : X. {P(x)} € {V. Q(V)} €1 —pure €2 {P} €2 {V~ Q(V)}

{3x: X.P(x)} e {v.Q(v)} {P} e1 {v.0O(v)}
HOARE-PURE

Pr¢ ¢={Pte{v.Q(v)}
{Pye{v.0m)}

The rule HoARre-vALUE says that values must satisfy the postcondition P. The
rule HoARE-CcONSEQ is the standard rule of consequence. It allows us to strengthen

14

PART I: AN IRIS PRIMER

the precondition and weaken the postcondition using an entailment judgment
P + Q. The rule noare-exists allows us to destruct existential quantifiers in
the precondition. The rules HOARE-PURE, HOARE-BIND, and HOARE-PURE-STEP are
somewhat non-standard. We present them in this form to match how rules in
Iris are formulated. The rule noare-pure allows us to use pure propositions
from the precondition; its implication “¢ = ---” should be read as a “meta-
level” implication. (The reader can think of it as an implication in Rocq.) The
rule HoARre-BIND allows us to focus on a subexpression e. As we will see below,
it generalizes the standard rule for sequential composition of Hoare logic.* The
rule noare-pure-sTEP allows us to execute arbitrary pure reduction steps in a
Hoare triple (e.g., reducing if true then 42 else 0 to 42). We give the rules for
pure steps5 e1 —pure €2 and entailments P + Q below.

PURE STEPS

€1 —pure €2

(fix f x. e) v —pure e[fix f x. e/ f,v/x]

€1 —pure €2

Klei] —pure Kle:]

if true then e; else e —pure €1 if false then e; else e; —pyre €2

n*m —pure (n-m) n=m —pure (n—m) n+m —pure (n+m)

m#0 n=m n+m

ndivm —pyre trunc(n/m) n==m —pyr true n==m —pur false

71 (v, v2) —pure V1 2 (V1,v2) pure V2

(match injv with inj; x = e; | inj, y = e; end) —pure €1[v/x]

(match inj,v with inj; x = ey | inj, y = ey end) —pyre €2[v/y]

ENTAILMENTS PrQ
ENT-TRANS PURE-INTRO FROM-PURE
ENT-REFL PrQ QOFR 0] Pr¢ o= (PrQ)
PrP P+R Pr¢ PrQ
AND-INTRO
AND-ELIM-L AND-ELIM-R PrQ P+R OR-INTRO-L
PAQFRP PAQFQ PrQAR P-rPVvQ
OR-ELIM ALL-INTRO
OR-INTRO-R P+R QFR Vx : X. (P+Q(x))
QrPVQ PVQFR PrVx:X.Q(x)
ALL-ELIM EXIST-INTRO EXIST-ELIM
a:X a:X P+ Q(a) Vx: X. (P(x) + Q)
(Vx : X. P(x)) + P(a) Pr3x:X.Q(x) Ix: X.P(x) - Q

Most of the rules are completely standard. Similar to the rule Hoare-rurEe, they
are formulated with respect to an ambient meta logic. For example, to prove a
pure proposition (PUre-INTRO), We prove it in the meta logic, and to instantiate

a universal quantifier (arr-gLim), we pick a value a : X.

CHAPTER 2: SEPARATION LoGIC

* Hoare, “An axiomatic basis for com-
puter programming”, 1969 [Hoa69].

> Here, e[v/x] denotes the expression
resulting from substituting v for x

in e and trunc(x) denotes the result

of rounding x toward 0, meaning
trunc(x) = [x] for x > 0 and trunc(x) =
[x] for x < 0.

15

PART I: AN IRIS PRIMER

Evaluation contexts. As mentioned above, the rule Hoare-BIND allows us
to focus on a subexpression e. More specifically, we can first verify e and then
continue with the remainder K[v] where v is the result of e. We can focus on
any subexpression in an evaluation context K.

Eval. Contexts K = e |e; K |Kv; | e; ©K | KOw, | if K then e, else e;
| match K withinj; x = ey | inj, y = es end
| (e1,K) | (K,v2) | mK | 2K | injy K | inj,K | -+

Evaluation contexts capture, with a hole e, which subexpression is currently
in evaluation position. For example, for an addition e; + e,, we can first focus
on the right side (because of right-to-left evaluation order) with K; = e; +e
and, once that has been evaluated to a value, we can focus on the left side with
K, £ e +v,. We use evaluation contexts (and noare-sInD) to derive the standard

sequential composition rule of Hoare-logic:

Lemma 2. If{P}e; {_. Q} and {Q} e; {w. R(w)}, then {P} e1; 2 {w. R(w)}.

Proof. Using noare-BinD with {P} e; {_. Q} and K = e; e, it suffices to prove
Vv. {Q} v;ex {w.R(w)}

We execute one pure step with Hoare-pURE-sTEP (reducing v; e; to e;) and are

left to prove the triple {Q} e, {w. R(w)}, which is our second assumption. O

Euclid’s algorithm. With the program logic rules in hand, we can return
to verifying Euclid’s algorithm. We first prove a helper lemma for the mod

function, namely that it returns the remainder after dividing b by a:

Lemma3. {a>0Ab>0}mod(a,b) {v.dc,k > 0.v=c Aa=b-k+c A0<c<b}

Proof. Using the rule moare-rure-stEp, it suffices to prove
{a>20Ab>0}a-(adivb)*xb{v.3c,k > 0.v=c Aa=b-k+c A0<c<b}

Using HOARE-PURE, we can assume that a > 0 and b > 0, which ensures that
b # 0. Thus, we can use HOARE-PURE-STEP to execute the division adiv b and
the remainder of the function. We arrive at

{a20Ab>0}n{v.3c,k >20.v=cAa=b-k+c A0O<c<b}

forn £ a—trunc(a/b)-b (whichis a—|a/b]-b). We can prove the postcondition
with HoAre-conseQ by picking k £ |a/b].]

In a similar fashion, we can then prove the correctness of euclid:
Lemma4. {a>0Ab>0}euclid(a,b) {v.dc.v=c A ged(a,b,c)}

Proof. By strong induction on b. We execute the euclid function using pure
steps and, once we reach mod, apply Lemma 3. m|

2.2 Ownership Reasoning

Let us now turn to stateful programs and the essence of separation logic,
ownership reasoning. We extend our language with references:

Expressions e -o- | ref(e) |eg:=es | le
Values v ou= e |8

Eval. Contexts K o |ref(K) |eg =K |K:=w| 'K

CHAPTER 2: SEPARATION LoGIC

16

PART I: AN IRIS PRIMER CHAPTER 2: SEPARATION LoGIC

The expression ref (v) allocates a new reference ¢ storing the value v, the expres-
sion £ := w updates the reference ¢ to store the value w, and the expression ! ¢
retrieves the value of £ from memory.

Example 5 (Linked Lists). As our next example, we consider a linked-list
implementation. To represent list elements, the linked-list implementation uses
optional references to pairs, and the empty list is represented by None.

new() = None
cons(a,x) =letr = ref(a, x) in Some(r)

head(x) = match x with None = () | Some(r) = let (a,x) = !rinaend
tail(x) £ match x with None = () | Some(r) = let (a,x) = !r in xend

len(x) = match x with None = 0

| Some(r) = let (a,x) =!rinlen(x)+1end

app(x,y) = match x with None = y

| Some(r) = let (a,x) =!rinr:=(a, app(x,y)); Some(r) end
lookup(x, i) £ match x with None = None

| Some(r) = if i==0 then Some(r) else lookup(m(!r),i-1) end
[]

Separation logic. To verify functions such as the linked-list implementation,
we extend our program logic with reasoning principles for memory. We add the
following separation logic assertions to describe the current values of memory.

Propositions P,Q,R = -+ [£—>V|P*Q|P%Q

The proposition £ — v (read “¢ points to v”) asserts that the reference ¢ currently
stores the value v. The proposition P * Q (read “P star Q”) is the name-giving
feature of separation logic, the separating conjunction. Like conjunction, it
asserts that both P and Q are true. But what makes it special is that it ensures
P and Q are satisfied by disjoint parts of the heap. That is, the proposition
¢ — v * £ — wis false (even if v = w), because both conjuncts refer to the
same reference (i.e., overlapping parts of the heap). The assertion P - Q (read
“P wand Q) is the so-called magic wand. 1t is the corresponding notion of
implication for the separating conjunction.

We extend our entailment and Hoare triple rules. The extension of the entail-
ment rules is depicted in Fig. 2.2, where we write P 4+ Q as a shorthand for P + Q
and Q r P. The separating conjunction P * Q is commutative (sep-comm), asso-
ciative (sep-assoc), and distributes over existential quantification (sep-exists). It
can be introduced if one side is True (sep-TrUE) or by splitting a separating con-
junction (sep-sprLiT). Moreover, the separation logic we consider is affine, which

means we can drop conjuncts from the separating conjunction (sep-wrakeN).® ¢ A linear separation logic disallows this
rule. Linear separation logic (as opposed
to affine separation logic) can be useful
for languages like C where it is often

The points-to assertion ¢+ v asserts exclusive ownership of ¢ such that we
can never have two points-to assertions to the same location (poINTs-To-SEP).
As mentioned above, the magic wand P - Q is the corresponding notion of considered to be a bug to silently drop
implication for the separating conjunction. This is reflected in its rules for memory resources (i.¢, a memory leak).
introduction (wanp-iNTRO) and elimination (WAND-ELIM).

The extension of the Hoare triple rules is depicted in Fig. 2.3. The rule HoARE-

rer allocates a new reference resulting in a points-to assertion £ — v for the

17

PART I: AN IRIS PRIMER

ENTAILMENTS PrQ
SEP-SPLIT
/ ’
SEP-WEAKEN SEP-TRUE SEP-COMM PrP OrQ
P«QFrP P+ P * True PxQ4 Q=P PxQFrP +(
SEP-ASSOC SEP-EXISTS

P+ (Q+R)4- (P Q) *R (Ix: X.P(x)) * Q4 (3x : X. P(x) = Q)

WAND-INTRO WAND-ELIM
POINTS-TO-SEP P Q FR Pr Q R
t— v f—> wt False PrQ =R P+QFrR
HoARE RULES {P}e{v.Q(v)}
HOARE-FRAME
{Pye{v.Q(v)} HOARE-REF
{P xR} e{v.Q(v) = R} {True}refv{w. . w="Fx £ > v}
HOARE-LOAD HOARE-STORE
{tvit=w{_ .t w} {t—vi 1t {w.w=v=*t v}

new reference £ in the postcondition, the rule noare-Loap loads the value v from
memory, and the rule Hoare-sTore updates a reference £. The rule HOARE-FRAME
is the characteristic “frame rule” of separation logic. If we know {P} e {v. Q(v)},

it allows us to frame on a separate assertion R, which is not affected by e.

Ownership reasoning. We have already touched on the ownership reason-
ing enabled by separation logic (and in particular the frame rule) in §1. Let us
now take a closer look. The idea is that the assertion £ — v expresses ownership
of the reference ¢, and owning a reference ¢ means that no other program part
can manipulate it. For example, in the triple {¢ — 0} f (£,¢’) {_. £ — 42} the
function f “owns” ¢ for the duration of the call, and it can be sure that no other
program part (even in a concurrent setting) will interfere with £. Moreover,
from the triple, we also know f only needs the reference ¢ from the current
heap—ownership of all other references can be framed around the function call.

For example, we can verify the following program:
eown = let x = ref(0) inlet y = ref(42) in f(x,y); assert (! x==1y)

where assert (e) = if e then () else 0 0 can only be verified if e evaluates to
true. The reason why we can verify eqwn is that the specification of f ensures
that f sets the first argument to 42 and, implicitly, that it does not modify (or
access) the second argument.

Lemma 6.
{True} egwn {_. True}

Proof Sketch. To sketch the proof, we give a proof outline that contains separa-
tion logic assertions (in) for the intermediate program points.”

CHAPTER 2: SEPARATION LoGIC

Figure 2.2: Separation logic
extension of the entailment

rules.

Figure 2.3: Separation logic rules

for stateful programs.

" For the sake of readability, we refer to
locations by the variables that they are
bound to in this outline following Jung

et al. [Jun+18b].

18

PART I: AN IRIS PRIMER

Note that we use the mHoARE-FRAME rule here
multiple times: The first time, we frame the
let x = ref(0) in ownership of x — 0 around the allocation of
y. The second time, we frame the ownership
of y — 42 around the call to f. How do we
lety = ref(42) in know that y is not altered by f? The answer
is that f only demands ownership of x — 0
f(x,y); in its precondition (even though it also takes
y as an argument) and, hence, ey, can keep
the ownership of y + 42 (i.e,, we can frame it
assert (1x==1y) around the function call). Since we can frame
it, the final assert succeeds, because f has set x

to 42 and y has not changed. O

Linked list. Let us now return to the linked list implementation (from Exam-
ple 5). To reason about lists, we define recursively what it means for a value v
to represent the list xs:

list(v, nil) 2 v = None

3¢, w.v = Some(f) * £ — (x,w) = list(w, xr)

1>

list(v, x :: xr)

The predicate list is a so-called abstract predicate or representation predicate.
It ties the concrete program representation (here the value v) to an abstract
mathematical representation (here the mathematical list xs). If the list is empty,
then the value v is None. If the list contains a head x and a tail xr, then the
value v is Some of a reference ¢ that stores a pair containing the head x and a
value w for the tail of the list.

We can characterize the linked-list operations relative to this abstract list
predicate. We focus on the append function app, which implements concatena-

tion of the mathematical lists (written xs + ys).

Lemma 7. {list(v, xs) * list(w, ys)} app(v, w) {u. list(u, xs + ys) }

Proof. By induction on xs. In the case xs = nil, we have to show
{v = None = list(w, ys)} app(v, w) {u. list(u, ys)}

In this case, we execute the function with pure steps until the list w is returned.
In the case xs = x :: xr, we have to show
{(3¢t,u.v=Some(f) = £ — (x,u) * list(u,xr)) * list(w, ys)}
app (v, w)
{u. list(u, x = (xr 4 ys))}
assuming Vv. {list(v, xr) * list(w, ys)} app(v, w) {u. list(u, xr 4 ys)} by induc-
tion. After several pure steps and dereferencing ¢, we are left to prove:
{€ — (x,u) = list(u, xr) = list(w, ys)}
£ := (x,app(u, w)); Some(f)
(V. list(v, x = (xr +ys))}

Here, we frame the ownership of £ — (x, u) around the recursive call to app
using the fact that app(u, w), by our inductive assumption, does not require

CHAPTER 2: SEPARATION LoGIC

19

PART I: AN IRIS PRIMER

ownership of £. We are left to prove:
{t - (x,u) = list(v', xs # ys) } £:=(x,v"); Some(¢£) {v". list(v"', x == (xr # ys))}

where V' is the return value of the recursive call app(u, w). From here on, the
proof is straightforward given the definition of the list predicate.]

The magic wand. The proofs for most of the other linked-list functions are
analogous to Lemma 7. The only one that stands out is the function Lookup.
It returns a reference into the linked-list and changing this reference modifies
the contents of the list. The challenge with lookup is that we need a way to
simultaneously describe the ownership of the returned reference but also the
ownership of the remaining list. Let us make this problem more precise. A naive

attempt to specify the function would be one of the following two options:
{list(v, xs) * 0 < i < |xs|} Lookup(v,i) {w. 3¢, u.w = Some(¥) * £ — (x,u)}

{list(v, xs) * 0 < i < |xs|} Lookup(v,i) {w. If.w = Some(?£) = list(v, xs)}

where |xs| denotes the length of the list xs. The first specification yields the
ownership of the reference in the postcondition and the second one the owner-
ship of the list. But neither one is satisfying. The first one drops the ownership
of the rest of the list such that we can no longer operate on the list (e.g., to
compute the length of the list). The second one tells us nothing about the
resulting reference, so we have no ownership to dereference or update it.

This is where we use the magic wand P -+ Q. As mentioned above, the
magic wand is the notion of implication for the separating conjunction P * Q.
What makes it interesting is that it can carry ownership itself. For example,
consider the magic wand r+ 0 - (£+> 42 % r 0). It carries the ownership of
£+ 42. More specifically, we can create it by giving up the ownership of £+ 42
(ie,P+Q - (P*Q)forP 2 ¢t 42and Q = r+— 0) and we can eliminate it
by providing the ownership of r+— 0, which then yields £+ 42 * r— 0 (i.e.,
(Q=*R)«QFrRforQ=r—0andR £ {+>42 % r—>0).

Using this ability of the magic wand to carry ownership, we can specify
the lookup function as returning (1) the reference ¢ and (2) ownership of the
remainder of the list except for the reference £. We express the latter as a magic
wand that, given the ownership of the reference £, yields the ownership of the
entire list again (where xs[i] denotes the i-th element of xs and xs[i +— y]
denotes the result of updating the i-th element to y):

Lemma 8.

{list(v,xs) * 0 < i < |xs|}

lookup(v, i)
{w. 3, u. w=Some(?) * £ —(xs[i],u) * (Vy. £ —(y,u) - list(v, xs[i—y]))}
Proof. By induction on xs. The base case xs = [] is trivial. For xs = x :: xr, we
know that v = Some(r) for some location r and we own r +—(x, w) = list(w, xr).

We distinguish two cases. If i = 0, then we are returning the current reference r.

In this case, we have to prove

ri—(x, w) * list(w, xr) F ri—=(x,w) * (Vy. ri=(y, w) - list(Some(r), y :: xr))

CHAPTER 2: SEPARATION LoGIC

20

PART I: AN IRIS PRIMER

Using sep-spiit, this means we have to prove
list(w, xr) + (Vy. r—=(y, w) - list(Some(r),y :: xr))

Here, the magic wand gives us back the ownership of the location r that we
need to prove the list predicate for Some(r).
If i # 0, we recurse. We frame the ownership of r+(x, w) around the

recursive call. We get from the recursive call the ownership of
C(xri—1],u) * (Vy. £ (y,u) - list(w, xr[i — 1> y]))
and use it to prove
£ ((x =) [l w) * (Vy. € (y,) ~ list(Some(r), (x = xr)[i = 1))
by adding r+(x, w) again to the ownership of the list.]

With this brief review, we have discussed the most important features of
separation logic—adapted to a style that matches Iris. We are now equipped to

explore how Iris goes beyond these features.

CHAPTER 2: SEPARATION LoGIC

21

CHAPTER 3

THE MODERN SEPARATION LoaIc IRr1s

Iris extends traditional separation logic in several dimensions, which we will dis-
cuss in this chapter: the weakest precondition (in §3.1), step-indexing (in §3.2),
persistency (in §3.3), invariants (in §3.4), concurrency (in §3.5), and ghost state
(in §3.6). To accommodate all of them, we will extend the separation logic
from §2 with several additional connectives, explained one by one over the
course of this chapter:

Propositions P,Q,R = -+ |wpe {(v.0W)} | »P| OP|[P]" | a¥ | P

3.1 The Weakest Precondition

Following the lead of the original separation logic,! Iris—and projects building
on it—are often presented as program logics in “Hoare triple style” (similar to
the presentation in §2): their main judgment is a Hoare triple {P} e {v. Q(v)}
with precondition P and postcondition Q. Indeed this is also the style we will
adopt for most of this dissertation. However, Hoare triples are not actually a
primitive notion in Iris. Instead, they are defined using a weakest precondition
wp e {v.Q(v)} (read “the weakest precondition of e for postcondition Q”).
The idea is that to prove a Hoare triple {P} e {v. Q(v)}, one proves that the
precondition P entails the weakest precondition of e for postcondition Q. Thus,
for now,? we define Hoare triples as

{PYe{v.QW)} if Prwpe{v.Qw)})

One of the main advantages of using weakest preconditions—especially in
Rocq—is that most reasoning is reduced to proving entailments P + Q, for
which Iris provides excellent support via the Iris Proof Mode.?

We reason about the weakest precondition using the proof rules in Fig. 3.1.
The rule wre-vaLue allows us to prove a weakest precondition for a value v by
proving the postcondition Q, and the rule we-wanp allows us to weaken the
postcondition. Importantly, we-wanp uses a magic wand Yv. Q(v) - Q’(v),
which allows us to derive the frame rule, as we will see below. The rule wp-sBInND
can be used to focus on a subexpression in an evaluation context. It puts the
weakest precondition for the remaining expression into the postcondition. The
rule we-pURre-sTEP can be used to take pure steps. The rule we-rer allows us to
allocate a new reference. When we apply it, we must prove the postcondition
Q(¥) for a new location ¢ for which we obtain the ownership via the magic
wand “¢ — v ~”. The rule wr-Loap requires us to provide the ownership of
¢+ v and then allows us to assume it again for proving the postcondition Q(v),

! Reynolds, “Separation Logic: A logic

for shared mutable data structures”, 2002

[Rey02].

2 We will revise this definition in §3.3 to

express Hoare triples within the logic.

* Krebbers, Timany, and Birkedal,

“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17].

23

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

WEAKEST PRECONDITION RULES wpe{v.0(v)}

WP-PURE-STEP

WP-VALUE e _>pure e/
Q) Fwpv{w.Q(w)} wpe' {v.Q(v)} - wpe{v.Q(v)}
WP-WAND
(W.Q(v) =+ Q" (v)) * wp e {w.Q(w)} - wp e {w.Q"(w)}
wp e {v.wp K[v] {w. Q(w)}} - wp K[e] {w.Q(w)}
WP-REF
(VL. £ —> v - Q(£)) + wp ref(v) {w. Q(w)}
WP-LOAD

o vs (L v-+0W)Fwp H{{w.Q(w)}

WP-STORE
v (L wx00) Fwpf=w{u Q(u)}

and the rule wr-sTore requires us to provide £ — v and then allows us to assume
the updated version ¢ — w for the postcondition.

Let us now derive some of the Hoare rules from §2. We prove the rule for
updating references, the rule of consequence, and the frame rule.

Lemma 9 (Hoare Store).
{tvit=w{_ .t w}

Proof. We apply the rule we-store for the postcondition Q(_) = ¢ — w. We
are left to prove £ > v £ > v x (£ > w - £ — w). The entailment follows,
because the wand is trivially true (i.e, True k £ > w - £ > w). O

Lemma 10 (Hoare Consequence).

PrP" {P'te{v.Q'(m} (W.Q'(v) Q)
{Pe{v.Qm)}

Proof. Using the entailment P + P/, we show P’ wp e {v. Q(v)}. We apply the

rule wp-wanD, leaving us to prove P’ + (Vv. Q’(v) - Q(v)) = wp e {v. Q" (v)}.

Thus, with sep-serrt (in Fig. 2.2) and our assumption {P’} e {v. Q’(v)}, it suffices
to prove True + Vv. Q' (v) - Q(v), which follows from Vv. Q" (v) + Q(v). O

Lemma 11 (Hoare Frame).

{Pte{v.0(v)}
{P * R} e{v.Q(v) * R}

Proof. Unfolding the definition of Hoare triples, we have to prove (after trivial

entailment transformations) that R = wp e {v. Q(v)} + wp e {v. Q(v) * R}

Applying the rule wr-wanb, it suffices to prove

Rxwpe{v.QW)} F (V. Q(v) = (Q(v) * R)) * wp e {v.Q(v)}

Figure 3.1: Proof rules for the

weakest precondition.

24

PART I: AN IRIS PRIMER

To conclude the proof, we once again use the ability of the magic wand to carry
ownership analogous to the lookup function in §2.2. Concretely, we conclude
the proof by proving that R + ¥v. Q(v) -+ (Q(v) * R). O
Proof Diagrams. One of the main strengths of the Rocq implementation of
Iris is that it offers an interactive proof mode, the Iris Proof Mode (IPM).4 It
helps users of Iris to prove entailments P + Q by turning the premise P into a
separation logic context and the conclusion Q into the current proof goal. For
detailed Iris proofs, especially in this chapter, we use a similar approach on
paper to improve the readability of our proofs with proof diagrams. In these
diagrams, we distinguish between the current separation logic context (left)
and the current goal (right), and we separate different proof steps by horizontal

lines. For example, the proof of Lemma 11 as a proof diagram looks as follows:
Lemma 12 (Hoare Frame with a Proof Diagram).
{PYe{v.Q(v)}
{P* R} e{v.Q(v) * R}

Proof. Suppose {P} e {v.Q(v)},so P+wpe{v.Q(v)}.

GoaAL
wp e {v. Q(v) = R}

CONTEXT

P «R

Using the assumption and commutativity.
R+ wp e {v.Q(v))

Using wp-wAND

R+ wpe{v.0(v)} (W. Q(v) * (Q(v) * R)) * wp e {v. O(v)}

Using sep-spiit, it suffices to prove

wp e {v. Q(v) = R}

R Y. Q(v) = (Q(v) * R)
Introducing the universal quantifier and the wand, we are left to prove

R+ Q(v) Q(v) *R
which is trivial. O

3.2 Step-Indexing

Next, let us turn to sl‘.ep-indexing.5 As mentioned in the introduction (see §1),
step-indexing is a powerful technique for recursive, seemingly cyclic reasoning.
It enables users of Iris to reason about recursive functions, verify generic higher-
order specifications, and build semantic models of languages with advanced
features such as shared, mutable, higher-order state. In the following, we will
focus first on step-indexing from a user perspective, especially on how it affects
the program logic via the later modality » P (read “later P”). We will then see
how it affects the model of Iris and what is behind the later modality in §4.
As mentioned above, step-indexing enables different forms of recursive
reasoning. The first one that we will focus on is how it enables us to verify
recursive functions.® That is, up to now, all the examples that we have dis-
cussed are terminating. But recall (from §2) that we are only aiming for partial
correctness, meaning programs are allowed to diverge. Step-indexing will help
us to reflect this into our reasoning principles. To keep matters concrete, we
focus on a specific example, a potentially non-terminating search procedure.

CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

* Krebbers, Timany, and Birkedal,
“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17].

> Appel and McAllester, “An indexed
model of recursive types for foundational
proof-carrying code”, 2001 [AMO01];
Ahmed et al., “Semantic foundations

for typed assembly languages”, 2010
[Ahm+10].

¢ Step-indexing is not strictly neces-
sary to verify recursive functions. For
non-step-indexed partial correctness
logics, there are other approaches that
one could choose to verify potentially
non-terminating functions such as
co-induction. We use recursion here to
provide a simple introduction to step-
indexing. We consider more advanced
applications such as impredicative invari-
ants later in this chapter (in §3.4) and in
subsequent parts of the dissertation.

25

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Example 13 (The First Function). The function first searches for the first
natural number satisfying a predicate p. It does so by starting at n and then
counting up (potentially diverging if p is never satisfied).

firstpx £ if pxthenxelse firstp (x+1)

Suppose that p computes a pure predicate ¢. Our goal is to show that firstpn
computes the first number greater than (or equal) n satisfying ¢. Concretely,
assuming {True} pn{v.3b : B.v="> * (b = true & ¢(n))}, we want to show

{True} firstpn{v.Im.v=m=* ¢ (m) «Vk.n <k <m = -¢(k)}

The later modality. The key to our recursive argument for first will be
the later modality > P. Intuitively, it means that P will hold after the next step
of computation. To reason about it, we use the following proof rules:

LATER RULES
LATER-MONO LoB
LATER-INTRO PrQ >P+P LATER-SEP
PreP >Pr>Q FP >(P* Q) 4>Px>Q
LATER-EXISTS
X non-empty LATER-ALL
>(dx : X. P(x)) 4+ Ix : X. > P(x) >(Vx : X. P(x)) 4F Vx : X. » P(x)

WP-LATER-PURE-STEP
’
€ —)pure €

>wp e {v.P(v)} - wpe{v.P(v)}

WP-LATER-REF

>(Ve. £ > v - Q(¢f)) F wp ref(v) {w. Q(w)}

WP-LATER-LOAD
vl v-+QW)Fwp £ {w.Q(w)}

WP-LATER-STORE
o vee(l—>w-+Q0))Fwpf=w{w. Q(w)}

We can always introduce a later modality (LaTer-INTRO); We can apply en-
tailments underneath a later modality (LaTEr-moNO); and it commutes with
separating conjunction (LATERr-sEp), existential quantification (taTEr-ExisTs), and
universal quantification (LaTer-arr). The later modality is connected to program
steps by rules for the weakest precondition (wp-LATER-PURE-STEP, WP-LATER-REF,
WP-LATER-LOAD, and wp-LATER-sTORE). Each of these rules allows us to continue
after the next program step (e.g., after the next pure step in wp-LATER-PURE-STEP)
with the remaining goal underneath a later modality. They are strengthened
versions of the weakest precondition rules from above. For example, we can

derive the rule wp-pURE-STEP from wPr-LATER-PURE-STEP as follows:

Figure 3.2: Proof rules for the
later modality.

26

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Lemma 14.

’
€ Hpure €

wp e’ {v.Q()} F wp e {v.Q(v)}

Proof. Suppose e —pyre €.

CONTEXT GoaAL
wpe' {v.0(v)} wpe{v.Q(v)}
With raTer-INTRO, it suffices to prove

wpe' {v.Q(v)} >wp e {v.Q(v)}
which follows immediatelly with wp-LATER-PURE-STEP. O

Lob induction. The key rule that we will use to justify recursive reasoning
is Los. It means that if we want to prove P, then it suffices to prove P under the

assumption that P already holds later. We put it to use for verifying first:
Lemma 15. If{True} pn{v.3b:B.v="> = (b = true © ¢(n))}, then

{True} firstpn{v.Im.v=m=* ¢ (m) «Vk.n <k <m = ~¢p(k)}
Proof. Suppose {True} pn{v.3b:B.v=">0 * (b =true & ¢(n))}.

CONTEXT GoaAL
Vn.wp firstpn{v.®,(v)}

where we abbreviate ®,(v) £ Im.v=m * ¢ (m) * Vk.n < k <m = =¢p(k).

We proceed by Los induction.
>(Vn.wp firstpn {v.®,(v)}) Vn.wp firstpn {v.®,(v)}

We introduce n and execute one pure step with wp-LaTER-PURE-sTEP. (Note that
first is a curried function, so one pure step leaves us with a A-abstraction.)

>(Vn.wp firstpn {v. ®,(v)})
>wp (Ax. if px thenxelse firstp (x+1)) n {v. ,(v)}

We use LaTer-mono to strip the later from the context and the goal.
Vn.wp firstpn {v. ®,(v)}
wp (Ax. if px then x else firstp (x + 1)) n {v. &, (v)}

After another pure step, we focus on the execution of p n with we-BinD.
Vn.wp firstpn {v. ®,(v)}
wppn {w. wp if wthennelse firstp (n+1) {v. CDn(v)}}

Using our assumption about p, we obtain a Boolean b such that
(Vn.wp firstpn {v.®,(v)}) * (b = true & ¢(n))

wp (ifbthen nelse firstp (n+1)) {v.®,(v)}
We proceed by case analysis on b.

Case b = true.

Then we have to prove (after executing pure steps):

(Vn.wp firstpn {v.®,(v)}) * ¢(n) ®,(n)
which is trivially true (since ¢(n) and there is no k such that n < k < n).

Case b = false.

Then we have to prove (after executing pure steps):

(Vn.wp firstpn {v. ®,(v)}) * =¢(n) wp firstp (n+1) {v.®,(v)}

We apply the inductive hypothesis for n + 1 using we-wanp, leaving
~¢(n) Y. @iy (v) On(v)
The claim follows trivially, since ¢ does not hold for n. O

27

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

More step-indexing. Lob induction is just the tip of the iceberg for step-
indexing. We will introduce several more use cases of step-indexing in the
remainder of this dissertation. For example, in Part II, we will use step-indexing
to verify a higher-order stateful combinator (§8.1) and to define a logical rela-
tion for proving termination of a language with asynchronous channels (§8.3).
In Part III, we will use step-indexing to define a binary logical relation for
reasoning about reorderable expressions (§13.1), to verify a fine-grained concur-
rent data structure (§13.2), and to obtain fixpoints of recursive predicates (§14.2).
In Part V, we will use it to verify a higher-order channel implementation (§29.1).
(In many of these applications, the use of step-indexing will be implicit. It will
be concealed behind Iris’s impredicative invariants, which we will introduce
in §3.4.1.)

3.3 Persistency

Next, let us turn to persistency. Most separation logic assertions cannot be
duplicated because they carry ownership (e.g., £ — v carries exclusive ownership
of ¢, so it cannot be duplicated). We will now introduce a class of propositions,
persistent propositions, whose main characteristic is that they can be duplicated.
Thus, just like propositions in first-order logic or Rocq, we can reuse them as
often as we want. To motivate them, let us consider a concrete example:

Example 16 (Fibonacci). We have seen above how to use Los induction to
reason about recursive functions. But now suppose we want to verify the

Fibonacci-function (or any other function with multiple recursive occurrences):
fib(n) £ ifn < 1thennelse fib(n-1)+fib(n-2)

Then, without persistency, we will get stuck in the recursive case, because we
can only discharge one of the two recursive occurrences. More specifically,
suppose we want to prove the specification {True} fib(n) {v.v € Z} (where,
for simplicity, we only prove that the result is an integer). Analogously to the
proof of first (in Lemma 15), we eventually reach the following proof state:

CONTEXT GoAL

Casen > 2.
(Vn.wp fib(n) {v.v € Z})

wp fib(n-1)+fib(n - 2) {v.v e Z}
We bind on fib(n — 2) and apply the inductive hypothesis with we-wanb.

Yv.v € Z - wp fib(n-1)+v{w.w € Z}

But here we are stuck! We have used up the inductive hypothesis to evaluate
fib(n — 2), so we cannot use it again to evaluate the second recursive call. To
make this proof work, we must strengthen the inductive hypothesis to allow

7 °

us to use it more than once. This is where persistency comes in.
The persistency modality. To characterize persistency, we introduce a new
modality O P (read “persistently P”), and we call a proposition P persistent
(written persistent(P)) if we can prove P + [0 P. We use the rules in Fig. 3.3
for reasoning about [P. The persistency modality is monotone (PERS-MONO);

”In general, a weakest precondition

wp e {v. Q(v)} cannot be duplicated,
because it can carry ownership just like a
magic wand. For example, we can prove
tHvEwp H{w. w=vs v} Ifwe
could duplicate the weakest precondition,
then we could use two loads of ¢ to
duplicate the ownership of £ — v (that we
obtain from the postcondition).

28

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

PERSISTENCY RULES
PERS-MONO
P F Q PERS-IDEMP PERS-ALL
OPrOQ OP+OOP Vx:X. OP(x) F OVx: X.P(x)
PERS-EXISTS PERS-LATER PERS-PURE
O3x: X.P(x) F3x: X. OP(x) >OP4-0O»P ord¢
PERS-ELIM PERS-DUPL PERS-AND-SEP
OP+P OP+(OP)=(OP) (OP)AQH-(OP)=Q

idempotent (pers-iDEMP); and it commutes with universal quantification (pers-
ary), existential quantification (pers-exists), and the later modality (PERs-LATER).
Pure propositions are persistent (pErs-rure) and we can always eliminate the
persistency modality (pers-eLim). The key property of persistent propositions is
that we can duplicate them (pers-purr), which can be expressed in a strength-
ened form as conjunction and separating conjunction coincide for persistent
propositions (pPErs-anp-sep).8

Note that there is no introduction rule for the persistency modality (other
than for pure propositions with pers-pure). The typical way to introduce a
persistency modality is with pers-mono. It requires the premise of the entailment
to already be persistent. As a result, we can only use persistent assertions to

prove persistent assertions.

Multiple recursive occurrences. With the persistency modality in hand,
let us return to the Fibonacci example. Instead of proving the entailment
F Vn.wp fib(n) {v.v € Z}, we now prove + O Vn. wp fib(n) {v.v € Z}:

Lemma 17.
FOwp fib(n) {v.v e Z}

Proof Sketch. We focus on how persistency allows us to continue where we

would have been stuck before.

CONTEXT GoAL

Casen > 2.
OVn.wp fib(n) {v.v € Z}
wp fib(n-1)+fib(n - 2) {v.v e Z}

Here, we benefit from persistency. We duplicate the inductive hypothesis
with pers-purL and eliminate one persistency modality with pers-Lim.

(OVn.wp fib(n) {v.v € Z}) = (Vn. wp fib(n) {v.v € Z})

wp fib(n-1)+fib(n - 2) {v.v e Z}
We bind on fib(n — 2) and apply the inductive hypothesis with we-wanb.
OVn. wp fib(n) {w.w € Z}

Yv.v € Z -+ wp fib(n-1)+v{w.w € Z}

After introducing v € Z, we are left to prove

(OVn.wp fib(n) {w.w e Z}) xveZ wp fib(n—1)+v{w.w € Z}
Now we can use the inductive hypothesis again to execute fib(n — 1). The
remainder of the proof is trivial. O

Figure 3.3: Proof rules for the
persistency modality (1 P.

8 The ordinary conjunction P A Q

is used rarely with separation logic
resources. It means that P and Q are
true at the same time, but if we want to
use them (unless they are persistent),
we must decide between one of the two
conjuncts. In other words, we cannot
turn a conjunction (in general) into a
separating conjunction.

29

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Internalizing Hoare triples. Verifying a weakest precondition underneath
a persistency modality is a common pattern, because often we want to reuse
the resulting specification multiple times. In fact, we can use this pattern to
internalize the definition of Hoare triples to turn them into Iris propositions.
The internalized Hoare triples are more powerful. As we will see shortly,
they have two main benefits: (1) they can be used for specifying expressions
whose resulting values are functions (because the new triples can be used in
postconditions), and (2) they can use invariants (see §3.4).
To internalize Hoare triples, we define

{PYe{v.Qm)} = O +wpe{v.0v)})

Compared to the “old” Hoare triples {P} e {v. Q(v)}, g = P+ wp e {v. Q(v)}
from §3.1, the new triples are no longer meta-level judgments (i.e., they are
no longer judgments of Rocq type Prop) but instead are Iris propositions (like
P x Q). Thus, they can be used, for example, in postconditions. All Hoare triple

results that we have proven for the “old” triples remain true, because

F{Pte{v.Q} iff Prwpe{v.Q(v)}

Our Hoare triples are trivially duplicable {P} e {v. Q(v)} + {P} e {v. Q(v)} =
{P} e {v. Q(v)}, and we can prove the following general reasoning principle

for recursive functions:

Lemma 18.
WP-REC

(Yu{Pu}(fix fx.e) u{w.Q(u, w)}) FVv.{Pv}e[(fix fx.e)/f,v/x]{w. Q(v,w)}
Py wp (fix fx.e)v{w.Q(v,w)}

Proof. By LoB induction analogous to the proofs of first and fib. O

3.4 Invariants

Next, let us turn to invariants. Invariants are one of the most important persis-
tent assertions. They allow us to share ownership of resources (e.g., points-to
assertions ¢ — v) between different parts of a program. To keep matters con-

crete, we start with an example.
Example 19 (MutBit). Our goal is to verify the following simple data structure:
MutBit = letx =ref (0) in{flip = A_.x:=1-!x, get = A_. !x}

It allocates a new reference x that will alternate between 0 and 1 and provides
two operations for accessing x: flip flips the internal value of the reference

and get retrieves its value. Our goal will be to prove the following specification:
{True} MutBit {v. mutbit(v)} where

mutbit(v) £ {True} v.flip() {w. w=()} * {True} v.get() {w.w=0V w=1}.
There is no precondition for flip and get, and get always returnsOor 1.

MutBit is the first example whose return value contains (a record of) func-
tions. To give clients of MutBit the ability to use these functions, we put
specifications for them into the postcondition—using the internalized version
of Hoare triples. And since the reference x is captured internally by the two
functions and not observably externally, we do not expose it via the specifica-
tion. Instead, both flip and get have precondition True.

30

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Implicit sharing. This specification simplifies the life of clients of MutBit
in the sense that they do not need to thread around ownership of a reference,
which they do not have access to. At the same time, it poses a challenge for
verifying MutBit: the preconditions do not pass ownership of x to flip and
get, so where do we get the ownership of x from to verify flip and get? More

specifically, after allocating the reference x, we have to prove:

x = 0+ {True} bit.flip() {w.w = ()} * {True} bit.get() {w.w=0VvVw=1}
where bit = {flipZ=A_x:=1-!x, get =A_. !x}

How are we supposed to decide whether to give ownership of x — 0 to flip or

get? Moreover, even if we pick one side, then we subsequently have to prove a
persistent proposition (recall {P} e {v. Q(v)} £ O(P - wp e {v. Q(v)})). But

the resource x > 0 is not persistent,” so we cannot keep it for proving anything % x + 0 cannot be persistent, because we
underneath the persistency modality. are not allowed to duplicate it (POINTS-
Here, invariants N come in. With invariants, we can make the ownership TO-SER)
of x duplicable. The price we have to pay is that we have to agree on a “protocol”
how x will be used. Concretely, in the case of MutBit, we know that x will
always be either 0 or 1. That is what we choose as the invariant:
Iwteit = [In € {0,1} .x — n‘N
Invariants. To understand how invariants work and why they help us here,
we consider their rules:
WP-INV-ALLOC
INV-PERS Px @N Fwp®e {v.0(v)} . . .
N L0 N PsRrwpte(v.0()} Flgture 3.4: Proof rules for invari-
ants.

WP-INV-OPEN-TIMELESS
PxRv+ pr\N e{v.R+*Q(v)} atomic(e) NC&E timeless(R)

P+ [R™ F wp® e (v. Q(v)}

The rule inv-pERs says that invariants are persistent and, hence, we can duplicate
them and share them between different parts of our program. The rule we-mnv-
arroc says that we can allocate the invariant N if we give up ownership of R.
Thereafter, we can freely share the ownership of R by sharing the invariant N,

The rule wr-inv-oPEN-TIMELESS is quite a mouthful. Let us break it down. It
says that if we own the invariant N, then we can get access to R. In exchange,
we have to prove R again in our postcondition. The reason why we need to
re-establish R is that other program parts could rely on the invariant being
true when they are executed. For example, both flip and get will rely on the
invariant Iw,tgi+ and, hence, they have to ensure that it also holds again after
their execution. Let us now turn to the side conditions of the rule: (1) The
condition atomic(e) ensures that invariants can only be opened around atomic
expressions, expressions that will reduce in one step to a value (e.g., ! £, £:=v,...).
The reason, as we will see in §3.5, is to be compatible with adding concurrency
to our language. (2) The condition N' C & uses “masks” & and “namespaces” N
to ensure that invariants cannot be opened twice. We explain how both work
below. (3) The condition timeless(R) is an artifact of step-indexing. We will
come back to it in §3.4.1. For now, it suffices to know that our MutBi t-invariant,
dn € {0,1} . x > n, is timeless.

31

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Masks. To be sound, invariants introduce an additional piece of bookkeeping,
masks & and namespaces N. They ensure that we may not open the same
invariant while it is already open. For example, if we have the invariant Iygit,
then opening it twice would be fatal, because we could use poinTs-To-sEp to
prove anything. To prevent this from happening, invariants @N have a so-
called namespace N associated with them and the weakest precondition has
a mask & Whenever we open an invariant, we must make sure that it is not
already opened by proving that the namespace N is still contained in the mask.
Subsequently, the namespace is removed from the mask until the invariant
is closed again (i.e., in the postcondition). (Namespaces are more or less like
names of invariants, and the masks track which invariants are currently closed.)

In practice, making sure that invariants are not opened twice is pretty
straightforward. The masks and namespaces mechanism does, however, in-
troduce a considerable amount of bookkeeping, especially on paper. Thus, to
ease the presentation in the following, we will often omit masks, unless the
interaction with invariants is particularly interesting. All the rules that we
have seen so far for the weakest precondition also hold true parameterized
by a mask (e.g., wp® e {v. wp® K[v] {w. Q(w)}} Fwp® K[e] {w. Q(w)}). We
typically start with the full mask T in examples, but—other than in the MutBit
example below—usually elide it.

Verifying MutBit. With invariants in hand, let us return to MutBit:

Lemma 20. {True}MutBit {v. mutbit(v)}

Proof.

CONTEXT GoaAL
wp' MutBit {v. mutbit(v)}

x>0 wp' {flip£ A_.x:=1-!x, get 2 A_. !'x}{v. mutbit(v)}

We allocate 3n € {0,1} . x — n as an invariant with wre-inv-ALLOC.

Ivutgit wp' {flip2 A_.x:=1-!x, get 2 A_. !x} {v. mutbit(v)}

Let bit = {flip £ A_.x:=1-!x, get = 1_. !x}.

Twutsit mutbit(bit)

We proceed with the two conjuncts, using the fact that Iy,gi+ is duplicable.

Case get.

Iutsit wp' bit.get) {w.w=0Vw=1}

Twutsit wp' lx{w.w=0VvVw=1}

We open the invariant with wp-inv-oPEN-TIMELESS. Let (W) £ w =0V w = 1.
Iwtsit * (In € {0,1} . x > n)
wp ™Wix {w. (Fn € {0,1}.x > n) * d(w)}

We use the ownership of x to justify the read with we-Loap.

Iutgit * n € {0,1} x> n - ((3ne{0,1}.x > n) = d(n))
Thus, after giving back the ownership of x, we are left to prove
Inutsit = n € {0,1} ®(n)

which is trivial.

Case flip.

The case for flip is analogous, but we have to open the invariant twice: once
for the load ! x, where we obtain the current value n € {0,1} and once for
the store x := 1 — n, where we use the fact that 1 — n € {0,1} to close it. O

32

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

3.4.1 Impredicative Invariants

Invariants in separation logic are nothing new. Even early versions of con-
current separation logic!? already had invariants to share resources between
threads. What is special about Iris’s invariants (inherited from iCAP,! one of
its predecessors) is that they are impredicative: they can contain any arbitrary
Iris proposition, including other invariants and even weakest preconditions.
Unfortunately, the price of their expressivity is that their model is cyclic—cyclic
to the extent that naive models of @N are not well-founded (i.e., inductive or
co-inductive definitions do not suffice).

We will discuss this point in more detail later on (see §3.4.1). For now, it
suffices to know that the model of Iris’s propositions roughly looks as follows:

iProp = Inv — Heap — Prop Inv=N & iProp

To a first approximation, Iris propositions are predicates over invariants and
program heaps.!? Invariants, in turn, are finite maps of Iris propositions.

Clearly, this is a cyclic dependency: to define Iris propositions, we need Iris
propositions in the definition of invariants. Unfortunately, this definition is
not only recursive, but also has a negative occurrence. In essence, we define
iProp as predicates over iProp, which has no solution in set or type theory.
Here, step-indexing comes to the rescue. Behind the scenes, in the model of
Iris, step-indexing is used to define the type of Iris propositions and justify
impredicative invariants.

To users of Iris, this use of step-indexing is concealed, but it becomes visible
when interacting with invariants. In particular, Iris has a more general invariant
opening rule than wp-iNv-0PEN-TIMELESS, Which is

WP-INV-OPEN

Px>RF wpa\N e{v.>R=*Q(v)} atomic(e) NcC&E
P« [RN r wpe{v.0()}

Compared to wr-INV-OPEN-TIMELESS, it removes the timelessness requirement. In

exchange, the contents R of the invariant are now guarded by a later modality
as an artifact of the step-indexed model. (When we re-establish the invariant,
it also suffices to provide R underneath a later modality.)

Example 21. To see where the full power of impredicative invariants is useful,
let us consider an example, higher-order state (i.e., memory storing functions).
In the following example, we create a reference [that always stores functions
that produce an integer. We then return a record that contains two operations:
one to update the function stored in the reference and one to execute it.

FuncRef = let] =ref (A_. 0) in {store = Af.[:=f, exec = Ax. (! [)(x)}
Following the same style as MutBit, a natural specification for FuncRef is
{True} FuncRef {v. funcref(v)} where

funcref(v) = {{True} f () {w.w € Z}} v.store(f) {v.u= ()}
x {True} v.exec() {w. w € Z}

The store-projection takes a function that will return some integer (and stores
it internally in the reference). The exec-projection returns some integer (by
executing the function currently stored in the reference). °

1Y O’Hearn, “Resources, concurrency, and
local reasoning”, 2007 [OHe07].

' Svendsen and Birkedal, “Impredicative
concurrent abstract predicates”, 2014
[SB14].

12 As we will see in §4.3, Iris propositions
are predicates over step-indices and
resources. Both the heaps and the
invariants are turned into resources.

33

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

We will not discuss the proof of this example in detail, because it is analogous
to the MutBit-example (Example 19). But let us focus on the key invariant that
is needed to establish the proof:

Truncrer 2 [3f. 1 f * {True} fO (v.vezy |V

It ensures that [always stores functions, which will return an integer. To define

it, we make use of impredicativity: we put a Hoare triple into the invariant,
because—as the reference is updated—we must update the triple for the function

that is stored inside the reference.

Timelessness. Let us briefly discuss the timelessness constraint in we-inv-
oPEN-TIMELESS. In the MutBit-example, we are working with a simple invariant,
which does not rely on impredicativity at all. For those cases, Iris has a class of
propositions, the timeless propositions, which do not depend on step-indexing.
That is, if a proposition P is timeless, then we can just eliminate a later modality
in front of it when proving a weakest precondition. Specifically, timeless

propositions satisfy the following rules:

TIMELESS-PERS TIMELESS-SEP
timeless(P) timeless(P) timeless(Q)
TIMELESS-PURE - Q Figure 3.5: Proof rules for time-
timeless(¢) timeless(O P) timeless(P = Q) less propositions
TIMELESS-WAND TIMELESS-OR
timeless(Q) timeless(P) timeless(Q)
timeless(P - Q) timeless(P Vv Q)
TIMELESS-AND TIMELESS-ALL TIMELESS-EXISTS
timeless(P) timeless(Q) Vx. timeless(P(x)) Vx. timeless(P(x))
timeless(P A Q) timeless(Vx. P(x)) timeless(3x. P(x))

WP-TIMELESS-STRIP
: &
FIMELESS-POINTS-TO timeless(Q) PxQrwp®e{v.R(v)}

timeless(¢ +— v) Pxv>QF wp‘S e {v.R(v)}

Timeless propositions include points-to assertions and pure assertions, and
they are closed under most logical connectives. We can eliminate a later from
them with wp-TIMELESS-STRIP.

Using these rules, we can derive the timeless invariant opening rule that we
have used for MutBit, we-inv-oPEN-TIMELESS, from the general rule as follows:

Lemma 22.

PxR¢ wp‘S\N e{v.R+Q(v)} atomic(e) NcC&E timeless(R)
P«[R" F wp®e {v.0(v)}

Proof.

CONTEXT GoaL
p+[R" wp® e {v.0(v)}
Using wp-INV-OPEN

P %>R wp&We {v. >R+ Q(v)}
Using wp-TIMELESS-STRIP and LATER-INTRO

P xR wp®We {v. R+ Q(v)}
which follows by assumption. O

34

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Hoare triple rules. We will use impredicative invariants for several appli-
cations throughout this dissertation (e.g., in Part I and Part III, we will use
them to develop logical relations). It will sometimes be more fitting to consider
their rules in “Hoare triple style”. To this end, we augment our notion of Hoare
triples with a mask by defining {P} e {v. Q(v)}g 2 O(P -+ wp® e {v. Q(v)}).

We can then trivially derive the following Hoare triple versions of the
weakest precondition rules given above:

HOARE-INV-OPEN

{PR=Pre{v.»R=Q(v)}g\n atomic(e) NcCéE
RN F{Pyev.0m}e

HOARE-INV-ALLOC HOARE-TIMELESS-STRIP
{P = N} e{v.0(v)}s {P*R}e{v.Q()}g timeless(R)
{PxRye{v.QW)}g {Px>Rle{v.Q()}g

3.5 Concurrency

Let us now turn to concurrency. Up to this point, all the examples that we have
considered were sequential: there was only ever a single thread of execution.
We will now develop techniques to reason about concurrent programs. Support
for concurrency is nothing Iris specific. Separation logic naturally extends to

concurrency (e.g., see O’'Hearn; Brookes'®). What Iris brings to the table are 13 O’Hearn, “Resources, concurrency, and
local reasoning”, 2007 [OHe07]; Brookes,

.. . o “A semantics for concurrent separation
But before we dive into the details of verifying concurrent programs, let us logic”, 2007 [Bro07].

powerful impredicative invariants and expressive forms of resources (§3.6).

start with a simple example:

Example 23 (Coin Flip). Consider the following code snippet, which “flips a

coin”!* by concurrently updating and reading from a reference r: 1 Note that this is not a cryptograph-
ically secure technique for sampling
efip = let r = ref(0) in fork{r :=1};!r. random numbers.

Concretely, the expression eg;, first creates a new reference r, then forks off
a new thread that will execute r := 1 and then concurrently sets r to 1 and
dereferences r. Executing two expressions e; and e; concurrently means that

the execution of e; and e; are interleaved in an arbitrary order.’® For example, 15 This is why the rule WP-INV-OPEN

in §3.4.1 has the atomicity side condition.
. . . For soundness, it is crucial that invariants
reading the updated value 1. But it could also proceed by first reading the cannot be kept open for more than one

original value 0 and then updating r to 1. ° step in a concurrent program. Otherwise,
interleaved threads could observe

the execution could proceed by first updating r to 1 (previously 0) and then

The fact that concurrent programs execute in an arbitrary interleaving makes violations of the invariant.
them notoriously hard to reason about, because different interleavings can result
in different outcomes. For example, the result of executing e, can be either 0
or 1, depending on the order in which we execute r :=1 and ! r. Since we do not
know upfront which interleaving will be chosen during the execution, we have
to take all interleavings into account when we reason about the behavior of eg;p.
For eriip, this is simple, but once we consider larger programs, the number of
interleavings can quickly get out of hand.

In this chapter, we will develop modular reasoning principles for concurrent
programs based on separation logic. We will see how we can reason about the
interleavings of ef;,, how to modularly compose concurrent programs, and
how we can get back to more sequential reasoning by, for example, using locks.

35

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

3.5.1 A Concurrent Language

We extend the expressions of our language by three new constructs:

Expressions e
Eval. Contexts K

.-+ | CAS(ey, €2, e3) | FAA(eq, e2) | fork{e}
-+« | FAA(e,K) | FAA(K,v;) | CAS(ey, €5, K)
| CAS(el,K,v3) | CAS(K,Vz, V3)

The operation CAS(ey, e, €3) is a “compare-and-set”. It evaluates ey, ez, and e3
to a reference ¢, a value v, and a value w. Afterwards, it replaces the value
in reference ¢ by the value w if it is currently v, and it returns the current
value stored in £. The operation FAA(ey, e;) is a “fetch-and-add”. It evaluates
e; and e, to a reference ¢ storing an integer m and an integer n. Afterwards,
it increments the integer m in reference ¢ by n and returns m. The compare-
and-set and fetch-and-add operations are synchronization primitives, which
we can use to communicate between threads. The operation fork{e} forks
off a new thread executing e and immediately returns. For example, after
executing fork{e; }; e, the expressions e; and e, are executing in parallel. The
fork operation is analogous to, for example, spawn in C-like languages.

Synchronization and communication. From the perspective of someone
who is used to programming in concurrent languages, the above extension to
our sequential language may seem a bit strange: seemingly, there is no built-in
way to share data (e.g., via a lock or a channel). The reason is that we do not
need to include these (more user-friendly) communication primitives, because
we can derive them from our low-level primitives such as “compare-and-set”.

To illustrate this point, let us implement a “spin lock™:

mklock() = ref(false)
lock(l) £ if CAS(l, false, true) then () else lock(l)
unlock(l) £ [:=false

We can create a spin lock with mklock, acquire a lock with lock, and release
it again with unlock. Internally, the lock is just represented as a reference to
a Boolean such that the reference is true while someone is holding the lock
and false while the lock is available. To acquire the lock, we “spin” on the
reference [until it becomes false (so until the lock becomes available).’® To
release the lock, we simply set the [to false.

For the lock implementation to be correct, we need to know that it is not
possible for two threads to acquire the lock at the same time. That is where our
synchronization primitive CAS(ey, €3, e3) comes in: it checks whether the value
stored at [is currently false and, in the same instruction, sets it to true so other
lock attempts will not succeed. If CAS(ey, 5, e3) was not a single instruction
(i.e., if it would take more than one step to execute), then we could end up in
a similar situation where two threads first read and then write a new value
without synchronization between them.

By taking the low-level route of including primitives such as compare-and-set
instead of high-level primitives such as locks, we work closer to the instructions
that are offered by modern processors. It also means that we can reason about
the implementation of a spin lock, a ticket lock, or other fine-grained concurrent
data structures.

!¢ In many other languages, spinning

on a location as done in lock would be
considered a data race. Here, we assume
a sequentially consistent memory model,
which allows for racing on a location to

enable synchronization.

36

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

3.5.2 A Concurrent Separation Logic

Now that we have concurrency in our language, how can we prove anything
about concurrent programs? Separation logic is especially well equipped to
reason about concurrent programs, because we already have built-in, fine-
grained control over which data is shared (using invariants) and which data is
exclusively owned (using ordinary points-to assertions). We extend our logic

with the following rules for our new primitives:

WP-SUC-CAS
VI =V v1, Vo comparable

L v x (£ > w - Q(true)) + wpa CAS(£, v, w) {v. Q(v)}

WP-FAIL-CAS
Vi E vy v1, Vo comparable

£ v x>(> vy = Q(false)) wps CAS(L,vo, w) {v.Q(v)}

WP-FAA
tH mxv(f—> m+n-+Q(m))+ wp8 FAA(Z,n) {v. Q(v)}

‘WP-FORK

wp ' e{_ True} *>Q() + wps fork{e} {v.Q(v)}

The rules we-suc-cas and we-rarL-cas can be used to show that a CAS will
be successful (swapping out the value) or not (leaving the value unchanged).
They impose the side condition vy, v, comparable, which means that v; or v,
should be “simple” in the sense that they can be compared in a single step of
execution (because typically processors can only compare word-size data in a
single instruction). The rule wr-raa increments the reference ¢, and wr-rorx

forks a new thread. (The mask of the new thread is initially T, because all

invariants will be closed when e takes its first step.)

Verifying the coin flip. Let us verify the coin flip with the new rules.

Lemma 24. {True} eqjp {v.v=0Vv =1}

Proof.
CONTEXT GoAL
wp efjip {v.v=0Vv=1}
re—o0 wp fork{r:=1};!r{v.v=0vv =1}

We allocate the invariant:

N wp fork{r:=1};!r{v.v=0vwv =1}

Using wr-BInD and we-Fork (and some additional simplification).

N wpr:=1{_True}*wp !r{v.v=0Vvv=1}

First Goal

N
wp r:=1{_. True}

Using wp-INV-OPEN-TIMELESS
r—0Vre1 wp ™ Wr=1{_.r—ovre1}

Follows trivially with we-sTORE.

Second Goal

roovro” wp !r{v.v=0vv=1}

Using WP-INV-OPEN-TIMELESS
re0vrie1 wp ™ Wir{v.(v=ovv=1) s (r—0vre 1)}

Follows trivially with we-Loap. O

Figure 3.6: Weakest precondition

proof rules for the concurrency

primitives.

37

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Example: Lock. For our next example, we return to the spin lock example.

Typically, a lock is supposed to guard some exclusive piece of data (e.g., a
reference to a mutable list) which “becomes available” (i.e., we may access
it) upon acquiring the lock and has to be returned upon releasing the lock
(i.e, we may no longer access it). In Iris, we will specify a lock with the
predicate lock (¢, P), which means that ¢ is a lock guarding the resource P (an
Iris assertion). For this notion of a lock, we then want to show the following

specification witnessing the exchange of P between lock and unlock:

{P} mklock() {v.3¢.v = £ * lock(¢, P)} {lock(£, P)} Lock(¢) {_. P}

{lock (¢, P) = P} unlock(¢) {_. True}

One can think of a lock lock(#, P) as an invariant P that is tied to program

code. We open it with lock and we, subsequently, close it again with unlock.

While the lock is “open”, we can freely use (and break) P, but at the time when
we want to “close” it again, we have to return (and restore) P. In fact, that is

exactly how we define lock (¢, P):

lock (¢, P) £ [£ > true v (¢ > false = P) | ¥

Here, we benefit from the impredicativity of invariants. We can simply put
an arbitrary Iris proposition P into the invariant—regardless of whether it
mentions another invariant, a weakest precondition, or another lock.

Given the definition of lock(#, P), the verification of the lock operations is
straightforward. We show the case for lock.

Lemma 25. {lock(¢,P)} lock(¢) {_.P}.

Proof.
CONTEXT GoaL
lock (¢, P) wp lock(¢) {_. P}
By LoB induction.
lock(¢, P) = >wp lock(¢) {_. P} wp lock(¢) {_. P}

Executing for one step.
lock (¢, P) * wp lock(?) {_. P}
wp if CAS(?, false, true) then () else lock(¢) {_. P}

By binding on CAS with ®(v) = wp if vthen () else lock(¢) {_. P}.
lock(¢, P) = wp lock(?) {_. P} wp CAS(¢, false, true) {v. &(v)}
By opening the invariant (we-inv-oren) and commuting in the later modality.
(£ > true V ¢ — false * > P) = wp lock(?) {_. P}

wp CAS(¢, false, true) {v. (£ — true V £ > false > P) « ®(v)}
Case ¢ — true.

By we-raiL-cas, we are left to prove
¢ — true * wp lock(?) {_. P}

(¢ > true V £ > false = » P) = ®(false)
wp lock(¢) {_. P} O(false)

which is trivial using the recursive assumption wp lock(¢) {_. P}.

38

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

CONTEXT GoAL
Case ¢ — false = > P.
By we-suc-cas, we are left to prove
¢ — true * P« wp lock(¢) {_. P}
(£ > true V £ > false * > P) x ®(true)

We do not have to return P and are left to prove
P+ wp lock(¢) {_. P} d(true)
which is trivial. O

3.6 Ghost State

Let us now turn to ghost state and resources. The only resource that we have
considered so far is the points-to assertion ¢ — v. However, Iris offers a much
richer variety of resources. To understand how these resources work and where
they are useful, we consider an example: a fine-grained concurrent, monotone

counter (i.e., a counter that does not use locking and only increases in value).

Example 26 (Concurrent Counter). Our counter offers three methods:
mkcounter () = ref(0) get(c) = !¢ inc(c) = FAA(c, 1)

We can create a counter with mkcounter (implemented as a reference internally),
we can read its value with get (implemented by reading the reference), and we
can increment its value with inc (implemented with fetch-and-add).

We will specify this counter with a predicate counter(c, n), which expresses
that the value of counter c is currently at least n. Importantly, counter(c, n)
only expresses that the counter value is “at least n” and not “exactly n”, because
we are considering a concurrent counter. That is, the counter can be shared
between threads, and, after we have observed the counter value (e.g., with a
get), other threads can increment it, invalidating any assumptions about its

exact value (but not about lower bounds). We will prove the specification:
counter(c, n) + O counter(c, n) {True} mkcounter () {c. counter(c, 0)}
{counter(c,n)} get(c) {v.dm > n.v = m * counter(c,m)}
{counter(c,n)} inc(c) {v. I3m > n.v = m * counter(c,m+ 1)}

The counter predicate is persistent (to be shared with other threads). We initially
obtain a counter of at least 0. The operation get returns a value m that is at
least the last observed value (and updates our bound), and the operation inc

increases the counter. °

How can we define the predicate counter(c, n)? For it to be sharable between

threads (i.e., to be persistent), we must wrap the ownership of ¢ in an invariant.

But naive attempts to do so such as:

Fm:N.emm]™ or Fm s N.[erom]”

are destined to fail. The first invariant does not guarantee that m only increases
(i.e., it can become any natural number). The second invariant does not allow
us to change m, so we could never increase it. We need a way to express “m can
be changed, but it can only be increased”. This is where ghost state comes in.

39

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Ghost state. Ghost state is auxiliary logical state that is useful for the verifi-
cation of a program.!” In this particular case, for the verification of the counter,
we use the ghost state of monotonically growing natural numbers. Monotonically
growing natural numbers come in the form of two propositions, mono, (n) and
Ib, (n), which represent two pieces of ghost state connected by the name y. The
ghost state monoy (n) expresses that the current value of y is n and that it can
only grow over time. The ghost state Ib, (1) is a lower bound on the value of y.
(It remains a lower bound on the value of y, because mono, (n) can only grow.)
Their relationship is captured by the following rules:

MONOTONICALLY GROWING NATURAL NUMBERS mono, (1) and Ib, (n)
MAKE-BOUND USE-BOUND
mono, (n) + monoy (n) * Ib,(n) monoy (n) * lb,(m) rn>m
BOUND-PERS INCREASE-VAL
Ib,(n) + O lby(n) monoy (n) + B monoy(n+ 1)
NEW-MONO MONO-TIMELESS BOUND-TIMELESS
True + B 3y. mono, (n) timeless(mono, (n)) timeless(lby (n))

The rule make-soun allows us to create a new lower bound Iby (n) from the
current value monoy (). The rule use-sBounn then later on allows us to show
that any lower bound that we have created Ib, (m) is smaller than the current
value monoy (n). The rule sBounp-pers ensures that the lower bounds Ib, (n) are
persistent. The rules increase-vaL and NEw-mono use a new modality of Iris, the
update modality |5 P, which we will discuss shortly. Intuitively, iINcREASE-VAL
says that we can always increase the current value mono, () by one with an
update. The rule new-mono allows us to create a new monotonically growing
natural number mono, (n) where the rule picks (a fresh) name y for us. The
rules Mmono-TIMELESS and BouND-TiMELESS ensure that both new connectives are
timeless and, hence, easy to use in invariants.

With this ghost state, we can define the counter predicate:

counter(c,n) = Jy. ‘ Jm : N. ¢ m * mono, (m) ‘N * |by (n)

We tie the current value of the counter m to the monotonically growing ghost

state y in the invariant by asserting that the current value is m (with mono, (m)).

Outside of the invariant, we track n as a lower bound on the counter. Since the
lower bound is persistent, the entire counter predicate is persistent.

The update modality. The update modality = P means that P holds after
(possibly) performing some updates to the current ghost state. Besides ghost
state specific rules like increase-varL and NEw-Mono, the modality has several
structural rules, depicted in Fig. 3.7. With uep-reTURN, We can always update the
current state P to itself (a no-op). With urp-BiND, we can compose two updates
into a single update. (Together, the rules turn the update modality = P into a
monad.) With we-upp, we can execute an update at a weakest precondition.

7 In typical Iris fashion, we use the
term “ghost state” liberally to refer to
any construction based on resource
algebras (§4.2). As we will see in §4.1,

this includes ghost state constructions for

the heap.

40

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

THE UPDATE MODALITY Figure 3.7: Structural prOOf rules
for the update modality.
UPD-RETURN UPD-BIND
P+pBP (BP)*(P+PQ)FpP0O
WP-UPD

Bwpe{v.0W)}+Fwpe{v.0(v)}

From these basic rules, we can then derive several useful auxiliary rules:

UPD-WAND UPD-TRANS UPD-FRAME
(BP)«(P=Q)rPQ BBEPrBP P+BQFB(P Q)
UPD-MONO HOARE-UPD
PrQ {P}e{v.Q(v)}
BPrBEQO {Brte{v.0}

With the update rules in hand, we will now look at an example of how one

can update ghost state during the proof of a weakest precondition:

Lemma 27. (monoy(n+1)=«wp e {v.Q(v)}) + (mono, (n) +wp e {v. O(v)})

Proof.

CONTEXT GoaL
(monoy (n+1) = wp e {v. Q(v)}) * monoy(n) wp e {v.O(v)}
By iNCrEASE-VAL, we can update mono, (1) to mono, (n+1).

(monoy (n+1) = wp e {v. Q(v)}) * B mono, (n+1) wp e {v.Q(v)}
By wr-uprp, we can add an update in front of the weakest precondition.
(monoy (n+1) = wp e {v. Q(v)}) * B mono,(n+1) Bwpe{v.0(v)}
Follows by urpD-wAND. O

Verifying the counter implementation. Let us now return to actually
verifying the counter implementation. We focus only on mkcounter and inc.
The proof for get is analogous.

Lemma 28. {True} mkcounter () {c. counter(c,0)}

Proof.
CONTEXT GoAL
wp mkcounter () {c. counter(c,0)}
cH— 0 wp ¢ {c. counter(c,0)}

We allocate a new resource with New-mono and we-upD.

¢ 0 * mono, (0) wp ¢ {c. counter(c,0)}

We create a lower bound with MAKE-BOUND.

¢ 0% mono, (0) = Ib,(0) wp ¢ {c. counter(c,0)}
We allocate the counter invariant with we-inv-aLLoc.

‘Elm : N. ¢ = m * mono, (m) ‘N * |b, (0) wp ¢ {c. counter(c, 0)}
The rest of the proof is trivial. O

41

PART I: AN IRIS PRIMER CHAPTER 3: THE MODERN SEPARATION Logic IRr1s

Lemma 29. {counter(c,n)} inc(c) {v.Im > n.v = m * counter(c,m+ 1)}

Proof.
CONTEXT GoaL
counter(c, n) wp inc(c) {v.3m > n.v =m * counter(¢c,m + 1)}

‘Elm :N. ¢ = m * mono, (m) ‘N * |by (n)
wp FAA(c, 1) {v. 3m > n.v = m * counter(c,m + 1)}

Using wp-INv-0PEN-TIMELESS With @(v) 2 Im > n.v = m * counter(c,m + 1).

‘Elm : N. ¢ = m * mono, (m) ‘N * lby (n)

* (dm : N. ¢ = m * monoy (m))
wp W FAA(c, 1) {v. (3m : N.c > m * mono,(m)) * @(v)}

Using USE-BOUND

[3m : N.c — m * mono, (m) ‘N

* ¢ > m* monoy(m) xn<m
wp W FAA(c, 1) {v. (3m :N.c = m * mono,(m)) * <I>(v)}

We update mono, (m) with Lemma 27 and obtain a lower bound with maxz-
BOUND.

[3m : N.c — m * mono, (m) ‘N

* ¢ m*monoy(m+1)*lb(m+1)xn<m
wp W FAA(c, 1) {v. (Im : N.c > m * mono,(m)) * <I>(v)}

Using wp-raA, we increment c.

‘Elm :N. ¢ = m * mono, (m) ‘N

xcr> m+1xmono,(m+1) xlby(m+1)*n<m

(3m :N.c +— m * monoy(m)) * ®(m)

We give up ownership of the counter reference and mono, (m +1).

N
‘EIm:N.CI—)m*monoy(m)‘ *Iby(m+1)«n<m

®(m)
We can now assemble the predicate counter(c, m + 1).
counter(c,m+1)*n<m

®(m)
The rest of the proof is trivial. O

More ghost state. Monotonically growing natural numbers are only one of
Iris’s many different forms of ghost state. To support different forms of ghost
state, Iris has a generic mechanism based on so-called “resource algebras”. We
will discuss resource algebras and how one can derive ghost theories from them

in §4.2. For now, we conclude our tour of the key features of Iris and turn to

the model of Iris.

42

CHAPTER 4

THE MODEL OF IRIS

After spending the last chapter discussing the different features of Iris, let us
now take a closer look at the model of Iris (i.e., we discuss how Iris’s propo-
sitions and connectives are defined). We focus mainly on a simplified model
without impredicative invariants, which suffices to explain the contributions
of the dissertation in the subsequent parts. The full model of Iris is described
in “Iris from the ground up: A modular foundation for higher-order concur-
rent separation logic”,! and we briefly discuss what is necessary to extend the
simplified model to the full model at the end of this chapter.

The model of Iris consists mainly of two parts: the program logic and the
base logic. The program logic is concerned with programs, heaps, and the
weakest precondition. The base logic is agnostic about all of those and is merely
concerned with resources, resource management, and step-indexing. It forms
a simple foundation upon which the program logic is built. We start with the
program logic (§4.1) and then work our way down to the base logic (§4.3).
Along the way, we introduce resources as a foundation for ghost state (§4.2).
We close our tour of the simplified model with a discussion of Iris’s soundness
(§4.4) and a sketch of how to extend it with impredicative invariants (§4.5).

4.1 The Program Logic

The centerpiece of the program logic is the weakest precondition. It is defined
internally inside of Iris by tying the operational semantics of a language? to
separation logic resources. Let us write (e, h) ~ (€', h") for a single, sequential
step in the operational semantics. Then the weakest precondition is defined as
follows (omitting masks &, support for invariants, and concurrency):

SEQUENTIAL WEAKEST PRECONDITION wpe{v.Q(v)}

wpv{w.Q(w)} =B Q(v)
wp e {w. Q(w)} = Vh. SI(h) - = progress(e, h) if e ¢ Val

* (Ve',h'. (e, h) ~ (&', ") = > (SI(K') » wp €’ {w.Q(w)}))

The definition has two cases. In the first case, the value case, one has to
prove the postcondition Q(v) after potentially updating the ghost state with
an update “B”. Otherwise, if e is a proper expression, one gets to assume the
state interpretation SI(h) (which ties the physical state h to the logical state;
explained below) and has to show two conditions: (1) the current expression e
can make progress in the heap h where progress(e, h) = 3e’,h’. (e, h) ~ (e’, k")

! Jung et al., “Iris from the ground up:
A modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

?In Iris, the program logic is defined
parametrically over the programming
language at hand. In the following, we
will mostly focus on HeaplLang as the
instantiation of the language.

* We will discuss concurrency shortly,
and masks and invariants are discussed
in §4.5.1.

43

PART I: AN IRIS PRIMER CHAPTER 4: THE MODEL OF IRIS

and (2) for any successor expression e¢’ and heap h’, one can re-establish the
state interpretation SI(h") and a weakest precondition for e’.

The use of the modalities in this definition is essential. The update modality
“B” (in red) is needed to allow (1) updating auxiliary ghost state (e.g., for the
concurrent counter from Example 26) and (2) updating the resources to the new
state b’ (e.g., in case e has updated a location in the heap h). The later modality
“>” (in blue) ties the program steps to step-indexing, because every program
step is now accompanied by a later modality. This later is responsible for the
intuition: > P means P will hold after the next step of computation” (see §3.2).
That is, as we have seen in the verification of first (see Example 13), when
we take a step (e.g., with wp-LATER-PURE-sTEP), the goal is put underneath a later.
We can then use raTER-MONO to remove guarding laters from hypotheses (e.g.,
for ones obtained from a L&s induction).

The state interpretation. With the state interpretation SI(h), we can control
which heaps h—and more generally which program state—we have to consider
in the weakest precondition for the next program step. It is like an invariant that
we maintain throughout the execution of e: it holds initially and the weakest
precondition preserves it for every step. We use it to tie the resource assertions
of the program logic to the concrete program state that is used in the operational
semantics.

For example, in the particular case of HeaplLang, we use the state inter-
pretation SI(h) to tie the heap h in the weakest precondition to the points-to
assertions £ — v of the program logic. We do so via ghost state. More concretely,

we define SI(h) 2 heap(h) for the following heap ghost theory:* “In this ghost theory the points-to
assertions £ — v gives exclusive access
PTS-EXCL HEAP-LOOKUP to the location ¢. In Part V, we will also
fr—vs%f—wr False ¢ vxheap(h) F h(£) =v make use of a fractional version £ 4 v

where for 0 < g < 1, the points-to allows
reading but not writing, and for g = 1, it
coincides with the exclusive £+ v.

HEAP-ALLOC
¢ ¢ domh = heap(h) + P heap(h[f —v]) * L > v

HEAP-UPDATE
t— v+ heap(h) + B¢ — w s heap(h[f — w])

The assertion heap(h) keeps track of the current state of the entire heap h and
the points-to assertion £ — v carries the ownership of one individual location ¢.
The points-to assertion cannot be duplicated (prs-excr), and it determines the
value of £ in h (uear-Lookur). We can allocate fresh locations £ ¢ dom h with
HEAP-ALLOC, and we can update a location in the heap with uear-urpaTe. We
will discuss shortly how this ghost theory can be defined in the base logic of
Iris (see §4.2.2).

Recursion. Above, we have already discussed the primary purpose of the
later modality “>” in the definition of the weakest precondition wp e {v. Q(v)}:
to enable step-indexed reasoning such as verifying recursive functions via
LoB induction. However, it also serves a secondary purpose: it resolves the 5 Alternatively, since the weakest

cycle in the definition of the weakest precondition. That is, note that the precondition occurs in a positive position,
we could also use a least- or greatest
fixpoint here to obtain a well-founded
Step-indexing resolves this cycle® by offering a guarded fixpoint combinator definition. We will see such a definition
in Part II.

weakest precondition is defined recursively in terms of itself (in the second case).

i fx. P f x. It provides a solution to a recursive definition if every recursive

44

PART I: AN IRIS PRIMER

occurrence occurs underneath at least one later modality > P. Formally, we
have (u fx.Pfx)y 4+ P(u fx. P f x) y if every occurrence of f in P occurs
underneath a later modality. We will define the combinator using step-indexing
in the model in §4.3.

Concurrency. Let us now turn to concurrency, which is a surprisingly simple
extension. Let us write (e, h) ~ (¢’, I’ es) for a step in the operational seman-
tics of a concurrent language, where es is a (potentially empty) list of additional
threads that have been forked-off in this step (e.g., (fork{e}, k) ~ ((), h, [e])
in the case of HeapLang). Then we extend the definition of the weakest pre-
condition as follows (with additions highlighted in):

CONCURRENT WEAKEST PRECONDITION wp e {v.Q(v)}

wpv{w.Q(w)}=BQ(v)
wp e {w. Q(w)} £ Vh. SI(h) -~ B progress(e, h) ife ¢ Val
w Ve',h', es. (e,h) ~ (€', 1, es)
> B (SI(K) * wp ¢ {w.Q(w)} *)

where now progress(e, h) = Je’, h’, es. (e, h) ~ (e’, I’, es). Besides the recur-
sive occurrence of the weakest precondition of the successor expression e,
we additionally add one recursive occurrence wp e’ {_. True} per forked-off
thread e”’. All recursive occurrences are still guarded by a later modality, so

the weakest precondition can still be defined as a guarded fixpoint.

Soundness. With the definition of the weakest precondition in hand, one
can prove the soundness of the rules of the program logic depicted in Fig. 4.1.%
For example, let us sketch the proof for the rule wp-LATER-STORE:

Lemma30. f —»vs>(f > w-+Q() Fwpf:=w{u Qu)}

Proof Sketch. In the operational semantics of HeapLang, ¢ := w reduces to ()
if and only if (1) the original heap h already contains ¢, (2) the new heap A’
is the same as h except that £ now stores w, and (3) no threads are forked
off. Using this fact, let us sketch the proof. The definition of the weakest
precondition allows us to assume SI(h) for some heap h. We can then use our
points-to assertion £ > v to deduce h(f) = v using near-Lookur. Thus, we
know that ¢ := w can make progress in h. Next, let us assume an arbitrary
step (£:=w, h) ~ (€', H, es). By the operational semantics of £ := w, we know
that it can only step to the expression e’ = () and the heap A’ = h[f — w].
Moreover, we know es must be empty. We can use neap-urpatk to update the
state interpretation from h to h’, which also gives us the ownership of £+ w.
We are left to prove £—>w * (£ w - Q()) + wp () {u. Qu}, which follows
by the value case of the weakest precondition. O

Like wp-LATER-STORE, the rules wp-LATER-REF, WP-LATER-LOAD, WP-SUC-CAS, WP-
FAIL-CAS, WP-FAA, and we-rork are all clearly specific to HeapLang. They depend
on the choice of the state interpretation and the constructs of the language. The
other rules on the other hand (i.e., wp-vALUE, WP-WAND, WP-BIND, WP-UPD, and wp-
LATER-PURE-STEP) are quite generic. They do not mention any concrete language

construct and also do not depend on the particular state interpretation SI(h)

CHAPTER 4: THE MODEL OF IRIS

® Notably, these rules do not contain

the rules for invariants WP-INV-OPEN

and WP-INV-ALLOC and the rule for

timelessness WP-TIMELESS-STRIP. We
will discuss invariants and timelessness

in §4.5.

45

PART I: AN IRIS PRIMER CHAPTER 4: THE MODEL OF IRIS

Language Generic Rules

Figure 4.1: Weakest precondition
‘WP-VALUE

Q) Fwpv{w.Q(w)}

rules.

(V. Q(v) = Q'(v)) » wp e {w.Q(w)} F wp e {w. Q" (w)}

wp e {v.wp K[v] {w.Q(w)}} - wp K[e] {w. Q(w)}

WP-LATER-PURE-STEP

’
—
WP-UPD € “pure €

Bwpe{v.0W)}+Fwpe{v.0(v)} >wp e’ {v.Q(v)} F wp e {v.Q(v)}

Language Specific Rules

WP-LATER-REF

>(Ve. £ > v - Q(¢)) F wp ref(v) {w. Q(w)}

WP-LATER-LOAD
L vsr(l>v-+0W) Fwp £ {w.Q(w)}

‘WP-LATER-STORE
o vsr(f > w-+00))Fwpl=w{w.Q(w)}

WP-SUC-CAS
VI =V v1, v comparable

£ v % >(£ > w - Q(true)) F wp CAS(4,va, w) {v. Q(v)}

WP-FAIL-CAS
VI £V v1, v comparable

£ v % >(£ > v = Q(false)) - wp CAS(£, v, w) {v. Q(v)}

WP-FAA
t—- m*>(f > m+n-+Q(m))rwpFAA(L n) {v.O(v)}

WP-FORK

wp e {_.True} = >Q() + wp fork{e} {v. Q(v)}

that has been chosen. As such, they are proven in Iris in a language-generic
fashion (for suitable generalizations of expressions, values, evaluation contexts,

and state). And in general, the notion of a pure step e —,ure €’ is defined as:

e —pure € = progress(e, h)

A (VYh ', " es. (e,h) ~ (e, h" es) > h"=h Ae’ =€’ Aes=]])

The first part ensures progress and the second part that there are no possible
steps to expressions which are not e’.

Having discussed the soundness of the weakest precondition rules, we can
now continue further on our journey through the model of Iris. Next up are
resources and resource algebras. They will allow us to define ghost theories like
the heap predicate heap(h) for the state interpretation SI(h) above (and the
corresponding points-to assertions £ > v).

46

PART I: AN IRIS PRIMER CHAPTER 4: THE MODEL OF IRIS

4.2 Resource Algebras

Instead of a few select ghost theories (e.g., mono, (n), Ib, (m), ...), Iris supports
an extensible mechanism for defining and manipulating ghost state. At the
heart of this mechanism is the ghost state connective [a!”, which expresses
ownership of the resource a with name y. From it different forms of ghost state
can be derived by choosing the different kinds of resources.

The resource a is drawn from a resource algebra M = (A, -, V, |_|core)- The
resource algebra determines the resulting ghost theory for a. It consists of
four parts: (1) a carrier type A, (2) a composition operation -, (3) a validity
predicate V', and (4) a core projection |_| ... In short, the carrier type together
with the binary operation (-) forms a partial commutative monoid that governs
how separating conjunction behaves on the resources of the algebra. The (meta-
level) predicate V encapsulates what it means to own a resource—it must
be a “valid” resource, meaning a € V. Finally, the partial core |_|, . maps
resources to their duplicable part (i.e., |al,core is obtained from a by stripping
off non-duplicable parts), which is used for persistency.

We will discuss the axioms that the components of a resource algebra must
satisfy shortly. First, let us discuss the logic-level rules that the ghost state

. oy .
connective 'a!’ satisfies:

GHOST STATE RULES al’
RES-ALLOC RES-UPD RES-PERS
acV a~ B lalpcore # L
=y =y —y =y, - I
FEP3y.a) a’ FP»3beB. b La) + O alpeore |
RES-SEP RES-VALID

b’ a’raeV

First, we can allocate any valid resource a (res-arLoc). When we do so, we get

"a'” for some new ghost name y. Second, we can update resources according

to the update relation a ~» B, which we will introduce below (res-upp). Third,

if we own a resource a, then the core of a, the duplicable part, is persistent

(res-pERs). Fourth, we can split and combine resources using the composition

operation a-b (res-sep). Fifth, if we own a resource a, then it is valid (res-varp).’ 7 In this form, the rule RES-VALID only
For these rules to be sound, a resource algebra cannot be any quadruple holds for non-step-indexed resources.

For step-indexed resources (see §4.5.2),
; ioms:3 >
(A, ,V, |-l pcore)- Instead, it needs to obey several axioms: it holds for a step-indexed version of

validity internalized into Iris.
Definition 31 (Resource Algebra). A resource algebra is a quadruple

(A AXA > AV : A — Prop, L|pc0re A > ﬂ?) satisfying: ’EIIris ']I‘eam, The Iris 4.3 Reference, 2024
ri24].
(@a-b)y-c=a-(b-c) (ra-assoc)
a-b=b-a (rA-cOMM)
|a|pcore eEA= |a|pcore ra=da (RA-CORE-ID)
|a|pcore ceA= ||a|pcore|pcore = |a|pcore (RA-CORE-IDEM)

|a|pcore eANa<b= |b|pcore €EAN |a|pcore < |b|pcore (RA'CORE'MONO)
a-beV=aeV (ra-vaLID-OP)

where A’ £ AW {1} x-1l&x1l-x%x a<bzdceAb=a-c

47

PART I: AN IRIS PRIMER CHAPTER 4: THE MODEL OF IRIS

The composition—since it corresponds to separating conjunction—should
be associative and commutative (ra-assoc, ra-comm). The core |al,cqr—since it
corresponds to persistency—should be a part of a that can be duplicated (ra-
core-10) and it should be idempotent (ra-core-pEm). Moreover, it is required to
be monotone (ra-core-mono). And, finally, the validity predicate V, which holds
whenever we own a resource, must also hold for smaller resources (ra-vaLin-op),

because we can always discard resources with sep-weaken (in Fig. 2.2).

Unital resource algebras. Sometimes, it will be useful to work with resource
algebras with a unit ¢ : A, so-called unital resource algebras, where (1) ¢ - a = a,
(2) € €V, and (3) |¢lcore = €. For them, the partial core |al, . can always be
completed to a total function |a|,. by picking ¢ in cases where |al e = L

We write M = (A, (), V, |_|core) for unital resource algebras.

Resource updates. The components of a resource algebra characterize how
ghost state interacts with the separating conjunction P * Q, the persistency
modality O P, and what it means to own a resource. But when can we update a
piece of ghost state to another (i.e., when does a ~» B hold)? As the definition
of resource algebras shows, we do not get to choose an arbitrary update relation
a ~» B when we define a resource algebra. Instead, the updates of a resource
algebra are already determined by the choice of validity V and composition (-).

To understand why, we have to take a closer look at validity. Validity V
characterizes what it means to be a valid element of the resource algebra. For
example, we will later see (1) that in the resource algebra of monotonically
growing natural numbers the resource given by mono, (n) * Ib, (m) is valid iff
n > m and (2) that the resource given by mono, (n) * mono, (n’) is just invalid
regardless of the choice of n and n” (because mono, (n) is exclusive like £ > v,
so there can only ever be one). Validity is implicitly maintained throughout
proofs by Iris: we initially choose a valid resource (with res-arroc), we maintain
validity (implicitly) when we update resources (with res-urp), and ownership
of a resource entails it is valid (with res-vaLD).

Thus, one might think that we can update ownership of a resource a to an
arbitrary other valid resource a’. But this is not the case. To understand why,
we consider an example. Suppose we own the ghost state mono, (42). What
prevents us from updating it to mono, (2), so what prevents us from violating
the monotonicity baked into the ghost state? The resource behind mono, (2)
is certainly valid, so we do not violate validity by going from mono, (42) to
mono, (2). But in doing so, we ignore that there are potential frames of the
ghost state mono, (42) which we would violate. For instance, suppose another
part of the program initially owns Ib, (41), so initially mono, (42) * Iby(41)
would be valid. If we now were to update mono, (42) to mono,(2), then the
ghost state named y suddenly would become invalid (since 2 ¥ 41).

To remedy this predicament, we account for the existence of a potential

frame in the definition of frame preserving updates a ~~ B: ?In the use of the term “exclusive”, we
follow the Iris terminology here, where
resources are exclusive if they have no
. . . . frame [Jun+18b, Page 19]. A common
It is possible to do a frame-preserving update from a € A to B C A, written alternative usage of the term is for

a ~ B, ifVXfEﬂ?. axi€V = 3beB.b-xieV. We deﬁnea b E g {b} resources that cannot be composed with
themselves (e.g., for points-to resources of

Definition 32 (Frame Preserving Updates).

Note that x¢ could be L, so the frame-preserving update can also be applied individual locations).

to elements that have no frame. Those elements are called exclusive resources.’

48

PART I: AN IRIS PRIMER

4.2.1 Common Resource Algebras

Let us now fill the definition of resource algebras with life by instantiating it
with different monoids. Many of the instances below are not very useful on their
own, but they will be useful building blocks for deriving composite resource
algebras with useful ghost theories such as the monotonically growing natural
numbers or heaps (see §4.2.2). (We will not need all of these combinators and
resulting ghost theories right away, but they are all used at some point in this

dissertation, so we collect them here.)

NATURAL NUMBER ADDITION (N, +)
The monoid (N, +) forms a unital resource algebra:

m-n=m+n meV = True [1|core = 0 e=0
Vm,n.m~»n ms<n<< m<n
NATURAL NUMBER MAXIMUM (N, max)

The monoid (N, max) forms a unital resource algebra:
m-n = max(m,n) me YV £ True [1]eore = 12 e=0

Vm,n.m~»>n ms<n< m<n

FRACTIONS ((0,1],+)
Just like for natural numbers, addition on the positive rational numbers (Q*, +)
forms a resource algebra (without a unit). We obtain a particularly useful

resource algebra if we restrict to the interval (0, 1]:

13

9192 =q1+q geV=q<1 19lpcore = L

0<@<qg=q™~q G1<q = @<

Fractions do not have a core (i.e., [q|,core = L) since addition on positive rational
numbers is never idempotent and, similarly, they do not have a unit.

The pair of two resource algebras M; and M, forms a resource algebra where

(x1,%2) * (Y1, y2) = (1 Y1, X2 - Y2) (xpx) €V Ex;€VAX, €V

|(x1:x2)|pcore = (|xl|pc0re1 |x2|pcore) iflxl|pcore # L and |x2|pcore #L1

|(.X'1, x2)|pcore =1 otherwise

(x1,%2) < (Y1, 42) &= X1 <1 Ax2 <Y

X1 W Y] A Xo v YZ = (xl,xz) N {(y1>y2) |y1 € Yl,yz € Yg}

The partial core is only defined if the partial cores of both elements are defined.

If both M; and M, have a unit, then the unit of the pair resource algebra is

given by € £ (&1, &).

CHAPTER 4: THE MODEL OF IRIS

49

PART I: AN IRIS PRIMER

OPTIONS
The option resource algebra option(M) = Some(a : Aypr) | None extends the
resource algebra M with a unit. We typically write ¢ instead of None, and we
commonly omit the Some injection.

¢ = None None -0 £ 0 - None £ o Some(a) - Some(b) £ Some(a - b)
None € V Some(a) € V o acVy
|None|..;. = None

|Some(a)|COre None if‘|a|pcore = J_

A

|Some(a)core = Some(|alycore) Otherwise

EXCLUSIVE RESOURCE ALGEBRA Ex(X)
The exclusive resource algebra Ex(X) = ex(x : X) | % consists of an exclusive

element ex(x : X) and an invalid element 4. Its operations are pretty simple:
a-bx} aceV=a#y |alpeore = L
Vx, y. ex(x : X) ~ ex(y : X) a<b < b=4%

As the name indicates, the exclusive resource algebra ensures that there can
always be only one, exclusive resource ex(x : X). It gives us the right to update
it freely (without violating the assumptions about the current ghost state of
other program parts). It is similar to a points-to assertion ¢ v, which conveys
the exclusive ownership to update ?.

AGREEMENT RESOURCE ALGEBRA Ag(X)

The carrier type of the agreement algebra are finite, non-empty sets over X:
Ag(X) = {A e Pin(x) ‘A non—empty} ag(x) = {x}
The operations on the elements of the resource algebra are given by:
A-B=AUB AeV £3x:X.A={x} |Alpeore 2 A
ag(x : X) wag(y:X) & x=y A<B &< ACB

The agreement resource algebra is in some sense the opposite of the exclusive
resource algebra: its elements can be freely duplicated, but in exchange we can

never update them.
ag(x) - ag(x) = ag(x) ag(x)-ag(y) €V & x=y
ag(x) <agly) & x=y

o . . N
The elements of the agreement resource algebra are similar to invariants
in that they can be freely duplicated, but once allocated, no one can change the
statement P of the invariant N.

f.
FINITE FUNCTIONS K& M

For a countably infinite set K and a resource algebra M, the resource algebra of
finite functions K ™ M lifts the resource algebra structure of M to finite maps.

CHAPTER 4: THE MODEL OF IRIS

50

PART I: AN IRIS PRIMER

This resource algebra is used, for example, to obtain a ghost state version of
heaps. The operations on the resource algebra are given by:

firfh= [k alk—acfi, k¢dom f]
Ulk—alk ac f, k¢ dom fi]
Ulk—a-blk—ach, ko bef]

feV2vVkedomf. f(k) e Vyu

Flpeore = [k = lalpcore [k @ € £, [alpeore # L]
e20
and thus
FIN-FUN-ALLOC FIN-FUN-UPDATE
G infinite aeV a~> B
O~ {[k+> a] | k € G} flk — a] ~ {f|k— b]|b e B}

Note that the update rule rin-run-arLoc is the first rule that truly makes use
of the fact that frame preserving updates a ~» B go from an element of the
resource algebra a to a set of elements of the resource algebra B. We need a set
of elements, because there is no single key k such that 0 ~» [k + 4], since k
could always be used as part of the frame. In other words, since updates need
to be frame preserving, picking specific keys is impossible, because we cannot
ensure that they have not already been picked by some frame. We can, however,
pick a set of elements: For every potential frame g, there exists some fresh key
k in the infinite set G that is not contained in the finite domain of the frame g.

The authoritative resource algebra. Let us now turn to one of the most
widely used resource algebras of Iris: the authoritative resource algebra Auth(M).
The idea of this resource algebra is that it allows us to relate a global view of the
entire resource with locally owned fragment resources. More specifically, for a
unital resource algebra M, the elements of the resource algebra Auth(M) are
either the authoritative element ea or fragments ob. The relationship between
the two kinds of elements is that, at any given point, all fragments ob are
included in the authoritative element ea (i.e., b < a). Moreover, fragments ob
can only be updated if the corresponding part of the authoritative element ea
is also updated.

AUTHORITATIVE RESOURCE ALGEBRA
The carrier type, its elements, and its operations are given by:
Auth(M) = option(Ex(M)) x M oq = (ex(a), em) ob £ (&)
(x,a) - (y.0) = (x-y,a-b)
V £ {(gb)|beVy}U{(ex(a),b) |b<panacVy} e 2 (gem)
1(x, @) lcore = (& |alcore)

The definition of Auth(M) is not exactly trivial. It does, however, allow us to
derive the properties depicted in Fig. 4.2. The fragment rules (FRAG-0P, FRAG-CORE,
FRAG-VAL, FRAG-UNIT, FRAG-INCL) show that the resource algebra M embeds into

the resource algebra Auth(M) via the fragment connective o (preserving all the

CHAPTER 4: THE MODEL OF IRIS

51

PART I: AN IRIS PRIMER

fragment rules

FRAG-OP FRAG-CORE FRAG-VAL
o(a-b)=oa-ob [oalore = ©la|core ca€V & aecVy
FRAG-UNIT FRAG-INCL
oeM =€ caxob < axb

authoritative element rules

AUTH-VAL AUTH-EXCL

eV — aeVy eq-eb eV < False

interaction rules

BOTH-VALID
eqa-obeV — bsyyahacVy

BOTH-UPDATE

(a,b) » (a’,b’) = ea-ob ~» eq’ - ob’

properties of the original algebra). The rules for the authoritative element (auts-
vAL, AUTH-EXCL) show that the authoritative element connective e embeds the
elements of M as exclusive elements (i.e., there can never be two authoritative
elements). The interaction rules are the most interesting rules. The rule Botsu-
vALID says that, as explained above, every fragment must be included in the
authoritative element. The rule BoTH-UPDATE states a condition on when it is
possible to update a fragment inside and the authoritative element, the so-called

local update.

LocAL UPDATES ‘ (a,b) ~ (a',b") ‘
It is possible to update a fragment and its corresponding part in the authoritative

element whenever we can prove a local update:
(a,b) wo (@' V) 2Vxe A acVyra=b-x=>d e Vyrd =b'-x

Observe that while ordinary updates a ~» B just refer to validity and are
hence trivial for some of the resource algebras we have seen (e.g., for (N, +)),
the local updates also impose requirements that do not involve validity, require-
ments on the composition of the elements. Thus, we obtain some interesting
local update rules for the resource algebras that we have discussed already:

n+m' =n"+m n<k
(N, +) — (N, max)

(n’ m) WL (nl’ m’) (n’ m) ML (k> k)

4.2.2 Common Ghost Theories

We now have all pieces together to define the ghost theories that we have
encountered so far, monotonically growing numbers (§3.6) and heaps (§4.1).
We additionally define two very useful ghost theories that we will use in the

subsequent chapters.

CHAPTER 4: THE MODEL OF IRIS

Figure 4.2: Resource algebra
rules of the authoritative re-
source algebra Auth(M).

52

PART I: AN IRIS PRIMER

Monotonically growing natural numbers. For the ghost theory of mono-
tonically growing natural numbers, we use the resource algebra Auth(N, max).
We define:!°

monoy (n) £ [en]" « [on]’ Iby (n) £ [on]’

As an example, let us show the following two rules of their ghost theory:

Lemma 33.
UseEBoUND BoUNDPERS
monoy (n) * Ib,(m) - n>m Iby(n) + Olby(n)

en -on-om € V and, hence, en - om € V. By definition of validity of the
authoritative resource algebra, we obtain m <(\max) 7 and m € V(ymax). Thus,
we obtain m < n, since m <(Nmax) # &= M < n.

BoundPers. Observe that |on|.,,. = o|n|... = on by the definition of the core

core

in the authoritative resource algebra and the (N, max) resource algebra. O

Heaps. For the heap ghost theory, we use the resource algebra Heap(K, V) =
Auth(K fin, Ex(V)). We define:

heap! (h) = [o[k = ex(v) [k > v e A" ko 2 o[k = ex(v)])

where [k — ex(v)] is a singleton map. We obtain the interaction rules:

True + B 3y. heap” (0) kYo % k—Yw False
heap?(h) = k=Y v + 2 heap? (hlk — w]) x k=Y w
k ¢ domh = heap?(h) + = heap? (h[k — v]) * kYo
heap?(h) * k=Y o+ h(k) = 0o

For the heap ghost theory in the state interpretation SI(h) (see §4.1), the ghost
name y is fixed globally to be some ypeap, Which we omit on paper when writing

assertions such as £ — 42.

Ghost variables. Ghost variables provide a points-to assertion y = x akin
to the regular points-to £ — v, but which is purely ghost (i.e., it is not directly tied
to any part of the program such as the heap). Ghost variables are fractional:'!
they carry a fraction 0 < g < 1 where q = 1 gives the right to arbitrarily update
the ghost variable, and for 0 < g < 1, two ghost points-to assertions must agree.

Ghost variables satisfy the following rules:
True+dy.y =1 x yPi1xFrBye1y YPgx*yPgyykx=y
YPgxx YRy X yPaqgx for g4 €(0,1]

For a co-domain X, the ghost points-to assertions are defined by picking the
resource algebra ((0, 1], +) X Ag(X) and defining:

AT T NY 14

CHAPTER 4: THE MODEL OF IRIS

%1t is important that the definition

of monoy, (n) includes the fragment
[}Ezj‘y, because otherwise one could
not prove the rule MAKE-BOUND as is
i.e, monoy (n) + monoy (n) * Iby(n).
Without ' on!”, MAKE-BOUND would
require an update to obtain the lower
bound Iby (n) since on is not always
included in en (i.e., on % en for n > 0).

' Analogously to ghost variables, one
can obtain a fractional version of the
heap resource algebra by choosing
((0,1],+) x Ag(Val) in place of Ex(Val
for the construction of the heap. We
will discuss a fractional heap in Part V
(see §26.3.2).

5

)

53

PART I: AN IRIS PRIMER

Credits. Another common resource algebra construction are credits. They
consist of two pieces of ghost state: the actual credits cred,(n) and the full
supply of credits su ppy(m). Together, they obey the following rules:

credy (ny) * cred, (ng) 4+ cred, (ny + ny) credy (n) * suppy(m) Fm>n

m,n € N

True + Jy. supp, (0)
supp, (m) + supp, (m +n) x cred, (n)

m,n € N

supp, (m + n) = cred, (n) + B supp, (m + n’) * credy (n")
To obtain the ghost theory, we pick the resource algebra Auth(N, +) and define:

Lom”

A

credy (n) = [on” supp, (m)

4.3 The Base Logic

Equipped with resources, we can now move on to the base logic. It is the
foundation upon which—as we have seen in the previous sections—everything
can be built, including the weakest precondition (§4.1) and Hoare triples (§3.3).
It consists of the following propositions and connectives:

PO R == ¢|PAQ|PVQI|P=Q|Vx:X.P(x)|3x:X. P(x)

| PxQ|P=«Q|OP|>P|ufx.Pfx]| EP]|Own(a)
We have already encountered all of these connectives, except for the assertion
Own (a). It is, as we will discuss shortly, a more primitive version of [c?jy.
We will now model each of these assertions by defining the type of uniform

predicates over a unital resource algebra M, written UPred(M).

UNIFORM PREDICATES
For a unital resource algebra M = (A, (), V, |_|core)> the type UPred(M) con-
sists of predicates over step-indices and M-resources that are down-closed in
the step-index and up-closed in the resource:

UPred(M) = {P € P(NXA) |VY(n,a) € P.Ym,b.m < n= a<b= (mb) € P}
The entailment relation P + Q is given by
PrQ=VnaacV = (na)eP=(naeQ

and we define the logical connectives as depicted in Fig. 4.3. Many of these
definitions are self-explanatory, since they merely lift the meta-level logical
operation to UPred(M)-assertions (e.g., ¢ and P A Q). For implication P = Q,
we ensure the closure properties hold by quantifying over smaller step-indices
and larger resources. For the separating conjunction P * Q, we use the resource
composition operation (-) to separate the resource a into two parts a; and a,
for P and Q. For the magic wand P -+ Q, we add a resource b satisfying P to
prove Q. For persistency [0 P, we use the core operation |a|..,. For the update
modality |2 P, we effectively perform a frame-preserving update on the current
resource a, and for the ownership connective Own (a), we say that the current
resource b is (at least) a.

CHAPTER 4: THE MODEL OF IRIS

54

PART I: AN IRIS PRIMER

¢ ={(n,a)| ¢}
PAQ={(na)|(na) €PA(na)cQ}
PvQ={(na)|(na)ePV(na) cQ}
P=0=2{(na)|Vm<nVbrabeV = (mb)eP= (mb)cQ}

Vx: X.P(x) £{(n,a) |Vx:X.(n,a) € P(x)}

dx: X.P(x) £ {(n,a) | Ix : X. (n,a) € P(x)}
PxQ={(na)|Ja,az.a=a;-ax A (n,a;) € PA(naz) €Q}
P+«Q=z{(na)|Ym<nVb.a-beV = (mb)eP= (ma-b)eQ}
OP ={(na)|(nlalcor) € P}

>P = {(n,a) |Ym < n.(m,a) € P}
P2 {(na)|¥m<nVas.a-ape?V = 3b.b-apeV A (m,b) € P}
Own (a) =2 {(n,b) |a < b}

>

1>

Soundness. Equipped with the definition of uniform predicates, one can

prove the entailment rules, which we have encountered in previous sections.

Concretely, one can prove the rules depicted in Fig. 4.4. As an example, let us

consider Los induction:
Lemma 34. If>P+ P, thent+ P.

Proof. Let a € V. We have to show Vn. (n,a) € P. We proceed by strong
induction on n, which gives us Vm < n. (m, a) € P. Thus, we know (n,a) € »P
given the definition of > P. Since > P + P, we conclude (n,a) € P. O

Ghost state. Notably, none of the rules in Fig. 4.4 mention ghost state or
resources in any form. Let us have a closer look at resources in UPred(M).
—y
|

Instead of the ghost state connective | a

la!", the connectives in Fig. 4.3 include a

more primitive ownership connective, Own (a), for resources a from a fixed
resource algebra M (from which we will derive [a!” shortly). It obeys the
following rules:

OWN-UPD
OWN-EMPTY a~ B OWN-VALID

True + Own (&) Own (a) + = 3b € B.Own (b) Own(a)raeV

OWN-PERS OWN-SEP
Own (a) F OOwn (|al ore) Own (a) * Own (b) 4 Own (a - b)

We always own the empty resource ¢ (own-EmpTY), and we can use a frame
preserving update a ~» B to update a resource a that we own (own-urp). If
we own a resource a, then it is valid!? (own-varin) and we persistently own its
core (own-PERs). Lastly, we can use the resource composition of M to split and
combine resources (OWN-sEp).

Note that there is no rule for timelessness of Own (a) among these rules.
When is a resource timeless? The intuitive answer is that most “normal re-
sources” (e.g., heaps, credits, ghost variables, monotonically growing numbers,

CHAPTER 4: THE MODEL OF IRIS

Figure 4.3: Connectives of the

base logic.

21n this form, the rule OWN-VALID only
holds for non-step-indexed resources.
For step-indexed resources (see §4.5.2),

it holds for a step-indexed version of
validity internalized into Iris.

55

PART I: AN IRIS PRIMER

ENT-TRANS

PrQ QFR

ENT-REFL

PURE-INTRO FROM-PURE

¢ Pr¢ ¢=(PrQ)

P+P P+R

AND-ELIM-L

PAQFP

AND-ELIM-R
PAQFrQ

OR-ELIM

P+R

OR-INTRO-R

QrPVQ

ALL-ELIM

a:X a:X

PVQFR

EXIST-INTRO

Pr¢ PrQ

AND-INTRO

PrQ
PrQAR

PrR OR-INTRO-L

P+PVQ

ALL-INTRO
Vs X. (P F Q(x))

PrVx:X.Q(x)

QFR

EXIST-ELIM

P+ Q(a) Vx : X. (P(x) + Q)

(Vx : X. P(x)) + P(a)

WAND-ELIM

P+rQ =R
P+«QFR

‘WAND-INTRO

P+«QFR
PrQ =R

SEP-SPLIT

’
SEP-COMM PrP

Pr3x:X.Q(x)

Qr(Q

Jx: X.P(x) - Q

SEP-WEAKEN

P«Q+rP

SEP-TRUE
P+ P % True

SEP-ASSOC

Px«xQrQ=*P

PERS-MONO
PrQ

PERS-ELIM

OPrP OPrOQ

PERS-EXISTS

O3x: X.P(x) +3dx: X. OP(x)

LATER-MONO
PrQ
>PrF>Q

LATER-INTRO
Pro>P

LATER-EXISTS
X non-empty

>(dx : X. P(x)) 4+ Ix : X. > P(x)

LATER-PERS

>OP40O>P Pr P

P+QrP xQ

PERS-PURE

proé

UPD-RETURN

Px(Q+R)4 (P+Q)=*R

PERS-ALL
Vx:X. OP(x) +OVx: X.P(x)

PERS-AND-SEP PERS-IDEMP
(OP)AQF+(OP)xQ OPrOOP
LoB
>P P LATER-SEP
P >(P* Q) 4->P*>Q
LATER-ALL

>(Vx : X. P(x)) 4 Vx : X. > P(x)

UPD-BIND
P+ (P+BQ)rP0

CHAPTER 4: THE MODEL OF IRIS

Figure 4.4: Rules of the base logic

without the ownership assertion.

56

PART I: AN IRIS PRIMER

etc.) are timeless. The formal answer requires a non-trivial amount of back-
ground knowledge about the step-indexed types and resources of Iris (see §4.5.2
for a brief introduction, and Jung et al.'® for a thorough discussion). In a
nutshell, a resource construction becomes non-timeless when we define the

resource itself using step-indexing (as with the invariants in §4.5.2).

Ir1s PROPOSITIONS
From the general construction of UPred(M), we obtain the type of Iris proposi-
tions iProp and the ghost state ownership connective | a }Y by picking specific

resource algebra M that combines the resource algebras that we want to use:
iProp = UPred(M)

Concretely, suppose we want to use the resource algebras My, My, ..., M,

L)1

(e.g., heaps, ghost variables, . Then, we pick the resource algebra

M 2 Map(My) X Map(My) X - -- X Map(M,) where Map(M) £ N 2% pf

Its elements are tuples of finite maps Map(M) to the elements of the resource
algebras M, My, ..
here instead of directly the tuple M; X My X - - - X M,,. The answer is that, by

., My,. The reader may wonder why we are using finite maps

using finite maps, we can associate ghost state with a name y : N and have
multiple instances of the same ghost state (e.g., monoy, (n1), monoy, (nz), ...).
We define the ghost ownership connective 'a'’ as

meaning as a large tuple of empty maps 0 where the i-th component!® is set to
the singleton map [y — a]. We obtain the standard ghost state rules:
RES-ALLOC
a €V, RES-SEP
Pl Y B M Yo Ta b MY
FEB 3y M) @My)Tx b My A a b My
RES-UPD
RES-VALID a~y; B

Guarded Fixpoints. The last missing piece of the base logic are guarded
fixpoints i fx. P f x. Let us sketch their construction for predicates of type
X — UPred(M). For a function P : (X — UPred(M)) — (X — UPred(M)), we

define (i fy. P fy)(x) = {(n,a) | (n,a) € f,(x)} where:

fo(x) = P(A_. True)(x) Jfar1(x) = P(fn)(x)

If every recursive occurrence of f in P is guarded by a later, then—at step-
index n—one cannot distinguish between f;, and P(f,). Thus, with y fy. P f y,
we obtain a fixpoint of P in the following sense:

Lemma 35. Let every occurrence of f in P be guarded by a later modality. Then
i fy. P fy is a fixpoint, meaning Vx. (i fy. P fy)(x) 4+ P(u fy. P fy)(x).

CHAPTER 4: THE MODEL OF IRIS

3 Jung et al., “Iris from the ground up:
A modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

! To support modularity in the choice
of resource algebras, the Rocq imple-
mentation uses a definition of M based
on dependent types and type classes.
We simplify this construction here by
assuming there is a specific collection of
resource algebras My, My, . .., M, that
we wish to use.

15 Note that the connective 'a!” needs
to know the position i of the resource
algebra of a to know which component of
the tuple to set. For this reason, we write

used to maintain this information. In the
remainder of this dissertation, we gloss
over this detail and simply write | a | Y

57

PART I: AN IRIS PRIMER

4.4 Adequacy

Now that we have seen the model of Iris propositions and the model of the
weakest precondition, one interesting question remains: “What do we prove
when we prove weakest preconditions in Iris?” This question is answered by the
adequacy results of Iris. They can be used to lift results proven in Iris to results
about programs at the meta level (i.e., outside of Iris).'® We keep the discussion
of adequacy brief here and discuss it in more depth in Part III (see §14).

The main adequacy theorem of Iris is the following:!”

Theorem 36 (Adequacy). If+ {True} e {v. ¢(v)}, then e is safe to execute in
any heap h and all possible return values v satisfy the pure postcondition ¢(v).

It ensures that when we prove a Hoare triple over a HeaplLang program e
in Iris, then e is safe to execute and only terminates in values satisfying the
postcondition. The theorem is based on two language-generic results, adequacy
of the program logic (Lemma 37) and soundness of the base logic (Lemma 38).
The adequacy theorem of the program logic states states that a weakest precon-
dition for e ensures that it is safe to execute e in the current heap h for n steps.
It is instantiated for HeapLang to obtain the language-specific Theorem 36.
The soundness theorem for the base logic states that pure propositions (under
a potential nesting of later modalities and update modalities) are true at the
meta level. It is used by Lemma 37 to extract the postcondition (and other
pure propositions) from the interleaving of updates and later modalities in the
weakest precondition (see §14.1).

Lemma 37 (Adequacy of the Program Logic).
If (e,h) ~" (e/,h’) and + = SI(h) * wp e {v.p(v)}, then (¢’,h’) is either

progressive or e’ is a valuev and ¢(v) holds.

Lemma 38 (Soundness of the Base Logic). If+ (|2»)"¢, then ¢ holds.

4.5 Impredicative Invariants and Fancy Updates

Notably, what is missing from our discussion above is how invariants (and
timelessness; see §4.5.1) are integrated into the program logic. In §3.4.1, we
have—as a first approximation—sketched the model of Iris as:
iProp = Inv — Heap — Prop Inv=N12 iProp

to highlight the circular dependency between invariants and propositions in
Iris. But—as we have just seen—that is not actually how iProp is defined. Instead,
the heaps are a resource algebra in Iris. And—as we will see now—so are the
invariants! That is, since version 2 of Iris, invariants are expressed as resources
via an elaborate resource construction described by Jung et al.!® To explain how
“invariants as resources” works, we will recall the most important parts of this
construction below (§4.5.1). Our primary goal, however, will be to shed some
light on how Iris uses step-indexing to break the circularity between invariants
and propositions (§4.5.2). Readers not interested in the construction can skip
(§4.5.1) and proceed directly to (§4.5.2).

CHAPTER 4: THE MODEL OF IRIS

!¢ Technically, Theorem 36 and Lemma 37
need to quantify over the ghost name
Yheap that is chosen for the heap. We
have omitted it here for simplicity. In
general, for resource algebras where

we only want to have a single, global
instance like for the heap, obtaining a
dedicated ghost name y is not a problem.

7This adequacy theorem holds for
HeapLang specifically. Using the
language-generic lemmas Lemma 37 and
Lemma 38 below, it is also possible to
obtain similar adequacy results for other
languages.

! Jung et al,, “Higher-order ghost state”,
2016 [Jun+16].

58

PART I: AN IRIS PRIMER

WP-INV-ALLOC
P x N Fwp®e{v.0(v)}
PR+ wp‘8 e{v.Q(v)}

WP-INV-OPEN

Px>RF pr\N e{v.>R*Q(v)} atomic(e) NCE
P«[RN F wp®e {v.0(v)}

WP-TIMELESS-STRIP

timeless(Q) PxQF WPS e{v.R(v)}
Px>Qrwp®e{v.R(v)}

FANCY-INV

NCE
N FE8WLp s (> P - S\NESTrue)

FANCY-INV-ALLOC FANCY-RETURN
N

Pr ¢p°[P] Propp
FANCY-BIND FANCY-UPD
“pfp s (P~ Zp% Q) r Y% Q P+ oROP
FANCY-TIMELESS-LATER-ELIM
timeless(P) WP-FANCY

&8 EaE & &
>Pr“BYP Bwp”e{v.0)} - wp”e{v.0(v)}
WP-FANCY-ATOMIC
atomic(e)

% wp® e {v. % QM) - wp® e {(v.Q(v))

4.5.1 Fancy Updates

Recall the rules of the program logic for interacting with invariants and timeless
propositions, depicted in Fig. 4.5: we allocate invariants with wre-inv-arroc,
we open invariants with we-inv-oren, and we eliminate laters from timeless
propositions with wr-timeLess-sTrip. They all rest on the central piece of Iris’s
invariants mechanism: the fancy update 2% P. The fancy update &% P
is an update modality like B P for ghost state updates, but it is—well—a little
more fancy: it supports accessing invariants and interacting with timeless
propositions.

Intuitively, a fancy update €159 p means that P holds after opening all the
invariants which are in &;, performing some ghost state updates, and then
closing all the invariants that are in &,. To reason about fancy updates, we use
the rules depicted in Fig. 4.6. The most important rule is rancy-inv. It allows
one to open the invariant N (as long as the namespace N is contained in the
mask &). When we use rancy-inv, we get > P and, additionally, a magic wand
(>P = EW % True) to close the invariant again (ie., to restore the mask to &

CHAPTER 4: THE MODEL OF IRIS

Figure 4.5: Program logic rules

for invariants and timelessness.

Figure 4.6: Proof rules for the
fancy update &' P.

59

PART I: AN IRIS PRIMER

again). Together with the other rules, we can use this rule to open, modify, and
then close invariants again all as part of proving a fancy update ¥ Q.

The rules rancy-reTurN and rancy-BIND mirror those of the update modality
= P and enable similar compositionality (e.g., we can transitively compose
fancy updates). The rule rancy-TIMELESS-LATER-ELIM allows us to eliminate a
later from a timeless proposition, and the rule wre-rancy allows us to execute a
fancy update at a weakest precondition. Taken together, both rules yield the
timeless stripping rule we-timeLess-sTrip. The rule we-rancy-aTomic allows us
to change the mask of the weakest precondition around an atomic expression e.
It, together with rancy-inv, can be used to derive the rule we-inv-open. The
rule rancy-inv-artoc allows us to allocate invariants, underlying we-inv-arroc.

To obtain the rules in Fig. 4.6 (and hence Fig. 4.5), all one has to do is replace
the update modality “” in the definition of the weakest precondition (see §4.1)
with fancy updates “€i18:” The only subtlety is the choice of the masks. Here,
we refer the reader to Jung et al.!’ for a careful discussion of which mask &

should be used where in the definition of the weakest precondition.

Model of the fancy update. To get to the circularity between invariants
and propositions, we focus on the model of the fancy update. The fancy update
é12%2 p is defined as follows:

& ESZP £ wsat * }};]YE" - 20 (wsat * }ré’;jye" % P)

Let us unpack this definition step by step. First, it uses a proposition called
world satisfaction wsat (discussed below) that will store the invariants. We
assume it initially and then restore it again at the end of the fancy update.?
Alongside world satisfaction wsat, the fancy update maintains a resource | & | Yo,
This piece of ghost state tracks which invariants are currently closed. We will

Y% in the definition

use it, together with an additional piece of ghost state | & |
of wsat to distinguish between open and closed invariants.

Apart from world satisfaction and the ghost state for closed invariants, the
fancy update is almost just a regular update 5 P. The only extra addition is a
new modality ¢ P, which is for timelessness. We first explain the timelessness

modality and then return to world satisfaction and invariants.

Timelessness. Intuitively, a proposition P is timeless if its complete behavior
is determined by its behavior at step-index 0. In terms of the base logic, we can
express this property as:?!

timeless(P) 2>P+oP where ¢ P Zv>FalseVP

The definition of © P means that the step-index is 0 (the left branch) or P holds
currently (the right branch). Thus, a proposition P is timeless if > P means the
step-index is 0 or P holds already at the current step-index.
The key rules that we get for timelessness—and the reason why the modality
¢ P is integrated into the definition of a fancy update—are:
LATER-TIMELESS-MODALITY

tlmeIeSS(P) TIMELESS-UPD-ELIM

>ProP oPr %P

The rule LATER-TIMELESS-MODALITY allows us one to turn a later modality into a

timeless modality for timeless propositions. The rule TiMeLESs-UPD-ELIM allows

CHAPTER 4: THE MODEL OF IRIS

¥ Jung et al., “Iris from the ground up:
A modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

» This pattern of assuming world
satisfaction and then re-establishing

it again after an update is similar to
how the state interpretation SI(h) is
treated in the definition of the weakest
precondition (see §4.1). It gives one
temporary access to wsat when proving
a fancy update before it must be given
back.

2 An alternative, more direct definition
in the model would be timeless(P) =
Vn.ae V = (0,a) € P= (n,a) € P.
This definition works for the non-step-
indexed resources. For step-indexed
resources, discussed in §4.5.2, one can
define a similar property directly in the
model.

60

PART I: AN IRIS PRIMER

one to eliminate a timeless modality at a fancy update. Both together yield the
timelessness rule for fancy updates, FANCY-TIMELESS-LATER-ELIM (in Fig. 4.6).

The world satisfaction ghost theory. Let us now turn to world satisfaction.
We start with the ghost theory that ties invariants to world satisfaction wsat. In
this ghost theory, invariants will have a name 1 : N instead of a namespace N.
The namespace invariants are obtained as N Z2dieN. l.
The ghost theory of world satisfaction has three interesting rules:
INV-ALLOC-WSAT

wsat * (» P) % & infinite + 31 € &. ’ * wsat

INV-OPEN-WSAT
[P]' x wsat # {1} " + (> P) * wsat x| {1} |"*

INV-CLOSE-WSAT

[P]" wsat (> P) x [{1} "™ + P wsat « [{1} "

The rule imnv-arroc-wsar allows us to allocate a new invariant P if we own » P.
The rule inv-oren-wsart allows us to open the invariant : and obtain » P. The
rule inv-cLose-wsar allows us the close the invariant i by returning » P. To
use INV-OPEN-wsAT, we need to know that 1 is currently enabled and we get
back a token | {1} |"* witnessing that is now disabled. To use INv-CLOSE-WSAT,
we need to know that : is currently disabled and we get back a token | {1} |"*"
witnessing that ¢ is now enabled.

The ghost state for the enabled and disabled invariants are sets of invariant
names & with W as the monoid operation. More concretely, for the enabled
invariants yen, we pick the resource algebra (P(N),w) (i.e., sets of natural
numbers with disjoint union as the composition) and for the disabled invariants,
we pick the resource algebra (P*(N), W) (i.e., finite sets of natural numbers
with disjoint union as the composition). At any given point, we can have

infinitely many enabled tokens (e.g., with | T "), but there can only ever be
finitely many disabled tokens (i.e., {1} |"*), which is sufficient because there

will only ever be a finite number of allocated invariants at any given time.

An attempt at world satisfaction. Given the ghost theory of world satis-
faction, let us now attempt to define wsat and the invariants | P]":

[P]" = (o[t ag(P)] ™

wsat £

Il
L
(==
2z
B
4
S
o
)
(%)
Sl
=
)
o
m
R}
E

* Fuper (P {17 V{1
In this definition, we introduce an additional piece of ghost state y;,, which
connects the invariant connective ' to world satisfaction. The idea is that
we use the agreement resource algebra Ag (see §4.2) to synchronize the P in '
with the propositions P that we work with in the definition of world satisfaction
(i.e., those for which there is a i such that : — P € I). And for every invariant
1 — P €1 (ie, every currently allocated invariant), we are in one of two
states: either (1) the invariant is currently closed, which means we store » P and
{1} " in world satisfaction, or (2) the invariant is currently open, which means
we only store the token ! {1} " in world satisfaction. In either case, we can
facilitate the token exchange witnessed by iNv-oPEN-wsAT and INV-CLOSE-WSAT.

Sadly, this model of world satisfaction and invariants is broken!

CHAPTER 4: THE MODEL OF IRIS

61

PART I: AN IRIS PRIMER

4.5.2 Step-Indexed Types and Resources

While it is not necessarily apparent at first glance, the naive definition of
invariants described above contains a circularity. To see where it is, we have to
take a closer look at the resource algebras involved in the construction:

(P(N), &) (P (), v) Auth(N ™ Ag(iProp))

The first two resource algebras are (1) sets of natural numbers with disjoint
union as the composition and (2) finite sets of natural numbers with disjoint
union as the composition. Neither of these pose any kind of trouble. The third
one, sometimes called an “agreement map”, is a construction similar to the heap
(in §4.2), but it does not allow changing the per-location points-to assertions
once they have been allocated. Instead, in this resource algebra, all points-to
assertions are persistent, allowing us to share them freely in the logic once they
have been allocated.

This resource algebra is the problem. Recall (from §4.3) that the model of Iris
propositions iProp is UPred(M) for a specific resource algebra M. If we now
refer to iProp in the resource algebra M, then we have constructed a cycle:

iProp = UPred(M)
M2 Map(P(N), W) x Map(P™(N), W) x Map(Auth(N ™ Ag(iProp))) x- - -

Through M, the type iProp refers to itself. And what is even worse, this form of
a cycle neither has an inductive nor a coinductive solution, because UPred(M)
uses M in a negative occurrence. In fact, strongly simplified, UPred(M) consists
of sets of elements of M, which has a strictly larger cardinality than M—and
iProp cannot have a larger cardinality than itself.

Step-indexed types and resources. So what now? How can we build a
model of impredicative invariants nonetheless? The answer to these ques-
tions is step-indexing. That is, beyond using step-indexing in the definition
of UPred(M), Iris uses a form of step-indexing in its types and resources. It
requires generalizing types to “(complete) ordered families of equivalences”, func-
tions to “non-expansive functions”, and resource algebras to “cameras”.?* The
rough idea is that equality x = y, validity V, and other definitions of the model
become parametric in a step-index (i.e., x 2 y, (n,x) €V,...).

Once the generalization to step-indexed types and resources is completed,
one can introduce a new type former »A, which roughly does the same as the
later modality » P on iProp. And just like there are guarded fixpoints y fx. P f x
of propositions where recursive occurrences are guarded by a later > P, one
can show that there are guarded fixpoints of those types whose recursive
occurrences are guarded by a type-level later »A. For Iris, the resulting equation
that can be solved in the step-indexed world is:

iProp= UPred(M)
M2 Map(P(N), w) x Map(Pi(N), w) x Map(Auth(Nﬂn—\Ag(biProp))) X

Invariants and laters. The price one has to pay for the step-indexed types
is that later modalities arise when working with invariants. That is, recall from
the rule we-inv-oren (from §3.4.1) that when we open an invariant, we do not

CHAPTER 4: THE MODEL OF IRIS

?2 Jung et al., “Higher-order ghost state”,

2016 [Jun+16].

62

PART I: AN IRIS PRIMER

immediately get access to its contents R. Instead, we get access to R underneath
a guarding later modality (i.e., we get access to > R). This later is an artifact of
the use of step-indexed types. More specifically, it is a direct consequence of
the later modality » P in the definition of wsat, and it is needed to make the
step-indexed definition with »iProp work.?? For a more extensive discussion of

step-indexed types and the full model of Iris, we refer the reader to Jung et al.?*

Outlook. With this primer on both Iris and its model, we are now well
prepared for the remainder of this dissertation. In Part II, we will change
the step-indexing underlying Iris to use ordinals instead of natural numbers.
In Part III, we will develop a new resource (using the resource constructions
from §4.2) that can be spent to eliminate later modalities from the context.
In Part IV, we will develop a specification inference technique centered around
the weakest precondition. And in Part V, we will extend the notion of resources

to support unstable resources, which break the central frame rule of Iris.

CHAPTER 4: THE MODEL OF IRIS

3 At first glance, once might think that

> P is simply of type »iProp, but this is
not the case. Instead, the later arises,
because in the proof of INV-OPEN-WSAT,
one obtains a step-indexed equality
between the P from[P|' and the map
entry I(1)—and the equality only holds
for step-index n — 1 while the current
step-index is n.

 Jung et al., “Iris from the ground up:
A modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

63

64

PArT II

TRANSFINITE IRIS

CHAPTER 5

INTRODUCTION

All prior step-indexed separation logics! —separation logics like Iris which in-
corporate step-indexing into their model—suffer from a shared Achilles heel:
they can prove safety properties (“bad things never happen”), but not liveness
properties (“good things eventually happen”). There is a simple and intuitive
explanation for this limitation: the whole idea of step-indexing is to give se-
mantics to a program based only on its finitary behavior (i.e., the finite prefixes
of its traces), and safety properties are precisely those properties of a program
that can be determined from examining its finitary behavior. In contrast, deter-
mining whether a program satisfies a liveness property fundamentally requires
examination of its infinite traces.

Nevertheless, in this part of the dissertation, we show that it is in fact
possible to equip step-indexed separation logics with support for liveness
reasoning. Specifically, we will show how to transform Iris into a new logic
Transfinite Iris that (unlike Iris) supports the verification of two essential
liveness properties—termination and termination-preserving refinement—in the
presence of higher-order state. But to do so, we first need to revisit the most
basic foundations of step-indexed separation logics, because it turns out that
the root of the problem concerns the very notion of what a “step-index” is. We
will switch from finite step-indexing (with natural numbers as step-indices;
see §4.3) to transfinite step-indexing (with ordinals as step-indices; see §9.2).
But before we get there, let us begin with a concrete example to illustrate the
kind of properties that we are interested in proving.

A motivating example. Consider the following example, a combinator for
recursive memoization written in OCaml?:

1 let memo_rec t =
2 let m = Hashtbl.create 0 in

3 let rec g x =

4 match Hashtbl.find_opt m x with
5 | Some y >y

6 | None ->1lety=1tgx in

7 Hashtbl.add m x y; y
8 in g

Recursive memoization is an optimization technique for recursive functions:

results of recursive calls are cached and then retrieved whenever those calls

are executed again. To memoize a recursive function f: ¢ -> 7, the combinator
memo_rec: ((o -> 1) -> (0 > 1)) > (0 > 1)

is applied to a template t: (¢ -> ©) -> (¢ ->) of the function f. In addition to

the argument of type o, the template takes a function of type ¢ -> r as an argu-

! Jung et al., “Iris: Monoids and invariants
as an orthogonal basis for concurrent
reasoning”, 2015 [Jun+15]; Svendsen
and Birkedal, “Impredicative concurrent
abstract predicates”, 2014 [SB14];
Svendsen, Birkedal, and Parkinson,
“Modular reasoning about separation

of concurrent data structures”, 2013
[SBP13]; Appel, “Verified Software
Toolchain”, 2012 [App12].

2 For this example, we use OCaml syntax.
In principle, any higher-order stateful
language would suffice, including Java,
Python, and JavaScript.

67

PART II: TRANSFINITE IRIS

ment, which it can use for making recursive calls. For example, the recursive
function let rec f x = e (Where f and x can occur free in e) is memoized by:

let f_memo = let t = (fun f x -> e) in memo_rec t

The implementation of memo_rec uses a map m (here a hash map of initial
size 0) to store results. The resulting function f_memo behaves like f, except
for one key difference: it retrieves entries from the map m if they have been
computed previously and stores results in m after it has computed them.

Now, consider what is required to verify memo_rec. As a combinator, memo_rec
is written in a generic fashion (i.e., parametric over the template t) and does not
impose many restrictions on the template t, and hence the original function f.3
For example, if the original function f diverges on argument x, so will the
memoized version f_memo. Moreover, the original function f does not need to be
verified itself, or even have a known specification for memo_rec to be of use. In
short, the correct behavior of f_memo is relative to the possible behavior of f. One
way to establish this formally is by showing the memoized function f_memo to
be a refinement of the original function f, meaning that the behaviors exhibited
by f_memo are contained within those exhibited by f.

On the one hand, due to the presence of higher-order state (the type z of
values stored in the hash table is arbitrary), step-indexed separation logics are
one of the only tools available for proving this type of refinement. On the
other hand, there is an important caveat: the refinement these logics support
merely establishes that if f_memo v terminates with a result r, then f v terminates
with a related result. We call this a result refinement. This result refinement
says nothing, however, about what happens if f_memo v diverges (i.e., does not
terminate). For example, if we were to replace t g x with g x in Line 6 of the
definition of memo_rec, then the resulting function returned by memo_rec would
still be a refinement of f according to the theorem provable in prior step-indexed
logics such as Iris—yet it would diverge on every input!

What we would really like to prove is a stronger theorem, stating addi-
tionally that if f_memo v has a non-terminating execution, then so does f v—or
equivalently, if f v always terminates, then so does f_memo v. In this case, we
say that f_memo is a termination-preserving refinement of f. Proving this refine-
ment, however, requires examining infinite traces of f_memo’s behavior—in other
words, liveness reasoning.

There has been some prior work on approximating liveness reasoning within
step-indexed logics. In particular, Dockins and Hobor* and Mével, Jourdan,
and Pottier’ have shown how to prove termination if the user gives explicit
time complexity bounds. Tassarotti, Jung, and Harper6 have shown how to
prove termination-preserving refinement under some restrictions: the original
(source) program must only exhibit bounded nondeterminism, and internally,
the refinement proof can only rely on bounded stuttering (with the bound for
stuttering chosen up front).

In all of the above, however, the restrictions effectively serve to turn the
property being proven from a liveness property into a safety property. For
example, although “e terminates” is a liveness property, “e terminates in n
steps” (where n is an explicit user-specified bound) is a safety property, since its
validity can be determined after examining only the first n steps of e’s execution.
Moreover, the restrictions of Tassarotti, Jung, and Harper’s approach render
it insufficient to prove termination-preserving refinement for an example like

CHAPTER 5: INTRODUCTION

* The main requirement, as we will
see in §8.1, is that executions of f are
deterministic (or “repeatable”) in the

sense that if f were to be executed again
with the same argument, then it would

return the same result.

* Dockins and Hobor, “A theory of
termination via indirection”, 2010
[DH10]; Dockins and Hobor, “Time
bounds for general function pointers”,
2012 [DH12].

5 Mével, Jourdan, and Pottier, “Time
credits and time receipts in Iris”, 2019
[MJP19].

¢ Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent

termination-preserving refinement”, 2017

[TJH17].

68

PART II: TRANSFINITE IRIS

memo_rec, where the number of steps required for the hash table lookup in
memo_rec is unbounded (since the size of the hash table is not statically bounded).

Transfinite Iris and the existential property. In the following, we show
how step-indexed separation logics—in particular Iris—can be transformed
to support true liveness reasoning, albeit with a fundamental change to how
they are modeled. Our first step is to identify the key property that prior
step-indexed separation logics fail to satisfy, but that would enable liveness
reasoning if it held. Concretely, we observe that what these logics are missing
is the existential property:

if +3x:X.®x, then v ®x for some x : X.

where + P means P is true in the step-indexed logic (i.e., for Iris + P = True + P
for the entailment P + Q from §4.3). The existential property ensures that
existential quantification inside the step-indexed logic corresponds to existential
quantification outside the step-indexed logic (i.e., at the meta level).

Intuitively, the existential property is useful for liveness reasoning because,
when we do liveness reasoning inside a step-indexed logic, we often need to
prove propositions that are existentially quantified. For example, when we
prove a termination-preserving refinement, we will end up needing to show
that for all steps of execution in the target program (e.g., memo_rec t), there exist
some corresponding steps in the source program (e.g., the original recursive
function f). The existential choice of source steps is made inside the proof in
the step-indexed logic, but ultimately in order to establish the termination-
preserving refinement, we need to be able to hoist that existential choice out to
the meta level. The existential property enables us to do just that.

Unfortunately, the existential property is fundamentally incompatible with
how step-indexed logics have thus far been modeled. Step-indexed logics tra-
ditionally model propositions as predicates over a natural number n as the
step-index similar to the model of Iris that we have discussed in §4.3. In this
standard model, the existential property is demonstrably false (§6.6).

To validate the existential property and thereby enable liveness reasoning,
we thus propose to change the underlying notion of the step-index from a
finite one to a transfinite one: from natural numbers to ordinals. We will
do so below for Iris, resulting in a new logic that we call Transfinite Iris.
We use Transfinite Iris to establish two key liveness properties—termination
and termination-preserving refinement—and apply it to a range of interesting
examples, including the memo_rec example from above.

In order to get to the bottom of our core “existential dilemma” (i.e., how the
existential property can enable liveness reasoning for step-indexed logics, and
how to provide a semantic foundation for it), we focus our attention on one of
the primary raisons d’étre of step-indexed separation logics: reasoning about
sequential, higher-order stateful programs. Of course, one of the original moti-
vations for Iris was safety reasoning about concurrent programs, and Transfinite
Iris inherits that support (see §7). But we leave step-indexed liveness reasoning

about concurrent programs as an important direction for future work.

Contributions. Our main contribution in this part of the dissertation is
Transfinite Iris, a transfinitely step-indexed version of Iris. While the idea of

CHAPTER 5: INTRODUCTION

69

PART II: TRANSFINITE IRIS CHAPTER 5: INTRODUCTION

transfinite step-indexing is not new (see §10 for a discussion of related work),
Transfinite Iris is to our knowledge the first step-indexed program logic that
satisfies the existential property, thereby truly supporting proving liveness
properties directly inside the program logic.

As part of developing Transfinite Iris, we make the following contributions:

« We identify the existential property as the key property missing from prior
step-indexed separation logics to support liveness reasoning, and we show
that it is fundamentally inconsistent with standard step-indexed models (§6).

« As the foundation of Transfinite Iris, we develop a transfinitely step-indexed
model of Iris (§9) that enjoys the existential property. As part of this model,
we solve a new and challenging recursive domain equation for modeling
Transfinite Iris’s propositions. We describe the construction at a high level

in §9.3. Further details can be found in the appendix of Transfinite Iris.” 7 Spies et al., Transfinite Iris appendix and
Rocq development, 2021 [Spi+21a].
« On top of the transfinitely step-indexed model, we develop two program
logics for two liveness properties: one for termination-preserving refine-

ment (§7.1) and one for termination (§7.2).

« We demonstrate the power of Transfinite Iris on a range of interesting

examples, including the memo_rec example presented above (§8).

Transfinite Iris and all examples in §8 are fully mechanized in Rocq using the

Iris Proof Mode.® See the Transfinite Iris Rocq development® for the Rocq 8 Krebbers, Timany, and Birkedal,

proofs. “Interactive proofs -in highiel;-order
concurrent separation loglc , 2017
[KTB17]; Krebbers et al., “MoSeL: A
general, extensible modal framework for
interactive proofs in separation logic”,
2018 [Kre+18].

° Spies et al., Transfinite Iris appendix and
Rocq development, 2021 [Spi+21a].

70

CHAPTER 6

THE EXISTENTIAL PROPERTY

Let us start by explaining how the existential property is key to enabling step-
indexed logics to prove termination and termination-preserving refinement. We
set the resources of separation logic aside in this chapter and focus only on step-
indexing. We first define refinements (§6.1) and explain how they are proven
using simulations (§6.2). We then show why step-indexing is useful for defining
such simulations but falls short for termination-preserving refinements (§6.3).
Next, we discuss how a step-indexed logic with the existential property enables
proofs of termination-preserving refinements (§6.4) and termination (§6.5)
and, finally, we describe how the existential property is justified by transfinite
step-indexing (§6.6).

6.1 Refinements

Intuitively, a refinement between a target program ¢ and a source program s
expresses that all observable behaviors of the target t are also valid behaviors
of the source s. To make this notion precise (and to distill the difference from
prior work), we fix an abstract and simplified setting. We assume a source
language S and a target language T. We assume programs in both languages
are expressions, equipped with a small-step operational semantics. We write
s ~grc 8" for a step of the source language and ~+y ¢’ for a step of the target
language. We assume (for simplicity) that the only values in both languages
are Booleans, denoted by b.

To clarify what a refinement is in this abstract setting, we have to specify
what the “observable behaviors” of a program should be. In the simplest case,
the only observable behavior is the result of a program. In this case, the
corresponding refinement between target ¢ and source s is given by:

for all b, if t evaluates to b, then s evaluates to b.

where“evaluates to b” means there exists an execution ending in the Boolean b.!
We dub this refinement a result refinement and write ¢ e s.

For a termination-preserving refinement, we additionally consider diver-
gence (i.e., non-termination) as an observable behavior. Formally, a termination-

preserving refinement between t and s, written t See S, is given by:
(1) for all b, if ¢ evaluates to b, then s evaluates to b, and
(2) if t diverges, then s diverges.

Here, “diverges” means there exists a divergent execution. This refinement, as
the name suggests, preserves termination? from the source s to the target ¢.

! We do not require reduction to be deter-
ministic, so for one starting state ¢ there
may be multiple possible executions (and
correspondingly also multiple return
values).

2 That is, “if s terminates on all execution
paths, then ¢ terminates on all execution
paths” is (classically) equivalent to “if ¢
diverges, then s diverges”.

71

PART II: TRANSFINITE IRIS

6.2 Proving Refinements using Simulations

A well-known technique to prove refinements is to (1) give a small-step sim-
ulation (<) between target and source expressions, and (2) show that the
simulation is adequate, i.e., for every target and source expressions ¢ and s, the
simulation t < s implies the desired refinement between t and s.

For example, we can prove a termination-preserving refinement t Ciepy, S
by establishing that s simulates t in lock-step, as captured by the following
coinductively-defined relation:

t<sZwind (3b:B).t=s=b)V
3t trog t) A

V' trog t) = 35" s oge AL <

In the definition of t < s, either both sides have reached the same result b, or the
target t can take some step (to avoid cases where the target is a Boolean different
from the source), and every step of the target (t ~ 4 t’) can be replayed in the
source (s ~g ") such that the resulting expressions ¢’ and s’ are again in the

simulation.

6.3 Step-Indexed Simulations

While this coinductively-defined simulation relation suffices to prove refine-
ments of first-order programs, it often falls short when considering program-
ming languages with “cyclic” features like recursive types and higher-order
state.®> For such languages, step-indexing has proved to be a very fruitful tech-
nique, as shown by the abundance of work on step-indexed techniques for
proving result refinements.*

We can define a step-indexed simulation in Iris—and more generally in a
step-indexed logic with the later modality > P (see §3.2)—as follows:

t<,s=((3b:B).t=s=b)V
(3.t ') A

V't ot = 3s" s ~oge S AR(E <0 87)

Superficially, this simulation relation is very close to the simulation relation
t < s. But there are two key differences: First, this simulation relation is
defined inside the step-indexed logic (e.g., as an iProp, similar to the weakest
precondition in §4.1). Second, the recursive occurrence is guarded by a later
modality » P, making the definition step-indexed, and allowing us to use a
guarded fixpoint (see p fx. P f x in §4.3) to define it.

The problem with step-indexed simulations. As it turns out, these two
differences have a profound impact. While the normal simulation relation t < s
is adequate for termination preserving refinements t Eierm S, the step-indexed
one is not—it is only adequate for result refinements t C,.s s. To see why, we
should take a look at what happens inside the step-indexed model. In the model,

the simulation is stratified into a family of approximations (%;), indexed by a

CHAPTER 6: THE EXISTENTIAL PROPERTY

* In principle, one can also use standard
coinductively-defined simulation
relations for such languages as, e.g.,
Gibher et al. [Giah+22] demonstrate.
However, step-indexed simulations are
the de-facto standard for these languages.
The reason is that via, e.g., impredicative
invariants, they allow one to handle
challenging recursive reasoning that

is often necessary for more advanced
examples with shared, mutable, higher-
order state.

* Ahmed, Dreyer, and Rossberg, “State-
dependent representation independence”,
2009 [ADR09]; Dreyer, Ahmed, and
Birkedal, “Logical step-indexed logical
relations”, 2011 [DAB11]; Dreyer et al.,
“A relational modal logic for higher-
order stateful ADTs”, 2010 [Dre+10];
Turon et al., “Logical relations for fine-
grained concurrency”, 2013 [Tur+13];
Turon, Dreyer, and Birkedal, “Unifying
refinement and Hoare-style reasoning
in a logic for higher-order concurrency”,
2013 [TDB13]; Krebbers, Timany,

and Birkedal, “Interactive proofs in
higher-order concurrent separation
logic”, 2017 [KTB17]; Krogh-Jespersen,
Svendsen, and Birkedal, “A relational
model of types-and-effects in higher-
order concurrent separation logic”,

2017 [KSB17]; Timany et al., “A logical
relation for monadic encapsulation of
state: Proving contextual equivalences in
the presence of runST”, 2018 [Tim+18];
Frumin, Krebbers, and Birkedal, “ReLoC:
A mechanised relational logic for fine-
grained concurrency”, 2018 [FKB18].

72

PART II: TRANSFINITE IRIS CHAPTER 6: THE EXISTENTIAL PROPERTY

step-index i > Technically, this relation is “off by

one”. The base case of (<,) in the Iris

model is not True but what is presented

here as t <; s. If we consider the limit

£2(3(b:B).t=s=b)V Vi.t <; s, then the difference vanishes,
ie,(Ft 2. s)©Vi.t <is.

t <o s = True

N

IA
Y
£

1%}
|

(3t t o A

V' t ot = 35" s ~oge AL <8

The above definition is structurally recursive on the natural number i. The
simulation relation ¢ <, s is equivalent to the limit of the approximations, i.e.,
(Ft=s)yoVit=s.

For this step-indexed simulation, we can prove a result refinement, which is

what is usually done for step-indexed simulation relations:
Lemma 39. Ifrt <, s, thent T s.

Proof Sketch. Lett = ty ~»gt -+ * ~gt tn = b be the execution of t to b. Recall
that - ¢ <, s means Vi.t <; s. We pick i = n + 1 and extract an execution
S = S0 ~osre **° ~sre Sp such that t, <; s, from t <,4; s by unrolling the
definition of (<;) n times. Since t, = b, the expression t, can no longer take
steps. Consequently, in the definition of ¢, <; s,, only the first clause can be
true. We obtain s, = b. O

Unfortunately, unlike the coinductively-defined simulation relation t < s,

the step-indexed simulation relation ¢ <, s is (in general)® not adequate for S If one restricts the source language
enough (e.g., only bounded non-

termination-preserving refinements. Let us try to prove that it implies a A X
determinism and only stuttering up

termination-preserving refinement: to a fixed bound; see §7.1.3), then one can
still use such a relation for termination-
if + t <. s and ¢t diverges, then s diverges. preserving refinements. This is what
Tassarotti, Jung, and Harper [TJH17] do.
and see where the argument goes wrong. If we attempt a proof similar to the See §10 for a comparison.

proof of Lemma 39, we are stuck when we try to determine a sufficient value of
the step-index i. We have seen that for any natural number i, we can extract a
finite trace of the source (of length i) from t <; s. However, which execution we
obtain this way can depend on the step-index i, meaning for each step-index i
there could be a different finite execution of the source.

For example, consider the case where the target t., is an infinite loop, and the
source s<o non-deterministically picks a natural number n, and then executes
n steps before terminating. For every i, we can find a trace of i steps where s«
simulates t,, but there is no divergent execution of s<. Thus, we cannot
extract one coherent, infinite execution of s<e from te <» S<co-

6.4 The Existential Property

As a consequence, one cannot prove that the simulation relation <, implies a
termination-preserving refinement in step-indexed logics like Iris. If, however,
instead of thinking of step-indexed propositions as predicates over natural
numbers, we adopt a higher-level perspective (i.e., we forget the model from §4),
then we may rightly wonder: what property are step-indexed logics missing that
prohibits us from proving termination-preserving refinements? The answer to
this question is the existential property:

if F3x:X.®x, then + ®x for some x : X.

73

PART II: TRANSFINITE IRIS CHAPTER 6: THE EXISTENTIAL PROPERTY

If we imagine we were working in a step-indexed logic that enjoyed the exis-
tential property, then we could, in fact, prove:

Lemma 40. If+ t <, s and t diverges, then s diverges.

Proof Sketch. Lett = ty ~gt t1 ~g -+ be an infinite target execution. By
coinduction, we will construct an infinite source execution s = sy ~gre $1 ~sre
-+ +. Initially, we know + t <, s. With t =ty ~y t;, we canuse + t <, s to
obtain F 3s’. s ~g 8" An(t; <. s’). With the existential property, we obtain
an s; such that s ~og. s1 and F »(#; <, s1). Step-indexed logics like Iris enjoy
the rule » P implies - P, allowing us to strip off the later modality. Thus, we
obtain + #; <, s;. We can then proceed in a similar manner to obtain sy, s3, . . .

by coinduction for + #; <, s;. O

6.5 Termination

Once we have a version of the simulation (<,) that is adequate for proving
termination-preserving refinements, we can repurpose it to prove another
liveness property: termination. That is, observe that the source language in our
simulation does not have to be a programming language—it merely has to be a
transition system. If we instantiate it with a relation that always terminates (i.e.,
the inverse of a well-founded relation), then termination-preserving refinement
ensures termination of the target:

Lemma 41. If+ t <, s for somes, and the source relation (~) is the inverse
of a well-founded relation, then t terminates along all execution paths.

Proof Sketch. By way of contradiction, assume there is an infinite execution
t =ty ~ogt t1 ~tgt - - - - We obtain an infinite execution s = so ~gre S ~rgre *
analogous to Lemma 40. This infinitely descending chain is a contradiction to
the assumption that (~,.) is the inverse of a well-founded relation. O

In particular, we can obtain a proof technique for termination by choosing
ordinals as the source language with & ~g. f = < a, since they cannot be
decreased infinitely often. (We could also choose natural numbers as the source
language, but then we would be back to proving bounded termination.)” As
we will see in §7.2, ordinals will allow us to abstract over dynamic information
revealed during the execution of the program, which makes termination proofs

more compositional.

6.6 Justifying the Existential Property

Sadly, the existential property does not hold in step-indexed logics like Iris—for
the same reason that, in Iris, - t <, s does not imply t Cerpy §: the witnesses of
existential quantification could depend on the step-index i. For example, consider
the proposition + 3n : N. »" False. Intuitively, it means that eventually the
step-index runs out. It is provable in Iris, because if we drop down to the

step-indexed model (see §4.3), then we see that it means
for every step-indexi, there is a natural numbern such thatn > i

This is trivially true by picking n £ i + 1.

7Recall from §5 that bounded termi-
nation is a safety property. Its main
downside is that it requires one to
determine explicit finite bounds.

74

PART II: TRANSFINITE IRIS CHAPTER 6: THE EXISTENTIAL PROPERTY

So how can we transform Iris so that it will enjoy the existential property?
The fundamental modification that we make is to move from finite step-indexing
with natural numbers to transfinite step-indexing with ordinals.

To explain how transfinite step-indexing validates the existential property,
we consider what went wrong in the case of step-indexing with natural numbers.
Both in the above example - 3n : N. »" False and the simulation F e <, S<co
from §6.3, the problem was that there are witnesses that simply “outlast” the
current step-index i. For + 3n : N. »” False, given any step-index i, we could
always pick a witness n greater than i; for r t <. S<c, given any step-index i,
we could always pick an execution of s, that takes longer than i steps to
terminate. However, if we use ordinals as step-indices, then in both examples
this is no longer possible. For example, there is no n : N that is larger than o,
which is (by definition) the first ordinal larger than all natural numbers. As a
result, - 3n : N. »” False is no longer provable in a model with w as a step-index,
a transfinitely step-indexed model.

We will formally show in §9 that a model with sufficiently large ordinals
does validate the existential property—thus enabling liveness reasoning. More
specifically, we will not completely eliminate the dependency of the existential
witness on the current step-index (see the definition of 3x : X. Px in §9.1).
Instead, we will develop a cardinality argument between the type of step-indices
and the witness type X for when the witness x : X does, in fact, not depend on
the step-index. Concretely, the existential property

if +3dx:X.®x, then + ®x for some x : X.

holds, when the quantified type X is “substantially smaller”® than the type
of the underlying step-indices. For example, if one restricts X to only finite
types, then the existential property already holds for step-indexing with natural
numbers (so in regular Iris). If the type X is countable, then the existential
property holds for uncountable ordinals as step-indices. In general, for every
type X, we will construct ordinals in §9 such that Transfinite Iris step-indexed
with these ordinals enjoys the existential property for X. At the same time, if
one fixes a particular choice of ordinals for the model, then there will also be
choices for the type of witnesses X that do not enjoy the existential property
(e.g., the type of step-indicies or the type of Iris propositions iProp).

8 The formal requirement, as we will
see in §9.1, is that the step-index type
contains suprema of families of step-
indices indexed by the type X. In
practice, this means we need to be
able to place the type X in Rocq in a

universe below the universe of the type

of step-indices.

75

CHAPTER 7

THE PROGRAM LoGics OF TRANSFINITE IRIS

Terminationgy (§7.2) Refinementsy, (§7.1)

Safety Liveness (§7.3)

Core (§9) = Base Logic + Invariants

We now put the key ideas from §6 into action by introducing Transfinite
Iris—a step-indexed separation logic framework capable of proving safety,
termination, and termination-preserving refinements of higher-order stateful
programs. We start with a tour of the components of the framework (depicted
in Fig. 7.1). Along the way, we highlight which aspects of Transfinite Iris are
original and which are inherited from Iris.

We start with the core logic of Transfinite Iris. As in Iris (see §4), the core of
Transfinite Iris is a step-indexed logic of bunched implications! with resources
and invariants. It has all the connectives of Iris’s base logic (see §4.3) and,
additionally, Iris’s impredicative invariants? (see §3.4.1). It includes the typical
connectives of step-indexed logic (e.g., the later modality) and separation logic
(e.g., separating conjunction). It does not, however, have exactly the same rules
and properties as Iris’s base logic: the core logic of Transfinite Iris enjoys the
existential property, which Iris does not. In exchange, it loses two of Iris’s
commuting rules which are in conflict with the existential property (see §9.2).

While, on the surface, the core logic differs only marginally from Iris, it
differs substantially on the inside! In Transfinite Iris, to validate the existential
property, we must change the step-indexed model used to define the base logic.
This change constitutes the titular difference from Iris: in the model, we use
transfinite step-indexing (i.e., with ordinals), whereas Iris’s model is based on
finite step-indexing (i.e., with natural numbers; see §4.3). We postpone further
discussion of the details of this change until §9.

To enable program verification, we extend the core logic with two program
logics: one for proving safety properties and one for proving liveness properties.
The safety logic is inherited from Iris with small modifications to the program
logic introduced in §3. (As discussed in §9.2, we need to account for the loss of
the two commuting rules in the core logic.) Since it is derived from the regular
Iris safety logic (discussed in §3), we focus on the liveness logic in the following.

The liveness logic (§7.3) is a new contribution of Transfinite Iris. It is a
generic program logic with constructs for proving termination preservation

from source to target. Below, we consider two instantiations with “Sequential

Figure 7.1: Roadmap of Transfi-

nite Iris

! O’Hearn and Pym, “The logic of
bunched implications”, 1999 [OP99].

? Jung et al., “Higher-order ghost state”
2016 [Jun+16]; Svendsen and Birkedal,

“Impredicative concurrent abstract

predicates”, 2014 [SB14].

»
5

77

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

HeapLang” (SHL), the sequential fragment of HeaplLang (i.e., the fragment of
HeapLang that we have discussed prior to §3.5; see §2.1 and §2.2). We develop
Refinementgy (in §7.1), a program logic for proving termination-preserving
refinements between programs in SHL, and we develop Terminationgy_ (in §7.2),

a program logic for proving termination of programs in SHL.

7.1 Termination-Preserving Refinement

To introduce Refinementsy, we proceed in three steps: First, we review the
canonical approach for internalizing result refinements in separation logic
pioneered by Turon, Dreyer, and Birkedal® (§7.1.1). Then, we explain how
Refinementsy goes beyond this approach to handle termination-preserving re-
finements. We start with a version which does not yet support stuttering (§7.1.2)
and then add rules for stuttering (§7.1.3).

7.1.1 Result Refinements in Iris

Following the “Iris approach” of modularly building up complex reasoning
principles from simple abstractions, we do not bake in a simulation relation
such as (<,) from §6.3 as a primitive. Instead, we define it in terms of simpler
connectives—Hoare triples and separation-logic resources—following the ap-
proach of Turon, Dreyer, and Birkedal.* Below, we recall their approach for
proving result refinements in the context of vanilla Iris and then explain how
we adapt the approach to prove termination-preserving refinements in §7.1.2.

The central connectives of the approach of Turon, Dreyer, and Birkedal are:

P,Qu= - |['_>V|{P}e{V~Q(V)}rr|f'_>srcv|5rc(e)

The Hoare triple {P} e {v. Q(v)},, is used to reason about the target, and the
resource assertion src(e) is used to reason about the source.” (We mark the
Hoare triple with “;,” for “result refinement”, because we will introduce different
Hoare triples for termination-preserving refinement in §7.1.2.) The points-to
assertion ¢ — v is used to reason about the target memory, and the points-to
assertion £ g vis used to reason about the source memory. The expressions e
in the source and the target are drawn from SHL in the following.

The analog of (<) from §6, generalized to arbitrary ground types G—e.g.,
unit (1), Booleans (B), natural numbers (N)—is defined as:

er <g es = VK. {src(K[es])} e {v.src(K[v]) *ve G},

Recall that when proving a result refinement between e, and es, we need to
show that for every execution of e, there is a corresponding execution of es. In
the approach of Turon, Dreyer, and Birkedal, the Hoare triple {P} e; {v. Q},, is
used to reason about every execution of e;, and the separation logic resource
src(es) to reason about the existence of some execution of e;. Intuitively, src(es)
says that the program on the right of the refinement is currently es. The proof
rules allow one to transform src(es) into src(e}) if and only if es reduces to e;.
Hence, {src(es)} e; {v. src(v) = v € G },, says that if the right-hand side ini-
tially is es, then for every execution of e; that results in v, the right-hand
side reduces to the same value v. Additionally, the definition of the refine-
ment e; <[} es; quantifies over all evaluation contexts K to make the judgment
compositional. (At the top level, one takes K to be the empty context.)

3 Turon, Dreyer, and Birkedal, “Unifying
refinement and Hoare-style reasoning
in a logic for higher-order concurrency”,
2013 [TDB13].

* Turon, Dreyer, and Birkedal, “Unifying
refinement and Hoare-style reasoning
in a logic for higher-order concurrency”,
2013 [TDB13].

> Since they work in a concurrent setting,
Turon, Dreyer, and Birkedal consider
multiple threads in the source program.
Here, we consider only a single one.

78

PART II: TRANSFINITE IRIS

BIND-TGT-RR

{P} € {V- Q(V)}rr

VALUE-TGT-RR

CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

Y. {O()} K[v] {w.R(w)},,

{PW)}v{w. P(w)},

PURE-TGT-RR

{PY e {v.QW)},

PURE-SRC-RR
4
€t —pure €;

{src(K[e]) = P} e, {v.Q()},,

{P}K[e] {w.R(W)},

’
€s —pure €;

{>Pre {v.QW)},

STORE-SRC-RR

STORE-TGT-RR

{src(K[es]) * P}er {v.Q(W)},,

{[Hsre Wk SI’C(K[()])} € {u Q(u)}rr

{t—>vepP}l=w{_.t— wxP},

LOAD-SRC-RR

LOAD-TGT-RR

{t —src v x sre(K[= w])}er {u. Q(w)},

{[Fspe V % SI‘C(K[V])} € {W Q(W)}rr

{t—=vsePt W {w.w=v* £l vsP},

REF-SRC-RR

REF-TGT-RR

{€ e v sre(K[H])} e {w. Q(w)},

(3. 6 oge v sre(K[£])} e {w. Q(w)},,

{>P}ref(v){w. . w="¢ %L +— v P},

Iris. The approach of Turon, Dreyer, and Birkedal was first brought to Iris
by Krebbers, Timany, and Birkedal.® They use Iris’s regular Hoare triples
{P} e; {v. Q(v)} (from §3.3) to reason about the target, and they use the regular
points-to £ — v to reason about the memory of the target. The source assertion
src(es) and the source memory points-to £ g v are encoded using resources
(§4.2). The details of this construction (e.g., how exactly these assertions are
modeled) are not important in the following, since we will define different
Hoare triples for termination-preserving refinements in §7.3.” We focus on the
resulting program logic for proving refinements.

Proof rules. There are two kinds of rules: (1) standard Hoare triple rules for
reasoning about the target e; and (2) rules for interacting with the resource
src(es) for simulating the source expression. A selection of rules is given in
Fig. 7.2. (Of course, standard structural rules which are agnostic about source
and target such as framing and the rule of consequence still apply.) The target
rules are the standard rules from §2 for proving Hoare triples in SHL (see Fig. 2.1
and Fig. 2.3).8 For example, we can use the rule pure-tGT-rR for pure steps,
BIND-TGT-RR for binding on a subexpression in an evaluation context K, and
sTORE-TGT-RR for updating a reference. As additional source rules, we have
PURE-SRC-RR for pure steps, sTore-src-rr for updating a location in the source,
Loap-src-Rr for reading a location in the source, and rer-sre-rr for allocating a
new reference in the source. Notably, there are no rules for binding and values
on the source side. Instead, all other rules (e.g., PUre-src-rr) are phrased in a
style where they apply in any evaluation context K.

Lob induction. None of the above rules mention anything about recursion
or loops. The reason is that—as we have seen in §3.2—we can use LB induction

{src(K[ref(v)])} e: {w. Q(w)},,

Figure 7.2: A selection of proof

rules for result refinements.
¢ Krebbers, Timany, and Birkedal,

“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17].

7 Krebbers, Timany, and Birkedal
allocate a global invariant that internally
maintains the state of the current

source execution (i.e., the current source
program and heap). This invariant
incrementally builds up the source
execution. It reflects the current state of
the source into the logic via resources,
which underpin src(es) and £ g v. We
will see more of this variant—albeit not
how it is modeled—in Part III for defining
a binary logical relation.

8 Here, we have strengthened PURE-TGT-
RR, STORE-TGT-RR, LOAD-TGT-RR, and
REF-TGT-RR compared to HOARE-PURE-
STEP, HOARE-STORE, HOARE-LOAD,
and HOARE-REF Fig. 2.1 and Fig. 2.3 by
allowing them to strip the later modality
associated with their step from the
precondition, similar to the strengthened
weakest precondition rules in §3.2.

79

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

to reason about recursive programs in Iris. In particular, specialized to Hoare
triples, one can derive the following variant:’

HOARE-LOB

Va {P% x> (Vy. {PY) ¥ {v. Q" (M)})} € {v- Q" (W)}
V. AP} e {v.Q*" (M)},

To prove a (universally quantified) Hoare triple, we can assume in the precon-
dition that the Hoare triple already holds later.
Let us consider a simple example simulation using HoARre-L6B (returning to

the function first from Example 13):

Lemma 42. IfVn: N. fn <7 gn, thenVn : N. first fn < first gn, where
first 2 fix first px. if p x then x else first p (x +1).

Proof Sketch. We show @ = Vn : N. first fn < firstgn. Since (7)) is

defined in terms of Hoare triples, by Hoare-L6B, we have to show
Vn : N. {src(K[firstgn]) = >®} first f n {v.src(K[v]) * v € N}.

By executing a pure step of the recursive function first in the target (the

recursive unfolding) using pUrRE-TGT-RR, We have to, in turn, show

{src(K[first gn]) =}
(Ax.if f xthenxelse first f(x+1))n
{v.src(K[v]) xveN},,

Note that the later modality (>) has been stripped from @ in the precondition.
Similarly, we can execute the function first in the source for one step to
“(Ax. if gx then x else first g(x + 1)) n” by rule PURE-SRC-RR:

{src(K[(Ax. if gx then x else first g(x + 1)) n]) * ®}
(Ax.if f xthenxelsefirst f(x+1))n
{v.src(K[v]) * v e N},

The rest then follows by executing more pure steps and using BIND-TGT-RR
to execute fn and gn in the source and the target using the assumption
fn <f gn (for the evaluation context K’ = K[if ethennelse firstg(n+1)]
in the source). Depending on the outcome, we either (1) end the execution
in both the source and the target, or (2) execute the respective recursive
occurrence of first f(n+1) (resp. firstg(n + 1)) using the assumption

@ =Vm.first fm <; firstgm. O

Problem. The sketched approach to refinements in Iris works well for proving
result refinements, but it is not adequate for terminating-preserving refinements.
For example, defining ejoop = first (A_. false) 0, we can prove ejoop <[j 0 by
LoB induction, analogously to the proof of Lemma 42:

Lemma 43. ejop <{; 0

Proof Sketch. We show ® = Vn : N. first (1_. false) n <[7 0. By nHoare-168, we

have to show

Vn : N. {src(K[0]) = »®} first (A_. false) n {v. src(K[v]) * v € N},.

? To avoid confusing with function
application, we have indicated the
potential dependency on x with a

superscript in this rule.

80

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

By executing a pure step of the recursive function first in the target (the
recursive unfolding) using PURE-TGT-RR, it remains to show

{src(K[0]) = @}
(Ax.if (A_. false) x then x else first (A_. false)(x+ 1)) n
{v.src(K[v]) *v € N},

Executing more pure steps, we reach
{src(K[0]) =@} if false then nelse first (A_. false) (nt+1) {v. src(K[v]) *ve N},

and then {src(K[0]) = ®} first (A_.false) (n+1) {v.src(K[v]) * v € N},.. The
claim follows from ® = Vm : N. first (A_.false)m <[; 0 (form = n+1). O

Note that ejpop <{; 0 (i.e., Lemma 43) is clearly not a termination-preserving
refinement, since the target always diverges while the source has terminated.

7.1.2 Termination-Preserving Refinements

Let us now turn to Refinementsy, and discuss how it addresses this problem.
In the following, we present the logical connectives of Refinementsy, their
intuitive semantics, and their proof rules. We postpone proving that it is

adequate (i.e., that it ensures termination preserving refinements) to §7.3.

Later stripping and source steps. Let us reconsider the argument for why
eloop <}y 0 is provable with the rules discussed in §7.1.1. There, we could prove
a refinement of a diverging target in Iris, without constructing a diverging
source execution. To avoid the same happening in Refinementsy , we identify
the problem that allowed the target to diverge (in terms of the rules of the logic):
the interplay of Lo induction and the target stepping rules. Specifically, as the
proof of Lemma 43 shows, using Los induction, we can assume the goal under
a later modality (>). Once we perform a target step (e.g., using PURE-TGT-RR),
we can strip off the later, regardless of whether we have already performed a
source step (e.g., using PURE-SRC-RR) OT not.

To avoid this issue, we ensure that stripping-off a later requires both a target
and a source step. To do so, Refinementg}y. uses two different Hoare triples:

P,Qu=--- [{P}e{v.QW}yp | (P e {v. Q) Dipr

The source-stepping triple {P} e {v. Q(v) }tpr allows us to perform a step in the
source, strip off a later, and continue with the target. (Here, the subscript “tpr”
indicates that this Hoare triple is used for proving termination-preserving re-
finements.) The target-stepping triple {P}) e ({v. Q(v) tpr allows us to perform
a step in the target and continue with the source. To strip off a later, we always
need a roundtrip between both triples, thereby necessitating a step in both the
target and source.

It is important to note that in the above description of the roles of the triples
{P} e {v. Q(v)}tpr and {P}) e {v. Q(v) Pipr, we have shifted which side gets to
eliminate a later modality: in Refinementsy, the source steps are the ones that
allow us to eliminate a later modality (whereas in §7.1.1 it was the target steps).
This shift will allow us to give a very general rule for stuttering the source

81

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

BIND-TGT-TPR

VALUE-TGT-TPR {Pree {v.OW}ypr W AQW)} K[v] {w. R(W)}y,
{PW}v{w. P(W)}ip {P} Kle:] {w. R(W)}pr
PURE-TGT-TPR PURE-SRC-TPR
{Pres {v.OW}ypr €t Dpure € (sre(Kleg]) = PHec {v. QW) Pepr s >pure € e ¢Val
(PP er {v. Q(v) Pepr {src(K[es]) = > P} er {v.Q(V) by
STORE-SRC-TPR
STORE-TGT-TPR (o wr sre(K[O]) = PH er {u. Q@) Prpr € ¢Val
(v t=w_. > whe {€ g v sre(K [= w]) > P}er {u. Q(u) by,
LOAD-SRC-TPR
LOAD-TGT-TPR {t see v x sre(K[v]) * P e {w. Q(W) Pipr e; ¢ Val
= v lew.w=vs > v {t g v x src(K[!€]) = >P} e {w. Q(w)}tpr
REF-SRC-TPR
REF-TGT-TPR {3 € g v sre(K[£]) * PY er {w. Q(W) Depr e; ¢ Val
{True}) ref(v) {w. IH.w =€ % £ > v, {src(K[ref(v)]) = > P} e; {w. Q(w)}tpr

in §7.1.3 (see sTuTTER-sRC-TPR in Fig. 7.4). For now, all that matters is that to
strip off a later, we need to take both a source and a target step.
For the simulation, we define (using the new Hoare triples):

er <P e £ VK. {src(K[es])} e; {v.src(K[v]) xveG }tpr

Proof rules. The proof rules of Refinementgyy are depicted in Fig. 7.3. They
mirror the rules from Fig. 7.2 except that now (1) the target-stepping triples
{PD e {v. Q(v) Pepr are used for the target steps and (2) the source steps elimi-
nate laters. For example, we can use pUrRe-srC-TPR to execute a pure step in the
source, which requires us to prove a target-stepping triple next. We can then
use, for example, pure-TGT-TPR to get back to a source-stepping triple.

Let us see these Hoare triples in action by reproving Lemma 42 from §7.1.1
in Refinementsy . Note that since the definition of the simulation changed,
this now gives us a termination-preserving refinement.

Lemma 44. IfVn:N. fn ﬁ]tBPr gn, thenVn : N. first fn <" firstgn.

Proof Sketch. We show ® £ Vn : N. first fn <*" first gn. By Hoars-1OB, it
remains to show that

Vn:N. {src(K[firstgn]) * > ®} first f n {v. src(K[v]) * v € N}y
By taking a source step using pure-src-TPr, we have to show:

{src(K[(Ax. if gx then x else first g(x + 1)) n]) * ®})
first fn
{v. sre(K[v]) = veNRy,

Figure 7.3: A selection of proof
rules for proving termination-
preserving refinements in

Refinementgy .

82

PART II: TRANSFINITE IRIS

Note that (1) we have switched to the target-stepping Hoare triple and that (2)
the later modality (>) has been stripped from the precondition (from a source
step). Similarly, we can execute the function in the target for one step with
PURE-TGT-TPR, and thereby switch back to the source-stepping Hoare triple:

{src(K[(Ax. if gx then x else first g(x + 1)) n]) * ®}
(Ax.if f xthenxelse first f(x+1))n
{v.src(K[v]) = veN}y,

The rest of the proof is analogous to Lemma 42. m]

t .

In contrast, we cannot prove ejoop skf " 0. There are no corresponding source
steps for the target steps of e,op. Thus, we cannot use Los induction (as
in Lemma 43), since source steps are necessary to remove the later that arises.

7.1.3 Stuttering

Before we can verify more interesting examples with Refinementsy (in §8),
we first need to add stuttering. That is, the back-and-forth between target
stepping and source stepping discussed in §7.1.2 leads to a lock-step simulation,
a simulation where there is a one-to-one correspondence between target and
source steps. In general, for programs like memo_rec from §5, such a simulation is
too restrictive. For them, we need rules that can be used to advance the source
(without stepping the target), and we need rules that can be used to advance
the target (without stepping the source)—otherwise known as stuttering.'°
Refinementgy offers two different forms of stuttering: (1) bounded source
stuttering and (2) no-later stuttering. The first form allows one to stutter the
source (with the ability to remove laters) via a form of “stutter credits”. The
second form allows one to stutter the source or the target for an arbitrary
number of steps—but without the ability to remove laters after a step. The
proof rules for both (extending those of Fig. 7.3) are depicted in Fig. 7.4.

Bounded source stuttering. To enable bounded stuttering of the source,
Refinementgyy. generalizes the source stepping rules (from Fig. 7.3): the idea is
that, whenever we take a source step, we can pick a natural number n and then
stutter the source for n target steps before we have to take another source step.

The rules of the bounded source stuttering mechanism are depicted in the
upper half of Fig. 7.4. The key piece of the mechanism is an additional resource,
the stutter credits $; n. A stutter credit $5 1 means we get to stutter the source
for one step by flipping to the target-stepping triple with SRc-STUTTER-CRED-TPR
(and removing a later modality from the precondition in the process).'! We
can split and combine stutter credits as we see fit with sTUTTER-CRED-sPLIT.
And we get to allocate an arbitrary number of additional stutter credits with
every source step. More specifically, we can use the rules PURE-SRC-STUTTER-TPR,
STORE-SRC-STUTTER-TPR, LOAD-SRC-STUTTER-TPR, and REF-SRC-STUTTER-TPR to step
the source and obtain new credits. They generalize the rules from Fig. 7.3 by
allowing us to allocate $ n additional stutter credits.

With these stutter credits, we can then prove, for example,

Lemma45. Let f 2 Ax.x-1>41andg = Ax.x > 42. Then f n 5];’” gn.

CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

10 Stuttering is needed for memo_rec,
because the memoized version and

the original behave very differently at
times: if we have a cache hit (i.e., an
argument was previously memoized),
then the original version will recompute
the result and the memoized version
will look up the value in the table. The
number of steps each version takes is
completely independent: it can change
from argument to argument, and it
depends on how many arguments have
already been cached in the hash table.

' In Part III, we will see another form

of credits that allow one to remove

later modalities, later credits. Crucially,
unlike the stutter credits presented here,
they are not tied to (source or target)
programs and instead allow removing
laters as part of purely logical reasoning.
They also allow one to eliminate more
than one later in between actual program
steps, which these rules do not.

83

PART II: TRANSFINITE IRIS

Bounded Source Stuttering

SRC-STUTTER-CRED-TPR

{Ph e v. QW) Pepr € ¢Val
{$st 1 x> P}e {v. Q(V)}tpr

PURE-SRC-STUTTER-TPR

(sre(Klegl) * $st n = P e {v. Q(v) Hepr

’
€s —pure €;

CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

STUTTER-CRED-SPLIT

$ (n+m) 4 S n + S m

e; ¢ Val

{src(K[es]) * > P} e {v. Q(v) }pr

STORE-SRC-STUTTER-TPR

{f =se W S n* src(K[()]) * P er {u. Q(u)}>tpr

e; ¢ Val

{[Fgre V ¥ SI’C(K[f = W]) * DP} € {u Q(u)}tpr

LOAD-SRC-STUTTER-TPR

<{f Fsre V * $st n* SFC(K[V]) * P}> € <{W Q(W)}’>tpr

e; ¢Val

{[Fsre V * SI’C(K[![]) * DP} € {W~ Q(W)}tpr

REF-SRC-STUTTER-TPR

<{3[14 Fsre V * $st n* SI’C(K[[]) * P}> € <{W Q(W)}>tpr

e ¢Val

{src(K[ref(v)]) * > P} e {w. Q(w) }y,r

No-Later Stuttering

STUTTER-SRC-TPR

(PP e {v.- QW) Ptor e ¢Val

STUTTER-TGT-TPR

{P} € {V' Q(v)}tpr

€t 3 Val

{P} € {V- Q(V)}tpr
SRC-UPD-BIND

(ES]’C P) * (P -k ESI’C Q) F Esrc Q

SRC-UPD-STORE

SRC-UPD-RETURN

P F ESI’C P

SRC-UPD-PURE
src(K[es]) * es —pure e; - Esrc src(K[e;])

SRC-UPD-LOAD
g v src(K[]) + B

SRC-UPD-REF
t g v sre(K[v])

src

Here, the target requires more steps than the source, since it must evaluate
x - 1. However, the step in the source (i.e., the f-reduction of g n) can be used
to allocate 1 stutter credit to evaluate x - 1 for x £ n in the target.!?

As an aside, note that a simple trick to enable this kind of stuttering—
as we will see in §7.3.2—is to pick as the source language the lexicographic
product of actual source programs (e.g., here SHL-expressions and heaps) and
a stutter budget. Each actual source step resets the stutter budget, and—to
“stutter the source”—one can simply decrease the stutter budget. In fact, this
is how Tassarotti, Jung, and Harper!3 and Timany et al.'* encode stuttering
for their step-indexed termination-preserving refinements. However, since
they use finite step-indexing, they must impose restrictions on how the stutter
budget is reset (see also §10): they only allow resetting the budget to a globally
fixed bound D. The reason is that without restrictions on the stutter budget,
the same issue arises as in §6.3 (i.e., the chosen stutter budget could depend
on the current step-index). In contrast, since we use transfinite step-indexing

g vEsrc(K[L=w]) B

{Esrc P} € {V- Q(V) }tpr
SRC-UPD-FRAME

(ESFCP) * Q F bSI’CP * Q

=g w o src(K[()])

src

src(K[ref(v)]) F B 3. £ Fosec v * sre(K[£])

Figure 7.4: Stuttering rules in

Refinementgy.

2 For this example, we do not strictly
need stuttering credits. We could also use
no-later stuttering. However, in general,
the bounded source stuttering is useful if
we want to remove later modalities while
simultaneously stuttering the source.
Since examples that use this ability tend
to be quite involved (e.g., memo_rec

in §8.1), we use a simple example here.

13 Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”, 2017
[TJH17].

" Timany et al., “Trillium: Higher-order
concurrent and distributed separation
logic for intensional refinement”, 2024
[Tim+24a].

84

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

in Transfinite Iris (see §9), we do not need to impose any restrictions on the
stutter budget: every source step can pick an arbitrary, unconstrained number
of new stutter credits to allocate (see Fig. 7.4).

No-later stuttering. Besides the bounded source stuttering above, there is
a second form of stuttering that Refinementsy supports: no-later stuttering.
That is, it allows arbitrary steps in source and target if they do not strip off
laters. This stuttering mechanism makes the target and source steps largely
independent. We can use it, for example, to then prove refinements such as

Example 46 (Fibonacci Refinement).
Vi :N. fibegn <P fibyan and Vn:N. fibyyn < fibegn

where fibe,, takes an exponential number of steps to compute the result, and

fiby, computes it linearly:

1>

fibeyp = fix fibn.if n < 1then nelse fib(n-1) + fib(n-2)
fiby, 2 Ax. mp (fibl(x))
fibl

13

fix f n.if n==0then (0,1) else let (x,y) =f(n-1)in (y,x+y)

The rules of this mechanism are depicted in the lower half of Fig. 7.4. Let us
start by focusing on stuttering the source (i.e., executing target steps without
source steps). The key rule for this kind of stuttering is sTUTTER-sRC-TPR. It
allows us to switch from the source-stepping Hoare triple {P} e {v. Q(v) },,
to the target-stepping Hoare triple ({P}) e {{v. Q(v) }pr without performing a
source step. With this rule, we can now derive, for example, the following rule

for executing pure target steps unconditionally:

STUTTER-SRC-TPR-PURE-NO-LATER

{P} e; {v. Q(V)}tpr €r —pure e;
{P} €t {V. Q(V)}tpr

One can use this rule to stutter the source without the bookkeeping of the
“stutter budget” needed for the bounded stuttering approach above. In particular,
for the Fibonacci implementations in Example 46, we can prove the following

result by simply stuttering (and in fact completely ignoring) the source:

Lemma 47.
{True} fibex(n) {v.v = Fn}yy {True} fibyn(n) {v.v = Fp}ey,
for all natural numbers n, where Fy = 0, F; = 1, and Fpi2 = Fyy1 + Fy.

However, the no-later stuttering does not subsume the bounded source
stuttering. The reason is that sturTer-src-TPr—unlike the source stuttering
of src-sTuTTER-CRED-TPR—dOeES not allow one to remove a later modality from the
precondition. This is for a good reason. It would be unsound (for termination-

preserving refinements) to also allow removing a later modality. More specifi-
1> The unsound rule would be

{Ph er {v. QM Depr er ¢Val
{>P} e {v. Q(V)}tpr

which does not hold in Refinementgyy .

cally, if sturTER-SRC-TPR allowed us to remove a later,’ then it would allow a

round-trip analogous to STUTTER-SRC-TPR-PURE-NO-LATER, but with the ability to
eliminate a later modality. Thus, we would suddenly be able to replay the proof
of ejoop <j; 0 from Lemma 43 using Los induction.

85

PART II: TRANSFINITE IRIS

The rule sturTer-sre-Trr also demonstrates why it is important that we have
shifted the later stripping from the target rules (e.g., see pure-TGT-rR in Fig. 7.2)
to the source rules (e.g., see pure-sre-Ter in Fig. 7.3). If target steps still allowed
the elimination of later modalities,'® then sTuTTER-sRC-TPR Would analogously
allow replaying the proof of ejoop <{; 0 from Lemma 43 using Los induction.

Besides stuttering the source, Refinementsy also provides rules for stut-
tering the target without a later. Concretely, it provides an additional update
modality B
the regular ghost state update = P: we can introduce it (SRc-UPD-RETURN), We

< P for updating the source expression. It behaves much like
can compose it with (src-urp-BiND), and we can frame assertions R into it
(src-upD-FrRAME). Moreover, we can execute it in the precondition of a Hoare
triple (sturTer-roT-TPR).!7 To execute a source step, we can use the rules src-
UPD-PURE, SRC-UPD-STORE, SRC-UPD-LOAD, and src-upp-rer. For example, we can
use SRC-UPD-PURE to execute a pure step es —pure e;.

Note that, in contrast to source stuttering (sTUTTER-SRC-TPR), target stuttering
(sturTER-TGT-TPR) dOes not switch Hoare triples. Instead, it simply allows one
to execute many source steps where one could previously execute only one.

For the Fibonacci implementations from Example 46, we can use this form
of stuttering to prove the following source updates:

Lemma 48.

src(K[fibegp n]) F By sre(K[Fr]) src(K[fiby, n]) F B, src(K[Fy])

src
for all natural numbers n, where Fy = 0, F; = 1, and Fp12 = Fyy1 + Fy.
We can then combine both forms of stuttering to derive:

Corollary 49.

Vi N. fibeg, n <P fibjn n Vi e N. fibjn <P fibegn

Proof. By combining Lemma 47 for executing the resp. target and Lemma 48
for executing the resp. source to the result F,, using sTUTTER-TGT-TPR t0 execute

the source updates. m]

7.2 Termination

Having discussed Refinementgsy, for proving termination-preserving refine-
ments, let us now turn to how we can use Transfinite Iris to prove termination.
Recall from §6.5 that termination and termination-preserving refinement are
closely related. In the latter, if the source always terminates, then the target
always terminates. Thus, we obtain a proof technique for termination if the
source reduction relation is the inverse of a well-founded relation.

Below, we instantiate Transfinite Iris’s liveness logic with ordinals as the
source and SHL as the target. We obtain Terminationsy—a program logic for
proving termination in the sequential fragment of HeapLang. Terminationsy
generalizes what is known as time credits'® to transfinite time credits. As we will
see below, they enable termination arguments based on dynamic information
learned during program execution. Transfinite time credits are themselves
not new. They were already used in an earlier logic by Rocha Pinto et al.'?
However, the logic of Rocha Pinto et al. is not step-indexed and thus it does

CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

16 The unsound rule would be
{P} e; {v. Q(V)}tpr
{> P} er {v. Q) Hepr

which does not hold in Refinementgyy .

’
€t —pure €;

7 The rule STUTTER-TGT-TPR is the
analogue of the rule HOARE-UPD in §3.6.

8 Atkey, “Amortised resource analysis
with separation logic”, 2011 [Atk11];
Pilkiewicz and Pottier, “The essence of
monotonic state”, 2011 [PP11]; Mével,
Jourdan, and Pottier, “Time credits and
time receipts in Iris”, 2019 [MJP19].

1 Rocha Pinto et al., “Modular termi-
nation verification for non-blocking
concurrency”, 2016 [Roc+16].

86

PART II: TRANSFINITE IRIS

BIND-TERM

{P} € {V. Q(V) }term

VALUE-TERM

VV‘ {Q(V)} K[V] {W R(W)}term

CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

SPLIT-CRED-TERM

{P(V)} v {W P(W)}term {P} K[e] {W R(W)}term

STORE-TERM
{t=>vht=w{_ = Whierm

LOAD-TERM
{t=> vl {w. w=v* £ = vhierm

PURE-TERM

{P} el {'V. Q(v)}term

FLIP-TERM

<{P}> € <{V Q(V) }>term € ¢Val

’
€ —)pure €

REF-TERM

{Trued) ref(v) {w. . w="F * £ > VDierm

$(adp) © $a = $p

SPEND-CRED-TERM

(88 = PP e (v. Q(v) Prerm

p<a eg¢Val

(P} e (v-Q(v) Prerm {P} e {v. Q) }erm

not support impredicative invariants. In contrast, in Terminationsy, step-
indexing equips us with impredicative invariants, which we use in our examples
to handle shared, mutable, higher-order state. Concretely, we demonstrate
the power of our technique by mechanizing two examples (§8.2 and §8.3),
including (in just 850 lines of Rocq) a stronger version of the main theorem
of Spies, Krishnaswami, and Dreyer:?? termination of a linear language with
asynchronous channels.

The program logic. Compared to Refinementsy, we obtain slightly differ-
ent logical connectives and proof rules in Terminationgy by picking ordinals
as the source language. Instead of the resources £ g v, src(e), and $g n,
we have a connective $a referring to the ordinal source (see §7.3.2 for the
definition). We once again obtain two Hoare triples. In Terminationsyy, they
are denoted {P} e {v. Q(V) }1erm and {P}) e {v. Q(v) Pterm to indicate that we
are proving termination.

The rules of Terminationsy are depicted in Fig. 7.5. They mirror the target
rules of Refinementsy in Fig. 7.3. The only rules of note are sPEND-CRED-TERM,
FLIP-TERM, and spriT-cRED-TERM. The rule rrip-TerM is the analog of sTuTTER-
src-TeR: it allows us to flip from {P} e {v. Q(V) }ierm to {PD e {v. O(v) Pterm
(without a later). The rule spEnD-crED-TERM replaces the source stepping rules:
if we can decrease the ordinal source $a, then we get to eliminate a later. We
will discuss the rule spLiT-crED-TERM below.

With Terminationsy, we can prove that an expression e terminates safely

in a value (see Theorem 51 in §7.3.2) by proving
terminates(e) = Ja. {$a} e {_True}ierm-

As mentioned above, the ordinal source $a generalizes time credits,>! which
are traditionally used for proving complexity results with separation logic.??
Traditional time credits enable one to prove the safety property of bounded
termination (i.e., they enable one to prove that a program “terminates in n
steps of computation”, where the bound n has to be fixed up-front). What we
obtain by using ordinals in Transfinite Iris are transfinite time credits. They
go beyond bounded termination: they allow us to prove the liveness property
of termination®® for examples where it is non-trivial (if not impossible) to
determine finite bounds.

{$a = >P}e{v.0(V) Herm

Figure 7.5: A selection of proof
rules for proving termination in

Terminationgyy.

» Spies, Krishnaswami, and Dreyer,
“Transfinite step-indexing for termina-
tion”, 2021 [SKD21].

1 Atkey, “Amortised resource analysis
with separation logic”, 2011 [Atk11];
Pilkiewicz and Pottier, “The essence of
monotonic state”, 2011 [PP11]; Mével,
Jourdan, and Pottier, “Time credits and
time receipts in Iris”, 2019 [MJP19].

2 The rule FLIP-TERM makes
Terminationsy quite flexible, because
we only need to spend a time credit
when we want to remove a later from
the precondition. However, it also means
Terminationgy is not suitable for prov-
ing complexity results anymore, since not
every step requires spending a credit.

1t is well-known that bounded ter-
mination is a safety property while
termination (without a bound) is a
liveness property [SKD21]. Bounded
termination can be falsified by exhibiting
an execution which does not terminate
within the given bound, a finite prefix.
For termination, this is not the case:
termination can only be falsified by an
infinite execution.

87

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

Time credits. To illustrate why this is useful, let us consider an example.
Suppose we have a function f that returns a natural number, and we want to
prove that eywo = f() + f() terminates. If ns is the maximum number of steps it
takes to compute f(), then we know that it takes 2-n +1 steps for erw, to termi-
nate. With both traditional and transfinite time credits, this amounts to proving
the Hoare triple {$(2 “np+ 1)} etwo {_. True}, where (ignoring stuttering) one
time credit has to be spent for every step of eqyo.

To prove this triple modularly, we make use of the distinguishing feature of
time credits that makes them an ideal fit for separation logic: time credits can
be split and combined (similar to the stuttering credits in §7.1.3). That is, we
have (as an instance of spLiT-creD-TERM for the finite case) $(n+m) © $n * $m.
We use this rule to factorize the termination proof of eyy,: we first prove
termination of f as {$n f} f() {m.m e N}, and then we use this triple twice to

prove the termination of exy,.

Transfinite credits. Now, consider a small generalization of the example,

proving termination of:

letk =u ()inleta = ref(0) in
foriin0,...,k-1doa:=!a+f ()

Here, u is a function returning a natural number k. We compute the sum of
k-times executing f, and store that in a. To verify this program compositionally,
we only assume that the function u, when given enough time credits n,, returns
a natural number, i.e., {$n,} u() {m. m € N}.

In this setting, finite time credits are no longer sufficient. The number of
steps it takes to execute the whole program depends on the output of u ().
The problem is that the number of credits required here depends on dynamic
information—it depends on the execution of the program.

With transfinite time credits (i.e., ordinals), we can statically abstract over
this dynamic information. That is, we can show that $(w @ n,) credits are
enough to prove termination of the whole program. Given $(w ® n,) time
credits, we can spend $n, on the execution of u () with spriT-crED-TERM. After
obtaining the result k, we can use sPEND-CrRED-TERM to decrease the w credits to
(roughly) k - nf, which are sufficient for the remainder of the execution.

The addition operation & ® 8 in spriT-crep-TERM is Hessenberg addition®*—a
well-behaved, commutative notion of addition on ordinals. Commutativity is
essential for us to be able to use ordinals as separation logic resources, since
the latter are required to form a partial commutative monoid (see §4.2).

While this example is contrived, it highlights the core problem: in compo-
sitional termination proofs, there may not be enough information available
to bound the length of the execution statically. With transfinite termination
bounds, we can pick the termination bound dynamically based on information
that is only learned during the execution (e.g., the value of k above).

7.3 The Liveness Logic

Let us now turn to the underlying liveness logic of Transfinite Iris of which
Refinementgsy (§7.1) and Terminationsy, (§7.2) are instantiations. We first
discuss—at the same level of abstraction?” as in §4.1—the weakest precondition

* Hessenberg, Grundbegriffe der Mengen-
lehre, 1906 [Hes06].

% Similar to the discussion in §4.1, we
make some simplifications here to ease
the presentation. In particular, we again
omit fancy updates and their masks, and
we omit how support for “non-atomic
invariants” (i.e., impredicative invariants
for sequential languages that can be
opened for multiple steps) is integrated
into this definition. Both clutter the
presentation and are completely standard
for Iris.

88

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

The Weakest Precondition

wp v {w.Q(w)} 215, Vh,a.SI(h) * I(a) = BSI(h) * I(a) * Q(v)
wp e {w.Q(w)} =5, Vh,a.SI(h) * I(a) + B

if e ¢ Val

>B (progress(e, h) = (Ye',h'. (e,h) ~ (¢/,h') « B (3d’.a =" a’ = I(a’) = SI(K') * wp e’ {w.Q(w)})))
vV B (progress(e, h) = (Ve',h'. (e,h) ~ (e',h') = B (I(a) = SI(K') = wp &’ {w.Q(w)})))

The Target-Stepping Weakest Precondition

wp e {w. Q(w)}) = Vh,a.SI(h) = I(a)

B progress(e, h) = (Ve',h'. (e,h) ~ (e’,h’) = B (I(a) = SI(K') = wp e’ {w. Q(w)}))

of the liveness logic (§7.3.1) and then the instantiations for Refinementsy and
Terminationgy (§7.3.2).

7.3.1 The Weakest Precondition

Let us start with the two kinds of Hoare triples that we have encountered in
the previous sections: the triples {P}) e {v. Q(v)}) for stepping the target, and
the triples {P} e {v. Q(v)} for stepping the source. (We have encountered them
for two different instantiations of the source language, which we will discuss
in §7.3.2.) Similarly to how we defined regular safety Hoare triples in Iris in
terms of a weakest precondition (in §3.3), we will now define these in terms of
two weakest preconditions wp e {v. Q(v)} and wp e {v. Q(v) }):

>

{PYe{v.0m)}
{Phedv.0)Y

O(P = wp e {v.0(v)})
(P~ wpe {v.0W)})

1>

The weakest preconditions are defined in Fig. 7.6. Their definition is quite a
mouthful, so let us unpack it step by step.

The weakest precondition wp e {v. Q(v)}. We start with the weakest pre-
condition wp e {v. Q(v)}. To integrate the notion of a “source program” into
the definition, we assume a source language A = (A,~>gc, I), consisting of
a type of source states A, a source step relation a ~g. a’, and a source state
interpretation I(a). The source state interpretation I, analogous to the regular
state interpretation SI (see §4.1), associates source states a with resources (e.g.,
to give meaning to the points-to assertion £ g v or the time credits $a).
All additions concerning the source language in the definition of the weakest
precondition (in Fig. 7.6) are highlighted in red.

Let us now unpack the two cases of the weakest precondition wp e {v. Q(v)}.
As for the standard weakest precondition, we distinguish whether the expres-
sion is a value or a proper expression. In the value case, one must prove the
postcondition Q(v) underneath an update modality “=”. However, unlike
for the standard weakest precondition (see §4.1), this weakest precondition
makes the state interpretation SI(h) and the source state interpretation I(a)
available in the value case (and demands they are returned after the update). In
doing so, it makes the state interpretation available in both cases, which can
occasionally be useful (e.g., for more complex state interpretations than the

Figure 7.6: The liveness weakest
preconditions of Transfinite Iris.

89

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

one for HeaplLang in §4.1), but does not make a big difference compared to the
value case of the safety weakest precondition.

The more interesting case is when e is a proper expression. In this case,
we assume the state interpretation SI(h) and, additionally, the source state

interpretation I(a) for the current source state a. We then have two options:

1. Option 1. We get a later modality (highlighted in blue) to remove guarding
laters from our assumptions (e.g., as part of a Los induction), and then we
must execute at least one step of the source a (i.e., we prove a ~ g+ a’ and
establish the source state interpretation for a’), or

2. Option 2. There is no later modality, and we keep the source state a un-
changed (i.e., we re-establish I(a)).

We will elaborate on the difference between the two options below. The re-
mainder of the definition (e.g., that we prove progress of e, that we consider
every possible successor expression e’, and that we re-establish the state inter-
pretation for the new heap h’) is basically the same as in the original weakest
precondition (see §4.1).

Laters and source steps. The interplay of the later modality and the source
steps in this definition of wp e {v. Q(v)} is what enables removing laters in, e.g.,
the source stepping rules in Fig. 7.3. More specifically, unlike for the regular
weakest precondition, here the later modality in the definition of wp e {v. Q(v)}
is associated with source steps: we get to remove a guarding later (e.g., in pure-
src-Ter in Fig. 7.3 or spEnD-crRED-TERM in Fig. 7.5) if we are willing to step the
source for at least one step.

If we choose Option 1 and we execute (at least) one source step (e.g., in PURE-
src-Tpr in Fig. 7.3), we must still execute at least one step in the target. This
is where the weakest precondition wp e {v. Q(v)}) comes in. It forces us to
reason about the next step of the target before we return to wp e {v. Q(v)}.

The target stepping weakest precondition wp e {v. Q(v)}). More specifi-
cally, the target stepping weakest precondition asks us to execute one target
step without a later: we must show progress of e and then we must establish
the source state interpretation I(a) again for the current source state a and a
weakest precondition for the successor expression e’. Notably, after the step
(i.e., for the successor expression e’), the definition switches back to the other
weakest precondition wp e {v. Q(v)} (note the absence of pointy brackets).

Source stuttering. Recall (from §7.1.3) that we do not have to prove a lock-
step simulation and, instead, we can stutter the source and the target. Let
us first focus on source stuttering: steps in the target without corresponding
source steps (i.e., the rules stuTTER-srRC-TPR and rrLip-TERM). What enables this
kind of stuttering is Option 2, which allows one to execute a target step without
stepping the source. This option basically coincides with wp e {v. Q(v)}),
justifying the switch from {P} e {v. Q(v)} to {P}) e {v. Q(v)}) in these rules.
However, we have to be careful. For a termination-preserving refinement, it
would be unsound if we allow the source to be stuttered an unbounded number of
steps (i.e., if we allow the target to diverge). We have to make sure that another

90

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

source step is executed eventually (or the target terminates). To ensure that
this is the case, the definition of the weakest precondition wp e {v. Q(v)} uses
a least fixpoint (as opposed to the guarded fixpoint in the weakest precondition
in §4.1). The least fixpoint ensures that Option 2 is not used indefinitely and

eventually Option 1 has to be chosen again (which will execute a source step).

Target stuttering. To stutter the target, we have introduced the source

update modality 5. P (in §7.1.3). We can now define it as follows:

src
B, P2Val(a) «B3a".a—>"a x1(da) =P

We assume the source state interpretation I(a) and execute the source for zero
or more steps before we re-establish I for the new state a’. We can justify
this stuttering using the fact that Option 1 allows multiple source steps to be

executed and not just a single one.

The existential property and adequacy. Before we move on to the concrete
instantiations of the liveness logic (§7.3.2), let us briefly discuss why we need the
existential property for this weakest precondition wp e {v. Q(v) } to be adequate
for termination-preserving refinements and termination. Recall (from §6.4)
that the crux to get a termination-preserving refinement out of a step-indexed
simulation is to lift the existentially quantified source execution outside the
logic. Specifically, the simple, step-indexed simulation ¢ <, s in §6.3 contains
an existentially quantified step of the source expression “3s’. s ~rge 8" A-+-7
that we need to get out for a termination-preserving refinement. The same
holds true for this more complex separation logic simulation: we need to get
out the existential quantification “Ja’. a <* @’ = ---” in Option 1.

The existential property allows us to extract “Ja’. a <™ a’ = - --” as part of
the adequacy proof. Unfortunately, the adequacy proofitself is somewhat gnarly
due to the increased complexity of wp e {v. Q(v)} compared to t <, s (e.g., it
involves an induction on the least-fixpoint in the definition of wp e {w. Q(w)}).
It can be found in the Transfinite Iris Rocq development.?® Below, we focus on % Spies et al., Transfinite Iris appendix and
the instantiations of the adequacy proof that we obtain for termination and Rocq development, 2021 [Spi+21a].
termination-preserving refinements. In §9, we then shine a light on how we

obtain the existential property by using ordinals as step-indices.

7.3.2 Instantiations of the Liveness Logic

Let us now discuss the two concrete instantiations that we have seen in the
previous sections: Refinementsy (§7.1) and Terminationgyy (§7.2).

Termination-preserving refinements. For Refinementgy, we choose the
source language where the states are of type A = (Expr X Heap) X N, meaning
lexicographically ordered pairs of the current source program configuration
(i.e., the current source expression and heap) and the current stuttering limit
(for the stuttering credits $5; n). We allow the following source transitions:

((e,h),n) ~>gc ((€',h"), m) if (e,h)~ (e/,h)
((e, h), n) ~sre ((e, h)5m) lf m<n

91

PART II: TRANSFINITE IRIS CHAPTER 7: THE PROGRAM LoGIcs oF TRANSFINITE IRIS

That is, we allow actual source steps (which can pick an arbitrary new stutter
budget m) and stuttering steps where the actual source is unchanged and the
stuttering budget decreases.

We then define the source resource theory using different instances of the

authoritative resource algebra (§4.2.1):

I((e, h), n) £ heap?wsc(h) x leex(e) "% xlen """

~ " Vstutter

Yexpr A heap- Al
{ g v & lhearsey $sen = Lon

That is, we use three different resources: yheap-src to track the current source
heap, yexpr to track the current source expression, and ystuster to track the amount
of stuttering credits. The resource ypeap-src is from the heap resource algebra
(§4.2.2), ie., Auth(Loc fin, Ex(Val)). The resource ey is from the resource
algebra Auth(Ex(Expr)), which has two elements oex(e) and eex(e) that are
always in sync (i.e., one cannot update one without the other). The resource
Ystutter 1S from the credit resource algebra Auth(N, +) (see §4.2.2), which contains
the total amount em and the fragments on that together add up to m.

For this instantiation, we obtain the following adequacy result for our simu-
lation e; 52” es (from §7.1.2):

t ; o ;
Theorem 50. IfF e; 5Gpr es, then e, is a termination-preserving refinement of es.

Proof Sketch. This proof is similar to that of Lemma 40. To prove termination
preservation, we construct an infinite execution using Transfinite Iris’s existen-
tial property, but for the more elaborate weakest precondition wp e {v. Q(v)}
from Fig. 7.6. The key, as mentioned above, is extracting the source steps
“Ja’.a —* a’ * ---” in the definition of wp e {v. Q(v)}. O

Termination. For Terminationsy, we choose the source language with
states from A = O, meaning ordinals. To be precise, we do not use the same ordi-
nals that we will use for transfinite step-indexing. Instead, we use another copy
of ordinals that we place, in Rocq, in the universe below the step-index type
(see also §9). This ensures that O is “substantially smaller”, which means we can

use the existential property on it. We allow the following source transitions:

a~oge f if f<a

That is, the only allowed transition is decreasing the ordinal.
We define the source resource theory as follows:

I(a) 2 [oa)"™ $a 2 [og Y
where the resource yorq is drawn from the resource algebra Auth(O, @), which—
analogous to Auth(N, +)—contains the total amount e and the fragments of
that together add up to . In the case of ordinals, we use Hessenberg addition?’ ¥ Hessenberg, Grundbegriffe der Mengen-
a @ B (in place of regular, commutative addition for natural numbers). lehre, 1906 [Hes06].

For this instantiation, we obtain the following adequacy result:
Theorem 51. If+ terminates(e), then e terminates safely.

Proof Sketch. Recall that terminates(e) = Ja. {$a} e {_.True}. We use the
existential property for the quantification over « in the definition of terminates,
and then we use similar reasoning as in the adequacy sketch of the termination-
preserving refinement (see Theorem 50) to show that e cannot diverge.]

92

CHAPTER 8

CASE STUDIES

Equipped with Terminationsy. and Refinementsyy, let us now consider several
case studies that we can verify with them. We consider a termination-preserving
refinement for the memo_rec combinator from §5 (§8.1), termination for a reen-
trant event loop (§8.2), and the logical relation for termination of asynchronous
channels of Spies, Krishnaswami, and Dreyer1 (88.3).

8.1 Recursive Memoization

Recall that when memo_rec is used to memoize a recursive function, the results of
recursive calls are cached in a lookup table and reused (instead of recomputed).

In SHL, we define memo_rec as:

memo_rec = At. let tbl = map() in
fix g x. match get tbl x with
| None = lety =tgxinsetthlxy; y
| Somey = y
end

Here, t is the template of the function that we want to memoize. (Recall from §5
that the template describes the function body e in fix f x. e as a function
t:(r = o) = (r = 0).) The function map creates a mutable lookup table, get
retrieves an element from the table, and set stores an element in a table.?

We have proved a generic and modular specifications for memo_rec, which
we will discuss at the end of §8.1.2. Since it is somewhat involved, we first
consider the memoization of pure functions as a stepping stone in §8.1.1 and,
to keep matters concrete, we consider two examples: memoizing the Fibonacci
function and the Levenshtein distance? (templates depicted in Fig. 8.1).

8.1.1 Pure Templates

We start by considering the memoization of pure templates for functions of

type N — N, such as the Fib template for Fibonacci, shown in Fig. 8.1. Given

A

a template ¢, we define the standard recursive version of the function as r, =
fix g n. t g n and the memoized version as m; = memo_rec t.

We wish to show that m; refines r;, in the sense that for all natural numbers n,
we have m; n <y r; n. Thus, for memoizing pure functions, we prove:*

PURE-MEMO-REC
Vg. >(Vn.gn <y ryn) = Vn.tgn<nyrn rs is pure

Vnmsn=<yrn

! Spies, Krishnaswami, and Dreyer,
“Transfinite step-indexing for termina-
tion”, 2021 [SKD21].

2 To support element lookup, the map
operations need an equality comparison
operation on the keys. In the Rocq
implementation, this is passed around as
an additional function eq, which becomes
a parameter of the memo_rec function.
For simplicity, we elide it here. Moreover,
we use an association list as a lookup
table instead of a hash table (used in §5),
because whether the keys are hashed or
not is orthogonal to the example.

* Levenshtein, “Binary codes capable
of correcting deletions, insertions, and
reversals”, 1965 [Lev65].

* We can get a simpler specification here
than the one we provide for stateful
templates (MEMO-REC) by leveraging
the assumption that r; is pure. We have
also proven this specification in the Rocq
development of Transfinite Iris [Spi+21a].

93

PART II: TRANSFINITE IRIS

Fib fibn £ if n < 2thennelse fib(n-1) + fib(n - 2)
Slenslens £ if ls==0thenOelse slen(s + 1) +1
Lev slen lev (s, t) =

if Is==0then slent else

if 1t ==0then slen s else

if ls==!tthenlev(s + 1,t + 1) else

1+min(lev(s,t + 1), lev(s + 1,5), lev(s + 1, + 1))

The premise constrains the template ¢: for any function g that implements r;,
the template applied to g should also implement r;. The assumption about g is
guarded by a later modality (>) such that a proof of the premise must execute
a step of the source 7, n before this assumption can be used. Typically, this is
trivial since r; n —pure t 7+ 1, and for safe, pure templates like Fib, the residual
goal (t gn <y t ry n) is provable by a simple lock-step simulation.

Proof Sketch for pure-memo-rec. We first derive standard Hoare triples for the
operations of the lookup table. Then, we proceed with the verification of
memo_rec. After allocating a lookup table tbl, the expression m; reduces to:

h £ fix g x. match get tbl x with
| None = lety=tgxinsettblxy;y
| Somey = y

end

We must now prove Vn. h n <y r; n. We proceed by using LB induction in a
way similar to Lemma 44. The induction hypothesis from Los is

>(Vn.hn <y ryn), andweshow VYn.hn =yr n.

Given an argument n, we do a case analysis on whether the result has already
been stored in the lookup table or not:

1. In case it has not, memo_rec calls t h n. Applying the premise of pure-memo-
ReC, Vg. >(Vn.gn <y ry n) = Vn.t gn <y r n, to the induction hypothesis,
we know t h n <y r; n. The resulting value of t h n and r; n, say m, is then
stored in the lookup table. We use an invariant assertion® (§3.4) to ensure that

all values in the lookup table are the result of running r; on the associated

+

pure m for

keys. Concretely, since r; is pure, we would remember r, n —
key n in the invariant.

2. In case n is found in the lookup table, we must argue that the stored value m

+

pure M when

is equal to the result of r; n. However, since we remember r, n —
the result is computed for the first time, we can justify a source execution of

ry n to m using the stuttering rule pure-src-sTUTTER-TPR (repeatedly).]
We can then instantiate pURE-MEMO-REC to obtain the following corollary:

Corollary 52. Vn. mgipn <y rrip n

CHAPTER 8: CASE STUDIES

Figure 8.1: Recursive templates

of memoized functions.

5 As mentioned in §7.3.1, we use non-
atomic invariants in Transfinite Iris
(which can be opened for multiple steps)
for reasoning about sequential code.

We gloss over the distinction between
non-atomic and regular invariants here.
For the full details, see the Transfinite Iris
Rocq development [Spi+21a].

94

PART II: TRANSFINITE IRIS CHAPTER 8: CASE STUDIES

8.1.2 Stateful Templates

Memoization can also be applied to templates that use state, so long as they
execute in a repeatable fashion. That is, when the function is run multiple
times, it must return the same value. This ensures that it is correct to reuse
the stored values in the lookup table during memoization. Our specification
for memoization of stateful templates replaces the purity side condition in
PURE-MEMO-REC With an encoding of this repeatability condition.

To see an example of where our specification is useful, consider the Leven-
shtein function template in Fig. 8.1, which computes the edit distance between
two strings. We parameterize the template by a function slen used for computing
the length of strings. The input strings are stored on the heap as null-terminated

arrays, as in languages like C.° Because the length of the same substring is § To represent the strings on the heap,
we use a feature of HeapLang that

o . . . we have not discussed yet: arrays and
by also memoizing the string length function, using the template Slen from address arithmetic. That is, instead of

Fig. 8.1. Thus, to memoize the Levenshtein function, we define: a single reference cell, one can also
allocate an array of values on the heap

in (sequential) HeapLang. The different
fields in the array are then accessed via
address arithmetic (e.g., for the location ¢,
the location of the next entry is £ + 1).

computed multiple times, the Levenshtein function can be optimized further

mlev £ let mslen = memo_rec Slenin memo_rec (Lev mslen)

The resulting function performs nested memoization: it memoizes the length
function slen = fix s x. Slen s x inside of the template Lev.

This use of the Lev template is not pure: it not only reads from heap allocated
state (the string), but also accesses and modifies the internally allocated memo
table used in mslen. Nevertheless, the template is repeatable, so long as the
input strings are not modified after memoizing.

The memo_rec specification. Let us now turn to the specification. To define
<tpr
=G

and f, where the executions of f must be repeatable. Concretely, we will now

. repeat
define a relation g < PO

P is a persistent (see §3.3) precondition (i.e., Vv,v'. Pvv' + O Pv+v') for the

it, we introduce a generalization of the simulation e; es to two functions g

f, where source executions of f will be repeatable,

arguments of g and f, and Q is a persistent postcondition (i.e., Yw, w’. Q ww’
0 Q ww’) for the resulting values of g and f. (The postcondition Q replaces

the role of the set G in the simulation e; 52" es.) We define the simulation as:

g 5;‘5“ £ W,v,K,n.
{P(v,v') * sre(K[fv'])}
gv
{w. 3w Q(w, w') = $s n * src(K[w'] * repeat(f, v, w)) }y,,

We start out with two values v and v’ related by the precondition P, and the
current source expression is fv' (in some evaluation context K). If we now
execute gv in the target, then the result is some value w such that the source
executes to some value w’ and the two are related by the postcondition Q’.
Moreover, the postcondition provides an arbitrary amount of stutter credits
$st n to whoever executes this simulation. (Recall the stutter credits can be
obtained by executing source steps; see Fig. 7.4.) In addition to the postcondi-

tion Q, we obtain the knowledge that we can repeat this execution in the source

+

pure M in PURE-

repeatp (f,v, w) (defined below). This fact—in place of r; n —
MEMO-REC—is what allows us to stutter the target when a lookup succeeds, and

we execute f again in the source.

95

PART II: TRANSFINITE IRIS

We define the notion of a repeatable source execution as follows:

repeatp o (f, v, w) = O(W". P(v,v"") = Iw”. Oexec(fv",w”) * Q(w,w"))
exec(e,u) 2 VK.src(K[e]) =+ B, . src(K[u])

src

The predicate exec(e, u) effectively says that e can be executed to u on the source
side (in an arbitrary evaluation context K). The predicate repeat ,(f,v, w)

says that for an argument-result pair v and w of the target (i.e., g in the defini-
repeat 7
P.Q
More specifically, if we start with an argument v"’ that is related to v by the

tion of g < f), we can repeatably execute the function f in the source.
precondition P (e.g., for mslen, an immutable string the with same contents
as v), then we can execute f in the source (e.g., the recursive definition of the
string length fix slen x. Slenslen x) and we obtain a value w’’ that is related
to the target result w via the postcondition Q (e.g., the resulting integers are
the same). The persistency modalities “00” in this definition ensure that we can
execute f multiple times, and the source update “B,,. ” ensures that we can
stutter the target while we execute f in the source.

Given the notion of a repeatable source execution, we can now state the
generic specification for memo_rec:

MEMO-REC

V9. {(>(9 <pp- NYtgthh =g flip

{$st 1} memo_rect {h. h ﬁﬁgat fhpr

It assumes that ¢ is a template for f in the sense that for any g that imple-
ments f, it returns a function h that implements f (analogous to the assumption
>(Vn.gn <y ry n) = Vn.t gn <y r; n in pure-MmeMo-REC). It then ensures that
memo_rec returns a function h that itself implements f.

We can use this specification to derive a result about memoizing the Leven-
shtein function. Concretely, let us define lev = fix 1 x. Lev slen 1 x. Then, we
can derive the following corollary:

repeat
(SXS)egNeg P
where (S X S)eq expresses equality over pairs of immutable heap-allocated strings

Corollary 53. Letp = Ax.mlevx and ¢ = Ax.levx. Then p <
and Neq equality over natural numbers.

A note on stuttering. Note that besides assuming the condition on the

template ¢, the specification memo-rec also requires a stuttering credit $; 1.
repeat
P.Q

used to interact with an impredicative invariant that we set up for memo_rec

It—together with the credits returned in the postcondition of (=)—are
to store the repeatable source executions (i.e., to store repeatp o (f, v, w) for
key-value pairs v and w). The impredicative invariant induces laters (see §3.4.1),
and the credits are used to stutter the source and eliminate the laters. (In
the case of the pure specification, the credits are not necessary, because the
invariant is timeless.) In Part III of this dissertation, we will discuss invariants
and step-indexing at length, so we do not go into further details here.

The stutter credits, however, are not hard to come by, since all that is needed
is a step in the source (see the rules in Fig. 7.4). For example, in Corollary 53,
we wrap the original implementation of the Levenshtein function lev and the
memoized version mlev in a A-abstraction. This wrapping suffices to execute
one step in the target and in the source, which allows one to allocate enough
stutter credits for the memoization.

CHAPTER 8: CASE STUDIES

”We will see a similar construction
in Part III (see §13.1.2). There it is not

used to express repeatability but out-of-
order execution of the source program.
In particular, the condition on the source

program there is not persistent, so it
cannot be repeated arbitrarily often.

96

PART II: TRANSFINITE IRIS

8.2 A Reentrant Event Loop

Let us now turn to our first application of Terminationgy. . We illustrate how
transfinite time credits interact with other features of step-indexing using a
reentrant event loop as an example. In this example, an event loop consists of
a stack of functions g, which can be extended with addtask q f, and can be
executed through run g:

mkloop() = stack()
addtask q f = pushq f
run g = match pop g with
| None = ()
| Some f = f (); rung
end

Importantly, the event loop is reentrant: a function f that is added can extend
the event loop with new functions when executed. As such, proving termination
of run is subtle: there is no intrinsic termination measure, since the size of the
stack ¢ can increase before it eventually decreases. In fact, if one is not careful,
it could even never terminate (e.g., if each task adds another task to the queue).

We can prove that the event loop eventually terminates if it is used according
to the following specifications. This is because we require spending credits for
enqueueing tasks, and there are only a transfinite number of credits available.

{True} mkloop() {g. eloop(q) }ierm persistent(eloop(q))
{$2 * eIOOP(‘Z) * {P}f() {—' True}term * P} addtaSqu {7' True}term

{$1 = eloop(g)} rung {_. True}term

We can create a new event loop with mkloop; the representation predicate that
we obtain eloop(q) is persistent, such that it can be shared freely afterwards.
We can run the event loop with run, and we can add a task f with addtask.
When we want to add a task f to the event loop, we must prove a Hoare triple
{P} f () {_. True}(eym for it and ensure the precondition P (e.g., containing
additional time credits) currently holds. The specification for addtask can still
be used after the event loop has been started with run (e.g., from one of the
functions enqueued in the event loop). To ensure termination, the precondition
for addtask consumes a constant ¢ = 2 credits,® which are logically transferred
to the event loop stack and, additionally, requires the cost of the task to be paid
upfront via the precondition P.

To verify the run specification (and hence prove termination of run), we
exploit the step-indexing underlying Transfinite Iris. Concretely, we use Lo
induction, since it does not require an intrinsic termination measure. By using
LoB induction, we obtain an assumption justifying the termination of a recursive
execution of run guarded by a later modality (). This later is then removed
when using spenp-crep-TERM (in Fig. 7.5), which requires spending a time credit.
Here, we spend the time credits that are deposited by the calls to addtask. The
intuition is that even though extra jobs may be added while run executes, only
a finite number can be added in each run, because the total number of credits
available is an ordinal.

As an aside, note that even though each operation only uses a finite amount
of credits, transfinite credits are still useful here if, e.g., the amount of scheduled
tasks depends on dynamic information (as in the example in §7.2).

CHAPTER 8: CASE STUDIES

8 There are two credits, because one is

used to open an invariant, and the other
one is used to justify the recursion inside

the run function.

97

PART II: TRANSFINITE IRIS

8.3 A Logical Relation for Asynchronous Channels

As a larger application of Terminationsy, transfinite time credits allow us to
obtain and mechanize the main result of Spies, Krishnaswami, and Dreyer:9
termination of a linear language with asynchronous channels. For their termi-
nation proof, they introduce a transfinitely step-indexed logical relation which,
internally, uses a bespoke form of transfinite time credits and transfinite step-
indexing. In Terminationsy. we can, using our general form of transfinite time
credits, simplify their logical relation (which they define and use in a 40-page
appendix) and mechanize their result in 500 lines of Rocq. With an additional
350 lines of Rocq, we generalize their result with impredicative polymorphism.

Impredicative invariants for logical relations. Our generalization to
impredicative polymorphism relies crucially on impredicative invariants (§3.4.1).
To explain in a bit more detail how we leverage impredicative invariants and,
moreover, why it would be non-trivial to generalize the logical relation of Spies,
Krishnaswami, and Dreyer without using Transfinite Iris, let us briefly review
how logical relations are typically formalized in Iris.!° In an Iris logical relation,
a type 7 is interpreted as an Iris predicate (i.e., an element of type Val — iProp).
For example, the ML-style reference type ref(z) can be interpreted as a predicate
on memory locations ¢ that asserts that there is an invariant on ¢, which in
turn asserts that the value v stored at £ must satisfy the predicate associated
with 7. The key point then is that, because of polymorphic types, 7 could for
instance be a type variable, modeled as an arbitrary unknown Iris predicate,
and thus it is crucial that the invariant in the model of ref(r) is impredicative.

To the best of our knowledge, there is no way to avoid impredicative in-
variants here. This is related to the well-known “type-world circularity” that
arises in logical relations for languages with polymorphism and higher-order
state (see e.g., Ahmed’s earlier work on concrete step-indexed models of such
type systems'!). Hence, if one tries to generalize the logical relation of Spies,
Krishnaswami, and Dreyer without using Transfinite Iris, one has to solve the
type-world circularity “by hand,” meaning one essentially has to solve the kind
of recursive domain equation underlying Transfinite Iris (see §4.5 for the Iris
version and §9.3 for the Transfinite Iris version). Here, we instead leverage that
Transfinite Iris has impredicative invariants to obtain a simple generalization
of the logical relation with polymorphism.

Below, we explain how to encode the language Acpan of Spies, Krishnaswami,
and Dreyer in SHL (§8.3.1), we simplify their logical relation (§8.3.2), and then
we extend it to handle impredicative polymorphism (§8.3.3).

8.3.1 Language

The language Acpan is a linear A-calculus with Booleans, natural numbers,
and pairs extended with asynchronous channels. Besides constructs which are
already included in SHL (e.g., Booleans, pairs, and natural numbers), Acpan fea-
tures (1) a primitive operation iter for iteration on natural numbers and (2) prim-
itives on asynchronous channels. For iteration, we define iter(e, ey, x. e5) =
it eg e (Ax. es) where the body of the iteration is implemented as the recursive
function it = fixits. An, f.if n==0then selse it (f s) (n-1) f. Below we
explain how to encode the asynchronous channels.

CHAPTER 8: CASE STUDIES

? Spies, Krishnaswami, and Dreyer,

“Transfinite step-indexing for termina-

tion”, 2021 [SKD21].

10 We will see another example of a
logical relation formalized in Iris, a
binary logical relation, in Part IIL.

" Ahmed, “Semantics of types for
mutable state”, 2004 [Ahmo04].

98

PART II: TRANSFINITE IRIS

Channels. The asynchronous channels offer three operations: chan to create
a new channel, which results in pair of a “send-handle” and a “receive-handle”;

put to send a value over a channel; and get to receive a value over a channel.

Channels can be in one of three states: empty, containing a value (waiting for a
get), or containing a continuation (waiting for a put). We encode these states
with three constructors E, V(v), and C(f), and write

caseeof E=> e | V(v) =@ €2 | C(f) = €3

for case analysis on them. (We can derive the constructors in SHL with nested
sums and the case analysis construct using match expressions.) Channels are
then implemented as heap locations that store one of these constructors.

We encode the three essential channel operations as follows:

chanzlet ¢ := ref(E) in (c,¢)
get=A(c, f).caselcof E= ¢ :=C(f) | V(v) = ¢:=E; f(v) | C(f) =div()
put=A(c,0v).case!lcof E= c:=V(v) | V(v) = div() | C(f) = ¢ :=E; f(v)
divfix f x. f(x)

The operation chan creates an empty channel. The operation get either stores
the continuation (if the channel is still empty), or it empties the channel and
executes the continuation with the current value. The operation put either
stores the value (if the channel is still empty), or it empties the channel and
executes the continuation with the current value.

Since the channels are used linearly, we can never be in the situation that
a get encounters a continuation in the channel (or dually a put encounters a
value). Thus, in Acyan, there is no case for C in get and V in put. Here, being
interested in safe termination, we have replaced these cases with divergence,
ensuring that they are never executed if we can prove termination.

Type system. In its original (monomorphic) formulation, Acgan is equipped

with the linear type system depicted in Fig. 8.2. We write I', I} for the disjoint

union of the linear typing contexts I'y and I5.

8.3.2 Simplified Logical Relation

Let us now turn to how we define a logical relation for Acgan in Transfinite Iris.

Instead of first defining the type formers (e.g., 1, N, T ® U, etc.) syntactically
and then interpreting them semantically, we directly define their semantic
interpretations in the form of semantic types and semantic type formers. In
our case, the semantic types T,U : SemType are predicates from values to
propositions, meaning SemType 2 Val — iProp.!? We define

Liem = {v|v=0}

Bsem = {v| 3b:B.v =b}

Ngemm 2 {v | In: N.v =n}

T—oU2{f|VWveT=wpfv{w.weU}}
TOU = {v|Ivp,vw.v=(v,v) v €T xw € U}

1>

1>

Get(T)

Nt =7 1 Ypu
Put(T) = {V | 3¢, Yeet> Yput- $1 % v =1£€ l(yget’ Youts €5 T) ! * LQXQJYP t}

1>
e e,
<
L
)
o
]
<
~
°
c
+
“
—_
*
<
Il
~
*
~
o
@
[
=
<
<
)
~
N—
z
A
*
=
10
1 X
‘A
‘\/
=
o
o
——

|>

CHAPTER 8: CASE STUDIES

2 Unlike in most logical relations in Iris,

the semantic interpretation of types is

linear (or rather affine) here. However,

for the channels, we still need sharing

of

the underlying memory, which is why we

use an impredicative invariant here.

99

PART II: TRANSFINITE IRIS

CHAPTER 8: CASE STUDIES

T'te:B INre:1 Ihre A
x:Arx:A _ Or(:1 I'+b:B
I',x:A+e:B I, Fep;ep: A
FIFCZB Fgl—el:A szeZ:A Fll—el:N le—eZ:N
Orn:N
Fl,I‘zl-ifethenel elseezzA rl,r2|-€1+eziN
Iire:N Ihre: A x:Ares: A I'x:Are:B Ii'+e:A—oB Lhire:A

I, +iter(eg, e x.es) A THAx.e: A —o B

Iire A Ibke: B e A1 ® A,

I‘l,x:Al,y:AzkeZ:B

I, + (e, e2) : A® B I, Flet (x,y) =eine; : B

I‘ll—el:Get(A) FzFeziA—O]].

Tl Fep: PUt(A)

I,Ibejey: B

0 + chan() : Get(A) ® Put(A)

F2|—€21A

I,To - get(e,ex) : 1

The channel interpretation. For the interpretation of the Get(-) and Put(-)
types, we maintain an impredicative invariant saying that the channel loca-
tion points to a valid channel state.!> We associate every channel with two

ghost names yget and ypyt. Their ghost state—of the resource algebra Ex(unit)

cannot be in the C(f) case.

I(Yget, Youts £ TYZ¢t—E

Moreover, the interpretations of Get(-) and Put(+) include one time credit
which is used (with the rule spEnD-crED-TERM) to remove the later that arises
when opening the invariant.

Semantic typing. We can now define the semantic typing relation. For the
semantic typing relation, we use as contexts I' finite maps from variable names
to semantic types SemType:!*

GIT] 2 {y|*xr1er y(x) is defined * y(x) € T}
Tee:T2 +3a.$a+Vy.yeG[T] +wpy(e) {v.veT}

1>

The only non-standard aspect about our semantic typing is that we existen-
tially quantify over the number of initial time credits. This works, because for
every program a sufficient ordinal number of time credits can be (inductively)
computed. In short, channel creation requires two time credits—one for the send
handle and one for the receive handle—and iteration can be overapproximated
by w times the credits required for the body of the iteration.

I, T - put(er,ex) : 1

Figure 8.2: The (monomorphic)
type system of Achan

3 As mentioned in §7.3.1, we use non-
atomic invariants in Transfinite Iris

for reasoning about sequential code.

We gloss over the distinction between
non-atomic and regular invariants here.
For the full details, see the Transfinite Iris
Rocq development [Spi+21a].

! Here, y(e) denotes the result of
substituting the free variables in e
according to the substitution y.

100

PART II: TRANSFINITE IRIS

Soundness. We use the traditional approach to proving soundness of a logical

relation. We show that in each of the rules, we can replace the syntactic notion

(+) with the semantic notion (k). Concretely, we prove the rules in Fig. 8.3.
In addition, we use the logical relation and Theorem 51 to derive:

Lemma 54. IfQ k e : T, then e terminates safely.

CHAPTER 8: CASE STUDIES

Tre:U TNEep: Lgem hEeEe:T
x:Tex:T _— 0F (O : Lsem TED:Bsem
I,x:Tee:U I,IhEe;en: T
Il Fe:Bsem hee : T Ihee: T I Fer: Neem I, E ey : Neem
0k n:Ngpy
I eifetheneelseey, : T I, I Ee;+es : Ngem
Il Ee: Nem IbEe: T x:TEeg:T I'x:Tke:U INee: T —oU hEe:T

I, Eiter(ep, e x.es): T F'eAx.e: T —-U

TieEe : T LLEe:U e :T1 T, rl,XZTl,lezhele

I, E(e,e2) : T®U I, Elet (x,y) =ejiney: U

I F e : Get(T) hee : T —o Lgem

INEe: PUt(T)

I, ILeEe e : U

0 E chan() : Get(T) ® Put(T)

Ibee: T

I, T, E get(er, e2) : Lgem

8.3.3 Adding Impredicative Polymorphism

To add polymorphism to the language, we embed the usual introduction and
elimination primitives as derived forms of the term language:

Aez2A().e e() =e()

unpack e as x ine’ £ (Ax.e')e packe = e
This brings us to our extension of the linear type system of Acgan with poly-
morphism. The type system is given in Fig. 8.4. We use types A (possibly)
containing type variables X, a linear typing context I' over these types, and
now additionally a type variable context A. We define the well-formedness

judgments:

A is closed under A Vx:AeT.A+A
ArFA A+rT

Semantic Interpetation. With impredicative polymorphism, our types can
now depend on type variables. We reflect this in the semantic interpretation by
additionally parameterizing the semantic type formers with (maps of) semantic
types for the type variables. That is, we consider polymorphic semantic types
T,U : PolySemType where PolySemType = (id fin, SemType) — SemType
(i.e., predicates from finite maps of semantic types to semantic types). We lift

I, T, £ put(er, e2) : Lgem

Figure 8.3: The compatibility
lemmas for the monomorphic

logical relation.

101

PART II: TRANSFINITE IRIS

CHAPTER 8: CASE STUDIES

A;Tre:B AT ke : 1 AT eyt A
Ax:Arx: A _ AOF(): 1 ATHD:B
AT, x:Are:B AT, T Fepses i A
ATire:B ATobe t A AT ket A AT ke : N AT ke : N
AOrn:N
A;Fl,rzl-ifethen (4] else () A A;rl,rz Fe te : N
ATy Fe: N AT ket A A;x:Ares: A AT, x:Avre:B A;Tireg:A—oB AT ket A

AT, iter(eg,e,x.es) FA ATHAx.e: A —- B

ATike t A AT, ey : B ATike : AT ® A,

AT, T, Fejey: B

AT, x:ALy: Ay ket B

AT, (61,62) :A®B

A;H Fep: Get(A)

A; 0 + chan() : Get(A) ® Put(A)

AT, Tk let (x,y) = e iney : B

A;rzFEZZA—O]].

A;Fl,rz = get(el,ez) 01

A;Ty F eq : Put(A) AT eyt A ANX;Tre: A A+rT

X¢&A

ATre:VX. A A+ B

AT, Tk put(er,es) : 1 ATrHAe:VX. A

A;Tre: A[B/X] ATy re:3dX. A ANX;Ty,x:Avrey: B

A;Tre(): A[B/X]

A+ B ArT, XéA

AT + packe:3X. A

the type formers of the monomorphic case to the polymorphic case:

]lsem, poly (7) = Lsem Bsem, poly(f) = Bsem Nsem, poly (7) = Niem

(T = U)(8) = T(8) — U(6) (T®U)(%) =T(5) ®U(d)

Get(T)(8) = Get(T(5)) Put(T)(8) £ Put(T(5))

(VX.T)(8) £ {f | YU.wp f() {w.w € (T[U/X])(8)}}
(3X.T)() = {v| FU.v e (T[U/X])(S)}
(X)(8) 2 {v| X € dom(8) = v e 5(X)}

where § is a finite map from type variables to semantic types and where we
define (T[U/X])(8) = T(6[X :=U(J)]).

Semantic typing. For the semantic typing, we now use contexts of the form
r:id PolySemType, and we define the semantic typing relation as:

DIA] £{5:id fin, SemType | *xeca 8(X) is defined}
GIT(8) 2 {y | *xirer y(x) is defined + y(x) € T(8))

§=p8 2VXeA (W.ved(X)4ved (X))
AET2VYS,8.6=p8 = (W.veT(S) 4+veT(d))
AET2VY(x:T)eTl.LAeT

A;Tee: T2
F3a. $a V8, y. 5€ D[A] » ye G[T] (8) » wp y(e) {v.veT(5)}

ATy, To Funpackeasxine; : B

Figure 8.4: Polymorphic linear
type-system for Acpan.

102

PART II: TRANSFINITE IRIS

Soundness. We once again show that in each of the rules, we can replace
the syntactic notion () with the semantic notion (k). Specifically, we prove

the rules in Fig. 8.5. In addition, we use the logical relation and Theorem 51 to

derive:

Lemma 55. If0;0 & e : T, then e terminates safely.

A;TeEe:U

Aix:TeEx:T _
AT, x:Tee:U

A;T1 E e : Bsem, poly AToEe : T

A;QE () :]]-sem, poly

AT Fep:]]-sem,poly

CHAPTER 8: CASE STUDIES

ATy Eey: T

AT, Ty Eerse : T

A;rzleZZT

AT £ b 2 Bsem, poly

A; 0 & 1t Neem, poly

AT, Ty Eifethene elsee, : T

A;T1 E eq : Neem, poly A;T3 F eyt Ngen, poly

A;T1 E e : Ngem, poly

N;ToEey: T

N;x:Tres: T

AT, ToEeptes: Nsem, poly

A;T,x:Tee: U ATiEe:T—oU

ATy Eey: T

AT, Ty Eiter(ey,e,x.es) ET

ATiEe: T A;TsEey: U

ATEAx.e:T—-oU AT, ToEe ey : U

A;F1P€1:T1®T2 A;rl,x5T1,yIT2h€2:U

AT, Ty Elet (x,y) =e1ine; : U

ATy E e : Get(T) ATy ey : T —o Tgem, poly

AT, Ty k get(er,e) : Tsem, poly

AX;Tee: T AeT X¢A

AT, Ty E (61,62) :T@U

A; 0 E chan() : Get(T) ® Put(T)

A;I‘ll:eI:Put(T) A;ToEey: T

ATEe:VX. T

AT, To E pUt(ela eZ) :]]-sem, poly

A;TEe:T[U/X]

A;TEAe:VX.T

ATiEe:3X.T AX;To,x:TEey: U

N;TEe() : T[U/X]

AU

A;T E packe: 3X. T

AET, X¢A

A;T1, Tz Eunpackeasxine, : U

Figure 8.5: The compatibility
lemmas for the polymorphic
logical relation.

103

CHAPTER 9

FOUNDATIONS OF TRANSFINITE IRIS

Thus far, we have focused on applying Transfinite Iris by discussing its program
logics (§7) and using them to verify several case studies (§8). Let us now turn
to the foundations of Transfinite Iris to discuss how it is modeled (i.e., to the
core logic in Fig. 7.1, consisting of the base logic and impredicative invariants).

As with Iris (see §4), the model of the base logic of Transfinite Iris factors
into two largely orthogonal parts: the part dealing with step-indexing, and the
part dealing with ownership and resources. We first set aside resources to focus
on the existential property (§9.1). Then, we include resources to discuss the
revised base logic and the effect of transfinite step-indexing on the rules of Iris
(§9.2). Finally, we discuss the recursive domain equation that we have to solve

in order to obtain impredicative invariants in Transfinite Iris (§9.3).

9.1 The Existential Property via Transfinite Step-Indexing

As we have discussed in §6.3 (and in §4.3), in a traditional step-indexed logic
propositions are modeled as predicates over natural numbers. To validate the
existential property, in Transfinite Iris, we model our propositions as predicates
on ordinals. Below, we explain how ordinals as step-indices give rise to the
existential property. We focus on step-indexed propositions that are only

parametric in the step-index (and no resources yet; see §9.2).

Ordinals. We write Ord for the type of ordinals. As with natural numbers,
there is a zero ordinal 0 and, for each ordinal «, a strictly larger successor
ordinal s @ > a. Going beyond natural numbers: for each family of ordinals
f : X — Ord, there exists an ordinal sup,..y f x which is larger than f x for all
x : X. For instance, we obtain the first infinite ordinal w as sup,,;; s" 0.

The supremum sup can be taken as long as X is a small type, a type in a
universe below the universe containing the type of ordinals. (One can think of
X as being a set and Ord being a proper class.) Since Rocq’s universes are quite
expressive, X can refer to countable types like natural numbers, uncountable
types like N — B, and much more. In fact, to use ordinals as time credits in §7.2,
we put another copy of the ordinal type into a universe below the universe of
the ordinals that we use for step-indexing (using universe polymorphism in
Rocq). We have denoted it O in §7.3.2 to avoid confusion.

Step-indexed propositions. Step-indexed propositions are families of or-
dinary propositions, indexed by ordinals, with the essential “down-closure”
property that truth at one step-index implies truth at all lower step-indices:

105

PART II: TRANSFINITE IRIS CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

Definition 56. The type of step-indexed propositions SProp consists of families
P : Ord — Prop which are down-closed, meaning ifa € P and § < a, then § € P.

Given two step-indexed propositions P, Q : SProp, we define entailment

between them P rgprop Q as
Progp Q=Va:0rdaceP= feQ

The familiar logical connectives (conjunction, disjunction, implication, efc.)
lift to step-indexed propositions and satisfy the standard rules of intuitionistic
higher-order logic. For instance, given & : X — SProp, the step-indexed
proposition Ax : X. & x £ {a | Ix : X. a € ® x} satisfies the standard logical
rules for existential quantification. In addition to the standard connectives, we

equip step-indexed propositions with a later modality » P:
>»P2{a|Vf<a peP}

This definition restricts to the usual model of » P when applied to natural
numbers. It also validates the central rules of step-indexed logics, such as Los
induction (which is now proven by transfinite induction on the step-index) and

P Fgprop > P (which follows directly from down-closure).

The existential property. With step-indexed propositions in hand, we
proceed to prove the existential property.

Theorem 57 (Existential Property).
Fix a small type X. If boprop Ix : X. @ x, then bgyrop O x for some x : X.

Proof. Using classical reasoning, we proceed by contradiction and assume that
Fsprop @ x is false for each x : X. This unfolds to Vx. Ja. « ¢ ® x. Using the
axiom of choice, we obtain for each x an ordinal &, : Ord such that a, ¢ ® x (i.e.,
Vx. oy ¢ ®x). From kgprop 3x. & x we know that for each f there is some x such
that f € ®x (i.e, VB. 3x. f € O x). To obtain a contradiction, we will construct
an ordinal 8, where f ¢ ® x for each x (i.e., it suffices to show 3f. Vx. ¢ & x).
First, we observe that ® x is down-closed, so ¢ ¢ ®x for any a > a, (since
Vx. ay ¢ ®x). We now define f £ sup,.y ay. For each x, we have § > a, by
construction, hence f ¢ @ x. Thus, we have reached a contradiction. m]

The proof rests crucially on Ord containing suprema of small families (i.e.,

families over small types). In the mechanization,! where our definition of ! Spies et al., Transfinite Iris appendix and

ordinals is based on the work of Kirst and Smolka,? the notion of “small types” Rocq development, 2021 [Spi+21a].

is made precise by Rocq’s universe hierarchy; SProp satisfies the existential * Kirst and Smolka, “Categoricity results

property for any type belonging to a universe smaller than the universe of Ord. and large model constructions for second-
Unlike the traditional Iris development, the model of Transfinite Iris—of ‘[’IZ‘;Z]ZF in dependent type theory”, 2019

ordinals and of the existential property—relies on extensionality axioms (i.e.,

propositional extensionality and functional extensionality) and classical axioms

(i.e., the axiom of choice and excluded middle). The soundness of Rocq under

this combination of axioms is a consequence of the model of the calculus of

inductive constructions in ZFC.3 3 Werner, “Sets in types, types in sets”,

1997 [Wer97].

9.2 The Base Logic of Transfinite Iris

Let us now discuss how we integrate transfinite step-indices into the base logic.
We stay at the same level of abstraction as in §4.3. In particular, as in Iris, in

106

PART II: TRANSFINITE IRIS CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

¢ ={(a,a)| ¢}
PAQ = {(a,a)|(a,a) € PA(a,a) € Q}
PvQ={(a,a)|(a,a) ePV (a,a) € Q}
P=02{(x,a)|Vf<a.VbzrabeV = (Bb)ecP=(pb)cQ}
Vx: X.P(x) £ {(a,a) |Yx : X. (a,a) € P(x)}
Ix: X.P(x) £ {(«,a) | 3x : X. (a,a) € P(x)}
PxQ 2 {(a,a)|Ja,az.a=a;-ax A (a,a1) € PA(a,a;) € Q}
Px«Q=2{(aa)|Vf<aVb.a-beV = (f,b)eP= (f,a-b) € Q}
OP = {(a.a) | (a,|alcore) € P}
>P 2 {(a,a) |Vf < a. (B,a) € P}
P2 {(aa) \Vﬁ <a.Vas.a-ape?V = Ib.b-apeV A (B,b) € P}
Own (a) £ {(a,b) | a < b}

>

Transfinite Iris, resource algebras are step-indexed using step-indexed types
(see §4.5). We will discuss step-indexed types in Transfinite Iris in §9.3.

Analogously to the Iris base logic, we define the type UPred(M) as predicates
over step-indices—here ordinals—and resources. For this revised definition, the
entailment relation P + Q is given by

PrQ2Va,a.aeV = (aq,a) € P= (a,a) €Q

and the definition of the logic connectives is depicted in Fig. 9.1. Their definition
mirrors the standard Iris definition, but crucially using ordinals «, instead of
natural numbers n, m as step-indices.

Using ordinals instead of natural numbers superficially looks like a small
change—indeed, in Fig. 9.1 (compared to Fig. 4.3 in §4.3) effectively only the
symbols change. However, it has several important ramifications, which we
will discuss below: (1) most importantly, we obtain the existential property;
(2) we have to generalize the guarded fixpoint construction; (3) we lose two
commuting rules of the later modality; and (4) we have to generalize the solution

of the recursive domain equation (from §4.5).*

The existential property. Let us start with the existential property. Analo-
gously to Theorem 57, we obtain the following existential property for UPred
(which, by being stated for UPred now, additionally considers resources):

Lemma 58 (Existential Property for Validity).
Fix a small type X. If - 3x : X. ® x, then + ® x for some x : X.

Proof. Analogous to Theorem 57. O

This existential property is stated in terms of validity for the entailment
P+ Q. As such, it requires an empty context for “Ix : X. & x”, which means
Jx : X. ® x must hold in particular for the empty resource. In the presence of
resources, it is sometimes convenient to relax this restriction to predicates ®

which are not unconditionally valid (e.g., for situations where we have already

Figure 9.1: Connectives of the

Transfinite Iris base logic.

* A fifth change that should not be
neglected is that this change ripples
through the Rocq development of
the base logic, leading to changes
throughout.

107

PART II: TRANSFINITE IRIS

allocated some ghost state). For these situations, one can use the following
variant of the existential property, where sat(P) = Va. Ja.a € V A (@, a) € P:

Lemma 59 (Existential Property for Satisfiability).
Fix a small type X. If sat(3x : X. & x), then sat(P x) for some x : X.

Proof. The proof is similar to Theorem 57; the presence of valid, potentially

non-empty resources has no significant effect on the proof.]

In this version of the existential property, the satisfiability predicate sat(P)
allows P to depend on valid resources. A more detailed discussion on how
satisfiability can be used for proving adequacy is given by Spies.

Guarded fixpoints. Since we change the underlying step-indexing of the
base logic, we also have to the redefine the guarded fixpoints u fx. P f x (see §4.3)
in the transfinite setting. Transfinite Iris provides a general construction for
fixpoints of step-indexed types, similar to the one of Gianantonio and Miculan.
For the sake of simplicity, we restrict our attention below to fixpoints for
step-indexed predicates of type X — UPred(M) for arbitrary types X and
non-step-indexed resources M.” To obtain such a guarded fixpoint, we must
iterate the predicate body P : (X — UPred(M)) — (X — UPred(M)) using
transfinite recursion. That is, for finite step-indices, simple recursion on natural
numbers was enough to do the trick (see §4.3). Here, we now use “strong”
transfinite recursion (i.e., at index @ recursive results are available for all f <).
Concretely, we define (1 fy. P fy)(x) = {(a,a) | (a,a) € f(x)} where f, is
defined recursively on « as

fe@) 2 P(fed () faalx) 2 {(B @) |[Vy <@y <= (r.a) € f(0)}.

For every ordinal «, the approximation f,, applies P to the predicate f.,, and
f<a is itself defined using the smaller approximations f, for y < a. The fixpoint
i fy. P fyis then obtained as the diagonal of the approximations f,.

We can then show that y fy. P f y is a guarded fixpoint. More specifically,
we obtain a fixpoint of P in the following sense:

Lemma 60. Let every occurrence of f in P be guarded by a later modality. Then
i fy. P fy is a fixpoint, meaning Vx. (i fy. P fy)(x) 4+ P(u fy. P fy)(x).

Loss of the commuting rules. We have defined the connectives of the base
logic analogous to §4.3. The resulting rules of the Transfinite Iris base logic are
depicted in Fig. 9.2.8 Notably, this base logic is missing two rules compared to
the standard rules of Iris (see §4.3): as the price for the existential property, we
lose the following two commuting rules of the later modality.’

LATER-EXISTS
X non-empty

>(3Ix : X. P(x)) 4 Ix : X. > P(x)

LATER-SEP

>(P* Q) 4>Px>Q

This is not by accident. Regardless of the step-indexing technique used, the
existential property is fundamentally incompatible with the rule LaTer-exists.
This incompatibility is witnessed by the following theorem:

CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

> Spies, Making adequacy of Iris satisfying,
2024 [Spi24].

¢ Gianantonio and Miculan, “Unifying
recursive and co-recursive definitions in
sheaf categories”, 2004 [GM04].

” For step-indexed resources, one has

to add additional step-indexed validity
assumptions to the fixpoint construction.
The full definition (generalized beyond
fixpoints of UPred-predicates) is given in
the Transfinite Iris Rocq development.

8 As in §4.3, the rule OWN-VALID only
holds for non-step-indexed resources,
and there is a corresponding version for
step-indexed resources.

° Transfinite Iris also loses a rule about
commuting a later modality with the
ownership connective:

>Own (a) + 3b.Own (b) Av(a=b)

Since this rule is used rarely in Iris, we
have not discussed it yet (or in §4.3), and
its loss does not significantly impact
Transfinite Iris.

108

PART II: TRANSFINITE IRIS

CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

ENT-TRANS PURE-INTRO FROM-PURE
ENT-REFL PrQ QFR ¢ Prg ¢$=(PrQ)
PrP PrR Pr¢ PrQ
AND-INTRO
AND-ELIM-L AND-ELIM-R P F Q P F R OR-INTRO-L
PAQFP PAQFQ PrOAR PrPVQ
OR-ELIM ALL-INTRO
OR-INTRO-R PrR QFR Vx: X. (P+ Q(x))
OrPVQ PVQOFR PrVx:X. 0(x)
ALL-ELIM EXIST-INTRO EXIST-ELIM
a: X a:X P+ Q(a) Vx : X. (P(x) v Q)
(Vx : X. P(x)) + P(a) Pr3x:X.Q(x) Ax: X.P(x) - Q
WAND-INTRO WAND-ELIM
P * Q F R P F Q * R SEP-WEAKEN SEP-TRUE
PrQ =R P+Q+R P+Q+P PP« True
SEP-SPLIT
SEP-COMM PP Qr¢ SEP-ASSOC
P+QrQ=*P P+QrP xQ P+ (Q#R)4 (P+Q) *R
PERS-MONO
PERS-ELIM P F Q PERS-PURE
OPrP OP+OQ prad
PERS-ALL PERS-EXISTS

Vx:X. OP(x) +OVx: X. P(x)

O3x:X.P(x)+-3x:X. OP(x)

LATER-MONO

PERS-AND-SEP PERS-IDEMP LATER-INTRO PrQ
(OP)AQ+(@P)=xQ OoPrOOP ProP >P+>Q
LoEB
»PrP LATER-ALL LATER-PERS
+ P >(Vx : X. P(x)) 4F Vx : X. » P(x) >OP+4-0O>P
UPD-RETURN UPD-BIND OWN-EMPTY

Pr P

OWN-UPD
a~» B

PP+ (P20 BP0

True + Own (¢)

OWN-VALID

Own (a) + = 3b € B.Own (b)

OWN-PERS
Own (a) F OOwn (|algore)

Own(a)raeV

OWN-SEP

Own (a) * Own (b) 4 Own (a - b)

Figure 9.2: Rules of the base logic

of Transfinite Iris.

109

PART II: TRANSFINITE IRIS CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

Theorem 61. There exists no consistent logic with a sound later modality (i.e.,
> P implies+ P), Los induction (i.e., (> P + P) implies+ P), and the commuting
rule Later-exists, which also enjoys the existential property.

Proof. By way of contradiction, assume there is a logic satisfying these prop-
erties. As we will prove below, the proposition 3n : N. »” False is provable
in such a logic. Using the existential property, we then obtain an n at the
meta level such that + »" False. By soundness of the later modality, this entails
+ False, which contradicts consistency (i.e., that + False is not provable).

We prove + (3n : N. »" False) by Los induction. Thus, it suffices to show
(>3n : N. »" False) + (3n : N. »" False). By the commuting rule LATER-EXISTS,

this is reduced to:
(In : N. »>" False) + (dn : N. »" False)

We eliminate the existential quantifier in the assumption to obtain a witness n.
We instantiate the existential quantifier in the conclusion by picking n + 1. The

remaining claim (>»" False) + (»"*! False) is immediate. O

The underlying problem is that, in a transfinitely step-indexed logic, the
proposition >(3dx : X. P(x)) at step-index w means that for every natural
number n there exists a witness x, for which P holds at step-index n, but
Jx : X. » P(x) at step-index v demands one witness x that will work for every
natural number n. (In contrast, for step-indexing with natural numbers, the
case n = 0 is trivial and for all others, one can always choose the witness x,_1,
which works for all smaller step-indices m < n — 1 due to downwards closure.)

Given that rarer-exists does not hold, it is not surprising that we also
lose the rule varer-sep (ie, >(P = Q) + (>P) % (>Q)), since in the model
of the base logic, the separating conjunction connective P * Q is defined by
existentially quantifying over the split of resources between P and Q (see Fig. 9.1).
Specifically, we lose the direction >(P * Q) + > P %> Q.

Avoiding the commuting rules. The absence of the commuting rules means
that there are Iris proofs which do not hold verbatim in Transfinite Iris. However,
that does not mean that the commuting rules cannot be avoided.

In particular, we tweaked the safety program logic of Iris to avoid the com-
muting rules—obtaining the safety program logic of Transfinite Iris (see Fig. 7.1).

More specifically, we inserted >P £ 3n. »" P (augmented with additional up- " The existential property ensures that

the existential in >P is meaningful

unlike in regular Iris, where one can
g

arbitrary number of laters per step.!? For this program logic, we were able to prove B>False).

dates) into the safety weakest precondition, which allows one to eliminate an

adapt various existing Iris proofs with only minor changes (for details see the
" Spies et al., Transfinite Iris appendix and

Transfinite Iris Rocq development!?). In particular, we were able to verify the Rocq development, 2021 [Spi+21a].

barrier of Jung et al.:'? the flagship example for the introduction of higher-order

ghost state in Iris. Besides these safety examples, our liveness examples from §8 "Jung et al, “Higher-order ghost state”,
of course also avoid the commuting rules. 2016 fun+16]

Nevertheless, there are Iris developments which use the commuting rules 13 Jung et al., “RustBelt: Securing the
for proofs where our tweaks do not apply (e.g., the type system of RustBelt!?). foundations of the Rust programming

language”, 2018 [Jun+18a].
Recovering every Iris development is beyond the scope of this dissertation. gHas (e]

110

PART II: TRANSFINITE IRIS

9.3 Invariants and the Recursive Domain Equation

Let us now turn to how impredicative invariants are integrated into Transfinite
Iris. Recall (from §4.5.2) that for impredicative invariants in traditional Iris, we
must solve the following recursive domain equation:

iProp 2 UPred(M)
M= Map(P(N), w) X Map(Pﬁn(N),) X Map(Auth(Nﬁ—n\Ag(biProp))) X -

where, through M, the type iProp refers to itself. In Transfinite Iris, we must
solve the same recursive domain equation for our revised notion of transfinitely
step-indexed propositions UPred(M) (§9.2).

Step-indexed types. For finite Iris, the answer to this recursive domain
equation is to use (finitely) step-indexed types (see §4.5.2). In Transfinite Iris, we
also use step-indexed types to solve this equation, but we alter their definition to
use ordinal step-indices instead of natural number step-indices. Specifically, we
define a step-indexed type to be an ordered family of equivalences (OFE): a pair of
a type X and a family of equivalence relations (£). These equivalence relations
must become increasingly coarse as « decreases (i.e., if x = y and f < a, then
xZ y). For instance, SProp is an OFE with P £ Q 2V < a.f € P iff f € Q.
Besides OFEs, we also generalize the notion of a complete ordered family of
equivalences (COFE), an OFE with additional limit operations.!* (COFEs are
used for defining fixpoints such as the one in Lemma 60.)

Solving the recursive domain equation. Let us return to the recursive
domain equation for iProp. It is well-known that domain equations can be
solved over finite step-indexed types.!> However, while transfinite variants
of step-indexed types have been considered before, it was unclear whether
the construction of solutions to domain equations'® could be adapted to the
transfinite setting. In order to complete the model, we have therefore defined a
novel construction for solving domain equations, extending the existence of
solutions to the transfinite case. The construction is described in the appendix
of Transfinite Iris!” and implemented in the Transfinite Iris Rocq development.

With iProp as the solution of the recursive domain equation, we thus have
all the parts of Transfinite Iris together to claim the following theorem:

Theorem 62. Transfinite Iris is consistent and enjoys the existential property.

CHAPTER 9: FOUNDATIONS OF TRANSFINITE IRIS

" Not every type former that is a COFE
in the finite setting is also a COFE in the
transfinite setting. One notable exception
are “sigma types 3(x : X). ¢(x)” that
restrict a type X to those elements
satisfying ¢. For them, it depends on
which predicate ¢ is chosen. For some
predicates ¢, the resulting type is a
COFE in the finite setting but not in the
transfinite setting.

5 America and Rutten, “Solving reflexive
domain equations in a category of
complete metric spaces”, 1989 [AR89].

!¢ Gianantonio and Miculan, “Unifying
recursive and co-recursive definitions in
sheaf categories”, 2004 [GM04]; Birkedal
et al,, “First steps in synthetic guarded
domain theory: Step-indexing in the
topos of trees”, 2012 [Bir+12].

17 Spies et al., Transfinite Iris appendix and
Rocq development, 2021 [Spi+21a].

111

CHAPTER 10

RELATED WORK

We compare with (1) approaches for proving liveness properties with step-
indexed logics, (2) prior separation logics for proving liveness properties, and
(3) approaches using transfinitely step-indexed models.

Proving liveness properties via safety properties in step-indexed logics.
In the absence of the existential property (and transfinite step-indexing), the
typical strategy for proving liveness properties with step-indexed logics is to
first prove a safety property (e.g., termination, but with a fixed upper bound on
the number of steps; a safety property) and then to show that the safety property
implies the liveness property (e.g., termination). Reducing liveness properties
to safety properties comes at a cost. All of the approaches below [DH10; DH12;
MJP19; TJH17; FKB21a; Tim+24a] end up imposing restrictions that increase
the proof overhead (e.g., require determining suitable bounds) and/or exclude
programs (e.g., bounded termination excludes programs that terminate in every
execution, but where the number of steps has no fixed, static upper bound).

Dockins and Hobor! introduce a logic for proving termination with a fixed
upper bound, a safety property, which implies the liveness property termination.

Meével, Jourdan, and Pottier? extend Iris with time credits, enabling them to
prove complexity bounds (i.e., termination with a fixed upper bound). As men-
tioned in §7.2, while the termination logic of Transfinite Iris, Terminationgy
(§7.2), also has time credits, it is not suited for proving time complexity results,
since it allows for steps that do not require spending a time credit.

Tassarotti, Jung, and Harper? extend Iris with support for proving concur-
rent termination-preserving refinements. However, since they use finite instead
of transfinite step-indexing, they can only do so by imposing restrictions on
the source language: it can only have bounded non-determinism, and it can
only stutter for a fixed number of times.? These restrictions effectively turn
their termination-preserving refinement into a safety property in the sense that
it is determined by finite execution prefixes. More specifically, under these re-
strictions, one can establish termination-preserving refinement by proving “for
every n-step target execution, there is a corresponding m-step source execution
where m > n (including source-stutter steps)”.”> This finite-prefix character-
ization of termination-preserving refinement is the underlying reason why
Tassarotti, Jung, and Harper can then give a finitely step-indexed simulation
relation (akin to the one in §6.3), which is adequate for termination-preserving
refinement, yet—in effect—only relates finite execution prefixes. Unfortunately,
the restrictions on the source language also have practical consequences: since
Tassarotti, Jung, and Harper do not have our no-later stuttering (see §7.1.3) and

' Dockins and Hobor, “A theory of
termination via indirection”, 2010
[DH10]; Dockins and Hobor, “Time
bounds for general function pointers”,
2012 [DH12].

2 Mével, Jourdan, and Pottier, “Time
credits and time receipts in Iris”, 2019
[MJP19].

3 Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”, 2017
[TJH17].

* As mentioned in §7.1.3, they encode
stuttering by choosing as the source
language the lexicographic product of
actual source steps and a stutter budget
with a fixed, global upper bound: every
actual source step resets the stutter
budget to its fixed upper bound.

> This property is not sufficient when
the source language has unbounded
non-determinism. For example, con-
sider the case where the target ¢, is

an infinite loop, and the source s<«
non-deterministically picks a natural
number n, and then executes n steps
before terminating. The target t, is not
a termination-preserving refinement of
S<co, but they satisfy this property.

113

PART II: TRANSFINITE IRIS

they only support stuttering the source for a fixed number of steps, their restric-
tions are too strong for examples like memo_rec, where an unbounded number of
stutters is required. (The number of steps needed to find a cached result in the
lookup table can grow arbitrarily). In contrast to our work, Tassarotti, Jung,
and Harper do support concurrency.

Frumin, Krebbers, and Birkedal® define a program logic in Iris to prove the
security property timing-sensitive non-interference. While timing-sensitive non-
interference ensures termination preservation, it is expressed as a lock-step
program equivalence. As such, Frumin, Krebbers, and Birkedal impose even
stronger restrictions than the work of Tassarotti, Jung, and Harper.’

After Transfinite Iris was published, Timany et al.® have introduced Trillium,
a variant of Iris for transferring liveness properties from a source transition
system to a target program. The essence of their approach is that they first
establish liveness properties at the source level (i.e., about the source transition
system) outside of Iris and then—via an intensional refinement inside Iris (i.e., a
lock-step simulation between target and source)—transfer the liveness property
to the target program. To ensure that their intensional refinement is “finitely
approximable” in a step-indexed setting, they impose the restriction of “relative
image-finiteness”, a relaxation of the bounded-nondeterminism restriction
of Tassarotti, Jung, and Harper.9 (With relative image-finiteness, it suffices if
the source transition system has bounded non-determinism after the transitions
are filtered using a program-state-dependent relation £.) For termination-
preserving refinements, Timany et al. only allow stuttering up to a fixed, global
bound similar to Tassarotti, Jung, and Harper (see also §7.1.3). For termination,
Timany et al. can handle the example “randomly pick a natural number n and
then terminate after n steps”, but it requires them to instantiate the adequacy
theorem of Trillium with a specific state-dependent relation & designed for this
particular program (to ensure relative image-finiteness). It would be interesting
to base Trillium on Transfinite Iris; Timany et al. conjecture that this would
remove the relative image-finiteness restriction. In contrast to this work, they do
consider liveness properties of concurrent programs, including fair termination-

preserving refinement.

Liveness in separation logics. In the literature, a number of separation log-
ics for liveness reasoning have been introduced [LF16; LF18; Roc+16; DOs+21;
YHBO08; Chal1]: Liang and Feng!® develop the program logic LiLi, a “rely-
guarantee style program logic for verifying linearizability and progress together
for concurrent objects under fair scheduling”. Rocha Pinto et al.!! extend the
concurrent separation logic TaDA!? with ordinal time credits to prove program
termination. D’Osualdo et al.!® go further and target more general liveness prop-
erties such as “always-eventually” properties. Yoshida, Honda, and Berger'*
and Charguéraud! introduce program logics capable of liveness reasoning,
even in higher-order stateful settings. In particular, Yoshida, Honda, and Berger
verify a termination-preserving refinement of a memoized factorial function.
The fundamental difference to our work is that all of these logics are not
step-indexed. In Transfinite Iris, we have focused on enabling liveness in a
step-indexed setting, allowing us to use features like Lo induction, guarded
recursion, and impredicative invariants. It was precisely the combination of

these features that allowed us to prove a generic specification for memo_rec and

CHAPTER 10: RELATED WORK

¢ Frumin, Krebbers, and Birkedal,
“Compositional non-interference for
fine-grained concurrent programs”, 2021
[FKB21a].

7 Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”, 2017

[TJH17].

® Timany et al., “Trillium: Higher-order
concurrent and distributed separation
logic for intensional refinement”, 2024
[Tim+24a].

° Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”, 2017
[TJH17].

9 Liang and Feng, “A program logic for
concurrent objects under fair scheduling”,
2016 [LF16]; Liang and Feng, “Progress of
concurrent objects with partial methods”,
2018 [LF18].

11 Rocha Pinto et al., “Modular termi-
nation verification for non-blocking
concurrency”, 2016 [Roc+16].

2 Rocha Pinto, Dinsdale-Young, and
Gardner, “TaDA: A logic for time and
data abstraction”, 2014 [RDG14].

3 D’Osualdo et al., “TaDA Live: Com-
positional reasoning for termination of
fine-grained concurrent programs”, 2021
[DOs+21].

" Yoshida, Honda, and Berger, “Logical
reasoning for higher-order functions
with local state”, 2008 [YHBO03].

15 Charguéraud, “Characteristic formu-
lae for the verification of imperative
programs”, 2011 [Cha11].

114

PART II: TRANSFINITE IRIS

then instantiate it for multiple clients. To the best of our knowledge, verifying
memo_rec generically is not possible in the above logics.

Some of these logics [LF16; LF18; Roc+16; DOs+21] are, however, capable
of proving liveness properties of concurrent programs. In this dissertation, to
focus on dealing with the “existential dilemma” of step-indexed separation
logic, we have explored liveness reasoning in the sequential setting first. That
said, Transfinite Iris is compatible with concurrency—our safety program logic
includes several representative case studies of concurrent safety reasoning,
which we have ported from Iris to Transfinite Iris.

After Transfinite Iris was published, Gaher et al.1 have developed Simuliris,
a version of Iris without step-indexing for proving fair termination-preserving
refinements of concurrent programs in the context of verifying compiler opti-
mizations. They define a simulation relation using least- and greatest fixpoints,
but without the later modality (i.e., no Los induction, no impredicative invari-

ants, no guarded fixpoints, etc.).

Transfinite step-indexing. Before Transfinite Iris, transfinite step-indexing
had already been used for two purposes in the literature: modeling a separation
logic for safety reasoning [Sve+18] and constructing logical relations for a
single language [BBS13; BBM14; SSB16; Bir+12; SKD21; BGM21].

First, we discuss the relationship to the only prior separation logic using
transfinite step-indexing—SLR by Svendsen et al.,!” a logic for the promising
weak memory model.!® SLR is restricted to proving safety properties. In their
work, transfinite indices up to w? are used to handle hypothetical steps of
computation called certification steps, which occur between actual steps in the
promising model to justify speculative weak memory behavior. However, since
their indices only go up to ?, their step-indices are too small to obtain the
existential property for quantification over infinite sets.

Second, we discuss the relationship to logical relations defined using transfi-

nite step-indexing. Birkedal, Bizjak, and Schwinghammer!®

use step-indexing
up to w; (the least uncountable ordinal) to give a logical-relations model for
reasoning about must-contextual equivalence for a language with countable
nondeterminism. (The inductively-defined must-convergence predicate for the
language with countable nondeterminism has w; as closure ordinal.) Bizjak,
Birkedal, and Miculan?® show how to define the logical-relations model for
countable nondeterminism in a step-indexed logic, namely in the internal logic
of the topos of sheaves over w;. We conjecture that their step-indexed logic
enjoys the existential property, restricted to countable types, and that they use
it implicitly for their adequacy result (see Lemma 4 in [BBM14]).

121 use step-indexing up to w? to decou-

Svendsen, Sieczkowski, and Birkeda
ple steps of computation from logical steps (such as unfolding an invariant)—i.e.,
to allow multiple logical steps per physical step of computation. They do not
address liveness reasoning. In their work, Svendsen, Sieczkowski, and Birkedal
already solve a recursive domain equation (RDE) in COFEs for the w? case. We
have extended this result to arbitrary (uncountable) ordinals, which are needed
for the existential property.

Birkedal et al.?? solve RDEs in the more general category of sheaves. For
Transfinite Iris, we considered simply working with solutions to RDEs in

sheaves, but decided it was impractical as it would have led to problems with

CHAPTER 10: RELATED WORK

16 Gdher et al., “Simuliris: A separation
logic framework for verifying concurrent
program optimizations”, 2022 [Gah+22].

7 Svendsen et al., “A separation logic for
a promising semantics”, 2018 [Sve+18].

18 Kang et al., “A promising semantics
for relaxed-memory concurrency”, 2017
[Kan+17].

1 Birkedal, Bizjak, and Schwinghammer,

“Step-indexed relational reasoning

for countable nondeterminism”, 2013
[BBS13].

» Bizjak, Birkedal, and Miculan, “A model
of countable nondeterminism in guarded
type theory”, 2014 [BBM14].

2 Syendsen, Sieczkowski, and Birkedal,

“Transfinite step-indexing: Decoupling

concrete and logical steps”, 2016 [SSB16].

22 Birkedal et al., “First steps in synthetic
guarded domain theory: Step-indexing in
the topos of trees”, 2012 [Bir+12].

115

PART II: TRANSFINITE IRIS

the mechanization of Transfinite Iris—a central concern for its deployment in
practice. In particular, were we to use sheaves, functions in Transfinite Iris could
no longer be encoded as Rocq functions with a property of non-expansiveness,
as they are in the original Iris, but would instead have to be represented as
(transfinite) sequences of functions. In the present work, we thus instead solve
a RDE in the category of (transfinite) COFEs, a subcategory of sheaves. (Note
that this is a novel result in relation to the work of Birkedal et al., because their
RDE solutions are not guaranteed to be COFEs.) In contrast to sheaves, COFEs
are well suited to mechanization in Rocq.

Spies, Krishnaswami, and Dreyer?® use transfinite step-indexing up to w®
to prove termination of a linear language with higher-order channels. As
explained in §8.3, the present work subsumes, extends, and mechanizes their
work, in the process reducing the size of their proof significantly.

Bahr, Graulund, and Magelberg®* define a statically-typed, pure functional
language, and use transfinite step-indexing up to w - 2 to show that well-typed
programs enjoy a certain liveness property. Aside from the use of transfinite
step-indexing, this work is quite different from ours. It focuses on type sys-
tems that ensure liveness properties, rather than techniques for verification of
liveness properties in a general-purpose language with features like general
recursion and higher-order state.

Building on top of Transfinite Iris, Guéneau et al.?> have developed a program
logic for reasoning about an idealized version of the OCaml foreign function
interface (i.e., the connection between OCaml and C). While they do not consider
liveness properties, their program logic is based on Transfinite Iris, because they
consider an operational semantics with angelic non-determinism, which leads
to existential quantifiers in their definition of the weakest precondition (similar
to the existential quantifier in the definition of wp e {v. Q(v)} in Fig. 7.6). The
existential property of Transfinite Iris enables them to extract these existential
quantifiers as part of proving adequacy.

CHAPTER 10: RELATED WORK

 Spies, Krishnaswami, and Dreyer,

“Transfinite step-indexing for termina-

tion”, 2021 [SKD21].

Bahr, Graulund, and Megelberg,

“Diamonds are not forever: Liveness

in reactive programming with guarded
recursion”, 2021 [BGM21].

» Guéneau et al., “Melocoton: A pro-
gram logic for verified interoperability
between OCaml and C”, 2023 [Gué+23].

116

117

PArT III

LATER CREDITS

CHAPTER 11

INTRODUCTION

In this part of the dissertation, we focus on the later () modality' (see §3.2)
of step-indexed separation logics like Iris. Though pushed to the margins
in much of the literature, as we have already seen in Part I and Part II, the
later modality is in fact central to how step-indexed separation logics work,
because it makes it possible to do step-indexed reasoning at a higher level of
abstraction—without being forced to reason about the underlying step-indices
directly and without engaging in tedious “step-index arithmetic” as in earlier
formulations of step-indexing.?

Yet, ironically, the later modality is often viewed as a “necessary evil” by
practitioners: In proofs, laters appear in hypotheses (e.g., upon unfolding an
implicitly recursive construction or starting a Lés induction), because they
serve as “guards” preventing paradoxes of circular reasoning.®> But from a user
perspective, once > P appears as a hypothesis, the name of the game is figuring
out how to eliminate the guarding “>” in order to make use of P.

This brings us to our main topic: the later elimination problem. Although
there exist a number of techniques for eliminating laters in step-indexed proofs
(which we have already encountered in §3 and will review below), there are
several known situations where none of these techniques apply, thus ruling
natural proof strategies out of consideration and in some cases making it unclear
how to carry out the proof at all. In this part of the dissertation, we propose
a new technique for escaping these unfortunate situations by exploiting the
fact that we are working in a separation logic. Specifically, we treat “the right to
eliminate a later” as an ownable resource and then apply standard separation-
logic reasoning to that resource. We realize this idea through a new logical
mechanism we call Later Credits, and we demonstrate its effectiveness on a
range of interesting use cases. But before we explain how later credits work
and where they shine, let us begin by illustrating the later elimination problem
with a concrete example.

The later elimination problem. We have already encountered the later
elimination problem en passant in the previous parts (e.g., when doing a Los
induction in §3.2 or opening invariants in §3.4). Let us now focus on it by
returning to impredicative invariants (§3.4.1). Recall that, in Iris, invariants
are used to share state between threads. For example, we can pick R 2
3n : N. £ n to share access to the location £ and, at the same time, constrain
¢ to only store natural numbers. Impredicative invariants are so central to
Iris that the rule for opening an invariant (i.e., accessing the contents R of the
invariant) was presented on page 1 of the original “Iris 1.0” paper,* albeit in

! Appel et al., “A very modal model of
a modern, major, general type system”,
2007 [App+07].

? Dreyer, Ahmed, and Birkedal, “Logical
step-indexed logical relations”, 2011
[DAB11].

*See §3.3 and §8.2 in Jung et al., “Iris
from the ground up: A modular foun-
dation for higher-order concurrent
separation logic”, 2018 [Jun+18b].

* Jung et al., “Iris: Monoids and invariants
as an orthogonal basis for concurrent
reasoning”, 2015 [Jun+15].

121

PART III: LATER CREDITS

the following, “simplified for presentation purposes” form (and we will return
to what is simplified about it shortly):

{R*P}e{R*Q}
[R] + {P}e{Q}

The rule says that if we open |R|, then we can assume R in our precondition

e physically atomic

and have to show R holds again after evaluating the atomic expression e. As
discussed in §3.4, the rule is restricted to atomic expressions to prevent other
threads that are interleaved with e from potentially observing inconsistent
states in which R does not hold.

The distinguishing feature of Iris’s invariants (see §3.4.1) is that they are
impredicative (i.e., they can store an arbitrary iProp proposition R). We have
already used this power, for example, to handle examples with higher-order
state (in Example 21) and to define a logical relation (in §8.3). The price of
impredicativity (as discussed in §4.5) is that their model is cyclic—cyclic to
the extent that naive models of are not well-founded and, to obtain a
well-founded model of |R], the only known approach is to stratify the cyclic
construction using step-indexing.’

The side effect of using step-indexing to resolve cycles in the model of
invariants is that, when invariants are opened, a later modality appears as a
“guard” to protect against paradoxically circular reasoning. That is, as we have
seen in §3.4.1, Iris’s real invariant opening rule is the following:®

HOARE-INV-OPEN

{DR*P}@{V>R*Q(V)}S\N NQS
[RIM b (P} e {v.0W)}e

This rule adds two later later modalities (>) in the pre and post of the premise

e physically atomic

(as an artifact of the step-indexed model of impredicative invariants; see §4.5.2).
Besides later modalities, this rule adds namespaces N and masks & to avoid
reentrancy and makes the postcondition parametric over the resulting value v.

Thus, after applying this rule, the user needs to eliminate the “>” guarding R
in the precondition, so that they can use R in verifying e. To do so, Iris presently

offers the following three options:

1. Timeless propositions (see Fig. 3.5). For the subclass of timeless propositions—
which include propositions that are pure (e.g., even(n)) or assert only first-
order ownership (e.g., £ — 42)—laters can be eliminated because the model
of these propositions ignores the step-index.

2. Commuting rules (see Fig. 3.2). The later modality commutes with most logical
connectives (e.g., existential quantification and separating conjunction).
Thus, in many cases, we can commute the later out of the way.

3. Program steps (see Fig. 3.2). With every program step, we can eliminate a
guarding later. More precisely, if P is guarded by a later before the step, then
the later can be removed after the step.

The problem is that in some cases none of these techniques apply. We illus-

trate such a case with an example: nested invariants.” Consider the invariant:

‘3{’. dn:N.f—>n M xy Bl

N,

CHAPTER 11: INTRODUCTION

> Svendsen and Birkedal, “Impredicative
concurrent abstract predicates”, 2014
[SB14]; Jung et al., “Iris from the ground
up: A modular foundation for higher-
order concurrent separation logic”, 2018
[Jun+18b].

¢ In line with the invariant opening rule
above, we write “e physically atomic” for
the side condition atomic(e) from §3.4.

7 We use nested invariants here, because
they are one of the simpler examples to
illustrate where the existing practices are
not enough. In practice, most proofs do
not need to use nested invariants. How-
ever, plenty of proofs put other (more
complicated) step-indexed assertions
into invariants, and then guarding laters
cause trouble (e.g., see §13.1 and §13.2).

122

PART III: LATER CREDITS

Here, the location ¢ is existentially quantified and connected to a logical iden-
tifier y through a ghost variable y =/, £ (i.e., ghost state from the resource
algebra ((0,1],+) X Ag(Loc); see §4.2.2). If we need the contents of the inner
invariant (3n : N. £ n) to justify the next step (e.g., to dereference ¢), then

we are in a quandary. If we open the outer invariant, we get

(36 G0 e eyt

After applying commuting and timelessness rules and eliminating the existen-

. . M . .
tial, we are left with»|3n: N. - n| ' and Yy B1/2 . At this point, we have
. M . .
a later guarding | 3n : N.£+>n| "' and are therefore stuck: invariants are not

timeless (eliminating the first option), there is nothing to commute (eliminat-
ing the second option), and we need ¢ — n before (i.e., as a precondition for
verifying) the next step (eliminating the third option).

As we will see in this part of the dissertation, the case of nested invari-
ants is not an isolated one. There are a number of realistic scenarios in step-
indexed separation logics—not common scenarios exactly, but ones that do
occur periodically—where none of the “standard” later elimination options
apply. At present, the only way of handling such scenarios is to attempt some
non-trivial, non-local refactoring of the proof structure—or to admit defeat.

Later credits. We now introduce a fourth option for later elimination—later
credits. Later credits support what we call amortized step-indexed reasoning—
eliminating laters based on previous program steps. The basic idea of amortized
reasoning is that we decouple the proof steps where laters are eliminated from
the proof steps where we execute the program. Instead of eliminating one later
after every program step (option 3 above), we obtain a credit £1 after every
program step, a later credit. This credit can subsequently be used anywhere in
the rest of the proof that we want to eliminate a later modality, not just the
present step. For example, we can save a credit £1 from one step, keep it for
two subsequent steps, and then use it before the next step to eliminate a later
guarding an invariant assertion. In particular, the credit £1 can also be used as
part of purely logical reasoning where there is no program in sight.

The reader may wonder whether later credits are really a backdoor for
reintroducing into the logic the kind of explicit step-index manipulation that
the later modality was designed to avoid. The answer is no: because unlike
step-indices, later credits are implemented as resources in a separation logic,
and hence they inherit all the modular reasoning principles associated with
resources in separation logic. To wit: if we own £1 (i.e., it is in our precondition),
then we alone get to decide how we want to spend it without any interference
from other parts of the program/proof. If we want to spend it to eliminate a
later, then we can do so with a credit spending rule. If we want to share it with
other functions, then we can pass it to them as part of their precondition. If
we want to keep it to ourselves during a function call, then we can frame it
around the function call. If we want to share it with other threads, then we
can put it into an invariant that is shared with those threads. In short, we
can reason about later credits using all the standard reasoning patterns that
are available for resources in separation logic. None of this is possible with
traditional step-index manipulation.

CHAPTER 11: INTRODUCTION

123

PART III: LATER CREDITS

Later credits enable two kinds of applications: First, they can simplify ex-
isting proofs. Later credits can help where step-indexing previously got in
the way and cluttered the proofs. Second, they can enable proofs which were
seemingly not possible with standard later elimination techniques. We will see
examples of both kinds of applications in the following.

Contributions. In this part of the dissertation, our main contributions are
later credits and the amortized step-indexing technique that they enable. We
develop both as an extension of Iris. We explain later credits (in §12), discuss
their soundness (in §14), and show how they complement existing approaches
to eliminate multiple laters per step (in §15). We focus primarily on later
credits in standard Iris (with finite step-indexing), but later credits also work in
Transfinite Iris, discussed in §15.2.

We demonstrate the use of later credits (in §13) with two flagship examples
(one of each kind):

1. New proofs. One interesting application of step-indexed logical relations in
prior work has been in proving that expressions in higher-order stateful
languages can be reordered® However, due to trouble with the later modal-
ity, the step-indexed logical relations of prior work can only handle very
restricted forms of reordering operations with shared higher-order state
(e.g., ones using shared, but immutable state). We show how later credits
make it possible to prove much more sophisticated reorderings, in particular
for JavaScript-inspired promises (in §13.1).

2. Proof simplification. One of the original motivations of Iris was proving so-
called logical atomicity for concurrent data structures. Sadly, step-indexing
has always caused trouble for logical atomicity, sometimes ruling out natural
and perfectly valid proof strategies and requiring “ugly” workarounds.” We
show how to avoid such workarounds by instead using later credits to
implement simpler and more intuitive proofs of logical atomicity (in §13.2).

Besides these flagship examples, we develop several smaller case studies
to demonstrate usefulness of later credits (in §15). In particular, we develop
a form of prepaid invariants, which can be opened around physically atomic
instructions without a guarding later, and we show that later credits can be used
to prove the kind of “reverse refinements” introduced by Svendsen, Sieczkowski,
and Birkedal'® without requiring the transfinite step-indexing model that Svend-
sen, Sieczkowski, and Birkedal needed. Later credits and all of the above exam-
ples are mechanized in Rocq using the Iris Proof Mode.!! See the Later Credits
Rocq development for the Rocq proofs.!? Additionally, see the appendix of
the Later Credits paper for further technical details on the examples and case

studies.!3

CHAPTER 11: INTRODUCTION

8 Krogh-Jespersen, Svendsen, and
Birkedal, “A relational model of types-
and-effects in higher-order concurrent
separation logic”, 2017 [KSB17]; Timany
et al,, “A logical relation for monadic en-
capsulation of state: Proving contextual
equivalences in the presence of runST”,
2018 [Tim+18].

° Jung, Logical atomicity in Iris: The good,
the bad, and the ugly, 2019 [Jun19].

1 Syendsen, Sieczkowski, and Birkedal,

“Transfinite step-indexing: Decoupling

concrete and logical steps”, 2016 [SSB16].

" Krebbers, Timany, and Birkedal,

“Interactive proofs in higher-order

concurrent separation logic”, 2017
[KTB17]; Krebbers et al., “MoSeL: A
general, extensible modal framework for
interactive proofs in separation logic”,
2018 [Kre+18].

12 Spies et al., Later Credits Rocq develop-
ment and technical documentation, 2022
[Spi+22b].

3 Spies et al., Later Credits Rocq develop-
ment and technical documentation, 2022
[Spi+22b].

124

CHAPTER 12

LATER CREDITS IN A NUTSHELL

Later credits connect the step-indexing and resources pillars underlying Iris to
obtain a simple, yet powerful mechanism for later elimination. In this chapter,

we explain the essence of later credits.

Figure 12.1: A selection of the

CREDIT-SPLIT CREDIT-TIMELESS .
E(n+m) 4 £nx £m timeless(£n) core proof rules for later credits.
HOARE-PURE-STEP-CREDIT HOARE-LE-UPD-EXEC
{P+£1} e {v.O(W)}g €1 —pure €2 {P}e{v.Q(v)}¢
{PYe {v.0V)}¢ {BePle{v.0M)}g
LE-UPD-LATER LE-UPD-RETURN LE-UPD-BIND
£1x>Pr+ PP Pr P (BP) * (P B0 F B0

The later credits mechanism—whose rules are shown in Fig. 12.1—rests
on two central pieces: a new resource £n, called the later credits, and a new
update modality B, P, called the later elimination update. Intuitively, one can
think of owning £n as the right to eliminate n later modalities, and of the later
elimination update 2 P as an extension of Iris’s update modality P (§3.6)
that additionally allows updating > P to P using later credits.

The later credits mechanism factors into two parts:

1. We receive later credits by taking program steps. For example, we receive one
later credit £1 by executing a pure step with HOARE-PURE-sTEP-CREDIT. After
the program step, the new credit becomes available in the precondition of the
Hoare triple of the successor expression e;. (The proof rules for load, store,
allocation, etc. similarly generate one credit after the step.) Once we have

received credits, we can combine and split them freely with crebrT-sprIT.

2. We spend later credits through later elimination updates . That is, we can
give up a credit £1, and, in exchange, eliminate a later modality by updating
> P to P with re-upp-LaTER. In particular, we can use this rule to eliminate a
guarding later from one of our assumptions. Once we own B, P, the update
can be executed as usual. For example, just like standard updates B P, we can
execute B P in the precondition of Hoare triples with noare-Le-urD-ExEC.

Have we just managed to replace one modality (>) with another one (B,,)?
No, far from it. There are two key distinctions between the two modalities. The

125

PART III: LATER CREDITS CHAPTER 12: LATER CREDITS IN A NUTSHELL

HOARE-FRAME LATER-MONO
{Pre{v.0QW)}g UPD-RETURN UPD-BIND LATER-INTRO P+Q
{P*R}e{v.Q(v) = R}¢g PrpP (BP)x (P=PQ)FBO Pr>P >P+>Q
HOARE-TIMELESS-STRIP LATER-EXISTS
{P+Q}e{v.R(v)}g timeless(Q) X non-empty LATER-SEP
{P*>Q}e{v.R(v)}¢ >3x : X.d(x) F Ix : X. > D(x) >(P*Q)F>Px>Q

HOARE-INV-OPEN

{PR=Pte{v.»R* Q(W)}g\n NC&E e physically atomic
[RI™ - {PYe {v.QW)}e

Figure 12.2: A selection of Iris’s
first one is that B, P can be executed virtually everywhere in the logic, whereas

proof rules.
the elimination of laters is quite restricted. More specifically, to integrate

PP into Iris, we replace the update B P with B, P in most of Iris. This

modification allows us to execute B, P everywhere that we could execute P

before, including when reasoning about programs—but also in purely logical

reasoning (e.g., logical atomicity in §13.2).

The second key distinction is that ,, is more compositional. Analogous
to [(see upp-reTURN and upp-BIND in Fig. 12.2), the update B, is a monad
with Le-upp-rRETURN and LE-urD-BIND, Whereas > is not. (The later modality is
only an applicative functor; see LATER-INTRO and raTer-MoNoO in Fig. 12.2.) Since
P is a monad, we can use Le-upD-BIND to accumulate and compose updates.
For example, it is trivial to prove transitivity (i.e, B, B\.P + B.P), or to use
one later elimination update to spend two credits and eliminate two laters. In
contrast, the later modality does not satisfy the analogous rule >> P I » P, so
we cannot fold two laters into one.

Later credits in action. As a first illustration of later credits, let us discuss
two small examples. To verify the examples, we use the later credit rules
together with standard Iris rules. We have collected the relevant Iris rules (from

prior chapters) in Fig. 12.2 to make the examples easier to follow.! ! Since we will discuss examples centered
around invariants, we have annotated

o . . all Hoare triple rules with masks here
a later elimination afterwards. We do not need later credits here, because (see §3.4).

In our first example, we show how to save a credit for a few steps to enable

we could use timelessness and later commuting, but it will nevertheless be
instructive as a toy example:

Example 63 (Framing Later Credits). In this example, we show:

Vn.{n e N} fn{m.m e N}
SN eon|Y r {True} £ = f(41+1) {_ True}

The way it works is as follows. First, we execute 41 + 1 with HOARE-PURE-STEP-

creprT and thereby obtain a new later credit £1. We are left with proving the

entailment N F{£1} ¢ := f(42) {_. True}. We frame £1 around

the call of f with HoAre-rraME (in Fig. 12.2), leaving us to prove

TN on]™ r {£1) £= m {_ True)

126

PART III: LATER CREDITS CHAPTER 12: LATER CREDITS IN A NUTSHELL

for some m € N. After opening the invariant with noare-inv-oren (in Fig. 12.2),
we have to show {£1 +»(In:N.£on)} £ :=m{_. »(In:N.£+>n)}y n. We
spend the later credit to eliminate the later modality with Le-uPD-LATER, leav-
ing us to prove {E[e(ﬂn :N.f— n)} :=m{_»(3Fn:N.L—n)}y . Sub-
sequently, we execute the later elimination update with HOARE-LE-UPD-EXEC,
leaving us to prove {3n : N. £+ n} £ :=m{_. »(In: N. £+ n)}\ 5. The rest

of the proof is routine, using LaTer-iNTRO (in Fig. 12.2) in the postcondition. e

For our second example, let us return to the example from §11, nested
invariants. In this example, we will show how one can transfer later credits via

invariants to, for example, enable opening a nested invariant:

Example 64 (Later Credits in Invariants). In this example, we show:

N
‘Hr. dn:N.r—>n M *yl:n/zr*zfl‘ 2I— {yl:n/zt’} !t’{v.veN*yml/gt’}

We abbreviate the contents of the inner invariant as I(r) £ 3n: N.ri—n
. . N M .
and of the outer invariant as J = (3r. * y =151 * £1). First, we open
the outer invariant, and we are left to prove:

{)/I=>1/2f*l>]} ![{V.VEN* Y'::)l/zf*DJ}T\Nz

Next, we use the commuting rules to commute the later modality inside:

{ylz)l/zf = (3Ar. >N1* PYEiT * l>£1)} 't {V.VEN * YDyl % >]}T\N2

Then, we use the fact that—ironically—later credits themselves are timeless
(creEDIT-TIMELESS) to remove the guarding later modality from the later credit

(and the ghost variable) with Hoare-TIMELESS-STRIP, leaving us to prove:

{yl:)l/zf = (3Ar. >N1* YT * £1)} !{’{v.veN * Y £ * >J}T\Nz

As the next step, we use the fact that the ghost variables must agree (i.e.,
YB1/2f * y =151+ £ = 1) to deduce that £ = r. This leaves us to prove

{yl:)l/gf* Y2l x> 1(0) M *£1} !t’{v.veN* Yyl * >]}T\N2

Afterwards, we can spend the credit (as in Example 63) to eliminate the later
modality guarding the inner invariant with Le-urD-LATER and HOARE-LE-UPD-EXEC.

Thus, we are left to prove:

{yl:n/zl’ *yBypf * Nl} !f{v.vEN* Y2l >]}T\N2

From here on, the proof is almost routine. There is, however, one interesting
aspect about it: how do we restore the later credit inside the invariant J? That
is, someone prepaid for our later elimination (i.e., whoever closed the invariant
the last time), but now—to close the invariant—we must return the later credit.
Fortunately, all physical steps produce later credits, including loading from a
location (i.e., the corresponding rule is {£ > v} £ {w.v=w = Lo v *x £1}4).
Thus, we can simply use the later credit that we obtain from ! ¢ to close the
invariant and finish the proof. °

Although they are simple, these examples show how later credits enable
reasoning about later eliminations as an ownable resource, which can be passed
around using the rules of separation logic. This kind of reasoning is essential
in the applications that follow, in which we frame credits for several steps
(in §13.1) and exchange them through invariants (in §13.2 and §15.1).

127

CHAPTER 13

APPLICATIONS OF LATER CREDITS

Having discussed the essence of later credits, let us now apply them. We use
them for proving reordering refinements (§13.1) and to simplify helping for
logical atomicity proofs (§13.2).

13.1 Later Credits for Reordering Refinements

For our first application of later credits, we show how they address a limitation
of step-indexed logical relations that arises when proving reordering refine-
ments. In a reordering refinement, we want to prove that two expressions e;
and e; are independent in the sense that their execution order is not observable.

Concretely, this means we want to show:
e2;e1 <ctx €1; €2 and, more generally, er || ez <ctx (e1,e2)

where e; || e; denotes the parallel composition of e; and e, (returning the pair
of their result values). One way to prove such a contextual refinement is with a
step-indexed logical relation. That is, for e, e, : 7 we show

er || ez <iog (e1,€2) 1 TX 7T

where <o, is a step-indexed relation implying <ct.

However, with step-indexed logical relations, it is difficult to prove reorder-
ing refinements involving shared higher-order state (i.e., memory storing func-
tions; see Example 21 in §3.4.1). This is unfortunate, since such state is one of
the main reasons for using step-indexing in the first place. The difficulty arises
because laters are eliminated in these relations asymmetrically: when proving a
logical refinement of the form e <|o4 €’ : 7, elimination of laters is only allowed
during steps on the left (steps of e). However, for a reordering refinement like
ez;e1 <iog €1;€2 : 1, the laters eliminated when stepping e; on the left could
be too “early” to help with eliminating laters needed for reasoning about e;
on the right. Later credits resolve this issue by letting us save credits from the
execution of e; on the left and use them when reasoning about e, on the right.
This enables us to reorder operations that use shared, mutable, higher-order
state, which is beyond the scope of previous work.!

In the remainder of this section, we will explain in more detail when ex-
pressions can be reordered, which step-indexing related issues can arise, and
how later credits address these issues. To keep matters concrete, we focus on a
motiviating example where later credits will be essential for the proof: promises.

! Krogh-Jespersen, Svendsen, and

Birkedal, “A relational model of types-
and-effects in higher-order concurrent
separation logic”, 2017 [KSB17]; Timany
et al,, “A logical relation for monadic en-
capsulation of state: Proving contextual
equivalences in the presence of runST”,

2018 [Tim+18].

129

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

Figure 13.1: Promise implementa-
promise : 1 — pr(7) tion in HeapLang.
promise() £ (mklock(), ref(None), ref([]))

resolve: pr(r) X7 —1
resolve((l,r,c),a) = lock(l); match !r with
| Some(b) = unlock(l);abort()
| None = r := Some(a);let fs = Icin ¢ == [];
unlock(D); app (Af. f(a)) fs

end

then:pr(r) x(r —> 1) > 1
then((l,r,c), f) = lock(l); match !r with
| Some(a) = unlock(l); f(a)
| None = ¢ := (f ::!c); unlock(])
end

A motivating example. A promise, in languages such as JavaScript,? repre- 2 The promises discussed here are
similar but not exactly the same as the

) . » . - asynchronous channels from §8.3. The
but it is “promised” to be there eventually. We can attach continuations to a channels of §8.3 are linear (and the

sents the result of a delayed computation—the value is not available right away,

promise, which are eventually executed once the promise is resolved. focus there is on termination), whereas
the promises discussed here support

attaching more than one continuation
depicted in Fig. 13.1. We promise a value of type 7 with promise, select the (and the focus is on reordering).

We can implement a simplified version of the mechanism in Iris’s HeapLang,

value for the promise with resolve, and attach continuations f : 7 — 1
to a promise with then, which will be executed once the promise has been
resolved. Internally, a promise consists of a reference for the result r, a list of
continuations c, and a lock [to protect the two. When a promise is resolved, the
value is stored in r and all continuations in ¢ are executed with the function app.
(We explain the abort case shortly.) The operation then adds the continuation
to the list if the promise is unresolved or executes it if the promise is resolved.

What is interesting about promises is that (under suitable conditions) their
operations can be reordered. For example, if two continuations f and g are
reorderable with respect to each other, then the order in which we attach them
to a promise using then does not really matter. Similarly, if a promise is only
ever resolved once, then the order in which we call then and resolve does not
matter either, since the attached callback will eventually be executed with the
resolved value of the promise. Thus, for reorderable f and g, we should be able

to prove, for example:

then(p, f); then(p, 9);
then(p,g); <cx resolve(p,a); : 1
resolve(p,a) then(p, f)

To state this refinement precisely, we need to formalize the conditions on the
use of then and resolve. To model when two functions f and g are reorderable,
we will use a type system (in §13.1.2). And as far as resolve is concerned,
resolving a promise twice is typically considered an error. For example, in
JavaScript a repeated resolve attempt has no effect. Thus, we simply rule out
multiple resolve attempts in the promise implementation: we implement a

second call to resolve as “safe-failure” (via abort, which just diverges).

130

PART III: LATER CREDITS

But even once we have formalized these constraints, proving such a refine-
ment remains challenging, because the continuations stored in memory are a
form of shared, higher-order state. That is where later credits come into the
picture. They will enable us to construct a logical relation that can nevertheless
prove this refinement. To do so, we start with Iris’s standard binary logical
relation, ReLoC? (in §13.1.1). We extend ReLoC with support for proving re-
orderings by adapting ideas from Timany et al.* (in §13.1.2). Finally, we show
that later credits allow us to prove promise reorderings (in §13.1.3).

13.1.1 ReLoC: Concurrent Logical Relations in Iris

ReLoC uses Iris’s program logic to define a binary logical relation. To do
relational (i.e., binary) reasoning in Iris, ReLoC uses the technique from CaReSL>
(which we have already encountered in §7.1.1), in which the “specification” or
“source” program (on the right-hand side of the refinement) is represented by
ghost state. We call it a ghost program in the following to emphasize that it is
represented as ghost state. ReLoC considers concurrent ghost programs. Thus,
in this variant, the ghost program has ghost state assertions of the form j = e,
which mean that thread j in the ghost program is executing expression e, and
assertions of the form £+, v, which mean that location ¢ stores v in the ghost
program’s memory (the subscript g here stands for “ghost”).

In ReLoC, the ghost program is executed by updating the ghost assertions
with Iris’s fancy update ' P (§4.5.1).° For example, to perform a store of w
to location £ in the ghost program, we have the rule

GHOST-STORE

i (=w)xlgvi PNoctoc ey Nreloc j 1=y () 4 lgw.

Recall from §4.5.1 that fancy updates €159 p are effectively regular updates
with the additional ability to interact with invariants. In particular, besides the

regular rules of the update B P, they support the following two rules:

INV-OPEN-UPD

Px>R+ S\NISS\NQ >R
PRV ¥pEQ

where 1nvv-oreEN-UPD can be used to open an invariant as part of proving a

UPD-MASK-WEAKEN

& c& Prépbp
Pr &pop

NCE

fancy update. While in the rule crost-sTorE, the namespace Neloc is only an
implementation detail of ReLoC,” we emphasize the ability to open invariants
around fancy updates here, because it will be crucial in our examples (in §13.1.3).

In ReLoC, to prove a relational property about programs e; and ey, it suf-
fices to prove a Hoare triple for e; in which the precondition has a ghost
thread running e, in an arbitrary evaluation context K. ReLoC defines a bi-
nary relation in Iris that expresses this pattern for an arbitrary postcondition
Q :ValxVal — iProp:

(e1<e:Q)2VjiK. {j= Klez]} ey {vi. In. j = K[wo] * Q(v1,v2)}

The adequacy theorem of Iris (from §4.4) then ensures that, if True F e; < e;: Q
and e; terminates with value v;, then there exists an execution of e; in which it
terminates with a value v, such that Q(v;,v;) holds.

This definition of (<) treats the programs e; and e, asymmetrically. In
particular, since the Hoare triple is about e;, steps of e; get to eliminate laters. In

CHAPTER 13: APPLICATIONS OF LATER CREDITS

3 Frumin, Krebbers, and Birkedal, “ReLoC:
A mechanised relational logic for fine-
grained concurrency”, 2018 [FKB18];
Frumin, Krebbers, and Birkedal, “ReLoC
Reloaded: A mechanized relational logic
for fine-grained concurrency and logical
atomicity”, 2021 [FKB21b].

* Timany et al., “A logical relation for
monadic encapsulation of state: Proving
contextual equivalences in the presence
of runST”, 2018 [Tim+18].

> Turon, Dreyer, and Birkedal, “Unifying
refinement and Hoare-style reasoning
in a logic for higher-order concurrency”,
2013 [TDB13].

° Note that this is different from Trans-
finite Iris, where we used a dedicated
source update modality (i.e., see B, P
in §7.1.2) instead of one of Iris’s built-in
update modalities.

"ReLoC allocates an invariant named
Nreloc to track the current state of the
ghost program and relate it to the ghost
state assertions j = e and £+ v.

131

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

Value Relations

V1] = {(vi,v2) [vi = v, = ()}
V[int] £ {(vi,w) | Iz €Z.vy =v, =z}

VIrx '] 2 {(vi,v2) | Iva v v, V. vi = (v,) v = (p,v}) * Vel (v vi) = VI T (Vo vp) }
V[r+] £ {(vl,vz) | Fwr1, wa. vi = injy(wy) * vz = inj;(wp) = V][] (wl,wz)}
U {(v1,v2) [3wi, wa. vy = injy (wi) % v2 = injy () # V][] (wi, wa) }
V[r -] = {(vi,v2) | Ywi, wa. O(V[7] (w1, w2) = (v wi) < (v2 wa) : V[']}
V]ref] = {(vl,vz) | 3, b.ovy = b 5 v = £, *‘3w1,wz. & = wy x b wy x V][] (wi, wy) ‘

Open Expressions

1>

(TEe<jge :7)

where G[T]

>

contrast, e, is just a ghost program, so as it is executed, no laters are eliminated.
Typically, this asymmetry is not a problem, because we are reasoning about the
two programs “in sync”: by taking steps of e; at the same time as we perform
steps of e, we can use the physical steps of e; to eliminate laters needed for
reasoning about e;. But for reordering, it will become an issue (see §13.1.5).

Having defined the binary relation e; < e; : Q, defining the logical relation
Ik ey <jog €2 : 7 is relatively straightforward, depicted in Fig. 13.2. First, we
define a type interpretation V| _] : Type — (Val xVal) — iProp, which maps
every type 7 to a persistent Iris relation on values V[]. Then, we define (<jog)
by lifting (<) to open expressions.® To simplify the explanation here, we leave
out the details of how this approach scales to polymorphic and recursive types.

In the definition of V[_], the interesting cases are 7 — 7’ and ref 7. The
former says that two values are related at type © — 7’ if, whenever they are
applied to values related at type 7, the resulting application expressions are
related at the interpretation of 7’. In this case, we use Iris’s persistency modality
“0” (83.3) to ensure values of type 7 — 7’ can be used multiple times.

For ref 7, the relation says that the two values must be locations, and we use
an Iris invariant that requires the two locations to always point to values that
are related at type 7. (As in §8.3, the invariant here is implicitly making use of
Iris’s step-indexing, allowing us to avoid the usual circularity issues that arise
in defining logical relations for systems with higher-order mutable state.”)

The logical relation has the following two key properties:

Theorem 65 (Soundness). If Tk e; <jog €3 : T, thenT I ey <(ix €3 : T.
Theorem 66 (Fundamental Property). If I' e : 7, thenT Fe <jgg € : 7.

The soundness theorem ensures that the logical relation is useful for proving
contextual refinements, and it follows from the adequacy of Iris. Meanwhile,
the fundamental property lets us automatically deduce that a syntactically
well-typed term is logically related to itself. This theorem is proven by showing
that the logical relation is a congruence with respect to all typing rules.

N.ty .t }

Yyuye. (y1.72) € GIT] F yi(er) < ya(e) : V(7]
{(y1.172) | *xrer (11(x),y2(x)) € V[]}

Figure 13.2: Excerpt of the
logical relation of ReLoC.

8 Here, y(e) denotes the result of
substituting the free variables in e
according to the substitution y.

? Ahmed, “Semantics of types for mutable
state”, 2004 [Ahmo04]; Birkedal et al.,
“Step-indexed Kripke models over
recursive worlds”, 2011 [Bir+11].

132

PART III: LATER CREDITS

13.1.2 Reorderability Extension

Next, we add reorderability. The type system of ReLoC is not rich enough to
state that a function is reorderable. To reason about reorderings, we extend the
type system with a new type 7; —. 72 of reorderable functions. The typing rule
for this type uses a new relation, I' ' e : 7, which implies that e is a reorderable
expression of type 7. This judgment is a restriction of the standard typing
judgment + that removes the rules for operations that have side effects. We
then extend the standard typing judgment +- with two new rules for introducing

and eliminating terms of type —:

Lx:r,fi11 2ente:n Tt > F're:n

rl—fe:l'z

'k (fixfx.e):r >

The fragment +'® is fairly limited, since expressions may not contain instruc-
tions with side effects. However, it is possible to bend this limitation. In the
following, we will develop a logical relation for +¢, which admits additional
terms that cannot be typed syntactically in the side-effect free fragment +'¢,
but are semantically reorderable. For example, A_. let r = ref(41) in!r + 1 and
then are semantically reorderable even though they have side effects. To ex-
tend the logical relation to support the reorderability type judgment (+¢) and
reorderable function type (—), we take inspiration from Timany et al.!? to
define a reorderable form of e; < e, : Q as follows:

(e1 <" e3: Q) = {True} e, {Vl- Fvy. Q(v1,v2) * €2~ ghost Vz}

where e~gnost €’ = V), K. j = Kle] + "By, j = K[€]

The key difference between < and <" is that in the latter, the execution of
the ghost program is moved entirely to the postcondition, as captured by the
~ghost assertion.!! That is, instead of executing the ghost program and the
implementation “in sync” (as with the usual < in ReLoC), we wait to run e; until
after e; finishes running. This means e; executes “independently” of e;, and
subsequently e, executes independently of e;. Disentangling e; and e; makes
their executions reorderable, as we will see below. However, it also means
physical steps of e; no longer directly eliminate laters that come up when
reasoning about e;. This could pose a problem if e; needs to take non-timeless
resources out of an invariant. Fortunately, because our notion of (~ghost) uses
a later elimination update? “T [instead of a standard update “ """, we
can spend later credits generated by e; as we execute steps of e;.
We integrate reorderability into ReLoC by defining

V[t =]2 {(v1,v2) [Vur, uz. O(V[] (w1, u2) = (v u1) < (v uz) : V[])}

rrs re . . : re .
and lifting e; <™ e; : Q to a version on open expressions I' £ e; Slog e : T
analogous to (<|og). The new relation T e, <reg ez : T ties neatly in with the

—lo
standard ReLoC setup (from §13.1.1):
Lemma 67.

1. Ifl“i—"”’e:r,thenl’l:eSlre e:rT.
og

2. IfTEe S['gg ey:7,thenT k ey <jo5 €21 T.

CHAPTER 13: APPLICATIONS OF LATER CREDITS

! Timany et al., “A logical relation for
monadic encapsulation of state: Proving
contextual equivalences in the presence
of runST”, 2018 [Tim+18].

! The ghost execution e~ ghot €’

is similar to the ghost executions

in §8.1.2. However, the ghost executions
here only have to be re-orderable and
not repeatable, so they do not occur
underneath a persistency modality.

'2 To support fancy updates (i.e., mask-
changing updates), we define a version
& ETZZ of the fancy update &1 %2

from §4.5.1 that uses the later elimination
update B, in place of the regular one

B . It has effectively the same rules as
the original with the additional ability

to spend later credits to eliminate laters
similar to LE-UPD-LATER.

133

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

Moreover, reorderability (Slr:) is strong enough to show the reorderings
that we are after (Lemma 68 and Lemma 69). The proofs of both statements use
the fact that a reorderable expression can run unconditionally on the left (since
the precondition of (<re) is True) and that we can then delay its execution on

the right arbitrarily. We start with the sequencing reordering:

Lemma 68 (Sequencing Reordering).

IfT e <joge;:landl ke <|re 21, thenT E e;e; <jog €55 1.

Proof. We focus on the case where ey, e, e, and e are closed (i.e., I' = 0). The
general case follows analogously. We show

ezser < epsep: V1]

under the assumptions e; < ef : V[1] and e, <™ ¢} : V[1]. Thus, unfolding
the definition of (<), we have to show:

{i = Kle;sejl} exser {vi. 3w, j = K[vs] x (v, %) € V[1]}

Here, we benefit from the reorderability of e;. Note that the ghost program
executes e] first and the actual program executes e, first. However, since e,
is reorderable, its verification does not require any ghost code resource in its
precondition. Instead, it produces the delayed ghost execution e~ gpost () in
its postcondition (using the fact that all values in V[1] are ()). Concretely,

’

binding on e, and using e, <" e; : V[1], we are left to prove:

{.] = K[ei;eé] * 6‘; ~~ghost ()}
Oser
{Vl. HVZ.jl=>K[V2] * (Vl,’Vz)e(Vﬂ]].]]}

After executing “();” in the actual program, we can then execute e; in the
actual program and e/ in the ghost program “in sync”. Concretely, using the

assumption e; < e] : V[1] for K’ £ K[e;e;], we are left to prove:

{i = K[0:€5] * €)~ghost 0} O {v1. Fva. j=> K [v2] * (v, v2) € V[1]}

We can execute “();” in the ghost program, and are left to execute e;, in the
ghost program. Fortunately, since we have the ghost execution e ~ghost (), we

can do so, leaving us to prove:

{TBeri = KI01} O (v 3ve. j K[v] * (v, %) e V[1]}

We can execute the update in the precondition of the Hoare triple as usual

(see HOARE-LE-UPD-EXEC in Fig. 12.1), which concludes the proof. O

Similarly, we can prove the following lemma for reordering with a parallel
composition, because e; can be executed independently in the actual program
from e; in the ghost program:

Lemma 69.
IfT ke <joge; : 7y andT E ey S['gg ey : Ty, thenT k ey || eg <joq (€5, €]) : To X 71

134

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

then(p, f), then(pg, f;) then(p, f), then(py, f5) then(p, f), then(pq, f5)
r—Nonexc—T ri Some(a) xc || r Some(a) xc ||
resolve(p, a) resolve(p,, ag)
A rg g None x ¢ g Ty program B rg g None x ¢ g Ty ghost program C rg g Some(ag) * cg g]
(I)A q)B CI)C

13.1.3 Promises with Later Credits

Equipped with the notion of reorderability, we return to our motivating example:
reordering promise operations. Our main result for promises will be that their

operations are in the logical relation, as stated in Lemma 70.
Lemma 70 (Promise Typing).

1. E promise <jog promise : 1 — pr(r)

2. Eresolve Slfg resolve : pr(z) X 7 —, 1

3. E then Srsg then : pr(r) X (7 —re 1) > 1

The proof of this lemma is challenging in terms of reasoning about different
interleavings of the promise operations, but simple in terms of the later credits
reasoning. Since we are mainly interested in later credits, we will give a
detailed description of the use of later credits (in §13.1.6), and only a high-level
description of the rest of the proof (in §13.1.4 and §13.1.5). Let us start with
an example of the kind of reorderings that we can prove with this lemma
and Lemma 68:

Corollary 71.

F're<pge:1 p:pr(r) el fit—olel
I E then(p, f);e <iog €; then(p, f) : 1

There are two things to note about this corollary. First, when we prove that
an expression like then is reorderable, then we can move its execution earlier.
This includes moving it across an arbitrary expression e, which could include
additional calls to then or to resolve. Second, the corollary demonstrates
the higher-order nature of the promise operations: then takes an arbitrary
reorderable function f as its argument. In particular, f could resolve another
promise q or (reentrantly) attach an additional continuation to p, since the
operations then and resolve are themselves reorderable.

13.1.4 Promise Extension

Before we can prove Lemma 70, we have to extend the type interpretation
V[_] to include promises pr(z). The definition of V[pr(z)] consists of a lock
and an invariant, which together encode a transition system for each promise.
We focus on the transition system,'® depicted in Fig. 13.3. Initially, in state A,
the promise is unresolved in the program and the ghost program (marked
by the subscript g)—the reference r is None, and the reference c is amassing

Figure 13.3: Transition system

describing the different states a

promise can be in.

13 The full definition can be found
in the appendix of the later credits
paper. [Spi+22b]

135

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

continuations. The proposition ® in each state stores some additional ownership
that we need for the verification (e.g., ®a stores (f, f;) € V[r —r 1] for each
f € T). We will return to @ in §13.1.5. From state A, we transition to state B
when resolve(p, a) is executed in the program. We store a in the promise in
the program but not yet in the ghost program, and we execute the continuations
in T. From state B, we transition to state C when resolve(pg, ag) is executed in
the ghost program. We store a, in the reference and execute the continuations
in Ty. If then(p, f) (resp. then(pg, f;)) is executed in either the program or the
ghost program, we do not change the state in the transition system. Depending
on whether the promise has been resolved yet or not, the function is either
stored in the continuation list (i.e., in T or T,) or directly executed.

Notably, there is no state B’ in the transition system, where resolve(pg, ag)
has been executed first in the ghost program. The reason is that if we look at the
definition of e <" e’ : Q, then e is always executed in the program first before e’
is executed in the ghost program. (For the same reason, then(p,) always
executes in the actual program first, before the corresponding then(py, f;)
executes in the ghost program. As a result, it is impossible in state A that f; is
in T, but the corresponding continuation f is not in T.)

13.1.5 The Continuation Exchange

Let us return to Lemma 70, specifically resolve and then. (The promise
operation is straightforward.) We will focus on the “continuation exchange”,

the key step in the proof where later credits will become necessary (in §13.1.6).

In the continuation exchange, the continuation f is executed by one operation

in the program and by the other in the ghost program, requiring us pass

ownership of the execution of the continuation from one operation to the other.

This happens, for example, in the following reordering, a corollary of Lemma 70:

then(p, f); < resolve(p,a); 1

pipr(n).fit o la:Tk resolve(p,a) —°¢ then(p, f)

Here, f is executed by resolve in the program but by then in the ghost program.

When resolve executes in the ghost program, it only stores the value a inside

the promise without executing f.

The resolve case. Let us start with the resolve case of Lemma 70. We have
to show that for (p, pg) € V[pr(7)] and (a, ag) € V[r]:

resolve(p,a) <" resolve(pg, ag) : V[1]

We focus on the most interesting case, which is when resolve executes a
continuation in the program but—as in the example above—stores the value in
the promise when executed in the ghost program. In this case, for the execution
of resolve(p, a) in the program, we start in state A and we find a continuation
f € T. (For the sake of simplicity, let us focus on a single continuation in
this explanation.) In this state, albeit not shown in Fig. 13.3, ®o contains
(fs fz) € V[t —re 1]. We will put (f, fg) € V[t —re 1] into @4 in the then
case.) We store a in r, transition to state B, and proceed to execute f(a) in
the program using (f, f;) € V[t —r 1]. Afterwards, having just executed
f(a) in the program, we now own the ghost execution fy(ag) ~ghost () from
(f. fg) € V[t —re 1] (analogously to the proof of Lemma 68).

136

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

We use it on the side of the ghost program. For the ghost program, we must
prove resolve(pg, ag) ~ghost (). Recall that we are considering the interesting
case where, in the ghost program, p, has no continuation attached to it yet.
Thus, we are still in state B and T; is currently empty. The ghost program stores
ag in ry, and we advance in the transition system to state C. Since there are
no continuations attached yet, we can prove resolve(py, ag) ~ghost () without
needing fz(ag) ~>ghost (). We put the ghost execution f;(ag) ~ghost () into O¢
in the transition system (to use it in the then case).

The then case. Let us use now turn to the then case of Lemma 70. We have
to show that for (p, pg) € V[pr(r)] and (f, f;) € V[r —r 1]:

then(p, f) <™ then(pg, f5) : V[1]

We again focus on the most interesting case, which is when then stores f in
the promise in the program but—as in the example—executes f; in the ghost
program. In this case, for the execution of then(p, f) in the program, we are
in state A. We store f in T, and we store (f, f;) € V[7 — 1] in ®4. (This
matches the resolve case, where we take (f, f;) € V[—r 1] out of ®4.)

On the side of the ghost program, when then(pg, f;) is executed, we have
to prove then(py, fz) ~*ghost (). Since we are focusing on the interesting case
where then will execute the continuation, we are in state C. This means pg
already stores a value ag, and then(pg, f;) will execute f;(ag). Thus, as part
of proving then(pg, f;) ~ghost (), We have to establish the ghost execution
fz(ag) ~ghost (). Fortunately, we have put the ghost execution f; (ag) ~ ghost ()
into ®¢ when resolving the promise (see the previous case). We now want to
use it to finish the proof. This almost works, but a “>” gets in the way ...

13.1.6 Using Later Credits

In the last step, we run into a “” when we try to use the f;(ag) ~ghost ()
stored in ®c. That is, recall from the beginning of §13.1.4 that the transition
system is encoded in an invariant, which is shared between the different promise
operations via the interpretation of the promise type V[pr(z)]]. We will denote
the invariant with N in the following. In short, when we open the invariant
in the final step, we only get > fy (ag) ~ghost () out, but we need f(ag) ~ghost ()
to finish the proof, so (without later credits) we are stuck.!*

Let us zoom in on that last proof step. Formally, at that point in the proof,
we have to show:

N
- then(Pg,fé) ~ghost 0

and since the promise is resolved in the ghost program at that point, we will
be in state C. We may open N because of the fancy update in (~ghost),
but when we open N, we will only get access to » TS (see iNV-OPEN-UPD
in §13.1.1), which effectively means we only get > f;(ag) ~ghost (). To prove
then(pg, fg) ~ghost (), we need to eliminate the later, but there are no program
steps around to justify an elimination—only ghost program steps (which do not
allow later elimination). We are stuck!!®

With later credits, the solution is simple. When we reason about then (i.e.,
when we prove E then Slrc?g then : pr(z) X (t =y 1) > 1), the execution
in the program has plenty of steps that generate credits that we do not need

" The same issue does not arise for the
symmetrical side, where we take out
(f. fg) € V[r —re 1] in the resolve-
case because steps of the program
ordinarily can eliminate later modalities.

!> One may wonder if we can get

fz(ag) ~ghost () out of the invariant
during execution of then(p, f) in the
program, so that there are still program
steps around. The answer is no, because
during that execution, the promise may
still be in state A (e.g., in the example in
§13.1.5). Thus, f will be in the list, not
executed, and fy(ag) ~ghost () is not
yet available, since it only enters the
invariant in state C.

137

PART III: LATER CREDITS

(e.g., the initial f-reduction step of then(p, f)). We can frame one of these
credits £1 to the postcondition, such that it becomes available when we need to
prove then(py, fz) ~ghost (). That is, instead ofN F then(pg, f5) ~ghost (),
We now prove N * £1 F then(pg, fg) ~>ghost (). Thus, when we open
N this time, we can use the later credit £1 to eliminate the later and obtain
fz(ag) ~ghost (), finishing the proof.

13.2 Later Credits for Logical Atomicity

In this section, we demonstrate another use of later credits, namely for eliminat-
ing a lingering pain point in one of Iris’s specialties: logical atomicity proofs.1®
Inspired originally by the TaDA logic,!” logical atomicity is Iris’s technique
for proving functional correctness of (fine-grained) concurrent data structures.
Akin to the standard notion of linearizability,'® a logically atomic specifica-
tion of a concurrent operation says that the operation appears to take effect
atomically, even though it may actually take multiple physical steps. As a
consequence, clients can reason about logically atomic operations (almost)
as if they were physically atomic instructions—in particular, they can open
invariants around them.

Logical atomicity has been successfully applied to a variety of challenging
concurrent data structures.!® Unfortunately, in verifying logical atomicity
for data structures that exhibit a common pattern known as “helping”, step-
indexing has always caused trouble. “Helping” refers to the situation where one
thread helps another thread complete its operation. In previous work, proving
logical atomicity for data structures with helping necessitated the use of an
“ugly” workaround (to quote its inventor?’) called “make-laterable”, which made
logical atomicity harder to prove and harder to use for clients.

With later credits, we can avoid the need for “make-laterable” entirely, along
with its limitations. To explain how, we will use a concrete example of a
concurrent data structure that involves helping: a counter with a backup. We
explain the counter (in §13.2.1), the intuitive argument for proving its logical
atomicity (in §13.2.2), the reason we cannot implement that intuitive proof
argument with “make-laterable” (in §13.2.3), and finally how later credits save
the day (in §13.2.4).

13.2.1 A Counter with a Backup

Our motivating example is a counter with a backup (Fig. 13.4). This counter is
basically a regular monotone counter (as described in §3.6) with methods incr
to increment the counter by 1 and get to get the current value of the counter. But
there is a twist: the value of the counter is stored in two locations—the primary p
and the backup b—and these two can get out of sync: the operation incr eagerly
updates the primary p, but leaves updating the backup to a background thread
(bg_thread). Clients can directly access the backup b through a third operation,
get_backup, so it may seem like they can observe the difference between the
primary and the backup. What makes this counter interesting is that they

cannot, because incr and get wait for the backup to catch up.

CHAPTER 13: APPLICATIONS OF LATER CREDITS

!¢ Jung et al., “Iris: Monoids and in-
variants as an orthogonal basis for
concurrent reasoning”, 2015 [Jun+15].

7 Rocha Pinto, Dinsdale-Young, and
Gardner, “TaDA: A logic for time and
data abstraction”, 2014 [RDG14].

¥ Herlihy and Wing, “Linearizability:
A correctness condition for concurrent
objects”, 1990 [HW90].

! Jung et al., “Iris: Monoids and in-
variants as an orthogonal basis for
concurrent reasoning”, 2015 [Jun+15];
Jung et al., “The future is ours: Prophecy
variables in separation logic”, 2020
[Jun+20]; Birkedal et al., “Theorems for
free from separation logic specifications”,
2021 [Bir+21]; Frumin, Krebbers, and
Birkedal, “ReLoC Reloaded: A mecha-
nized relational logic for fine-grained
concurrency and logical atomicity”, 2021
[FKB21b]; Carbonneaux et al., “Applying
formal verification to microkernel IPC at
Meta”, 2022 [Car+22].

% Jung, Logical atomicity in Iris: The good,
the bad, and the ugly, 2019 [Jun19].

138

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

Implementation
new() = let (b, p) = (ref(0), ref (0)) in fork{bg_thread(b, p)}; (b, p)
incr(b,p) = letn = FAA(p, 1) in await_backup(b,n+1);n
get(b,p) = letn="pinawait_backup(b,n);n

get_backup(b,p) = !'b

Helper Functions

1>

bg_thread(bd, p)

>

letn ="!pinb:=n;bg_thread(b, p) // copy primary to backup, in a loop

await_backup(b,n) £ if ! b < nthen await_backup(b,n) else () // loop until | b reaches n

Specification

F {True} new() {c. Jy. is_counter;V(c) * value, (0)}

is_counter)/,v(c) F (n.value,(n)) incr(c) (m.m = n * value,(n+1)) 5

is_counter;,v(c) + (n.value,(n)) get(c) (m. m = n * value,(n)) 5

is_counter;v(c) + (n.value,(n)) get_backup(c) (m. m = n * value,(n)) 5

To understand this counter better, let us consider a concrete example:

ecount = let ¢ = new() in fork{incr(c)};

let x = get(c) in lety = get_backup(c) in (x,y)

Depending on when the increment occurs and when the background thread
updates the backup b, this expression has three possible values: (0, 0), (0, 1), and
(1,1). One value that it does not have is (1, 0). The outcome (1, 0) is impossible,
even though get reads the primary p and get_backup reads the backup b. The
reason is that get waits for the backup to catch up before returning its result, so
we can be sure that any subsequent get_backup cannot read “outdated” values.

The counter with a backup is clearly a contrived example. However, it
originates from an issue arising in real data structures?! that need to be durable.
For example, a key-value server will store the current mapping of keys to values
on disk, but also keep an in-memory copy of that mapping to quickly reply
to read requests. Updating the data on disk is inefficient, so a background
thread batches concurrent writes to be able to write them to disk in one go.
At any time, the system can crash and the in-memory copy disappears; after
reboot and recovery, the state of the key-value server is restored from what
was stored on disk at the time of the crash. Since the in-memory copy can be
lost, the operations working on it need to wait for their changes to become
permanent, so they avoid returning data that is later lost in a crash.?? To
avoid all the complexities of crashes and durable state, we have condensed this
problem down to its core. The key-value store is replaced by a single counter,
the durable disk is replaced by a second copy of the counter in memory, and
we use get_backup to model the fact that this second copy is observable by
clients through crashes.

Helping. The most interesting thing about the counter with a backup is
the interaction between the background thread and the operations get and
incr. Take incr for example. incr modifies the primary p, but its effect only

Figure 13.4: Counter with a
backup.

?'n fact, after the later credits paper was
published, Chang et al. [Cha+23] have
used the helping pattern described in the
following, “unsolicited helping”, to verify
a high-performance transaction library
using multi-version concurrency control.

% The reader may wonder what the
point of the in-memory copy is when
accesses have to wait for the updates to
be written to disk anyway. The answer is
that the in-memory copy can be used to
quickly respond to read requests for keys
that have no pending changes. In these
cases, the value can be returned instantly
instead of having to load it from disk.

139

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

becomes observable (through the counter operations) once the background
thread updates the backup b. In other words, to complete its action, incr needs
assistance from the background thread, which is typically called “helping”. In
general, helping means that the point in time when the action of one operation
appears to clients to “take effect”—also known as the linearization point of the
operation—is actually performed by another “helping” thread. For incr, the
linearization point is the update of b to n in the background thread, because
that is when the new counter value actually becomes observable to other get
and get_backup operations. For get, in cases where the operation observes
the primary p to be larger than the backup b, the linearization point is also the
update of b in the background thread, because only then can other get and
get_backup operations also observe the new value (see the e.ount example).
What is particularly interesting about the helping in this example—and what
makes it challenging to verify in existing Iris—is that at the point when the
background thread updates b, it may have to help (an arbitrary number of)
get operations complete, but it does not know which operations those are
in advance because the get operations do nothing to explicitly communicate
their need to be helped. In fact, the background thread may have to help get
operations which only began immediately before the update of b to n. We call
this phenomenon unsolicited helping, in contrast to the solicited helping that
occurs in the incr operation (since the latter communicates explicitly to the
background thread by incrementing p). As we will soon see, helping (especially
unsolicited helping) makes it difficult to verify data structures like this one in

existing Iris, but later credits offer a simpler way.

13.2.2 Logical Atomicity

Let us attempt to verify the counter. We want to prove the standard specification
of a logically atomic counter, meaning get (and get_backup) observe the value
of the counter at the linearization point and return it, while incr increments
the value at the linearization point and returns the old value. In the language
of logical atomicity, we express this with the specification shown in Fig. 13.4.
Except for the initialization (where atomicity does not matter), the specification
consists of several logically atomic triples (x. P(x)) f(a) {y. Q(x,y))s. These
are special Hoare triples that describe the atomic action of f at the linearization
point. For example, for incr, the logically atomic specification is

(n.valuey (n)) incr(c) (m.m = n x value,(n+ 1)) 5

indicating that incr updates the value of the counter (identified by the logical
name y) from n to n + 1. Here, the number n is supposed to be the value of the
counter at the linearization point. Since the number n is typically not known
before the execution of incr (and potentially changes during its execution),
logically atomic triples have an additional binder “n.” in their precondition.
This binder can relate the value of n at the linearization point to the result
of the triple “m.” in the postcondition. In the case of incr, we thus know
that it returns the value of the counter at the linearization point similar to a
fetch-and-add. The rest of the specification is bookkeeping: we keep some
state of the counter in an invariant is_counter)},V (¢), which means that the proof
of incr needs access to invariant namespace N and that is reflected in the

140

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

specification. We express the value of the counter with the (non-duplicable)
predicate value, (n), and we connect both pieces through the name y.

Logically atomic triples. Fully explaining how one proves and uses logically
atomic specifications is not necessary to understand the step-indexing troubles
that arise. (See Logical atomicity in Iris: The good, the bad, and the ugly?*® for a % Jung, Logical atomicity in Iris: The good,
detailed discussion.) It suffices to know a little bit more about the definition of the bad, and the ugly, 2019 [Jun19].

a logically atomic triple:

(x.P(x)) e (y. Q(x,y))e = VR {AU(x. P(x),y. Q(x,y)5 } e {y. R(y)}

Logically atomic triples are ordinary Hoare triples with a special atomic update
AU in their precondition. The atomic update describes the “atomic action”
of the operation. For example, in the case of incr, the atomic update would
be AUj,(R) = AU(n. value,(n),m. m = n * value,(n + 1))1/2\{, describing the
abstract state change that we want incr to perform.

When we prove a logically atomic triple, it is our job to make sure the atomic
update AU is executed, meaning we have to update the program state and ghost
state atomically in the way described by the abstract action. We can update
our state atomically by either (1) performing a physically atomic operation that
corresponds to the update or (2) by calling another logically atomic operation.
Executing the atomic update yields the “result” R(y) in exchange. The fact that
we have to execute the update is encoded somewhat implicitly: to prove the
triple {AU (x. P(x),y. Q(x, y))g} e{y. R(y)}, we eventually have to establish
the postcondition R(y). The postcondition R is universally quantified and the
only way to obtain ownership of the result R(y) is executing the atomic update.

Proving logical atomicity in the presence of helping. Let us return to
helping. In the world of logical atomicity, helping means the helpee (e.g., incr)
transfers its atomic update to the helper (e.g., the background thread). The
helper then executes the atomic update at the linearization point of the helpee
and afterwards returns the result (e.g., R(n)) to the helpee. We refer to this
mechanism as the helping exchange.

To understand the helping exchange better, we discuss helping the incr
operation. We start with an idealized version of the exchange, because step-
indexing sadly makes the matter more complicated. To initiate the exchange,
incr sets up the following invariant:

line(n,R) = | (AUinc(R) * pending) V (R(n) * executed) V received \N'inc

and shares it with the background thread through another invariant N.main
. . 24 3 3 3
)24 that is used to define |s_counter)/,v (c). Here, we use How exactly the invariant N.main
stores the incr invariants L. (and the
get invariants Iget) is not important

stages of the helping exchange.?® Initially, in the pending stage, incr stores to explain the step-indexing issues
that arise. The details can be found

(not spelled out here
the propositions pending, executed, and received to distinguish the different

its update in Ly and then waits for the background thread. The background in the appendix of the later credits

thread eventually reads p and then updates b. In the step where it updates b, it paper [Spi+22b].

linearizes the pending increment incr. To do so, it opens the invariant I, takes

% We keep pending, executed, and
received abstract here to simplify the
puts the result R(n) back into the invariant (advancing to the executed stage). presentation. Internally, they use ghost

Finally, incr observes the change of b, opens Ijn¢, and takes out the result R(n) state to encode the different stages of the
helping mechanism.

out the atomic update AUjy, executes it (similar to how one executes B P), and

(advancing to the received stage).

141

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

13.2.3 Helping without Later Credits

Sadly, without later credits, the helping exchange for incr is more complicated,
because step-indexing gets in the way. To execute AUjy in the background
thread, we first have to obtain ownership of the atomic update, which means
taking it out of the invariant [j,.. Unfortunately, there are some hurdles: AUjy.
is not timeless and is stored in an invariant (i.e., lic), which itself is stored in
another invariant (i.e., the invariant N.main behind is_cou nter)/,v (c))—a step-
indexing nightmare. So we cannot just take AUj,. out of the invariant i,
execute it, and put R(n) back into the invariant, all in one step.

To escape this nightmare, the typical solicited helping proof is a play in three
acts; we use incr to illustrate it. In the first act, the helper discovers the helpees
it is helping (e.g., through reading p). At this point, it gains access to a witness
> Wine for the waiting helpee—a resource relevant for the helping exchange,
but guarded by a “>”. In the second act, the helper takes a bookkeeping step
of execution to eliminate the later (e.g., the reduction of let). In the third act,
the helper reaches the linearization point (e.g., the update of b), and uses the
witness Wi, to obtain access to AU;,. and execute it.

This strategy is suboptimal for several reasons. First, the helping exchange
is more complicated than the intuition that we previously outlined and requires
additional foresight. Second, making the dance with the witness Wi, work
requires delicate step-indexing tricks behind the scenes. These tricks, known
as “make-laterable”, are so cumbersome that even its inventor called them
“ugly”.?” (With later credits, “make-laterable” becomes obsolete, so we spare
the reader the details here.) Third, “make-laterable” comes at a cost: clients of
logically atomic specifications are faced with additional proof obligations when
they want to use them. And last but not least, this strategy does not work for
unsolicited helping: we now use get to illustrate why not.

When the background thread reads the primary p, it cannot gain access to
the witnesses W, of all the get operations it linearizes. The reason is that they
might not be there yet. That is, after the read of p, a new get operation could
arrive. This get will be linearized with the update to b, but the background
thread could not observe Wt yet when it read p. Thus, even with the established
bag of tricks, we cannot realize the standard three-part play for get.

13.2.4 Helping with Later Credits

Enter later credits. With later credits, there is no need for a complicated
three-act play, because we can instead just eliminate the requisite number of
laters right at the linearization point. Thus, we can avoid relying on the ugly
“make-laterable” trick in the definition of AU (which in turn means fewer proof
obligations for clients of logically atomic triples), and we can implement the
idealized helping exchange as originally envisioned.

To enable helping proofs, we set up the following scheme with later credits:
if a helpee wants help from a helper, it pays the helper with a later credit £1,
which is sent along with the atomic update AU in the shared invariant. The
credit remains in the invariant while the update is pending, and can be removed
when the atomic update has been executed. For example, in the troubling case

2Tt is not so important here what this
witness is, only that we need to access
it early. Later credits make this delicate
play obsolete, so we keep it abstract and

brief.

%7 Jung, Logical atomicity in Iris: The good,

the bad, and the ugly, 2019 [Jun19].

142

PART III: LATER CREDITS CHAPTER 13: APPLICATIONS OF LATER CREDITS

of get, the invariant becomes:

Iset(n,R) | (AUge(R) * £1 * pending) V (R(n) * executed) V received ‘N'get

where AUg(R) = AU(n. value,(n),m.m = n * valuey(n))l’;/ is the atomic
update of get.
And that is it! In the presence of later credits, the idealized helping exchange
just works. The later troubles vanish, since the helper always has a credit in
hand when it needs to access an atomic update. For example, if the background
thread needs to access the atomic update AUy, then it can use the later credit
stored along side with AU to eliminate a guarding later from AUge. After-
wards, it can execute the atomic update and return the result R(n). Since the
update is no longer pending, it does not have to put any credits back.
For the helpee, producing the later credit is straightforward. In a non-trivial
logically atomic operation, there are plenty of bookkeeping steps around that
have nothing to do with the linearization point (e.g., the first step of beta
reduction, let bindings, arithmetic, etc.), which all generate credits (see Hoare-
PURE-STEP-CREDIT in Fig. 12.1). Since each of these steps generates a credit, but
there is only one linearization point per operation, there are typically plenty of
credits available.
To validate this point, we used later credits to reprove the major benchmarks
for logical atomicity (e.g., the elimination stack of Jung et al.?®) with our sim- % Jung et al., “Iris: Monoids and in-
plified definition of AU, replacing the three-act play by the idealized helping variants as an orthogonal basis for

h Make-laterable. b | concurrent reasoning”, 2015 [Jun+15].
exc ange. aKe-laterabple, egone.

143

CHAPTER 14

SOUNDNESS OF LATER CREDITS

We have now seen several applications of later credits, but we have yet to

discuss how to justify their soundness. When we add later credits, the main

challenge is that we have to ensure that the program logic remains adequate.

That is, recall the main adequacy statement of Iris (from §4.4 in Part I):

Theorem 72 (Adequacy). If+ {True} e {v. p(v)}, then e is safe to execute in
any heap h and all possible return values v satisfy the pure postcondition ¢(v).

The adequacy theorem turns proofs of Hoare triples - {True} e {v. #(v)} into
a correctness property of e, namely that e is safe to execute and only terminates
in values satisfying ¢. The adequacy theorem in the presence of later credits
will be the main result of this chapter. To explain why it remains sound even
with later credits (in §14.2), we first review (in more detail than in §4.4) how
adequacy is proven traditionally in Iris (in §14.1). For our discussion, we stay
at the same level of abstraction as in §4.11 and, to ease the presentation, we
set concurrency aside. (Of course, in Rocq, we have proven adequacy also for

concurrent programs.)

14.1 Adequacy in Iris

Let us first recall the relevant definitions. Recall that (in §3.3) Hoare triples are
defined as {P} e {v. Q(v)} = O(P - wp e {v. Q(v)}) in Iris, and that (in §4.1)
the weakest precondition without concurrency is defined as:

1>

wpv{w.Q(w)} = BQO(v)
wp e {w.Q(w)} £ Vh.SI(h) -+ Bprogress(e, h) if e ¢ Val
x Ve',h. (e,h) ~ (¢/,h) = >B (SI(K) = wp e’ {w.Q(w)})

In the value case, we prove the postcondition (after an update). In the proper
expression case, we prove that e can make progress in the current heap, and that
for every successor expression e’, we can re-establish the weakest precondition.

Proving adequacy. Let us now turn to the adequacy theorem. To simplify
the proof sketch, we prove a slightly weaker form (which ignores the “safety”
part of Theorem 72 and instead focuses on the postcondition ¢). We start

directly with the underlying weakest precondition:

Lemma 73. If+ wp ey {v. ¢(v)} and (ey, hy) ~" (en, hy) where e, is a value,
then ¢(ey,) holds.

! That is, we set masks and fancy updates
aside. In Rocq, we have of course proven

the adequacy theorem for the more
general version with fancy updates.

To do so, we have replaced the regular
update = in the definition of the fancy
update S1282 (see §4.5.1) with our new

later elimination update =,

145

PART III: LATER CREDITS

Proof Sketch. We initialize the state interpretation SI. In the case of HeapLang,
this means allocating the ghost state for the underlying heap in the state
interpretation (see the definition of SI(h) in §4.1) using the heap ghost theory
from §4.2.2. We obtain

F B SI(hy) * wp ey {v. p(v)}.

Consider the case where n > 0 and (e, hg) ~ (e1, h1) ~""! (ep, hy). We

unfold the weakest precondition and thus obtain:

Vh. SI(h) - B progress(eg, h) *

SI(hg) *
- P ST{ho) (Ve',h'. (eo, h) ~ (€', k") = » B SI(K') = wp € {v.¢(v)})

Since we have the the state interpretation SI and a step of ey, we can instantiate
the assumptions, drop? progress(eo, hg), and obtain

FB > SI(h) * wp e {v. ¢(v)}.

(The two initial update modalities can be folded into one with urp-TRANS.)
Doing the same again for the next step under the modalities “B > B ” yields

F (B> B)? SI(h) + wp ez {v. $(v)}.

We can then inductively repeat this process until we reach the value e,. At that
point, we obtain + (B » B)" B ¢(e,) after dropping the state interpretation.
Thus, the weakest precondition yields our desired postcondition ¢ (e,), albeit
under a number of updates and later modalities. (We arrive at the same conclu-
sion for n = 0.) As the last step, to obtain ¢ (e,) without the updates and laters,
we then use Lemma 74 below. O

Concretely, if one proves a pure proposition ¢ under an interleaving of
updates and laters, then ¢ must hold, since it depends neither on step-indexing

nor on resources:3

Lemma 74. Let ¢ be a pure proposition. If - (B > B)" B¢, then ¢ holds.

Proof Sketch. Recall the model of Iris’s propositions from §4.3 and the entail-
ment P + Q. We pick the step-index n+1. Then we obtain the pure proposition ¢
at step-index 1. Thus ¢ must hold. O

With Lemma 74, we conclude our discussion of the original Iris adequacy proof.

14.2 Modeling Later Credits

With later credits, we introduce an additional layer in between program steps
and laters. In the definition of the weakest precondition above, the later “>”
enables later eliminations (see also §4.1). It tightly couples them to program
steps, since after each program step, we get to eliminate another later. Later
credits relax this connection. With later credits, a credit £1 becomes available
with every program step. We can spend it immediately to eliminate a later, or
we can save it for another proof step. This “amortized” form of reasoning about
later eliminations works, because all that matters for adequacy is that in an
n-step execution at most n laters are eliminated.* It matters less (as we will see
below) when these laters are eliminated, so we delegate the responsibility to

“track” later eliminations to a new modality, the later elimination update B P.

CHAPTER 14: SOUNDNESS OF LATER CREDITS

2 The progress assertion here ensures
that e is not stuck. In the definition
of wp e {v. Q(v)}, it takes care of the
“safety” part of Theorem 72.

* This lemma is a variant of Lemma 38.
This version contains more update
modalities (to match the interleaving
we obtain in Lemma 73), but the two
versions are interchangeable: since one
can always introduce later modalities
with LATER-INTRO and update modali-
ties with UPD-RETURN, Lemma 38 can
be used to derive Lemma 74 and vice
versa.

* Technically, the number of aggregate
laters does not have to be exactly the
same as the number of steps. One can, for
example, allow eliminating f'(n) laters
where f is a monotone function. This has
been implemented in Iris by Matsushita
et al. [Mat+22] (see §15).

146

PART III: LATER CREDITS CHAPTER 14: SOUNDNESS OF LATER CREDITS

The weakest precondition. Staying at the same level of abstraction as above,
we redefine the weakest precondition as:

wp v{w.Q(w)} =B Q(v)
wp e {w. Q(w)}£Vh.SI(h) -+ 5, progress(e, h) if e ¢ Val
xVe' h'.(e,h)~ (',) % £1- . (SI(h") *wp e’ {w. Q(w)})

The changes are highlighted in blue: we use later elimination updates instead
of standard updates, and we make a new credit available after every step.’
In this updated definition, the connection between program steps and later
eliminations is relaxed, because physical steps yield later credits which can
subsequently be used for later eliminations virtually anywhere in the the rest

of a proof.

Adequacy. Let us return to adequacy. For simplicity, we focus again on the

special case (i.e., on Lemma 73 but now for our updated weakest precondition):

Lemma 75. If+ wp e {v. ¢(v)} and (eg, ho) ~" (en, hn) where e, is a value,
then ¢(ey,) holds.

Proof Sketch. The proof starts virtually unchanged, meaning we unfold the
weakest precondition n times and we instantiate the execution of e;. We obtain:

F(Bre(£1 = B)" By $(en)

Instead of updates and laters, here we iterate later elimination updates and
credit assumptions “£1 -«”. We can pull all the credit assumptions out and obtain
£nk (B.BL)" B¢ (en). Using transitivity of “B,,”, this can be simplified
to £n + B ¢(en). From here, the desired goal ¢(e,) follows by chaining
soundness of the later elimination update, Lemma 76 below, and Lemma 74. O

In the proof of Lemma 75, we can see that later credits delegate the responsi-
bility of later management to the later elimination update. The proof boils down
to £n F B, ¢(ey), and from there we can retrieve the “amortized” interleaving
of laters through the following soundness lemma:

Lemma 76 (Soundness of B,,). If £n+ B¢, thent+ (B>B)" B ¢.

In other words, the later elimination update aggregates all of our step-index
decreases and ghost state updates. We first define the later elimination update
B and then return to the proof of Lemma 76 below.

The later elimination update. The later elimination update can be defined
using the existing connectives of Iris, so we never have to touch the underlying
model (from §4.3). In fact, we have discussed almost all the pieces that are
needed to define it. There is just one piece missing, the credit supply £, m.
The credit supply £, m is a piece of ghost state tracking the total number of
available credits. That is, its value m is, at any time, the sum of all the credits
£n distributed in the logic. The resources are an instance of the credit ghost
theory from §4.2.2.6 Thus, it satisfies the following rules:

SUPPLY-BOUND SUPPLY-DECR
fomx£fntm=n fo(n+m) «fnr Bfom

> One change that is not highlighted is
that this definition is no longer a guarded
fixpoint. One option would be to define
it as a least fixpoint (e.g., as in §7.3.1).
Anotbher is to add an additional later

to the definition and then still use a
guarded fixpoint. Since the additional
later modality does not hurt, in the Rocq
implementation, we chose the latter for
easier backwards compatibility.

¢To beipirgcise, the later credits
£n £ | gr}jnc are the fragments and

the supply £om 2 |em "™

is the author-

itative element of the resource algebra
Auth(N, +) from §4.2.1. Both pieces are
connected through the ghost name yj,

which is chosen globally.

147

PART III: LATER CREDITS CHAPTER 14: SOUNDNESS OF LATER CREDITS

The rule surrry-BounD ensures that £, m is an upper bound. The rule surrry-DECR
allows us to decrement the supply by giving up some credits.

We now turn to the later elimination update. Based on what we have seen,
B must be a monad, must connect later credits to later eliminations, and
must enable ghost state updates. We achieve all of these properties with the

following definition:
B.PEVnfin+p((fn * P)V(Am<n.fom * » B P))

Let us break it down. First, the definition quantifies over the current credit
supply £, n. As a consequence, when we prove B,.P, we can make use of the
rules suppLy-DECR and suppLy-BOoUND to (potentially) decrease the credit supply
if we are willing to give up a later credit £1. Second, after an update to the
ghost state, the later elimination update offers a choice: we can either (1) return
the supply and prove P (turning it into a standard update), or (2) decrease
the supply and correspondingly wrap the goal with a later, thereby enabling
one later to be eliminated from any assumption in the context. (Note that the
latter case is analogous to how » was used to support later elimination in Iris’s
original definition of the weakest precondition from §4.1.) Finally, the definition
is recursive, so we can repeat both ghost state updates and later eliminations
(if we have additional credits). This recursion is handled with Iris’s guarded
fixpoints (see §4.3).

Let us now return to the soundness statement of the later elimination update:

Lemma 76. If fn+ B¢, thent+ (Br»B2)" B ¢.

Proof Sketch. We allocate £, n and £n, meaning we obtain + B (fon * £n).
Using our assumption £n + B,$, we obtain + B (£ n * B.¢). Analogous
to the adequacy proof of the weakest precondition, we then unroll the later
elimination update. That is, after unfolding “B,,”, we have:

FRfns(VnfinxB((fn x) V(@Am<n fom = > B ¢9)))

which can be simplified to - BB (fon * ¢) V (Im < n. p(fam * B .4)). In
the left branch of the disjunction, we are done (using UPD-RETURN, UPD-BIND,
and LATER-INTRO in Fig. 12.2). In the right branch, we are in a similar situation
as before: we have a separating conjunction of the credit supply and a later
elimination update (i.e, fem * B,.4). Thus, we can repeat the unfold-then-
simplify step. Every time we consider the right branch, the credit supply
decreases (e.g., from n to some m < n) and, since n is finite, this decrease can
happen at most n times. Consequently, after n unfold-then-simplify steps, we
know the left branch must have been chosen. O

Backwards compatibility. In large parts of Iris, including the weakest pre-
condition and the definition of fancy updates (i.e., mask-changing updates;
see §4.5.1), we replace the standard update modality “B” with the later elimi-
nation update “,,”. Since B, and B satisfy nearly identical rules, the later
credits mechanism is mostly backwards compatible. In fact, since the later cred-
its paper was published, later credits have been integrated into the main Iris
development. The only rules that the new update modality does not satisfy are
interaction rules with Iris’s “plainly modality” m P. These rules were introduced
by Timany et al.® for a logical relation for Haskell’s ST monad, but are rarely
used elsewhere in the Iris ecosystem.

7 At this point, the global ghost name
Yic is chosen and, technically, the

assumption £n + [5,¢ must hold for
all choices of the global ghost name yj.
To avoid cluttering the presentation, we

omit it here.

8 Timany et al., “A logical relation for

monadic encapsulation of state: Proving
contextual equivalences in the presence

of runST”, 2018 [Tim+18].

148

CHAPTER 15

EXTENSIONS OF LATER CREDITS

In this chapter, we discuss prior techniques to generalize step-indexing and
explain how later credits complement them. We give an overview of the tech-
niques in the following table:

Later eliminations per program step

1 ~1 ~1 ~1 ~ 1
k ~k ~k ~k ~k ...

1 ~2 ~3 ~4 ~»5

Traditional step-indexing
Folklore extension for fixed k
Flexible step-indexing
for arbitrary n;

Transfinite step-indexing | n; ~ nz ~> n3~> ng~> ns ...

Traditional step-indexing allows for the elimination of exactly one later per pro-
gram step. It is folklore that this can be relaxed to k laters per step. Matsushita
et al.! show that the number k does not have to be fixed upfront, but can depend
on the program execution, so one can eliminate 1 later after the first step, 2
after the second, 3 after the third, etc. This extension of step-indexing uses
time receipts® to keep track of the number of program steps. It is also possible
to eliminate an arbitrary number of laters per step as shown by Svendsen,
Sieczkowski, and Birkedal® using transfinite step-indexing. In particular, as
briefly mentioned in §9.2, the safety program logic of Transfinite Iris (from
Part II) allows one to eliminate an arbitrary number of laters per step.*

In all of these techniques, later elimination remains coupled to program
steps—i.e., a later can only be eliminated if the goal is a weakest precondition.
Later credits are fundamentally different, because they turn the right to elimi-
nate a later into an ownable resource £1 that can be saved and used even when
the goal is merely an update modality. This decoupling is crucial for proofs
where there is no program in sight when a later needs to be eliminated (e.g.,
the examples from §13.1 and §13.2).

That said, later credits can be combined with these techniques to unlock
additional, interesting applications. We combine flexible step-indexing and later
credits (in §15.1) and use them for two examples: prepaid invariants and reverse
refinements. We then discuss the extension of later credits to transfinite step-
indexing and point out trade-offs compared to flexible step-indexing (§15.2).

15.1 Flexible Step-Indexing

Similar to Matsushita et al.’> and Mével, Jourdan, and Pottier,® we use time
receipts to reflect the number of previous program steps into Iris. The rules
of our extension are shown in Fig. 15.1. Each execution step produces a time

! Matsushita et al., “RustHornBelt: A
semantic foundation for functional
verification of Rust programs with unsafe
code”, 2022 [Mat+22].

2 Mével, Jourdan, and Pottier, “Time
credits and time receipts in Iris”, 2019
[MJP19].

3 Svendsen, Sieczkowski, and Birkedal,
“Transfinite step-indexing: Decoupling
concrete and logical steps”, 2016 [SSB16].

* The liveness logic of Transfinite Iris
(see §7.3) allows one later elimination
per target and source step. As in the
safety logic, this could be generalized to
an arbitrary number of laters. But also
in the liveness logic, later eliminations
remain coupled to program steps (see,
e.g., Fig. 7.3).

> Matsushita et al., “RustHornBelt: A
semantic foundation for functional
verification of Rust programs with unsafe
code”, 2022 [Mat+22].

¢ Mével, Jourdan, and Pottier, “Time
credits and time receipts in Iris”, 2019
[MJP19].

149

PART III: LATER CREDITS CHAPTER 15: EXTENSIONS OF LATER CREDITS

RECEIPT-SPLIT RECEIPT-TIMELESS
X(n+m)A-Xn*Xm timeless(Xn)
HOARE-PURE-STEP-RECEIPT HOARE-RECEIPT-CREDITS-POST
{P+£1+X1} e {v.0(v)}g €1 —pure €2 {P}e{v.Q(v)}g e ¢Val
{P}e1 {v.0(v)}¢ {P+ZXn}e{v.Q(v) * £n x Xn}g

receipt X1 and a credit £1 (noare-pUre-sTEP-RECEIPT). The receipts can be used
to generate later credits (HOARE-RECEIPT-CREDITS-POST). That is, if we own n
receipts Xn, then we can leverage these receipts to generate an additional n
credits £n after the next step of execution.

We now briefly sketch two applications of this extension.

s 1 . s . N =N
Prepaid invariants. Prepaid invariants pre =2 |Rx£1xX1| storealater

credit and a time receipt. Their rules are as follows:
INV-PRE-ALLOC
N

{pa[Ryte fo. Q(v)}a

{P+£1xX1+>R}e{v.Q(v)}g

INV-PRE-OPEN

{R=Pte{v.R*Q(W)}g\n Ncé&E e physically atomic
N
{pre * P} e {v. Q(V)}S

Their distinguishing feature is that they can be opened around physically atomic

instructions without a guarding later (inv-pre-oPEN). The trick is that when we
open the underlying invariant the later credit £1 can be used to eliminate the
guarding later from R, and the time receipt X 1 can be used to restore the later
credit in the postcondition (with HOARE-RECEIPT-CREDITS-POST). A consequence
of this trick is that we need to provide a credit and receipt when allocating
the invariant (inv-pre-aLLoC). Since there is no “»” in inv-pre-oPEN, We do not
have to worry about later elimination when we work with, for example, nested
invariants. In particular, with prepaid invariants, the nested invariant from §11
would not be an issue. However, we cannot open prepaid invariants around
updates without a guarding later (see inv-oren-uPD in §13.1.1), because updates

do not generate later credits.

Reverse refinements. Later credits with flexible step-indexing can also solve
an issue with step-indexed logical relations described by Svendsen, Sieczkowski,
and Birkedal.” The problem they highlight involves proving a contextual
equivalence F e = e : 7 for all expressions e : 7 given a function F : 7 — 7.
One strategy to show such an equivalence is to split proving the equivalence
into the two contextual refinements Fe < e : 7 and e < F e : 7. To prove
these contextual refinements, one can prove the expressions logically refine
each other, according to a step-indexed logical relation <o, (analogous to §13.1).
In a logical refinement of the form e; <jog €3 : 7, steps of e; allow elimination
of laters. Thus, in the direction F e <o € : 7, evaluating F e takes steps that
provide opportunities to eliminate laters. In the reverse refinement e <5 Fe : 7,

Figure 15.1: The proof rules
for later credits with flexible
step-indexing.

7 Svendsen, Sieczkowski, and Birkedal,
“Transfinite step-indexing: Decoupling
concrete and logical steps”, 2016 [SSB16].

150

PART III: LATER CREDITS CHAPTER 15: EXTENSIONS OF LATER CREDITS

that is not the case—we need to prove e <|o; F e : 7 for all e : 7, meaning that e
could be a value, which takes no steps.

Svendsen, Sieczkowski, and Birkedal use a transfinite step-indexed logical
relation to address this. But transfinite step-indexed models come with trade-
offs (see §9.2 and §15.2), so we show that later credits provide an alternate
solution. We do this by extending ReLoC and proving the reverse refinement
example of Svendsen, Sieczkowski, and Birkedal, as well as a new and more
difficult example involving concurrent memoization. The details can be found

in the appendix accompanying the later credits paper.® ¥ Spies et al., Later Credits Rocq develop-
ment and technical documentation, 2022
[Spi+22b].

15.2 Transfinite Step-Indexing

When combining Transfinite Iris (from Part II) with later credits, we obtain a
rule that allows us to allocate an arbitrary number of credits in the postcondition

of an expression:

HOARE-CREDITS-POST

{P}e{v.0(v)} e ¢ Val
{P}e{v.Q(v) * £n}

At first glance, this may seem like a strict improvement over flexible step-
indexing since it lets us obtain n credits in each step without the need for
time receipts (cf. HOARE-RECEIPT-CREDITS-POST). But there is a trade-off: As
discussed in §9.2, the later commuting rules for existential quantification and
separating conjunction (LATER-sEp and LATER-Ex1sTS in Fig. 12.2) are not sound in
a transfinite model and are used in existing Iris proofs (e.g., for logical atomicity).
Conversely, the rule Hoare-crepITS-POST is unsound in a finitely step-indexed
model. Thus, advanced users of later credits have a choice: work in the flexible
finite model with time receipts, or work in the transfinite model without the
commuting rules.

On the flip side, if one works in a transfinitely step-indexed setting, then
later credits also provide a way to mitigate the missing commuting rules. For
example, if we need the contents of an invariant before a step—instead of of
using the commuting rules—one could use a later credit to remove the guarding
later right away. As the rule HoARre-creDITS-POST Shows, in principle, one has
ample later credits available in Transfinite Iris. In fact, one can even define a
transfinite version of later credits £ in Transfinite Iris with ordinals instead of
natural numbers and Hessenberg ordinal addition (discussed in §7.2) instead
of regular natural number addition. With these credits one can obtain an
ordinal number of credits per step (e.g., credits to eliminate an arbitrary,
finite number of laters subsequently). The definition of the later elimination

update |, generalizes naturally to the transfinite case.

151

CHAPTER 16

RELATED WORK

Multiple later eliminations per step. Svendsen, Sieczkowski, and Birkedal!
and Matsushita et al.2 have proposed techniques to generalize the traditional
approach of “one later per step” to allow multiple step-index decreases per step.
We have discussed these techniques in §15. As explained there, later credits are
not an alternative to these techniques, they complement them. In particular, for
the applications presented in this work—especially those in §13—it is vital that
we can eliminate later modalities even when we are not proving a Hoare triple,

which neither approach supports.

Steel. Steel® is a shallow embedding of concurrent separation logic in F*.
Inspired by Iris, Steel supports dynamically allocated invariants but unlike
Iris, opening an invariant in Steel does not introduce a later. Nevertheless, the
underlying soundness argument crucially relies on program steps [Swa+20,
Page 18], as in Iris. The difference arises because Steel treats ghost operations
such as opening invariants as explicit ghost code that can take steps (which can
then be erased before execution), allowing them to hide the later modality from
the rule for opening invariants. The price for this more convenient interface is
a loss in expressiveness—there is no Steel connective corresponding to Iris’s
update modality (“ghost actions without code”, which logically atomic specifi-
cations are built on), and the authors of Steel say that “contextual refinement

proofs are beyond what is possible in Steel” [Fro+21, Page 27].

Logical atomicity and linearizability. The main point of logical atomicity
is to put user-defined, linearizable operations on (almost) the same footing
as physically atomic instructions. In particular, users can open invariants
around logically atomic operations. Prior work on logical atomicity either does
not support helping? or relies on impredicative invariants in a step-indexed
separation logic® with its suite of later elimination challenges. Later credits
thus represent a significant step forward for logical atomicity proofs in general.

As Birkedal et al.® show, logical atomicity can also be used to prove the more
traditional notion of linearizability.” To express and prove linearizability, many
alternative approaches have been studied in prior work.® Those alternatives do
not rely on impredicative invariants and, hence, they do not suffer from the
step-indexing problems that later credits help solve. Instead, they have other
means of expressing and establishing linearizability (e.g., specifications that
expose the effects of linearizable operations using a PCM of event histories”).
What these approaches cannot do, compared to logical atomicity, is allow clients
to treat linearizable operations “as if” they were physically atomic, meaning

! Svendsen, Sieczkowski, and Birkedal,
“Transfinite step-indexing: Decoupling
concrete and logical steps”, 2016 [SSB16].

2 Matsushita et al., “RustHornBelt: A
semantic foundation for functional
verification of Rust programs with unsafe
code”, 2022 [Mat+22].

* Swamy et al., “SteelCore: An extensible
concurrent separation logic for effectful
dependently typed programs”, 2020
[Swa+20]; Fromherz et al., “Steel: Proof-
oriented programming in a dependently
typed concurrent separation logic”, 2021
[Fro+21].

* Rocha Pinto, Dinsdale-Young, and
Gardner, “TaDA: A logic for time and
data abstraction”, 2014 [RDG14].

> Svendsen and Birkedal, “Impredicative
concurrent abstract predicates”, 2014
[SB14]; Jung et al., “Iris: Monoids and
invariants as an orthogonal basis for
concurrent reasoning”, 2015 [Jun+15];
Jung et al., “The future is ours: Prophecy
variables in separation logic”, 2020
[Jun+20].

¢ Birkedal et al., “Theorems for free from
separation logic specifications”, 2021
[Bir+21].

" Herlihy and Wing, “Linearizability: A
correctness condition for concurrent
objects”, 1990 [HW90].

8 Elmas et al., “Simplifying linearizability
proofs with reduction and abstraction”,
2010 [Elm+10]; Liang and Feng, “Modular
verification of linearizability with
non-fixed linearization points”, 2013
[LF13]; Turon, Dreyer, and Birkedal,
“Unifying refinement and Hoare-style
reasoning in a logic for higher-order
concurrency”, 2013 [TDB13]; Sergey,
Nanevski, and Banerjee, “Specifying

and verifying concurrent algorithms
with histories and subjectivity”, 2015
[SNB15]; Chakraborty et al., “Aspect-
oriented linearizability proofs”, 2015
[Cha+15]; Khyzha, Gotsman, and
Parkinson, “A generic logic for proving
linearizability”, 2016 [KGP16]; Nanevski
et al,, “Specifying concurrent programs
in separation logic: Morphisms and
simulations”, 2019 [Nan+19].

? Sergey, Nanevski, and Banerjee,
“Specifying and verifying concurrent al-
gorithms with histories and subjectivity”,
2015 [SNB15]; Nanevski et al., “Specify-
ing concurrent programs in separation
logic: Morphisms and simulations”, 2019
[Nan+19].

153

PART III: LATER CREDITS

clients cannot open invariants around such user-defined operations, which is
the main selling point of logical atomicity.

Reordering refinements. For stateful programming languages, Benton et
al. investigated reordering refinements based on type-and-effect systems in a
series of papers.!? Their work was extended by Birkedal et al. [Bir+16]!! to a
language with higher-order state and effect-masking. We focus on the work
of Krogh-Jespersen, Svendsen, and Birkedal [KSB17]'? (which generalizes the
work of Birkedal et al. [Bir+16]) and on the work of Timany et al. [Tim+18],!3
because they consider languages with cyclic features such as higher-order state
and recursive types. These cyclic features are typically what motivate the use
of step-indexing in a logical relation, but they also add an additional layer of
complexity in reordering proofs.

Krogh-Jespersen, Svendsen, and Birkedal [KSB17] prove reorderings in a
concurrent stateful language with an effect type system; their model supports
reorderings of operations that write to disjoint parts of the heap and thus does
not scale to the promise operations in §13.1.

Timany et al. [Tim+18] prove reorderings for a sequential language in the
presence of Haskell’s ST monad. They verify reorderings of pure computa-
tions (with stateful subcomputations encapsulated using ST), but for stateful
computations they only show the expected monadic rules for the state monad.
As mentioned earlier, our definition of reordering refinement is inspired by
the work of Timany et al. The crucial difference is that we “bake in” support
for later credits. As a consequence, we can prove the higher-order stateful
reorderings of the promise operations (in §13.1), which are beyond the model
of Timany et al. The key step in the proof, where we use an impredicative
invariant to transfer the source execution between operations, is only possible
because we can use later credits to eliminate the irksome laters that pop up.

CHAPTER 16: RELATED WORK

Benton et al., “Reading, writing and
relations”, 2006 [Ben+06]; Benton and
Buchlovsky, “Semantics of an effect
analysis for exceptions”, 2007 [BB07];
Benton et al., “Relational semantics for
effect-based program transformations
with dynamic allocation”, 2007 [Ben+07];
Benton et al., “Relational semantics for
effect-based program transformations:
Higher-order store”, 2009 [Ben+09].

' Birkedal et al., “A Kripke logical
relation for effect-based program
transformations”, 2016 [Bir+16].

2 Krogh-Jespersen, Svendsen, and
Birkedal, “A relational model of types-
and-effects in higher-order concurrent
separation logic”, 2017 [KSB17].

3 Timany et al., “A logical relation for
monadic encapsulation of state: Proving
contextual equivalences in the presence
of runST”, 2018 [Tim+18].

154

155

PArT IV

QUIVER

CHAPTER 17

INTRODUCTION

Verifying functional correctness of large, stateful programs is one of the old-
est challenges in computer science, tracing back to the work of Hoare! and
Floyd.2 Over the last two decades, a number of deductive verification tools
based on separation logic have made remarkable progress in this direction,
including VeriFast,®> CFML,* Bedrock,’ GRASShopper,6 VST,’ Viper,8 Gillian,’
Perennial,'” RefinedC,!! and CN'2. They provide exceptionally strong verifica-
tion guarantees (e.g., memory safety and functional correctness in a pointer-
manipulating language like C) by working with rich forms of separation logic,
featuring, e.g., custom predicates, user-defined functions, detailed program-
ming language semantics, and large mathematical theories. In many cases, they
even establish these guarantees foundationally—by producing machine checked
proofs in proof assistants like Rocq.

Sadly, the overhead of functional correctness verification is considerable. For
example, for manual verification in a proof assistant, the proofs are typically
an order of magnitude larger than the code (see, e.g., the work of Chajed et
al. [Cha+21, Fig. 12] and Cao et al. [Cao+18, §11]). Hence, one of the longstand-
ing goals has been to reduce this overhead—to scale verification to larger code
bases, lower the entry barrier, and reduce the overall effort. Toward this goal,
many of the aforementioned techniques have made great strides by developing
proof automation (e.g., [Jac+11; PWZ14; MSS17; Sam+21; San+20; Pul+23]),
which often shrinks the overhead to—or even below—the code size (see, e.g.,
the work of Pulte et al. [Pul+23, §5]). Instead of manual correctness proofs,
these tools take as input the program code and one specification per function
and then validate the program against the specification. To be precise, they

offer the following verification paradigm:

code + specification (+ annotations & proofs) = OK/failure (verification)

where the user provides code, specification, and in some cases additional annota-
tions (e.g., to guide the proof search) and proofs (e.g., lemmas in a proof assistant)
and, then, the tool outputs OK (possibly with a proof) or failure (possibly with
an error message), depending on whether the verification succeeded or not.
However, for verification of functional correctness to truly scale one day,
proof automation alone might not be enough. The reason is that, in the current
verification paradigm, even if the number of annotations decreases in the future
and the proof component shrinks due to better proof automation, the resulting
tools still require their users to provide specifications manually. And these
specifications are rarely small. For a recent example, take RefinedC [Sam+21].
RefinedC targets proof automation for foundational verification of C code. Cor-

! Hoare, “An axiomatic basis for com-
puter programming”, 1969 [Hoa69].

?Floyd, “Assigning meanings to pro-
grams”, 1967 [Flo67].

* Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11].

* Charguéraud, “Characteristic formu-
lae for the verification of imperative
programs”, 2011 [Chal1].

> Chlipala, “Mostly-automated ver-
ification of low-level programs in
computational separation logic”, 2011
[Chl11].

¢ Piskac, Wies, and Zufferey, “GRASShop-
per - complete heap verification with
mixed specifications”, 2014 [PWZ14].

7 Appel, “Verified Software Toolchain”,
2012 [App12]; Cao et al.,, “VST-Floyd: A
separation logic tool to verify correctness
of C programs”, 2018 [Cao+18].

8 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure
for permission-based reasoning”, 2017
[MSS17].

° Santos et al., “Gillian, Part I: A multi-
language platform for symbolic execu-
tion”, 2020 [San+20]; Maksimovic et al.,
“Gillian, Part II: Real-world verification
for JavaScript and C”, 2021 [Mak+21].

1% Chajed et al., “Verifying concurrent,
crash-safe systems with Perennial”, 2019
[Cha+19a].

"' Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

2 pulte et al., “CN: Verifying systems C
code with separation-logic refinement
types”, 2023 [Pul+23].

159

PART IV: QUIVER

respondingly, regarding proof overhead, its “relative annotation overhead is
moderate—less than 0.7 for all examples that do not involve complex side condi-
tions” [Sam+21, §7]. But this statistic does not include the specification overhead,
which is considerable in its own right: specifications contribute an additional
30-50 percent of the code size to the total verification overhead [Sam+21, Fig. 7].
Moreover, specifications often impose as much of a burden on the verification
effort as do annotations, forcing the user to supply tedious side conditions
about integer arithmetic, nontrivial preconditions about pointers, error cases,
and conditionals over the possible return values.

Specification inference. So how can we meaningfully reduce the specifica-
tion overhead of deductive separation logic techniques? The answer that we
explore in this part of the dissertation is to fundamentally change the verifi-
cation paradigm. Instead of treating the specification as an input, make it an
output of the verification:

code (+ specification sketches) = specification/failure (inference)

That is, given the code together with possibly additional hints in the form of
specification sketches (explained below), our goal is to infer a specification based
on the code. Working in separation logic, this specification can then be used (1)
compositionally in the verification of other code, (2) to infer specifications of
clients, or (3) by humans to compare the specification against their expectations.
Specification inference is an even harder problem than traditional program
verification—it decreases the user-provided input and increases the desired
output. Accordingly, it is not solved all at once. With Quiver, we embark
on the crucial next steps of this journey. Quiver is the first technique for
inferring—and foundationally verifying—functional correctness specifications
in separation logic. It takes in sketches of function specifications and completes
them to a full separation logic specification—adding missing preconditions,
inferring postconditions, and filling out user-determined holes. To achieve
this goal, Quiver proposes a new verification approach, abductive deductive
verification, which integrates ideas from abductive inference with deductive
separation logic verification to infer specifications in separation logic.

Automating separation logic. For deductive separation logic verification
and automation, we follow in the footsteps of RefinedC.!> RefinedC is a recently
developed separation logic verification technique—built on top of Iris—for
establishing functional correctness of C code. Its distinguishing feature is
that it is foundational and, additionally, automated: Embedded into the Rocq
proof assistant, RefinedC (1) provides powerful automation of separation logic,
(2) inherits support for a large variety of functional correctness reasoning
from Rocq’s ambient meta-logic, and (3) is proven sound against Caesium, a
detailed model of the C semantics in Rocq. For Quiver, we take inspiration from
RefinedC’s approach to separation logic proof automation (i.e., goal-directed
proof search for weakest preconditions; see §18), its separation logic-based
type system for handling the complexities of C, and its embedding into Rocq to
support a large variety of mathematical theories.

As mentioned above, a weak spot of RefinedC is that it—like other deductive
verification tools—requires considerable amounts of specification. To illustrate

CHAPTER 17: INTRODUCTION

3 Sammler et al., “RefinedC: Automating
the foundational verification of C code

with refined ownership types”, 2021
[Sam+21].

160

PART IV: QUIVER

CHAPTER 17: INTRODUCTION

1 [[rc::parameters(n: Z)1] 11 [[rc::parameters(n: Z)]1]

2 [[rc::args(n @ int<size_t>)1] 12 [[rc::args(n @ int<size_t>)1]]

3 [[rc::exists(l : loc)1] 13 [[rc::exists(1l : loc)1]

4 [[rc::returns(l @ &own<uninit<n>>)7]] 14 [[rc::returns(l @ &own<zeros<n>>)]]
5 [[rc::ensures(block 1 n)]] 15 [[rc::ensures(block 1 n)1]

6 void *xmalloc(size_t size) { 16 void *xzalloc(size_t size) {

7 void *ptr = malloc(size); 17 void *ptr = xmalloc(size);

8 if (ptr == NULL) abort(); 18 memset(ptr, 0, size);

9 return ptr; 19 return ptr;

10 3} 20 }

Figure 17.1: Wrappers for mem-
ory allocation in C.

{n € size_t}malloc(n) {v.v=NULL V (3¢,w.v =1 * £ — w * uninit(w, n) = block £ n)}

{€ v * uninit(v,n)*xn € size_t} memset(¢,0,n) {_. Iw. £+ w * zeros(w, n)}

{True} abort() {_. False}

{n € size_t} xmalloc(n) {v. 3¢, w.v = £ * £ w * uninit(w, n) = block £ n}

{n € size_t} xzalloc(n) {v. 3, w.v= £ = £+ w * zeros(w, n) = block £ n}

this point, let us consider a poster child example for specification inference.
The functions xmalloc and xzalloc, depicted in Fig. 17.1, are simple helper
functions for wrapping memory allocation in C (inspired by similar wrappers in
popular open source projects'#). They encapsulate common patterns such as (1)
handling the case that allocation fails and malloc returns NULL (xmalloc) and (2)
initializing freshly allocated memory with zeros (xzalloc). The implementations
of the two functions are dead simple. Yet, when verifying them in RefinedC,
we end up writing as many lines of specification (Lines 1-5 and Lines 11-15)
as there are lines of code. And for no good reason: as we will see below, the
specifications of xmalloc and xzalloc can be inferred from those of malloc,

memset, and abort.

Abductive inference. A key building block for us in reducing the specifi-
cation burden is the idea of abductive inference in the sense that we infer the
specification for a piece of code by “puzzling together” existing specifications
for its component parts. To illustrate this idea, let us assemble the specifications
of xmalloc and xzalloc from the auxiliary operations malloc, memset, and abort.
The specifications of all operations are depicted in Fig. 17.2. (For simplicity,
we phrase these specifications in a separation logic instead of RefinedC’s type
system.) The operation malloc takes a size_t integer n and returns either NULL
or a pointer £ to a memory block of size n (denoted block ¢ n) whose contents w
are uninitialized (denoted uninit(w, n)). The operation memset, called with zero,
initializes the contents of a pointer with zeros (denoted zeros(w, n)), and the
operation abort never returns (postcondition False). Using these specifications,
we can assemble the specification of xmalloc (and analogously xzalloc) as fol-
lows: The precondition n € size_t is inherited from malloc. The postcondition
is derived from the post of malloc knowing that, in the NULL-case, we never
return due to abort.

Figure 17.2: Memory operations

and wrappers in separation logic.

" Cyrus IMAPD, Cyrus IMAPD memory
wrapper operations, 2025 [Cyr25]; Git, Git
memory wrapper operations, 2025 [Git25];
Redis, Redis memory wrapper operations,
2025 [Red25a].

161

PART IV: QUIVER

The idea of using abductive inference in separation logic is not new. It was
first pioneered by bi-abduction,'® a landmark technique for compositional shape
analysis based on separation logic. Bi-abduction is one of the cornerstones
of Meta’s Infer tool for detecting bugs in millions of lines of code!® and also
inspired a line of research on bug finding using incorrectness logic.!” It takes
as input the code of a function and generates a separation logic specification
that summarizes the footprint of the code via abductive inference. However, in
the interest of supporting “push-button” automation, bi-abduction focuses on
fixed, restricted fragments of separation logic. For example, the original work
of Calcagno et al.!8 restricts attention to points-to assertions £ — v, list segments
Iseg(?, r), and equalities v = v". As such, it cannot express—or abductively infer—
for example, the specifications of xmalloc and xzalloc in Fig. 17.2, since they
go beyond this fragment.!’

Abductive deductive verification. With Quiver, we pursue a fundamen-
tally different approach. Rather than trying to build push-button automation
by restricting the separation logic fragment, we instead aim to integrate abduc-
tive inference into deductive verification approaches that already handle rich
fragments of separation logic. To do so, we introduce a new technique we call
abductive deductive verification. The main abductive deductive verification judg-
ment A * [R] + wp e {®} (where we abbreviate wp e {®} = wp e {v. D(v)})
marries deductive separation logic verification, via the weakest precondition con-
nective wp e {®} (see §3.1), with abductive inference of a precondition R, via
the abduction judgment A = [R] + G. Concretely, deriving A = [R] + wp e {®}
corresponds to deductively verifying the expression e in the context A while,
simultaneously, abductively inferring any missing resources R that are needed
to do so. By combining both styles of reasoning, we maintain the ability to
deductively verify programs with rich separation logic specifications while
additionally benefiting from the advantages of specification inference (e.g.,
inferring the specification of xmalloc while verifying it; see §22.2).
Specification sketches. Since Quiver targets rich separation logics, fully
automatically puzzling together specifications is not always the right choice
(or even feasible). Consider the following extension of the previous example—a
function that allocates a vector initialized with zeros:

21 vec_t mkvec(int n) {

22 size_t s = sizeof(int) * (size_t)n;

23 vec_t vec = xmalloc(sizeof(struct vector));
24 vec->data = xzalloc(s);

25 vec->len = n;

26 [[q::type(? @vec_t)]] return vec;

27 3}

(For now, we ask the reader to ignore the annotation “[[q: :...]]".) A standard
functional correctness specification for mkvec would be

{n € int = n > 0} mkvec(n) {v. vec(v,0™)}

where vec(v, xs) is an abstract predicate for vectors with contents xs (a list
of integers) and 0" is a list filled with n zeros. If we simply “puzzle together”
a specification for mkvec based on the specifications of xmalloc and xzalloc

CHAPTER 17: INTRODUCTION

15 Calcagno et al., “Compositional shape
analysis by means of bi-abduction”, 2009
[Cal+09]; Calcagno et al., “Compositional
shape analysis by means of bi-abduction”,
2011 [Cal+11].

!¢ Calcagno et al., Go Huge or Go Home:
POPL’19 Most Influential Paper Retrospec-
tive, 2019 [Cal+19].

7 O’Hearn, “Incorrectness Logic”, 2020
[OHe20]; Raad et al., “Local reasoning
about the presence of bugs: Incorrectness
Separation Logic”, 2020 [Raa+20]; Le

et al., “Finding real bugs in big programs
with incorrectness logic”, 2022 [Le+22].

18 Calcagno et al., “Compositional shape
analysis by means of bi-abduction”, 2009
[Cal+09]; Calcagno et al., “Compositional
shape analysis by means of bi-abduction”,
2011 [Cal+11].

¥ Modifying this fragment is a chal-
lenging feat. Considerable follow-on
work has gone into adding individual
extensions (e.g., linear integer arith-
metic [Tri+13] or low-level pointer
representation [Hol+22]). See §23 for an
overview.

162

PART IV: QUIVER CHAPTER 17: INTRODUCTION

(in Fig. 17.2), however, we would arrive at a low-level specification in terms
of points-to assertions and the zeros-predicate—not a high-level specification
about vectors. It would look like something along the lines of:

{neintxn>0}
mkvec(n)
{v At,r.v="_ =« t—{data=r,len=n} = block{’szvec}
"% Jw. ri>w * zeros(w, szint-n) * block r (szint-n)

where szint £ sizeof(int) and szyec = sizeof(struct vector). The under-
lying issue is that a single function can have multiple specifications at different
levels of abstraction. By only puzzling together known specifications, we may
end up with one at a lower level of abstraction. To find “the right one”, we have
to take the intent of the developer into account. This is why, in Quiver, we

guide the inference using specification sketches.

Guided specification inference a la Quiver. That is, Quiver explores the
middle ground in between (a) taking a complete specification as user input and
verifying the code (as in RefinedC) and (b) taking only the code as input and
inferring the entire specification (as in bi-abduction). We take a specification
sketch as input, use it to resolve ambiguity, and complete it to a full specification—
but without requiring the user to provide every little detail.

Quiver works in three steps:

1. Data type declarations. First, the user defines their custom data types that
are used in the code (e.g., arrays, linked lists, maps, buffers, vectors, etc.).
This step includes choosing mathematical domains, imposing invariants on

values, and relating mathematical and physical representations.

2. Function specification sketches. Second, the user can provide sketches for
functions. These sketches are similar to separation logic specifications (e.g.,
describing the abstract predicates for arguments). There is, however, a
crucial difference: they are incomplete with holes for, e.g., arguments of
abstract predicates, additional constraints, and missing ownership.

3. Specification inference. Finally, Quiver takes this sketch and completes it into
a specification for the entire function using abductive deductive verification.
This includes adding missing preconditions, making imprecise annotations
precise, adding constraints for unspecified function arguments, and figuring
out the postcondition of the function.

In the resulting system, users control how much specification they want to
provide. By default, if the inference is successful, the resulting specification
closely follows the code. If the user decides to “sprinkle in” some annotations
that constrain function arguments or local variables to a certain data type,
Quiver takes these into account and adjusts the specification accordingly. And
if the user provides the complete function specification, Quiver turns into a
traditional technique for verifying functional correctness. For example, the
specifications of xmalloc and xzalloc can be derived fully automatically without
any sketches. For mkvec, we only add the sketch in Line 26: it instructs Quiver
that the return value is a vector, which results in the high-level vec-specification.

163

PART IV: QUIVER

Contributions. Our key theoretical contribution in this part of the disser-
tation is the approach of Abductive Deductive Verification (§18), which
provides a powerful basis for specification inference in rich separation logics.
With the abductive deductive verification judgment A * [R] + wp e {D}, we
marry traditional deductive verification via the weakest precondition wp e {®}
with abductive inference via the abduction judgment A = [R] + G.

Our key technical contribution is that we realize abductive deductive verifi-

cation in the form of Quiver, which consists of four parts:

+ The abduction engine Argon (§19), which automates the abduction judgment
A = [R] + G. Its key contribution is a goal-directed proof search procedure
for abductive inference. It supports predicate-transformer style reasoning,
necessitated by the weakest precondition wp e {®}, provides extensible proof
search, and has powerful support for instantiating existential quantifiers.

« The type system Thorium (§20), which uses types in separation logic (d
laRefinedC) to scale automated reasoning about the weakest precondition
wp e {®} to the complexities of C. Its key contribution is that it works under
incomplete information about the proof context A, meaning it works even
when the types that are supposed to guide the proof search are yet to be
determined.

« A proof-of-concept Implementation (§21) in the Rocq proof assistant—
with a frontend for C, building on Iris and RefinedC’s Caesium semantics
for C. The implementation infers specifications and, at the same time, proves
them correct in Rocq, which includes proving the absence of out-of-bounds

accesses, use-after-free, and integer overflows.

+ An Evaluation (§22), applying Quiver to several interesting case studies,
including a dynamically-allocated vector data type and code from popular
open-source libraries.

The implementation and all inferred specifications are provided in the Quiver
Rocq development. The Quiver paper is additionally accompanied by an ap-

pendix containing further details on the inferred specifications.?

Limitations. Quiver does not infer loop invariants, but supports manually
provided invariants. Similarly, Quiver does not infer or complete specifications
of recursive functions. Quiver does not infer specifications of function pointers
and only handles sequential code. Moreover, while Quiver builds on the detailed
Caesium C semantics, Quiver does not handle all features of C. In particular, it
does not enforce that pointer accesses are aligned, it does not support unions, it
does not support integer-pointer casts, and it inherits the limitations of Caesium
(e.g., no floating point numbers).

CHAPTER 17: INTRODUCTION

0 Spies et al., Quiver: Guided abductive
inference of separation logic specifications
in Coq (Rocq development and appendix),

2024 [Spi+24b].

164

CHAPTER 18

ABDUCTIVE DEDUCTIVE VERIFICATION

In this chapter, we explain our approach of abductive deductive verification.
Concretely, we discuss the abductive deductive verification judgment A * [R] +
wp e {®} (in §18.1), the treatment of existential quantification (in §18.2), and
how we steer the inference via specification sketches (in §18.3). To avoid getting
bogged down in the details of C, we focus on a simple, expository language
Aexpo for this explanation. From §19 onwards, we will then explain how we
scale the approach to actual C code.

Expressions e
Assertions P,Q

A running example. The language Aexp, is depicted in Fig. 18.1. Inspired by
HeapLang, it is a simple, substitution-based language with heap-allocated data
structures.! In Aexpo> heap-allocated data structures are modeled as mutable,
finite maps ¢ from fields to values (similar to objects in JavaScript). We write
dom t for the fields of ¢ and e for the empty map. Values v can be unit (),
locations ¢, and integers n. The expression new() allocates an empty struct,

e—m := ¢’ assigns e’ to the field m of e, and e—m dereferences field m of e.

We abbreviate e;;e; = let_ = e ine;.

To reason about Acypo in separation logic, we use resources and pure assertions.

The resources are points-to assertions £ — t, which assert ownership of a struct

at location ¢ with at least the fields ¢, and abstract predicates P(v, X) (see §18.3).

The pure assertions include loc(v, £) for “v is the location ¢” and int(v, n) for “v
is the integer n”.

As a running example, we consider a data type for integer ranges [ns, ne),
implemented in Aexpo, in the remainder of this chapter. This range data type is
represented by a struct with two integer fields: s (for the start of the range) and
e (for one past the end of the range). We define three operations operating on
ranges, depicted in Fig. 18.2: init for initializing a previously allocated range r
with bounds a and b, mkrange for allocating and initializing a new range from
ato b, and size to determine the size of a range r.

init(r,a,b) =r—s = a; r—e := b; assert(range(r, ?,?))
mkrange(a,b) :=letr = new()ininit(r,a,b); r
size(r) := assert(range(r, ?,?)); r—e — r—s; assert(range(r, ?, ?))

x|v|ieGe | f(€)|emm|e;—>m:=e; | new() | letx =ejine;
t—t|loc(v,¢) | int(v,n) | P(v,X) | ny <ny|nyi=ny |-

Figure 18.1: The exposition
language Aexpo-

! The language Aexpo is only meant to
serve as an exposition to abductive

deductive verification, so we have not
mechanized it. We return to the range
example discussed here in §20.3, where it

is implemented in C.

Figure 18.2: The implementation

of the range data type. Quiver

assertion annotations in blue.

165

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

Weakest Precondition Rules (Language-Specific)

wpv{®} 4 Dwv (Wp-vAL)
wp (letx =ejine;) {®} 4 wpe {v. wp (ez[v/x]) {CD}} (Wp-LET)
wp (vom =w) {®} 4 £t (£ t[m:=w] = D()) whenloc(v,f) * £+ ¢ (WP-ASSIGN)
wp (vom :=w) {®} 4 T, t.loc(v,f) x Lt % (Lot = wp (vom:=w) {D}) (WP-ASSIGN-DEF)
wp (vom) {®} 4 £+t x (£t - D(t(m))) whenloc(v,£) * £+t + m e domt (WP-READ)
wp new() {®} 4 Vev.loc(v,£) * L+ e »+ Dv (WP-NEW)
wp f(V) {®} 4 apply(Tv){®} when spec(f,T) (WP-cALL)

wp (assert(dx. Px)) {®} 4 assert(x. Px){P ()}

Abduction Rules (Generic)

(WP-ASSERT)

ABD-EMBED ABD-RES-CTX ABD-RES-MISSING
EAG whenP A+P Ax[R|+FG A=N,M AN «[R]+G Ax[R]+G
A*[R]+E A+ [RlFM=*G A« [M+«R|+M=G
ABD-PURE-PROVE ABD-PURE-MISSING ABD-WAND-RES ABD-WAND-PURE
Ar¢ Ax[R]+G A¢=[RIFG AM=[R]+G A ¢ = [RI+FG
Ax[Rlr¢ =G Ax[¢p=Rlr¢=*G A+ [RlFM =G A« [RlF¢ =G
ABD-EXISTS ABD-ALL
Vx. (A = [Rx] + Gx) Vx. (A % [R] + Gx) ABD-END ABD-TRUE
A+ [Ix. Rx] + 3x. Gx A+ [R] + Vx.Gx A [VX. A= Dv] + Dv A [True] + True

18.1 The Essence of Abductive Deductive Verification

Before we dive into the details of the range example, we start by explaining the
abductive deductive verification judgment A * [R] + wp e {®}. It consists of
two parts: the weakest precondition wp e {®} (§3.1) and an abduction judgment
A x [R] + G where A is a separation logic context, R is an additional inferred
precondition, and G is the current goal. The basic idea is that when we derive
A = [R] + wp e {®}, we prove that A together with R is a sufficient precondition
for e to satisfy the postcondition ®. That is:

A [R]Fwpe{v.®v} implies {A=*R}e{v.dv}

We explain how A * [R] + wp e {®} works with the rules in Fig. 18.3. To
stage the explanation, we present it in three steps, moving from verification
to inference. In Version 1, we use the judgment for ordinary verification—
without any inference—and explain the proof search strategy underlying our
automation: goal-directed proof search for weakest preconditions. In Version 2,
we extend the judgment to infer preconditions, by incorporating abduction
into our goal-directed proof search. In Version 3, we extend it further to infer
complete specifications. In this last version, we explain why we infer so-called
“predicate transformer specifications” instead of Hoare triples.

To keep the explanation concrete, we focus on the operation init of the
range data type. For now, we ask the reader to ignore the blue assertion in the

Figure 18.3: Weakest precondi-
tion rules for ey, and generic
abduction rules. Overlapping
weakest precondition rules

are applied top-to-bottom, and
overlapping abduction rules are
applied left-to-right.

166

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

code of init (in Fig. 18.2). We will infer the following specification for init:
{loc(vp, £) * £t} init(ve, va, w) {_. loc(vy, £) * £+ t[s := vy, € ;= W]}

The precondition assumes that v, is a location ¢ and that this location ¢ stores
a struct with contents t. The postcondition ensures that ¢ stores an updated
struct with v, in its s-field and w, in its e-field.

Version 1: Deductive verification. We begin by supposing we are given
the above specification {Pjni+} init(ve, va, W) {_. Qinit}, where we abbreviate
Pinit = loc(vy, £) * £t and Qipit = loc(vp, £) * £+ t[S = vy, € = W],
and we want to deductively verify it. We aim to deductively verify it via the
judgment A * [R] + wp e {®}, where we instantiate A = Pipjt, (L) £ Qinit,
and e with the body of init (v, va, W), and for now we ignore the precondition R.
(The reader can pretend it is True.) That is, we set out to prove:

loc(v,), £t % [_] F wp (vp—S :=vy; vr—e := W) {_. Qinit}

Our proof strategy for deductive verification—following in the footsteps of
RefinedC?—is to employ goal-directed proof search for weakest preconditions. It
is goal-directed in the sense that, to derive A = [_] + G, we iteratively inspect
the current goal G and then apply a matching rule that transforms G into a new
goal G’. (If multiple rules match, we use the first one whose side conditions can
be proven; the order is described in the figures.) And to reason about weakest
preconditions, we use the rule aBp-emgeD to embed deductive proof rules of the
form “E 4 G when P”: here, E is the weakest-pre goal we are trying to solve,
and G is the new subgoal that implies it under the (optional) side condition P.

In the case of wp (vv—s = v,; ve—e€ := W) {_. Qinit}, We start by using
ABD-EMBED to apply we-LET (similar to we-BinD in §3.1). It breaks up sequential
composition ej; e; = let _ = e; in e; by putting the wp of e; into the post of e,
turning the goal into

loc(ve, £), L=t [_] F wp (ve—s :=v,) {7' wp (ve—e =w) {_. Qinit}}

Next, we apply wre-assign. It imposes an additional side condition on the
context (via aBp-EMBED), namely v, should be some location ¢ for which we

have a points-to assertion £ + t. Thus, leaving as our new goal:3
loc(v,), >t [_] F et (£ t[s:=va] = wp (vv—e :=w) {_. Qinit})

The rule wr-assion (similar to we-store in §3.1) has transformed the goal such
that we should first give up the ownership of ¢ (with “¢+ ¢ % ”) and then we
get back the updated ownership again (with “¢+ ¢[s := v4] = ”). We do the

former with aBp-res-cTx and the latter with ABp-wanp-res, leaving us to prove

loc(vr, £), £ t[s :=vy] * [_] F wp (vv—e :=w) {_. Qinit}

We proceed in a similar fashion for the second assignment, updating the points-

to assertion to £ > t[s := v,, € := W], which satisfies the desired postcondition.

Version 2: Abducting the precondition. We now turn to inference. As
before, we deductively verify A * [R] + wp e {®} in goal-directed fashion—
except that now we allow for the possibility that the context A was not sufficient

2 Sammler et al., “RefinedC: Automating
the foundational verification of C code

with refined ownership types”, 2021
[Sam+21].

% Note that the side condition in ABD-
EMBED is only a check. To be sound, the
weakest precondition rule still needs to
consume (and then return) ownership of

the location ¢.

167

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

to prove the goal, and we infer the missing precondition R. This means that,
whereas A, e, and ® are inputs, R is an output of A = [R] + wp e {D}.

To stage the presentation, we will make the simplifying assumption in this
version that the postcondition @ is simply True. Thus, to infer the precondi-

tion Pjinit, we solve
0 = [R] + wp (vr—s :=vy; vp—e :=w,) {_. True}.

Note that now the context is empty. The proof search proceeds as in Version 1

until we reach the first assignment:
0 = [R] F wp (vv—s :=v,) {7. wp (vv—e =) {_. True}}

At this point, the rule wr-assion does not apply anymore, since the ownership
of v is not in the context. (It is empty!) Instead, the missing ownership should
come from the precondition that we want to infer, so we must add it to the
precondition R. To do so, we proceed in several steps. First, we use a second
rule for assignment for cases where the context does not provide enough

information, wr-AssIGN-DEF, resulting in:

0O = [R] + 3¢, t. loc(v, £) = £+t
(6>t~ wp (vv—>s = ;) {7. wp (ve—e =w) {_. True}})

Next, since the goal has become an existential quantifier, we apply the rule for
existential quantification, aBp-exists (twice). It adds existential quantifiers for ¢
and t to the precondition R. Subsequently, since loc(vy, £) and £+ t are not
contained in the context 0, they are also added to the precondition R—with asp-
PURE-MISSING for loc(vy, £) and ABD-REs-MIsSING for £+ ¢.

We are left to derive
loc(v, £) * [R'] F £t - wp (vy—s = v3,) {,. wp (vv—e =) {_. True}}

and have already constructed R = 3¢, t. loc(vy,) * £+t = R’ (¢, 1) for some R’
that is yet to be determined. From here, the derivation proceeds as in Version 1
until we eventually arrive at the postcondition True:

loc(vy, £), £ t[s := vy, € :=w] * [R'] + True

We finish with aBp-TrUE, resolving R” £ True. Thus, we have inferred the pre-
condition R = (3¢, t.loc(vy, £) = £+ t) such that {R} init(v,,va, w) {_. True}.

Version 3: Abducting the postcondition. Lastly, let us additionally infer
the postcondition. Intuitively, the postcondition should be the context at the
end of the derivation (i.e., “A” in aBp-TRUE), since it describes all knowledge
that we have at the end of the function. However, note that the judgment
A = [R] + wp e {®} does not have an output for the postcondition, only for the
precondition R. The reason is that such a dedicated postcondition output is not
needed—rather, we can encode the postcondition as part of the precondition R
by expressing specifications as predicate transformers.

A predicate transformer is a function T from postconditions ® to precon-
ditions T ® such that V®. {T ®} e {v. ®(v)}. Predicate transformers are an
alternative to Hoare triples for specifying functions, where we use existential

168

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

quantification (+ separating conjunctions) to express (Hoare triple) precondi-
tions, and universal quantification (+ magic wands) to express (Hoare triple)
postconditions. We use colors to highlight the precondition parts (in)and
postcondition parts (in violet). For example, the desired specification of init,
namely { Finit(ve,va, W) {Lloc(v, £) x> t[s = vy, e =W},

can be expressed equivalently as the predicate transformer:

Tinit(P) 2 | * (loc(v, &) st t[s :=vs, e =] % @ ()
precondition postcondition

In this case, the value v, should be a location ¢ storing a struct with contents
t (precondition), and afterwards the location ¢ stores the updated contents
t[s := v, e := W] (postcondition).

To infer a predicate transformer specification, we treat the predicate ®
abstractly during the abduction. Then, the resulting precondition R(®) is a

predicate transformer, because
VO.0 « [R®] + wp e {v. v} implies VO.{Rd}e{v.Dv}

In the case of init(vr, v, W), we abduct @ # [R] F wp init(ve,va,w) {v. ®v}
where @ is abstract. We eventually hit the postcondition ® () (in place of
“True” in Version 2). At this point, we face loc(vy, £), £+ t[s :=v,, € 1=] *
[R'] + ®(). To finish the derivation, we “revert” the context before the
post with aBp-enp (“VX” explained below), resulting in the solution R'(®) =
loc(vp,) % L+ t[s :=v,, € := 1] = @ (). Plugging this into the top-level in-
ferred specification R(®) = * R'(®), we see that R(®)
coincides exactly with the specification Tt (®). Thus, we have inferred
{ Finit(ve,va,w) {_. loc(vp, £) = £+ t[s := v,, € := w]} asthe

specification, stated as a predicate transformer instead of a Hoare triple.

18.2 Existential Quantification

The goal-directed proof search presented above is overly simplistic in a key
dimension: the treatment of existential quantification. With the rule aBp-exists,
it—so far—always lifts existential quantifiers to the precondition. But there
are really two options for existential quantifiers: (1) lift the quantifier to the
precondition (as above) or (2) instantiate the quantifier. For abductive deductive
verification to work, we need both options. With init, we have already seen a
case where we must lift the existential quantifier to the precondition, because
the context @) is empty (in §18.1). To illustrate when we want the second option,
we consider the function mkrange.
For mkrange, we want to infer the following specification:

Tikrange (P) = * (Vv loc(vr, £) * L= {s=vye =w } =+ D)

The precondition is True and the postcondition ensures that the return value v,
is a location ¢ storing a correctly initialized range. To understand why infer-
ring this specification requires existential instantiation, we unfold the weakest
precondition semantics of wp mkrange(va, w) {®} (i.e., we apply weakest pre-
condition rules such as the ones in Fig. 18.3 in a non-goal directed fashion),
because it reveals the existential quantifiers that we must instantiate. To in-
dicate that the reasoning is not goal-directed (as opposed to the entailments

169

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

in Fig. 18.3), we write P £ Q for semantic entailment here (i.e., for the stan-

dard Iris entailment P + Q from §4.3). Specifically, we unfold mkrange, the
let-binding, the allocation new(), and the init-call:

wp mkrange(va, w,) {v. ®v}
3 wp letr = new() ininit(r, vy, w); r {v. ®v}
34 wp new() {vr. wp init(ve,va,w) {_. (Dvr}}

A4 Ve v doc(ve, £) * £ € =

from new()
* (loc(vr, £) * L= t[s == v,, @ =] = Pyp),
from init(ve,va, W)
Note the existential “ ” arising from the call to init. We should not lift

this quantifier into the precondition, because its value depends on the result of
allocating a fresh location inside mkrange. Instead, we should instantiate this
quantifier with the location ¢ obtained from new() (and t with €).

Instantiating existentials. To instantiate existential quantifiers during goal-
directed proof search, we will introduce a new goal ex(x. G x) in §19 such
that, semantically, 3x. G x £ ex(x. G x). The goal ex is triggered indirectly for
function calls f(V) to instantiate existential quantifiers in the spec of f.

More specifically, for a function call f(¥), we use wr-carr. It searches for
a specification T for f in the context (with the side condition spec(f, T)) and
then creates the function application goal “apply(T){®}” where, semantically,
apply simply applies the predicate transformer specification T to the postcon-
dition @ (i.e., semantically T ® £ apply(T){®}). As we will see in §19, the proof
search then turns apply(T){®} roughly into “ex(_. T ®)” to instantiate the
existential quantifiers that occur in the predicate transformer specification T.*

For example, in the inference of the specification of mkrange, we eventually
encounter the goal:

loc(vp, £), £+ € = [R] F ex(_. dx, y. loc(vp, x) * x>y * Grest X)

where ex contains the precondition part of Tini¢+ and we summarize the remain-
der as “Grest”. The rules for ex then iterate on this goal to instantiate x = ¢,
instantiate y £ ¢, resolve the preconditions loc(vy, £) and £ €, and leave as
the remaining goal Grest £ €. As a result, we arrive at the desired specification
Tokrange () in the end (after continuing the abduction for Grest £ €).

JV-specifications. One may wonder why we bother with existential quanti-
fier instantiation and do not use the predicate transformer that results from
semantically unfolding wp mkrange (v, w) {v. ® v}, namely

T init (@) £VE, v loc(vp, £) x e
x (loc(vp, £) x 0>t[s := v, € = W] = Dvp),

as the specification for mkrange. The underlying issue is that while predi-
cate transformers can, in principle, contain arbitrary quantifier alternations, a
predicate transformer T that goes beyond a single JV-alternation can barely
be considered a specification: it alternates preconditions (3) with postcondi-
tions (V), thus making it difficult to understand what T means as a specification.

* When we write ex(_. G), then the
underscore “_” indicates that G is closed
and that the list of quantified variables is
currently empty. As ex(_. G) processes
the goal G, it adds existentially quantified
variables to the binder. For more details

on ex, see §19.2.

170

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

For example, from a caller-perspective, the predicate transformer T’;,;+ allows
one to assume ownership of a new location ¢ storing an empty record €, then
requires one to give it back for some contents ¢, and finally allows one to assume
it again for updated fields t[s := vy, € :=w].

To avoid such confusion between pre- and postconditions, a key design
decision of Quiver is to restrict ourselves to a single 3V-alternation. Thus, in
the resulting predicate transformers, preconditions (3) always appear before
postconditions (V). The 3V-alternation is enforced by an asymmetry in our
quantifier rules: aBp-exists adds existential quantifiers to the precondition,
but aBp-aLL does not add any universal quantifiers to the precondition; it only
introduces them in the goal. The rule that adds universal quantifiers to the
precondition is aBp-enD. As we have seen above, it is used only at the very end.
It adds those universal quantifiers that have been introduced by aBp-aLL in the

goal (because they are potentially now contained in the context A).

18.3 Specification Sketches

So far, we have discussed how we can infer specifications without any user
guidance. The resulting specifications describe “low-level” memory footprints,
but they do not yet use any abstract predicates (i.e., user defined predicates for
data types). Abstract predicates are, however, a hallmark of separation logic
verification (e.g., see the linked-list predicate in §2.2). For instance, for the range
data type, a standard approach would be to conceal the implementation details
behind a predicate range (v, ns, ne), which means “v. is the range [ns, ne)”. To
guide the inference towards “high-level” specifications with abstract predicates,

we integrate specification sketches into abductive deductive verification.
Specification sketches. To explain what sketches are and how we integrate
them, we continue with the range example. We define the abstract predicate:

range(vr, ns, Ne) = I, Vs, Ve. loc(v, £) * £ {s =vs;e = e}

x int(vs, ng) * int(ve, ne) * 0 < ng < ne

The predicate ensures that the s-field and e-field are integers ns and n., and that

the integer bounds form a valid, non-negative range by imposing 0 < ng < ne.

To infer specifications involving the range-predicate, we add sketches to
the implementation of the range operations. A sketch is an inline assertion
“assert(...)”, which describes part of the logical state at the program point, and
which may use question marks “?” to leave holes in the description. For example,
in init, we add the assertion “assert(range(r, 2, ?))” to mean r is some range
[?,7?) at the end of the init function. The idea is that the proof search then
takes this sketch into account and adjusts the resulting specification. That is,

for init, the inferred specification becomes:

1>

Tran (q))

init

(range(vr, na, np) *®())

The precondition is extended by three new assumptions, namely int(vs, n,)
and int(w, np) requiring v, and v, to be integers n, and np, and 0 < n, < ny, to
impose the range constraint on the integers. The postcondition is changed to
indicate that v, stores the range [n,, ny) after calling the function.

171

PART IV: QUIVER CHAPTER 18: ABDUCTIVE DEDUCTIVE VERIFICATION

Abducting specification sketches. As far as abductive deductive verifi-
cation is concerned, every sketch corresponds to a separation logic proposi-
tion with existential quantifiers for question marks. For example, the sketch
“assert(range(r,?,?))” in init corresponds to “3x, y. range(vr, x,y)”. We use
the sketch to update the separation logic state at the point of the assertion.

Concretely, to integrate sketches into A * [R] + G, we introduce a new
goal assert(x. Px){G}. When we encounter assert(x. P x){G}, we first (1)
prove P x for some x—abducting additional preconditions where necessary—
and, subsequently, (2) assume P x for the remainder of the inference. To deal
with the existential “x” in the sketch “Jx. P x”, we define assert(x. P x){G}
using ex, roughly as “ex(x. Px = (Px - G))” (see §19). Here, we use the same
pattern as wp-assion and we-reap: we first produce “P x” and then assume “P x”
again for the remainder of the inference.

For example, inside the derivation of init, we encounter (spelling out the

question marks as existential quantifiers) wp (assert(3x, y.range(vr, x,v))) {®}.

We apply (wp-asserT) and are confronted with the new assert-goal:
loc(ve,), £ t[s :=v,, e :=w] * [R'] + assert(x,y. range(vr, x, y)){P ()}

which boils down to ex(x, y. range(vr, x,y) * (range(vy, x,y) - ®())). The
first part, “range(vy, x,y) *”, is handled by (a) unfolding range(vy, x, y) and,
then, (b) abducting anything missing for proving the body of range (v, x, y)—
here int(vy, ny), int(w, np), and 0 < n, < np,—while also instantiating x £ n,
and y £ ny. The second part, “range(vy, x,y) -+ 7, after x and y have been
instantiated, adds range(vr, ny, np) to the context (aBp-wanp-res), which then

eventually ends up in the postcondition of T} 7}

(via ABD-END).

Sketches vs. specifications. Zooming out to the entire range implementa-
tion again (in Fig. 18.2), the other two range operations highlight two important
benefits of specification sketches over full-fledged specifications. First, we can
provide similar sketches for multiple functions, yet obtain different specifi-
cations. For example, for the function size, we provide the same assertion
sketches as for init, yet obtain:

Tran (q)) A

size
« (Vw. range(vy, s, ne) * int(w, ne — ns) -+ ®w)
The precondition range(vr, ns, ne) arises, because unlike for init, when we
encounter the first sketch in size, the context contains no information about v,
that could be used to prove range(vr, ns, ne). Thus, the resource is added as a
whole to the precondition via aBp-res-missinG. The postcondition contains the
additional information that the return value w is the integer ne — ns.

Second, abductive deductive verification is compositional. The sketch in
init not only affects init, but also mkrange. That is, if we infer a specification
of mkrange again—against the new specification T, %, —we obtain the following
specification without any additional sketches:

13

Tran (@)

mkrange
% (Vv.. range(vy, na, np) -+ ®vy)
The precondition changes to incorporate the additional assumptions on v,
and w,, and the postcondition ensures that the return value v, is the correctly
initialized range(vy, n,, np) from init.

172

CHAPTER 19

THE ABDUCTION ENGINE ARGON

Having introduced the idea of abductive deductive verification (§18), let us
now focus on the first part of Quiver, the abduction engine Argon. It provides
automation for the abduction judgment A = [R] + G. Intuitively, A = [R] + G
means G holds under the assumption of the context A and the additional
precondition R. Accordingly, for a context A = (T, Q., Qn), we define the
abduction judgment A * [R] + G as the entailment

Ax[RFG = (RgerP) * (Kpeq, Q) * (Rpep, 0Q) *REG

The context A consists of three parts: pure assertions I (e.g., n > 0 and loc(v, ¢)),
ownership assertions ., and persistent assertions Qg (§3.3). The assertions in
Q. and Qg are resources M, the basic building blocks to describe the program
state (e.g., £+t and range(v,n,m) in §18). The persistent resources in Qg

remain in the context forever while the resources in Q. can be removed.

Contexts A = (T, Q. Qn) (T € List(Prop), Q € List(Resource))

State Prop. S i=¢|M|S; *S;|3Ix.Sx (M € Resource)

AV-Pred. Trans. T == 3X.Sx*TxX | T AT, | if ¢ then T; else T; | VX. SX ~®X
Goal Gi=True | OV |E|S+*G|S*G |G AG,

| if ¢ then G; else G, | 3x. Gx | Vx.Gx
| simpl(T){G} | ex(x.Gx) | bind(G1){Gz} | ---

Goal-directed proof search. The key technique that turns Argon’s inference
rules into an automated abduction algorithm is goal-directed proof search: At
each step of the abduction with state A * [R] + G, Argon matches on the
goal G and applies the first rule with a matching conclusion and whose side
conditions can be proven. After applying the rule, it then recursively proceeds
with the premises. The goals that Argon supports are depicted in Fig. 19.1.
Below, we discuss which purpose they serve, and how they are dealt with
during goal-directed proof search, using the rules in Fig. 19.2 (which include
the rules from Fig. 18.3 for convenience). We start with basic goals in §19.1 and
proceed with more advanced goals in §19.2.

19.1 Basic Goals

Embedded goals. Embedded goals E sit at the heart of Argon. They embed
deductive proof systems into Argon such as a weakest precondition calculus

Figure 19.1: The syntax of Ar-

gon.

173

PART IV: QUIVER

ABD-EMBED

E+AGwhenP A+rP Ax[RJ+G
A*[R]+E

ABD-RES-CTX
A=N,M N *[R]+G

A*x[RI+M=G

ABD-PURE-PROVE ABD-PURE-MISSING ABD-WAND-RES

CHAPTER 19: THE ABDUCTION ENGINE ARGON

ABD-RES-MISSING

Ax[R]+G
Ax [M*R[+M=G

ABD-WAND-PURE

Ar¢ Ax[R]+G A ¢ = [RIFG AM=[R]+G A ¢ = [RIFG
A« [Rlr¢ =G Ax[¢p«Rlr¢=*G A+ [Rl+M =G Ax[RlF¢ =G

ABD-EXISTS ABD-ALL

Vx. (A = [Rx] + Gx) Vx. (A = [R] + Gx) ABD-END ABD-TRUE

A+ [Ix. Rx] + 3x. Gx A+ [R] + Vx. Gx

ABD-IF-TRUE

A|—¢ A*[R]l-Gl

ABD-IF

A,QS * [Rl] F G1 A, —|¢ * [Rz] F Gg

A [VX. A= Dv] + Dv

A [True] + True

ABD-CON]J

A [Rl] I—G,~fori=1,2

A x [R] if ¢ then G else G,

ABD-EX

ex(x.Gix|Sx) 4G, whenP A+P Ax[R]+G,

ABD-SIMPL

A « [if ¢ then R, else R;] + if ¢ then G, else G,

(VO.T® = T’ @)

A*[Rl/\Rz]FGl/\Gz

A% [R]+GT

A * [R] + ex(x. G x| Sx)

A * [R] + simpl(T){T".GT"}

ABD-BIND SIMPLIFY
VO. A [T @] F Gl @ AD * [R] F GZ T ABD-FAIL Pl =norm PZ PZ :>simp P3 P3 Sexist P4
A * [R] F bind(®. G, ®){T". G, T’} A = [False] + G =P

(in §18) and the type system Thorium (in §20)—using an extensible set of
reasoning rules. Concretely, when Argon encounters an embedded goal E
(aBD-EMBED), it searches for a reasoning rule E 4+ G when P by matching
on E and continues with the goal G if the side condition P is provable in the
current context A. Embedded goals can be weakest preconditions wp e {®}, but
also other auxiliary judgments. For example, Thorium introduces a judgment
“conv(v: A)(x. Bx){®}” for type conversion, discussed in §20.2.

Separating conjunction and magic wand. We turn to separating conjunc-
tion S * G and the magic wand S - G. The goal S * G instructs Argon to prove
the assertion S and then proceed with G while S - G introduces S into the
context and then proceeds with G. Argon avoids ambiguity during the proof
search by restricting S to state propositions, i.e., assertions over the state of
the program consisting of resources and pure assertions (see Fig. 19.1). (For
efficient proof automation, Sammler et al.! employ a similar restriction, but
not in the context of abduction.) For S * G, we consider the two interesting
cases: If S = ¢ is a pure assertion, we either prove ¢ through a pure entail-
ment A + ¢ (aBp-PURE-PROVE), or we add ¢ to the precondition and the context
(aBD-PURE-MISSING). If S = M is a resource, we either find the resource M in the
context (ABD-RrEs-CTX), or we add it as a missing assertion to the precondition
(aBp-rES-MIssING). The other cases for S (namely, S; * S, and Jx. S’ x) are han-
dled by straightforward rules (not shown) which serve to hoist out existential
quantifiers and move a ¢ or M to the left side of the goal using associativity of
separating conjunction. We adopt a similar restriction for magic wands S - G.

Figure 19.2: Abduction rules,
including the rules from Fig. 18.3.
Overlapping abduction rules are
applied top-to-bottom, left-to-
right.

! Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

174

PART IV: QUIVER

It lets us split S into pure assertions ¢ and resources M that are then added to

the context (ABD-WAND-PURE resp. ABD-WAND-RES).

Conditionals and conjunctions. We turn to conditionals if ¢ then G; else G,
and conjunctions G; A G,. For a conditional if ¢ then G; else G,, we first try
to eliminate it by proving or disproving the condition ¢ (i.e., by applying asp-
15-TRUE or the corresponding rule for A + —¢). Otherwise, we lift it to the
precondition (ap-1¢).2 For conjunctions G; A G,, we lift the conjunction to
the precondition (aBp-cony). Conceptually, a conjunction means the reason
for the choice between both branches is internal to the function, i.e., it cannot
be influenced by the caller. For example, a call to malloc may return NULL or a
valid pointer. A client cannot influence which one it is, making the predicate
transformer for malloc a conjunction of both cases (see Tha110c in §20.3).

Quantifiers and post conditions. We turn to existential and universal quan-
tification. Existential quantification 3x. Gx in the goal is resolved by adding an
existential quantifier to the precondition R (aBp-exists) and universal quantifi-
cation Yx. Gx is resolved by introducing x in the goal but leaving the precondi-
tion R unchanged (aBp-arv). Universal quantifiers are added to the precondition
only when we reach the postcondition goal ®v (ap-enp). Concretely, when we
encounter ® v, we revert those ¥ that have been previously introduced in the
goal (with aBp-arL). They are added in front of the context A, since the context

might refer to them at this point (e.g., v and ¢ in Tnkrange in §18.2).

19.2 Advanced Goals

Simplification. One of the main ways to integrate reasoning about math-
ematical theories into the Argon proof search is simplification.® It comes in
two forms: (1) a general-purpose simplification judgment P = Q (seman-
tically Q £ P), which simplifies P into Q and (2) a goal simpl(T){T’". G T’}
that uses the judgment P = Q to simplify a predicate transformer T (aBp-
simpr). The simplification judgment P = Q proceeds in three steps* (smvpriry),
Pi =norm P2 =simp P3 =exist Pyt First, with Py =01 P2, we normalize Py into
a normal form analogous to 3V-predicate transformers (e.g., by lifting out exis-
tentials). Then, with P; =, P3, we simplify pure propositions in P,. Finally,
with P; =5t P4, We instantiate existentials based on equalities a = b in Ps.
For example, the simplification proceeds as follows

x > 0% (Jy. 4x =4y = Ty)

=norm E|y.x20*4x=4y*Ty
:>simp E|y.XZ0*x=y>x<Ty
exist x>20xTx

Normalization lifts the existential to the outside, then simplification removes
the multiplication with 4 (since 4x = 4y iff. x =y), and finally instantiation
resolves y = x based on the equality.

As illustrated above, the simplification step P3 =gjmp P4 integrates math-
ematical theories. It uses (a) pure abduction rules ¢ =gmp ¥, (b) rewriting
simplification rules ¢[a] =gmp ¢[b] if a = b, and (c) solvers ¢ =gjmp True if .
We use simplification rules and solvers for, e.g., integers, injective functions,
and lists, and the simplification rules can be extended as needed.

CHAPTER 19: THE ABDUCTION ENGINE ARGON

?If the inferred preconditions Ry and

R, coincide, the conditional can be
removed altogether by simplification.
Additionally, in some cases, the inferred
preconditions R; and R; can also be
joined using a heuristic of the Thorium
type system.

* Additionally, Argon allows integrating
solvers for mathematical theories via
A+ ¢.

* We may apply simplification multiple
times to benefit from existential instanti-
ations for further simplification and vice
versa. By default, the implementation of
Quiver simplifies twice.

175

PART IV: QUIVER CHAPTER 19: THE ABDUCTION ENGINE ARGON

ex(x.Jy.Gxy|Sx) 4 ex(x,y.Gxy|Sx)

(EX-EXISTS)

ex(x. ¢ *Gx|Sx) 41 ¢ *ex(x.Gx|Sx) (EX-PURE)
ex(x.¢gx*Gx|Sx) 4 ex(x.Gx|¢px *Sx) (EX-PURE-BLOCKED)
ex(x,y.x=0xGxy|Sxy) 4 ex(_.G'|True) when (Ix,y.x=0 *Sxy+Gxy) = G (Ex-EQ)
ex(x,y.Gxy|Sxy) 4 Jy.ex(x.Sxy* Gxy|True) (eX-LIFT)
ex(_.G|True) 4 G (EX-DONE)

Existential instantiation. As mentioned in §18.2, the goal ex(x. G x) is
used for existential instantiation. It has the following key characteristics: it is
agnostic to the order of existential quantifiers in G; it is agnostic to the order of
conjuncts in a separating conjunction; it inherits the simplification of P = Q;
and it allows us to destruct existential quantifiers in the context. Moreover,
similar to embedded goals E, it is extensible in the sense that additional rules can
be added. To achieve these characteristics, we generalize ex(x. G x) to the form
“ex(x.Gx|Sx)”, where the state proposition S collects “blocked” assertions
(explained below) and define ex(x. G x) = ex(x. G x| True).

The proof search for ex(x. G x| S x) proceeds by applying existential in-
stantiation rules of the form ex(x. G; x | S x) 4 G, when P (aBp-Ex), analogous
to the rule for embedded goals (aBp-eEmBED in Fig. 18.3). We discuss the most
important rules, depicted in Fig. 19.3 (and omit straightforward rules such as
applying associativity for separating conjunction):

1. For existential quantifiers Jy. G y, we add a binding (ex-ex1sTs).

2. For pure propositions ¢ that do not depend on x, we lift them out of the goal
(ex-pure). For pure propositions ¢ that make x precise (e.g., equality), we use
simplification to instantiate the existential (ex-eg). For pure propositions that
depend on x but do not lead to instantiation, we put them on the “blocked
stack”, meaning we add them to the state goal S (ex-pure-BLockep). The
blocked stack allows us to traverse further into the goal G and, thereby, we
can be agnostic about the order of conjuncts in a separating conjunction.
A blocked assertion may become unblocked when we can instantiate an
existential. Thus, ex-£q adds the “blocked stack” back into the goal.

3. For resources M, each instantiation of Argon can handle them as desired by
extending the rules of ex(x. Gy x| S x) 4 G, when P. For example, Thorium

adds rules for its resources, type assignments (see §20).

Finally, we have rules for when the goal G is stuck in the sense that no other
rule applies: if there are existentials left to instantiate (ex-LirT), we lift one of
them outside and, once there are none left (ex-ponE), we continue with G.

Sequential composition. The goal bind(®. G; ®){T. G; T} implements se-
quential composition of abduction goals (aBp-BinD). It works as follows: First, it
will abduct G; for an arbitrary postcondition ®. The result of this abduction
is a predicate transformer T. Then, it will abduct G,, passing it the newly
abducted predicate transformer T as an argument. (To implement sequential

Figure 19.3: Selection of exis-
tential instantiation rules for
ex(x. Gx | Sx). Overlapping rules
are applied top-to-bottom. The
underscore “_” indicates that

the list of quantified variables is
currently empty.

176

PART IV: QUIVER CHAPTER 19: THE ABDUCTION ENGINE ARGON

composition, ABp-BIND has to avoid duplicating ownership, and therefore gives
only the persistent part of the context, written A, to G,.) In other words, bind
makes abduction available inside of an abduction.

With bind, we have all the pieces needed to define the goals for applying
predicate transformers apply(T){®} (from §18.2) and specification sketches
assert(x. S x){®} (from §18.3):

apply(T){®} £ bind(¥. ex(_. T¥)){T". simpl(T"){T”.T" ®}}
assert(x. Sx){®} £bind(¥. ex(x. S x* (Sx =+ ¥)){T" simpl(T"){T". T" ®}}

Both goals have a similar structure. For apply, we instantiate the existentials
in T using ex, and for assert, we instantiate the existentials in the sketch
“Sx” using ex. We wrap the instantiation of existentials in the sequential
composition bind to “cleanup” after ex with a simplification simpl. That
is, since the rules for existential instantiation are extensible (aBp-Ex), they
can trigger arbitrary auxiliary goals, which may (indirectly) add existential
quantifiers to the precondition R. By simplifying afterwards, we can potentially

»

eliminate some of these quantifiers (e.g., one goal might add “3n. ---” and

another might add “n = 0”, which is then simplified by picking n = 0).

Loops. Argon does not infer loop invariants, but supports loops with man-
ually provided loop invariants (without sketches) as one would also provide
in deductive verification techniques like RefinedC. For a given loop invariant
Sinv, the proof search proceeds in four steps: (1) when we reach the loop, we
abduct the invariant S,y using ex; (2) we abduct the body of the loop assuming
the loop invariant Sy,y; (3) before the next iteration, we re-establish S;,, again
using ex; finally, (4) we check that S,y is indeed a loop invariant by ensuring
the abduction of the loop body did not require any additional preconditions.

Failure. Lastly, if no other Argon rule applies, the inference fails (aBp-FAIL).
In this case, Argon terminates by inserting a marker into the precondition
and provides the partial inferred precondition to the user. In impossible cases
(e.g., a location is NULL, but we are supposed to provide ownership), the marker
can contain information explaining what went wrong, provided by the Argon
instantiation. To remain sound, the marker is semantically interpreted as False,
as indicated in the rule aBp-rarL.

177

CHAPTER 20

THE TYPE SYSTEM THORIUM

In §18, we have seen how to apply abductive deductive verification to a simple
separation logic for Aeypo. To scale to the complexities of C, we instantiate
Argon with a richer separation logic below, Thorium. Thorium, following in
the footsteps of RefinedC,! is a separation logic-based type system. We first
explain the approach of using refinement types in separation logic (§20.1), then
we discuss how they integrate with abductive deductive verification (§20.2),
and finally we return to the range example from §18 to illustrate how Thorium
enables compositional specification inference for C programs (§20.3).

The Caesium language. Before we dive into Thorium, let us first briefly
discuss Caesium, the language that Quiver and RefinedC use to model C:

Left Expr. p,gu=x|f|pm|p+e]|=p (x € Var, t € Loc)

RightExpr. eu=v|x*p | &p|e1 Qe | Ge|ei(er) | e1?ex:e3

Statements s:i=p «e;s|e;s|ifethens; elses; | returne | gotolb
Function Body b =0 |Ilb s,b

We distinguish three main syntactic categories: left expressions p, which evalu-
ate to a location; right expressions e, which evaluate to a value; and statements s,
which eventually return a value (or diverge). Left expressions support pointer
arithmetic p +e, field accesses p.m, and dereferences *p. Right expressions
support dereferencing left expressions #p (since they evaluate to locations),
taking the address of a left expression &p (effectively a no-op directly return-
ing the location p evaluates to), binary operations e; © e;, unary operations
©ey, function applications e; (ez), and inline conditionals e; ? e; : e3. Statements
support assignment to a left-expression p «— e; s, expression statements e; s,
conditionals, returns, and gotos. (There is no statement for declaring a new
stack variable, because all stack variables are allocated at the beginning of a
function call.) Functions—or rather their implementations—are represented
as control flow graphs, as finite maps from block-labels to statements. Loops
such as while-loops and for-loops are translated into this control flow graph

representation by the Quiver frontend.

20.1 Separation Logic with Refinement Types ala RefinedC

Instead of abstract predicates P(v,x) and points-to assertions £+ v (as we
considered for Aexpo in §18), the resources in Thorium are type assignments.
They are of the form v <, A (read “v is an A”) and ¢ <; A (read “¢ stores an A”;
semantically (Fv. £+—>v = v<yA) E £<A). For each type A, they have an

! Sammler et al., “RefinedC: Automating
the foundational verification of C code

with refined ownership types”, 2021
[Sam+21].

179

PART IV: QUIVER

Types A,B = void | null | num[it]n | anyn | zerosn | valuenv
| 3x.Ax|A=xP|ownfA|optional¢pA|fnT |X@P
| struct[s] A | array[P] xs | - --
Resources M,N == v<,A|f<A|blocktn]|---
Embed. Goal E := rwp(e){v,A. PvA} | lwp(p){t,A. DL A}
| swp(s){v,A. ®vA} | cast (itz);, (v:A){w,B. & w B}
| conv(v:A)(x.Bx){®} | call(v:A)(w:B){®}]:--

interpretation in terms of more traditional separation logic assertions. For
example, the resource v <, own £ (num[int] n) means “v is an owned pointer ¢

storing the int-integer n”, which boils down to

v<yown £ (num[int]ln) ©v={¢=*f+>n=n€ int.

Types. The types of Thorium are depicted in Fig. 20.1. We explain the most
important types by returning to the range data type (from §18.3). In C, it would
be declared as

typedef struct ran { int low; int high } *range;

The analogous Thorium type for the predicate range(v, ns, ne) (from §18.3) is:

(ns, ne) @range =g, 3f.own £ (struct[ran] [Ag; Ae]) *0 < ng < ne xblock £ szran

where As = num[int] ng, Ac = num[int] ne, and szra, = sizeof(struct ran)

Types of the form X @P correspond to user-defined abstract predicates and are
defined via a (possibly recursive) equation X @P =y, A. The type (ns, ne) @range
ensures that its values are owned pointers ¢ (via “own £ A”) to a ran-struct (via
“struct[s] A)”) with two fields: s containing int-integer ns (via “numlit] n”),
and e containing the int-integer n.. To hide the location ¢, we use type-
level existential quantification “Ix. A x” and, to impose the bounds constraint
0 < ns < ne, we use type-level separating conjunction “A * P”. Besides the
bounds constraint, the type carries an additional constraint: the resource
“block £ n”. It tracks the length of dynamically allocated blocks (e.g., with malloc)
to ensure that ownership of the entire block is given up when freeing the loca-
tion ¢ (see §20.3).

Typing rules. In Thorium, instead of the standard weakest precondition
wp e {v. Pv}, we use typed weakest preconditions: their postcondition ® is about
the resulting value v and, additionally, its type A. We have three such weakest
preconditions, one for each syntactic category of Caesium: rwp(e){v, A. dv A},
Iwp(p){t,A. &t A}, and swp(s){v, A. &v A} (where v is the return -value). As
we will see shortly, these typed weakest preconditions have a straightforward
encoding in terms of regular weakest preconditions. The main reason why we
add the types A to the postcondition ® is to give more structure to the proof
search: they ensure that the result values must always have a type, and that
the nested goals in the postcondition ® can easily make use of this type.?

The proof search with typed weakest preconditions works as follows: Instead
of vanilla weakest precondition rules, we use typing rules in Thorium. A

CHAPTER 20: THE TYPE SYSTEM THORIUM

Figure 20.1: The Thorium types,

resources, and embedded goals.

?While the weakest preconditions and
the intermediate goals have postcon-
ditions ® with type arguments, for the
final specification, we apply (on paper) a
transformation that makes them easier
to read. The transformation brings the
predicate transformers into the form
shown in §18, where the postcondition
is only over a value. For a predicate
transformer T over a value-and-type
postcondition, we obtain a predicate
transformer over a value postcondition
as T(®) £ T(Aw, A. way A — D(w)).
For example, if the resulting value w

is of type num[int] n, then we write

“waynumlint]ln -« ® w” in the final

predicate transformer.

180

PART IV: QUIVER CHAPTER 20: THE TYPE SYSTEM THORIUM

rwp((itz) i, e){®} 4 rwp(e){v, A. cast (it2);, (v : A){®}}

(TY-cAST-WP)

cast (size_t);n(v:numlintln){®} 4 n >0 Yw.®w (num[size_t]n) (TY-CAST-SIZET)
cast (ity), (v : A){®} 4 3n. (ACnum[it;]n) * cast (it2) 4, (v : num[it;] n){®} (TY-CAST-DEF)
rwp(v){®} 4 v<, A* ®vA whenv<, A (TY-VAL)
rwp(v){®} H JA v, Ax DVA (TY-VAL-MISSING)
conv(v: numlit]n)(x,y, _. num[x]y){®} 4 P(Ax,y,_.x =it *y =n) (TY-CONV-INT)
conv(v:ownfA)(x,y.ownx (Bxy)){®} 4 <A+ D(Ax.x=C* < Bxy) (TY-CONV-OWN)
callv: fnT)(w : B){®} 4 w<, B - apply(T w){d} (TY-cALL)
ex(x.v<e,Bx *Gx|Sx) 4 rwp(v){w,A. conv(w : A)(x. Bx){S". ex(x. S x * Gx|Sx)}} (Ex-conv)

ex(x.vx<,Bx+*Gx|Sx) 41 ex(x.Gx|vx<,Bx % Sx)

selection of the Thorium typing rules is depicted in Fig. 20.2. There are two
kinds of typing rules: (a) structural rules that descend into terms (akin to we-LeT
in Fig. 18.3) and (b) type-directed rules that match on types to steer the proof
search (akin to wr-assien in Fig. 18.3).

To explain how they interact, we consider an example, which dereferences
a location 4 and casts the resulting integer from int to size_t:

be<pnumbintIme + [] F rwp((size_t)in. (+f)){®}
First, using a structural rule (ty-cast-wr), we descend into the type cast, leaving
G<gnumlint]ng = [_] F rwp(x6){v, A. cast (size_t) (v : A){D}}

Once it has been determined that the result of ## is some value v of type
num[int] ny, we then encounter the following goal in the postcondition:

b<«ynumlintIng = [_] + cast (size_t);p:(v: num[int] ny){®}

It uses“cast (ity) , (v : A){®}”, an auxiliary embedded goal for C-level type
casts, which is overloaded based on the type A. We use a type-directed rule
(Ty-cast-s1zeT) to proceed: The rule handles the cast from int to size_t by
checking that the int-integer n (here ny) is non-negative and then calling the

postcondition with n as a size_t-integer.

Modeling Thorium in Iris. To express the types and typing judgments in
Iris, we use the same approach as RefinedC. Types A, inspired by RustBelt,? are
modeled as a triple of two predicates v <, A and ¢ <; A together with an operator
for the size of a type |A| (technically a predicate). The typed weakest precondi-
tions are defined in terms of the standard weakest precondition wp e {®} of
Iris (§3.1), instantiated with the Caesium language. For example, the model of
the expression weakest precondition is given by

rwp(e){v,A. ®vA} = wpe{v.JA v<, A DvA}

The auxiliary judgments are then defined using the typed weakest preconditions.

For example, we define

cast (ity)y, (v: A){w, B. ®w B} = v, A - rwp((ity) ;, v){P}.

(EX-CONV-BLOCKED)

Figure 20.2: A selection of Tho-
rium typing rules (Ty-) and
existential instantiation rules
(EX-). Overlapping rules are
applied top-to-bottom.

®Jung et al., “RustBelt: Securing the
foundations of the Rust programming
language”, 2018 [Jun+18a].

181

PART IV: QUIVER

As we have seen above, their main purpose is guiding the proof search by
providing type-directed rules for how to proceed.

20.2 Abductive Deductive Verification with Types

We discuss how abductive deductive verification A + [R] + wp e {®} interacts
with the type system Thorium, using the remaining rules from Fig. 20.2. We
focus on the three most important aspects, including how we deal with incom-
plete information about the context A. That is—like RefinedC—we use types
to guide the proof search, but—unlike RefinedC—the context A is incomplete
(see §18.1) and, therefore, we may have to infer type assignments as part of the
precondition R.

Incomplete information and abstract types. The first aspect is abstract
types A, which we introduce to address incomplete information. That is, as
discussed in §20.1, the structural rules of Thorium descend into terms. At
the leaves, when we encounter a value,* A * [R] + rwp(v){v,A. v A}, we
have two options:> (a) the value is contained in A (ry-var) or (b) the type
assignment of v should be part of the precondition R. In the latter case, there is
an issue: the postcondition ® demands a type A, but locally we do not know
yet which type v should have. To solve this issue, we introduce an abstract
type A (ty-var-missing), which serves as a placeholder for the type of v. Then,
as we continue with the postcondition ®, we collect constraints on A. To be
precise, we provide “default rules” that impose constraints on A when v is
used—e.g., via the rule Ty-cast-per, which requires A to be a num[it;]-type.
During simplification P = Q (smmpriry in Fig. 19.2), we use these constraints
to instantiate existentials analogous to equalities (in P =it Q). Thorium
has default rules for unary operators, binary operators, pointer dereference,
conditionals, struct field access, pointer arithmetic, etc.

Type conversion. The second aspect is type conversion, which integrates
types into existential instantiation. That is, by extending the rules of ex(x. G x),
the type conversion judgment conv(v : A)(x. Bx){®} turns the type assignment
v <, A into v <, Bx where “x” is existentially quantified. When we encounter a
type assignment in ex, we either (a) trigger type conversion (ex-conv) or (b) put
it on the “blocked-stack” if the value v still depends on x (ex-conv-BLockep). In
the first case (ex-conv), we (1) determine the type of v (using rwp), (2) determine
a precondition S for the type conversion to succeed (using conv), and (3) return
to the existential instantiation (using ex). For example, Ty-conv-INT constrains
the C-level integer type x to it (e.g., int, size_t, ...) and the mathematical
integer y to n; Ty-conv-own constrains the location x to ¢ and, eventually, will

lead to type conversion for £ <y Bx y.

Predicate transformers and joining. The third aspect are predicate trans-
former specifications. As explained in §18.2, our abductive deductive verifica-
tion judgment infers predicate transformers T. To integrate them into Thorium,
we use a type fn T for function pointers, and we use the rule tv-cavw to call
them. The rule Tv-cart turns the goal into apply(T w){®}, which—by using

CHAPTER 20: THE TYPE SYSTEM THORIUM

* We treat locations ¢ in left expressions
analogously if there is no known type
assignment for them.

> Technically, there is a third option:
extending the precondition R with the
assumption v = w for some w<, Ain A
and proceeding with ® w A. We exclude
this option to limit the search space. In
doing so, we follow the footsteps of bi-
abduction [Cal+09; Cal+11], which does
notinfer ‘R= (f=rAa=>b)"and “F =
True” as a solution for its bi-abduction
judgment £+ a = [R] + r—>b « [F] for
the same reason.

182

PART IV: QUIVER CHAPTER 20: THE TYPE SYSTEM THORIUM

ex internally (see §19.2)—inherits Argon’s support for existential instantiation
and thus also Thorium’s support for type conversion (see Ex-conv).

Besides using predicate transformers as function types, there is a second
interaction of Thorium and predicate transformers: Thorium provides a heuris-
tic for joining them. That is, when we infer the precondition of a conditional
if ¢ then G; else G,, we first obtain two separate preconditions R;(®) and
Ry(®). Usually, Argon lifts them into the precondition by picking R(®) =
if ¢ then R;(®) else R;(P) (see aBp-1r in Fig. 19.2). As an alternative, Tho-
rium provides a heuristic to join them into a single precondition, (T Lig T")(®),

which can be activated on demand.® For example, the heuristic would join ¢ In the implementation, to acti-
vate it, one uses the annotation

(vaynumlit] ny) Ug (v<, numlit] ny) into v<, num(it] (if ¢ then n; else ny), : oneuses 1
[[q::join_if]]".

pushing the conditional further into the precondition. Unfortunately, the heuris-
tic is not always successful due to the considerable expressiveness of Thorium
types: As in RefinedC, types can contain nesting (via own ¢ A), existential
quantification (via 3x. A x), separating conjunction (via A * P), conditionals
(via optional ¢ A), and even recursion (via x @P), making joining hard. If the
heuristic fails, we default back to the precondition that Argon would otherwise
pick, using (T Ug T')(®) = if ¢ then R, (D) else Ry (D).

20.3 Compositional Specification Inference with Thorium

To illustrate concretely how Thorium enables Quiver to infer specifications of
C functions, let us return to the range example from §18. The implementation
of the range data type in C is depicted in Fig. 20.3 (alongside annotations for
Quiver in blue). One aspect that is interesting about this implementation is that
the inference will be compositional: the function mkrange uses the specification
that we will infer for init, and mkrange also uses the specification of the derived
memory allocator xmalloc (from §17; discussed below).

The standard library. Before we dive into the details of the range example,
let us briefly focus on the auxiliary function xmalloc and the standard library
functions used to define it. Recall its implementation (from §17):

1 void *xmalloc(size_t size) {
2 void *ptr = malloc(size);
3 if (ptr == NULL) abort();
4 return ptr;

513

To infer specifications for functions like xmalloc and mkrange, Quiver assumes
specifications for various functions from the C standard library. A selection
of them is depicted in Fig. 20.4. In contrast to the specifications in Fig. 17.2
from §17, these specifications are stated as predicate transformers using Argon
types. For example, when we call malloc, we must provide a size_t-integer n,
and we get back either NULL (if the program is out of memory) or a freshly
allocated block (pointed to by location ¢) of size n. The memory in the allocated
block is initially arbitrary (any n), and the separation logic resource block ¢ n
keeps track of the size of an allocated block. To express the two cases in a
predicate transformer, we use a conjunction, which ensures that clients of
malloc have to consider both cases (i.e., they have to prove the NULL case and
the case where a valid pointer is returned). Conversely, when we call free,

183

PART IV: QUIVER CHAPTER 20: THE TYPE SYSTEM THORIUM

typedef struct

[[q::refined_by(s:Z,e : Z)1]

[[q::typedef(range := 3q.ownq... * blockq (sizeof(struct ran)))]]
[[q::constraints(0 < s <e)]]

; Figure 20.3: The range data type
3

4

5 ran {

6

7

8

9

implemented in C.

[[g::field(num[int]s)]] int low;
[[g::field(num[int]e)]] int high;
} *range;

10 void init(range r, int a, int b) {
11 r->low = a;

12 r->high = b;

13 [[q::assert('r <,? @range)]];

14 3}

16 range mkrange(int a, int b) {

17 range r = xmalloc(sizeof(struct range));
18 init(r, a, b);

19 return r;

22 [[q::requires("r <,? @range)]]
23 [[q::ensures("r <,? @range)]]
24 int size(range r) {

25 return r->high - r->low;

26 }

7

we must provide an owned pointer £ to an arbitrary memory block of size n. 7 Here, the type value nv constrains the

To ensure that the entire ownership is given up, we also have to supply the value to be vand to be of size n.
block ¢ n predicate to ensure that n is indeed the size of the allocation block at
location ¢. Moreover, when we call abort, we terminate the execution. Early
termination is considered safe behavior (i.e., it is not a safety violation) and,
hence, the postcondition is False (and the return value of type void).
From these, Quiver can then derive allocator specifications such as the

following specification of xmalloc:

Timalloc (Vsize) ((D) =

% (Yw, £. weyown £ (any n) * block £ n -+ ®w)

Compared to the specification of malloc, Thailoec, it prunes the case where
malloc returns NULL, because in that case xmalloc aborts. The inference of
this specification needs no sketches, since the resulting specifications follows
directly from puzzling together the specifications of malloc and abort.

The sketches. Let us now turn to the range implementation in Fig. 20.3.
We start by discussing the sketches that we provide for this example with
“Clg::...]]” (in blue). First, in Lines 2-8 we declare the Thorium type
(ns, ne) @range (from §20.1). (The annotations follow the structure of Re-
finedC’s type declarations.)

Next, we add Thorium versions of the sketches in §18.3 (in Fig. 18.2). Con-
cretely, for init, we assert (with [[q: :assert("r <,? @range)]])in Line 13
that the argument value corresponding to r (indicated by “r) should contain

184

PART IV: QUIVER CHAPTER 20: THE TYPE SYSTEM THORIUM

Figure 20.4: A selection of
Tha1oc (vn) (@) = assumed standard library specifi-

VYw. w <, null = dw cations.

* A
Vw, £. w <, own £ (any n) = block £ n -+ ®w

Tfree(vx)((p) =
x Yw. w <, void + O w

Tabort) (®) = Yw. (False * w <, void) -+ ®w

some range by the end of the function init. We do not specify which bounds
the range should have and, instead, leave a hole using a question mark ?.
Moreover, for size, we assert that the argument value for r should be some
range at the beginning and at the end of size. We do so in Line 22 and Line 23
with the annotation [[q::requires("r <,? @range)]] (for preconditions)
and the annotation [[q: :ensures("r <,? @range)]] (for postconditions).

The inferred specifications. If we now run the implementation of Quiver
(see §21) on this combination of sketches and C code, we obtain the following

8

inferred speciﬁcations: 8 For init, the implementation infers an

equivalent specification that decomposes
. .
Tinit (Vr, va, W) (@) = the struct stored in /.

% (Yw. w <, void * v <,(ng, np) @range + & w)

karange (Vr, va, W) (D) £

(Yw. w 1,(na, np) @range + ®w)

Tsize(vr)(®) =

% (Vw. w<,numlint] (ne — ns) * vp <y(ns, ne) @range -+ ®w)

For init, we obtain as the precondition two integers n, and n, such that 0 <
n, <ny, and a type assignment for the pointer in r (which can initially be storing
arbitrary contents). In the postcondition, we obtain that r now stores a correctly
initialized range with bounds n, and ny,. For mkrange, we obtain a new range as
the return value if we provide it with two integers n, and ny,. Finally, for size,
we obtain the difference between the two bounds as the return value if we call
it with a range.

One thing to note about these specifications is that—as remarked above—
their inference is compositional. The specification of mkrange is derived from
the specification of init and, thus, even without sketches, it uses the range type.
Moreover, since it calls xmalloc internally, the inference also uses the derived
specification Typa110c above. (Since the input type of init and the output type of
xmalloc do not match up exactly, Thorium uses the type conversion from §20.2
to match them up.)

185

CHAPTER 21

IMPLEMENTATION

We have developed a prototype implementation of Quiver in Rocq.! More
specifically, we have implemented the goal-directed abduction engine Argon
A * [R] + G (which embeds the typing rules of Thorium) as an automated
abduction procedure in Rocq. For a given C function (and possibly a sketch), it
(1) infers a specification and, at the same time, (2) proves its correctness.

We use the Rocq proof assistant as a foundation for Quiver for two main rea-
sons: First, Quiver inherits Rocq’s rich logic for expressing complex correctness
properties (as evaluated in §22). Second, it allows us to ensure the correctness of
the inferred specifications. Concretely, we have proven Quiver’s inference foun-
dationally sound against RefinedC’s C semantics, Caesium. Caesium provides a
detailed formalization of C, modeling many challenging features ranging from
bounded integers and pointer arithmetic, over uninitialized memory with poi-
son semantics and address-of operator (also on local variables), to manipulation
of the underlying byte-level representation of values.? To prove Quiver sound
against Caesium, we have used Iris to model Argon (see §19) and Thorium
(see §20.1). We have proven all rules sound against this model:

Theorem 77.

All Argon and Thorium rules are sound wrt. the Caesium C semantics.

The automated abduction procedure combines the soundness of the individ-
ual rules into a foundational proof that the inferred specifications are sound.
In our examples, we assume specifications for common operations from the C
standard library (e.g., malloc, free, and abort in Fig. 20.4). Thus,

Corollary 78. Assuming the standard library function satisfy their specifications,
the specifications inferred by Quiver are sound wrt. the Caesium C semantics.

Finally, Quiver comes with a frontend that automatically translates annotated
C code into (1) corresponding Caesium code, (2) type declarations in Thorium,
and (3) calls to the abduction procedure for Argon. The abduction procedure is

implemented using Rocq’s Ltac tactic language® and typeclass mechanism.*

! Spies et al., Quiver: Guided abductive
inference of separation logic specifications
in Coq (Rocq development and appendix),
2024 [Spi+24b].

% Quiver’s version of Caesium forgoes
checking alignment of accesses as the
resulting constraints would clutter the
inferred specifications, and we do not
use the integer-pointer-casting semantics
introduced by [Lep+22].

® Delahaye, “A tactic language for the
system Coq”, 2000 [Del00].

*Sozeau and Oury, “First-class type
classes”, 2008 [SO08].

187

CHAPTER 22

EVALUATION

To evaluate Quiver, we have applied it to several interesting case studies, listed
in Fig. 22.3. We split our evaluation into two parts: First, we take a closer look
at a specific case study, a vector implementation, to give an impression of the
kind of specifications that Quiver can infer (in §22.1). Then, we discuss the
aggregate results of evaluating Quiver on these case studies (in §22.2).

22.1 The Vector Case Study

Inspired by C++ and Rust, a vector is a dynamically-sized array that tracks its
length. An excerpt of the vector implementation is depicted in Fig. 22.2. In this
implementation, vectors are pointers to a struct with two fields: the data-field
storing the contents of the vector in a dynamically allocated array of integers
and the len-field tracking the length of the vector. For vectors in Quiver, we
define the following Thorium-data type (in Lines 1-6):

xs@vec_t = 3¢ own £ (struct[vector] [Adata; Alen]) * block £ szyec

dr.own r (array[num[int]] xs) = block r (szint - | xs]),

1>

where Agata

Alen

numlint] (|xs|)

That is, for a mathematical list of integers xs, a value of type xs@vec_t is an
owned pointer ¢ to a vector-struct. It stores in its data-field an owned pointer r
to an array of integers xs and in its len-field the length of xs as an integer. It
tracks the memory block resources of ¢ of size szyec and r of size szint - |xs|
where szyec = sizeof(struct vector) and szj,¢ = sizeof(int).

We focus on five vector operations: The operation mkvec creates a new
vector of length n initialized with zeros. The operation get_unsafe retrieves an
element from the vector, and set_unsafe updates an element in the vector. The
operation get_checked, unlike get_unsafe, additionally performs a check that
the index is in bounds. Lastly, the operation grow extends a vector by allocating
a new underlying buffer. Concretely, grow allocates a new content array buf of
larger size (Line 48), copies the contents of the old array over (Line 49), frees the
old array (Line 51), sets all uninitialized memory to zero (Line 52), and returns
the new length (Line 54).

Sketches and inferred specifications. For each operation, the specification
sketches are annotated with “[[q::...]]” in Fig. 22.2 (as in §20.3). The inferred
specifications are depicted in Fig. 22.1. For mkvec, Quiver infers that the size n
must be a non-negative int-integer and that the return value is a vec_t-vector

189

PART IV: QUIVER

CHAPTER 22: EVALUATION

Thkvec (Vo) (@) = * (Yw. w<, 0" @vec_t -+ ®w)

Tget_unsafe (Wec, Vi, Vx) (@) =

Yw. €< numlint] (xs[i]) * Wec <9 Xs@vec_t * w <, void -« O w

Tset_unsafe (Wee, Vi, W) (P) =

Yw. £<qynumlint] n % wec <p(xs[i — n]) @vec_t * w <, void =+ O w

Tget_checked (Wee, Vi) (®) =

*

if (i <0Vi>|xs|)thenVw. vec <, xs@vec_t * w<,num[int] (—1) -« ®dw

else Yw. vyec < xs@vec_t * w<, numlint] (xs[i]) + Ow

Tgrow (Wecs Vnew) (@) =

if n < |xs| then Vw. vyec <, xs@vec_t w <, num[int] |xs| -+ ®w

else Vw. vyec <U(xs+|-0”_‘xs|) @vec_t* w<,numl[intln -+ dw

filled with 0", a list of n zeros. For get_unsafe and set_unsafe, Quiver infers
constraints on the index i, the additional pointer argument x, and how the vector
changes in set_unsafe/the pointer changes in get_unsafe. For get_checked,
Quiver infers a specification that distinguishes the success and error case, using
the ability of predicate transformer specifications to contain conditionals.

For grow, Quiver infers a conditional specification: if n < |xs|, the vector is
unchanged and |xs| is returned; otherwise, the vector grows by n — |xs| zeros
and n is returned as the new length. To arrive at this specification, Quiver
(1) infers the type of the unspecified argument vpey, (2) resolves the quantifier
alternations that arise from each memory operation (a 3V for each operation),
(3) instantiates the sketches (including xs + 0"~ 1%l @ vec_t for the second case),
(4) proves that |xs+# 0"~ 1%l| = n when n > |xs|, and (5) prunes the branch
returning 0 using the fact that xs@vec_t is never NULL.

Abductive deductive verification. The vector case study illustrates con-
cisely the benefits of abductive deductive verification. On the one hand, we are
doing expressive separation logic verification. For example, (a) vectors track
their contents as a mathematical list of integers, (b) vectors maintain the invari-
ant that the length of the list is stored in the field len, (c) dynamically allocated
memory can be of variable length, which is tracked via a predicate block, (d)
pointer arithmetic is used to compute fields of structs and members of arrays,
and (e) pointer-level operations (e.g., memset and memcpy) are used to manipulate
high-level data types (e.g., arrays). On the other hand, we can significantly bene-
fit from inference for the verification. In particular, we only need to provide the
key bit of information—that a certain value is a vector—and can use inference
to complete the rest. In fact, for get_unsafe, set_unsafe, get_checked, and grow,
we provide exactly the same sketches and, yet, the resulting specifications are
quite different.

Figure 22.1: Inferred vector

specifications, preconditions

in

in violet.

and postconditions

190

PART IV: QUIVER CHAPTER 22: EVALUATION

1 [[q::refined_by(xs : list Z)1]

2 [[q::typedef(vec_t := Jp.ownp... = blockp (sizeof(struct vector)))]1]
3 typedef struct vector {

4 [[q::field(3q.ownq (arrayLnum[int]] xs) * block q (sizeof(int) - |xs|))]1] int *data;
5 [[q::field(num[int] (|xs|))J] int len;
6 } *vec_t;

7

8 vec_t mkvec(int n) {

9 size_t s = sizeof(int)*(size_t)n;

10 vec_t vec = xmalloc(sizeof(*vec));

11 vec->data = xzalloc(s);

12 vec->len = n;

13 [[q::type(? @vec_t)]] return vec;

14 1}

15

16

17 [[q::requires("vec <, ? @vec_t)]]

18 [[q::ensures("vec <,? @vec_t)]]

19 void get_unsafe(vec_t vec, int i, int *x) {
20 *x = vec->datalil;
21 3}
22
23 [[q::requires("vec <, ? @vec_t)]]
24 [[q::ensures("vec <,? @vec_t)]]

25 void set_unsafe(vec_t vec, int i, int *x) {
26 vec->datali] = *x;

27 3}

28

29 [[q::requires("vec <,? @vec_t)]]

30 [[q::ensures("vec <, ? @vec_t)]]

31 int get_checked(vec_t vec, int i){

32 assert (vec->len >= 0);

33 if (i <0 || i >= vec—>len) {

34 return -1;

35 }

36 return vec->datalil;

37 3}

38

39 [[q::requires("vec <, ? @vec_t)]]
40 [[q::ensures("vec <, ? @vec_t)]]
41 int grow(vec_t vec, int new_size) {
42 if (vec == NULL) {
43 return 0;
44 }
45 if (new_size <= vec->len) {
46 return vec->len;
47 3}

48 int *buf = xmalloc(sizeof(int) * new_size);

49 memcpy(buf, vec->data, sizeof(int) * vec->len);

50 free(vec->data);

51 vec->data = buf;

52 memset(&(vec->datal[vec->len]), 0, sizeof(int)*(new_size-vec->len));
53 vec->len = new_size;

54 return vec—>len; Figure 22.2: The implementation

) of the vector. Quiver annotations

in blue. 191

PART IV: QUIVER

CHAPTER 22: EVALUATION

Implementation Specification Execution
Name Functions Code Type Specs Sketch Annot Rocq 3 ¢ Time
Allocators xmalloc, xzalloc, xrealloc, ...(+3) 41 mem 55 0 0 0 77 44/31 0:58
init, is_empty, push, pop, mem 27 0 0 0 16 11/2 0:27
Linked list 37
reverse (only functional) func 25 10 11/5/0 0 39 21/8 0:46
mkvec, get_unsafe, grow, mem 147 0 0 0 106 62/27 2:48
Vector 59
get_checked, vec_free,...(+3) func 75 14 11/0/0 0 117 164/43 2:40
Bipbuffer new, free, request, push, ...(+11) 105 len 210 21 10/0/2 0 378 476/160 8:51
OpenSSL BUF_MEM_new, BUF_MEM_free, mem 249 0 0 0 285 302/113 14:14
107
Buffer BUF_MEM_grow, ...(+3) len 94 9 14/0/4 0 310 431/90 9:50
Binary search bin_search 14 func 11 5 7/8/0 49 18 49/3 0:41
Hashmap init, probe, realloc, ...(+5) 101 func 79 72 19/18/7 506 221 375/123 7:56

22.2 Aggregate Evaluation

Let us now turn to the aggregate evaluation of Quiver on several case studies.
We evaluate the prototype implementation of Quiver on three axes: (1) the ex-
pressivity (compared to bi-abduction), (2) the specification overhead (compared
to RefinedC), and (3) the merit of the inferred specifications. We do so using
the case studies in Fig. 22.3. For each case study, a more detailed discussion
can be found in the appendix of the Quiver paper and all implementations and
inferred specifications can be found in the Rocq development [Spi+24b]. The
Allocators case study considers common wrappers around standard library
functions for memory allocation (e.g., xmalloc and xzalloc). The Linked List
case study considers a singly linked-list implementation with pointer elements,
and the Vector case study extends the vector from §22.1. The OpenSSL Buffer
and Bipbuffer case studies consider open-source buffer implementations from
OpenSSL [Ope25] and memcached [mem25]. The Binary Search case study
considers binary search on sorted integer lists, and the Hashmap case study
considers a hashmap with linear probing. For each case study, we measure the

execution time on a single core of an Apple M1 Pro processor (Time).

Expressivity (vs. Bi-abduction). To understand the degree of expressiv-
ity that Quiver supports, we consider several types of specifications (Type
in Fig. 22.3), increasing in complexity: We infer memory safety specifications
(mem) for several examples—including the Allocators, whose inferred specifi-
cations (e.g., xmalloc and xzalloc) we use in other case studies. We infer length
specifications (len) for the open-source buffers, which track the length of the
buffer and data type invariants about its fields. We infer functional specifications
(func) for the Linked List and the Vector, which track their contents as mathe-
matical lists. And, to test the boundaries of Quiver, we consider a binary search
implementation and a Hashmap, a version of the most complex functional
correctness case study of Sammler et al.! specialized to integer values.?

The case studies demonstrate that Quiver, embedded into Rocq, supports
expressive separation logic reasoning over a variety of mathematical domains
(e.g., integers, lists, maps, and custom inductive types). For example, Quiver
figures out that (a) if n < Ox5ffffffc, then (n+ 3)/3 - 4 will not overflow the
size_t type (OpenSSL Buffer) and (b) grow results in the vector xs+ 0"~ 1%l

Figure 22.3: Evaluation of Quiver.
Code: lines of C code as format-
ted by clang-format; Type: type
of inferred specification (i.e.,
mem: memory safety, len: length
and type invariants, func: func-
tional); Specs: size of the inferred
specification; Sketch: size of the
function sketches; Annot: size
of type definitions/size of loop
invariants/additional inference
instructions; Rocq: lines of pure
Rocq definitions and lemmas;
“J”: number of instantiated exis-
tential quantifiers; “¢”: number
of proven/simplified side condi-
tions; Time: execution time in

minutes:seconds.

! Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

? Differences to the implementation
of Sammler et al. [Sam+21] are dis-
cussed in the appendix of the Quiver
paper [Spi+24b].

192

PART IV: QUIVER CHAPTER 22: EVALUATION

which extends the original list xs with n — |xs| zeros (Vector). Moreover, pro-
vided with loop invariants and additional Rocq lemmas and definitions, Quiver
does significant functional correctness reasoning for the Binary Search and
Hashmap. The expressivity of Quiver goes considerably beyond the original bi-

abduction inference® and also the bi-abduction implemented in Infer [Inf24].4 In 3 Calcagno et al., “Compositional shape

analysis by means of bi-abduction”, 2009

)] [Cal+09]; Calcagno et al., “Compositional

spec1ﬁcat1ons. shape analysis by means of bi-abduction”,
2011 [Cal+11].

exchange, it requires more input from the user, in particular for more expressive

Specification overhead (vs. RefinedC). To understand how much specifi- * For example, the bi-abduction in

cation Quiver infers, we compare the size of the inferred specifications (Specs) Infer does not do integer reasoning
. . . h as (a) if n < Ox5ffffffc, then
with the size of our sketches (Sketch) and other annotations (Annot). We suc
. . .() . () (n+3)/3- 4 < OXFFFFFFFFFFFFFFFF
measure the size of specifications and sketches by counting the number of from the OpenSSL buffer or (b) after the
quantifiers, conditionals, conjunctions, type assignments, and other individual loop int k = @; while (k < 10) k++

the counter k is 10. Quiver automatically
proves the former without any guidance,
count other annotations such as type definitions, loop invariants, and infer- and infers the latter when guided with
the loop invariant k < 10.

pre- and postconditions (e.g., the size of Tykyec Would be 5). We separately

ence instructions. A handcrafted specification—as it would be provided in
RefinedC—could in some cases reduce the size (e.g., by joining the branches
in Tgrow), but nevertheless comparing sketches and specs gives an idea how
much Quiver infers. Concretely, for the “memory” case studies, we provide no
sketches—the specifications are completely inferred. By design, they are low-
level (e.g., see Tyma11oc in §20.3) and can be verbose. For all other case studies,
we provide sketches. They are typically significantly smaller than the resulting
specification and often contain ? -holes (e.g., all 14 Vector sketches boil down
to ? @vec_t). In RefinedC, by contrast, specifications must be provided in full.

Among our case studies, there are two outliers: the Binary Search and the
Hashmap. This is no surprise, since both require nuanced, ad-hoc functional
correctness reasoning with additional pure Rocq definitions and lemmas (Rocq).
For them, the specification overhead is overshadowed by the additional proof
overhead. Nevertheless, even for those two, Quiver does interesting inference:
it completes the return type of Hashmap init, and it derives the postcondition

of the Binary Search from a loop invariant.

Merit of the specifications. The specifications that Quiver infers provide
four key benefits: First, they are an additional form of documentation. Quiver
outputs a pretty-printed version of the inferred predicate transformer, which
can be read by humans. For example, in the Vector, Quiver adds the constraints
on the vector size in the specification of mkvec.

Second, the inferred specifications provide assurances about the code. That
is, due to soundness (Corollary 78), the inferred specifications cannot “hide”
any preconditions that are undocumented in the code. For example, in the
Bipbuffer, Quiver discovers a fact about the implementation that is easy to miss
in the code: the implementation uses mismatched integer types (e.g., the size
field of the buffer uses unsigned long int, but the corresponding accessor
function returns int), resulting in an additional precondition in the generated
specifications.

Third, the inferred specifications are compositional (see also §20.3). We
inherit compositionality from working in separation logic. In particular, in
many of the case studies, we infer specifications of auxiliary functions, which
are then reused in the inference of others (e.g., BipBuffer, OpenSSL Buffer, and

193

PART IV: QUIVER

Hashmap); and we use the inferred Allocator specifications in other case studies
(e.g., in the Vector, List, Hashmap).

Fourth, the inferred specifications abstract over the implementation. By
insisting on a single 3V-alternation, Quiver ensures that the inferred specifica-
tion condenses the implementation into preconditions and postconditions. In
doing so, it takes care of the intricacies of the C implementation and interme-
diate proof obligations. To gain some insight into how much work goes into
this summarization, we count the number of instantiated existentials (3) and

proven/simplified side conditions (¢).

Real-world code. Finally, our case studies test whether Quiver can handle
the complexities of real-world code. We have applied Quiver to two buffer
implementations taken from popular open source libraries, OpenSSL®> and
memcached.® For the OpenSSL buffer, we track the length and capacity of the
buffer and enforce an invariant that the buffer capacity is always larger than
the contents. For the memcached buffer, a bipartite buffer, we track the length
and the relationship between the fields that track the segments of the buffer.

CHAPTER 22: EVALUATION

* OpenSSL, OpenSSL, 2025 [Ope25].

¢ memcached, memcached, 2025 [mem25].

194

CHAPTER 23

RELATED WORK

In the literature on separation logic verification, there is a wide gap between
approaches for (a) automatically inferring specifications vs. (b) verifying func-
tional correctness in rich separation logics. In the first camp, there are ap-
proaches such as bi-abduction,! which fix a particular fragment of separation
logic and then carefully design automation to infer specifications in it. This
line of work started out with shape specifications (i.e., linked list segments
and points-to assertions) and, over the years, edged closer toward functional
properties by extending the base domain to include constraints on integers,
arrays, or bags. In the second camp, there are approaches such as RefinedC,?
which are designed for proving full functional correctness in rich separation
logics, as supported by the verification frameworks in which they are embedded
(e.g., Rocq and Iris). This line of work, over the years, developed increasingly
strong proof automation but left specification inference largely untouched.
Quiver sits right in between these two camps, supporting a wide range in
between automated and expressive specifications (see §22.2). Typically, Quiver
requires more specification guidance from users than a fully automatic inference
(increasing with expressiveness of the specification), but significantly less than
traditional, deductive approaches for rich separation logics. In exchange, it does
not fix any particular mathematical domain and, instead, is implemented in a
general-purpose proof assistant—producing certifiably correct specifications.
We first compare closely with work in both camps, and then branch out to
other related work.
Inferring ownership specifications in separation logic. In their seminal
work, Calcagno et al.® introduced bi-abduction as a technique for compositional
shape analysis in separation logic. Over the years, several extensions to its
original domain (i.e., points-tos and list segments) have been proposed, includ-
ing pure constraints over booleans, integers, and bags;* ordering constraints;’

¢ second-order predicates;’ and arrays.® The

low-level data representations;
key contribution of each of these extensions is to automate the inference over
their respective domain.

In contrast, Quiver’s specification inference is fundamentally different. By us-
ing abductive deductive verification, Quiver is less automated but, in exchange,
handles a much richer separation logic by building on existing approaches for de-
ductive proof automation. For example, the vector example (§22.1)—combining
low-level pointer operations, arrays, and integer arithmetic—goes beyond all
of the above extensions, especially considering the detailed C semantics it is

verified against.

! Calcagno et al., “Compositional shape
analysis by means of bi-abduction”, 2009
[Cal+09]; Calcagno et al., “Compositional
shape analysis by means of bi-abduction”,
2011 [Cal+11].

2 Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

% Calcagno et al.,, “Compositional shape
analysis by means of bi-abduction”, 2009
[Cal+09]; Calcagno et al., “Compositional
shape analysis by means of bi-abduction”,
2011 [Cal+11].

* Trinh et al., “Bi-abduction with pure
properties for specification inference”,
2013 [Tri+13]; Qin et al., “Automatically
refining partial specifications for pro-
gram verification”, 2011 [Qin+11]; He
et al., “Automated specification discov-
ery via user-defined predicates”, 2013
[He+13].

> Curry, Le, and Qin, “Bi-abductive infer-
ence for shape and ordering properties”,
2019 [CLQ19].

¢ Holik et al., “Low-level bi-abduction”,
2022 [Hol+22].

" Le et al., “Shape analysis via second-
order bi-abduction”, 2014 [Le+14].

8 Brotherston, Gorogiannis, and
Kanovich, “Biabduction (and related
problems) in array separation logic”, 2017
[BGK17].

195

PART IV: QUIVER

Outside of the context of bi-abduction, Dohrau et al.? use a static analysis
to infer access permissions for array-manipulating programs, and Ferrara and
Miiller'® show how to automatically infer access permissions using abstract
interpretation. They handle different permission models and loop invariant
inference but do not consider functional correctness properties.
Functional correctness verification using separation logic. There is a
wide range of approaches for verifying functional correctness based on separa-
tion logic,!! most of which do not infer specifications. We compare to the most
closely related work and approaches with some form of specification inference.

A key inspiration for Quiver is RefinedC,'? which provides automated and
foundational verification of C code. Its approach of using a type system em-
bedded in separation logic served as a direct inspiration for Quiver. However,
RefinedC does not infer specifications and, hence, relies on user-provided, com-
plete specifications. To tackle specification inference, we introduced the ab-
ductive deductive verification approach (§18), implemented a proof engine for
abduction—Argon—from scratch (§19), and designed a type system—Thorium—
that integrates seamlessly with abduction (§20).

t,13

For VeriFast, ” a separation logic-based functional correctness verifier for C

and Java, Vogels et al.l4

implement a bi-abduction-based shape analysis. Unlike
Quiver, it does not infer functional correctness specifications and only infers
a postcondition from a user-provided precondition. Separately, Automated
VeriFast!® leverages errors reported by VeriFast to extend user-written specs
with additional pre- and postconditions. Automated VeriFast has only been
demonstrated on predicates tracking the length of singly-linked lists.
Dohrau'® presents a learning-based permission inference for the Viper auto-
mated verifier [MSS17]. Their approach can automatically infer loop invariants
and predicate definitions, but only considers permissions, not functional cor-

rectness properties.

Diaframe. Diaframe!” provides proof automation for Iris based, in part,
on bi-abduction. Unlike Quiver, Diaframe is not concerned with specification
inference and instead focuses on proof automation for Iris (e.g., for verifying fine-
grained concurrent data structures with Iris invariants). During its automated
proof search, Diaframe uses bi-abduction locally at certain points in the search
to determine which hint (i.e., which proof rule) to apply next.

Liquid types. Liquid types'® provide a refinement type-based approach for
lightweight verification. Liquid types focus on the inference of pure refinements,
not separation logic ownership, and often consider more shape-like properties

1.19 describe a vector similar to vec_t

than Quiver. For example, Lehmann et a
from §22.1, but only track the length in the refinements, not its precise contents.
In exchange, liquid types are more automated: they infer refinements and,
additionally, loop invariants automatically.
Specification inference for other logics. Outside of the context of separa-
tion logic, a separate body of research?’ considers inferring specifications for
programs that do not involve pointer manipulation or a heap. This restriction

sidesteps the main challenges this part of the dissertation focuses on (see, e.g.,

CHAPTER 23: RELATED WORK

° Dohrau et al., “Permission inference for
array programs”, 2018 [Doh+18].

19 Ferrara and Miiller, “Automatic
inference of access permissions”, 2012
[FM12].

! Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11]; Appel, “Verified
Software Toolchain”, 2012 [App12]; Cao
et al., “VST-Floyd: A separation logic
tool to verify correctness of C programs”,
2018 [Cao+18]; Miiller, Schwerhoff,

and Summers, “Viper: A verification
infrastructure for permission-based
reasoning”, 2017 [MSS17]; Sammler et al.,
“RefinedC: Automating the foundational
verification of C code with refined
ownership types”, 2021 [Sam+21]; Pulte
et al., “CN: Verifying systems C code
with separation-logic refinement types”,
2023 [Pul+23].

2 Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

13 Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11].

" Vogels et al., “Annotation inference for
separation logic based verifiers”, 2011
[Vog+11].

1> Mohsen and Jacobs, “One step towards
automatic inference of formal specifica-
tions using automated VeriFast”, 2016
[MJ16].

1 Dohrau, “Automatic inference of
permission specifications”, 2022 [Doh22].

7 Mulder, Krebbers, and Geuvers,
“Diaframe: Automated verification of
fine-grained concurrent programs in Iris”,
2022 [MKG22].

18 Rondon, Kawaguchi, and Jhala,
“Liquid types”, 2008 [RKJ08]; Rondon,
Kawaguchi, and Jhala, “Low-level
liquid types”, 2010 [RK]J10]; Vazou et al.,
“Refinement types for Haskell”, 2014
[Vaz+14]; Lehmann et al., “Flux: Liquid
types for Rust”, 2023 [Leh+23].

¥ Lehmann et al., “Flux: Liquid types for
Rust”, 2023 [Leh+23].

% Seghir and Kroening, “Counterexample-
guided precondition inference”, 2013
[SK13]; Albarghouthi, Dillig, and
Gurfinkel, “Maximal specification
synthesis”, 2016 [ADG16]; S et al.,
“Specification synthesis with constrained
Horn clauses”, 2021 [S+21].

196

PART IV: QUIVER CHAPTER 23: RELATED WORK

the vector in §22.1). In exchange, they typically obtain exact (i.e., sufficient and
necessary) preconditions, whereas Quiver infers sufficient preconditions.

Characteristic formulae. A characteristic formula?! is a direct translation 21 Charguéraud, “Program verification
through characteristic formulae”, 2010

)])) .]) [Cha10]; Charguéraud, “Character-
intended as specifications, but as an intermediate representation used during istic formulae for the verification of

of a program into a separation logic formula. Characteristic formulae are not

verification. In particular, they still contain all intermediate proof obligations imperative programs”, 2011 [Chal1].
required to verify a function. In contrast, Quiver infers specifications that
summarize the behavior of a function in terms of pre- and postconditions (i.e.,
in 3V-form; see §18.2) by resolving quantifier dependencies and solving side

conditions.

197

198

PART V

DAENERYS

CHAPTER 24

INTRODUCTION

As we have seen in the previous chapters, the forte of separation logic (SL)—and
the reason why frameworks like Iris build on it—is that it enables a modular style
of reasoning for complex imperative programs via the concept of ownership.
The canonical example is of course the points-to assertion, £ — v, which asserts
not only that the pointer ¢ currently points to the value v but also that the
function being verified “owns” the memory location ¢.

However, separation logic is not the only formal foundation for reasoning
about ownership. Another closely related, yet decidedly different, foundation
is that of implicit dynamic frames (IDF).! Deployed most extensively as the
foundation of the Viper verification framework,? IDF is similar to SL in that
assertions can talk both about the state of the program and ownership of that
state. But unlike in SL, IDF assertions do not have to talk about these two
things simultaneously—rather, they are disentangled. For example, instead of
the single SL assertion ¢ +— v, which combines ownership of ¢ with the fact
that ¢ points to v, IDF has two kinds of assertions: (1) an access assertion acc(¢),
which conveys ownership of the location ¢ (entailing the right to access and
update ¢) but does not say what ¢ points to, and (2) heap-dependent expression
assertions (HDEAs) such as ! £ =pp v, which says that ¢ points to v but does
not assert ownership of £. (HDEAs, as we will see below, are not limited to
assertions about a single memory location ¢; they may also, for example, include
assertions about the results of function calls.)

Separation logic’s £ — v can be expressed in IDF as acc(?) * ! £ =jpp v. Con-
versely, IDF’s access assertion acc(f) can be expressed in SL as acc(f) =
Fv. £+—v. But how can one encode HDEAs in SL? It is not so simple. For
example, take Iris: suppose that acc(f) and ! £ =ppv could be expressed as
separate Iris assertions (conjoined by the separating conjunction P * Q). Using
acc(f), we could update ¢ to w, thereby obtaining ! £ =[pr w. But by the central
frame rule of SL (see Hoare-FraME in §2.2), we would be able to frame the
assertion ! £ =ipp v around the update, thus leading to a contradiction!

Nevertheless, in this part of the dissertation, we will show that in fact HDEAs
(and more generally IDF-style reasoning) can be soundly incorporated into
SL®*—and Iris in particular—and that they constitute a demonstrably useful
extension to the Iris toolbox. To do so, we will need to revisit the foundations
of Iris once more in order to support unstable resources, a new type of resources
that do not unconditionally enjoy the frame rule. But before we get into more
details about our contributions (§24.2), let us begin by reviewing why we want
to bring HDEAs to Iris in the first place (§24.1).

! Smans, Jacobs, and Piessens, “Implicit
Dynamic Frames: Combining dynamic
frames and separation logic”, 2009
[SJP09].

?Blom et al., “The VerCors tool set:
Verification of parallel and concurrent
software”, 2017 [Blo+17]; Miiller, Schwer-
hoff, and Summers, “Viper: A verification
infrastructure for permission-based
reasoning”, 2017 [MSS17]; Astrauskas

et al., “Leveraging Rust types for modular
specification and verification”, 2019
[Ast+19]; Eilers and Miiller, “Nagini: A
static verifier for Python”, 2018 [EM18];
Wolf et al., “Gobra: Modular specification
and verification of Go programs”, 2021
[Wol+21].

3 Parkinson and Summers [PS11]

show how to encode SL in IDF with
t—v £ acc(f) A!€=ppv. In the
following, we consider the reverse
direction: we want to bring IDF to SL, and
we do so for one of the most expressive
separation logics out there, Iris.

201

PART V: DAENERYS

{True} produce_buffer() {v.3b,u.v=> * b u}
{b— 1} read_only_client(b) {_. b+ u}

{b+> i} checksum(b) {v.v = cs(il) * b+ u}

24.1 Heap-Dependent Expression Assertions

To illustrate the utility of HDEAS, let us consider a concrete example:

let buf = produce_buffer() in
let chkl = checksum(buf) in
read_only_client(buf);

let chk2 = checksum(buf) in
assert(chkl == chk2)

Qe W o e

In this example, we allocate a buffer of 64-bit unsigned integers on the heap
using the function produce_buffer (Line 1) and then pass it to a client (Line 3).
The client is only allowed to read from the buffer. Thus, we can compute a
checksum of the buffer before (Line 2) and after the read-only client (Line 4)
and assert that they are the same (Line 5). (The exact algorithm by which the
checksum is computed does not matter, as long as it is deterministic.)

Let us first sketch how one could show that the assert always succeeds in
separation logic. We have annotated intermediate proof states (in), and
we use the specifications depicted in Fig. 24.1. First, we allocate the buffer and
obtain the ownership of buf storing a sequence of 64-bit unsigned integers i
(Line 1).* Then, we use it to compute checksum(buf). The result is cs(ii),
where cs is a mathematical version of checksum operating on the contents i
(in Line 2). Next, we pass the buffer buf to the read-only client, which does not
change its contents . Thus, when we recompute the checksum (Line 4), it is
still ¢s(if) and the assert—comparing cs(#2) and cs(i)—succeeds (Line 5).

This verification works. But it is more laborious than it appears at first
glance, because to complete it, we must additionally verify the Hoare triples
in Fig. 24.1. This involves a non-trivial amount of work: (1) reformulating
the implementation of checksum as a mathematical function cs and (2) proving
full functional correctness of checksum by showing that it implements cs. If
checksum is small and simple, proving its functional correctness is not a big
burden—but if it is a nontrivial recursive function, verifying it becomes tedious
quickly. Moreover, functional correctness of checksum is a much stronger
property than we actually need! The assert succeeds so long as (1) the result of
checksum depends only on the buffer, (2) checksum does not modify the buffer,
and (3) the read-only client does not modify the buffer. (Yet, we cannot weaken
the specification to say that checksum returns just some integer, because it must
be the same one in Line 2 and Line 4.)

HDEAs offer a simpler way to handle such examples. They enrich the asser-
tion language with the ability to describe the current result of deterministic,
read-only program expressions. In particular, they permit the logic-level asser-
tion checksum(buf) =pr chk1 (note the use of checksum instead of cs), which
says that the current value of checksum(buf) is chk1. Since the client does
not modify buf, one can then frame checksum(buf) =pp chk1 around it using

CHAPTER 24: INTRODUCTION

Figure 24.1: Separation logic
specifications of the operations

in the motivating example.

* We gloss over the difference between
a points-to assertion for a buffer b
storing a sequence of values v (written
b ¥) and a points-to assertion for an
individual location ¢ storing a single
value v (written £ — v) in the following.

202

PART V: DAENERYS

an ownership argument, which we will spell out in §25.1. Thus, when we
reach Line 5, we know at the same time checksum(buf) =pr chk1 and also
checksum(buf) =pr chk2, from which we can deduce chk1 = chk2. In short,
HDEAs let us validate our assertion while avoiding a needless detour through

functional correctness of checksum.

Beyond this example. The above example is an instance of a more general
pattern that arises in SL verification: redundancy between specifications and
implementations. A typical SL specification abstracts data structures to some
mathematical representation (e.g., abstracting a buffer to a sequence of val-
ues) and implementation functions to mathematical functions (e.g., abstracting
checksum to cs above). These are then used to specify the concrete implemen-
tation. While data abstraction is undoubtedly useful in program verification,
requiring a mathematical counterpart for each implementation function is es-
pecially tedious and redundant for cases where the specification ends up more
or less just mirroring the implementation® (prominent examples include getter
functions, comparison operations, and mathematical computations). In those
cases, HDEAs shine: they enable one to simply talk about the result of running
some code at the assertion level (so long as that result is well-defined) without
having to develop a mathematical abstraction of it first.

Reducing redundancy is not the only strength of HDEAs. For example, as
we will see later, HDEAs also facilitate the iterative development of proofs,
whereby specifications are strengthened step by step in order to incrementally
model more complex aspects of a program’s behavior (see §29). Moreover, they
support a new kind of automation for Iris, namely SMT solvers. That is, as we
have discussed in the previous chapters, Iris is a foundational separation logic
framework embedded into Rocq. A downside of its embedding within Rocq is
lackluster automation for, e.g., theories such as bitvectors and uninterpreted
functions. In the following, we will develop the foundations for connecting
HDEASs in Iris to formulas in first-order logic. This connection then allows one
to benefit from the automation of an SMT solver for theories like integers,
bitvectors, and uninterpreted functions when reasoning about HDEAs in Iris
(see §25.3).

24.2 Daenerys

In this part of the dissertation, we introduce Daenerys. The main theoretical
contribution of Daenerys is bringing HDEAs to Iris by extending its resource
model with unstable resources. In doing so, we combine the benefits of HDEAs
(described above) with the expressivity of Iris, including step-indexing (§3.2),
persistent propositions (§3.3), impredicative invariants (§3.4), fine-grained con-
currency (§3.5), user-defined ghost state (§3.6), and a Rocq implementation.

The essence of this contribution is a new Iris assertion for HDEAs (§25):
elv, meaning “if e is executed in the current heap, then it terminates inv”.

The assertion e || v (read “e evaluates to v”) asserts the result of evaluating
any deterministic, terminating, read-only expression e. It allows us to express
HDEAs of traditional formulations of IDF such as “checksum(buf) =pg chk1”
(from §24.1) as checksum(buf’) | chk1.

CHAPTER 24: INTRODUCTION

> As we have seen in Part IV, in some

cases, we can use inference to avoid the

overhead of providing specifications.

However, inference also has its limits

(e.g., when recursion or loops are
involved). HDEAs explore a very

different point in the design space: one

still needs to provide specifications

manually, but code can be used inside of

the specifications.

203

PART V: DAENERYS

To introduce e || v to Iris and make effective use of it, we make several
technical contributions in this part of the dissertation:

Unstable resources in Iris (§26). In order to define e |} v, we first have to
generalize the underlying model of Iris. We extend the notion of resource
algebras of Iris (from §4.2) to include unstable resources, and we revisit the
definition of the central frame-preserving updates (from Definition 32).% The
key new unstable resource that we define is the unstable points-to £ —, v. We use
it in the definition of evaluation e | v to temporarily capture information about
the memory that e accesses (see §26). Like a regular, stable points-to £ — v, the
unstable points-to £ —, v allows reading from location ¢. However, unlike £ — v,
it can be freely duplicated (i.e., £+, v F £+, v * £, v), and it can co-exist
with the regular points-to at the same time (i.e, £+ v 4F £+ v * £+, v). In
fact, it satisfies the equivalence £+ v 4+ acc(f) * £+, v where acc(f) = £+ _,
illustrating that it constrains the contents of £ without asserting ownership.

Program logic with HDEAs (§27). On top of the adapted resource model,
we then build a program logic {P} e {v. Q(v)}. In typical Iris fashion (see §3),
it is an expressive, higher-order program logic with impredicative invariants,
step-indexing, etc. However, we have to be careful! The catch of unstable
resources like £+, v is that not all assertions can be framed anymore (see §25).
That is, as we have seen in the previous parts, the central frame rule of Iris

1S FRAME-IRIS:

FRAME-IRIS FRAME-DAENERYS
{P}e{v.0(v)} {P}e{v.0(v)}
{P xR} e{v.Q(v) = R} {@BP = @R} e {v. 8 Q(v) = BR}

and the frame rule is baked into Iris at its very core (see §26.1). However, in the
presence of unstable resources like £+, v, this rule is no longer sound. For ex-
ample, it would be unsound to frame £+, 5 around {£+- 5} £ := 42 {_. £+ 42},
since £+ 42 * £+, 5 is absurd. To recover framing, we introduce a new modal-
ity, the frame modality BP, and replace the frame rule with FRAME-DAENERYS
above. The frame modality BP acts as a “gate keeper”: it makes sure that we

only frame assertions that do not depend on ownership of unstable resources.”

Automation via almost-pure assertions (§28). Equipped with evaluation
e |l v, we then develop a very useful fragment of almost-pure assertions:

F,G:hProp:=¢ |ev|t—yv|FAG|FVG|F=G|3x.Fx|Vx.Fx|---

It contains actually pure assertions ¢ and is closed under standard logical
connectives. It also contains connectives such as e || v and £+, v that can
implicitly refer to the current heap.

We use this fragment to lay the groundwork for new automation for Iris:
we show a correspondence between hProp-assertions (using HDEAs like e || v)
and standard first-order logic (agnostic about heaps and state). This connection
allows us, for the first time, to automate parts of an Iris proof using an SMT
solver. For example, we consider a polymorphic hashmap with an equality
function eq and a hash-function hash (in §29). We express the key relationship

CHAPTER 24: INTRODUCTION

¢ Daenerys is not the first SL with unsta-
ble resources. In other logics [Din+13;
RDG14; DOs+21], typically the update
is taken as the primitive and stability

is derived from it. We do the opposite:
stability is the primitive and updates are

derived. See §31 for a comparison.

7In IDF, soundness of the frame rule
is typically ensured by requiring the

assertions to be “self-framing”. The frame

modality 8P internalizes this notion

form of a modality.

of

“self-framingness” into the logic in the

204

PART V: DAENERYS

between them as:

Vx,y. eq(x, y) = true = hash(x) = hash(y) (EQ-HASH)

whereei =e; = v.egJvAe v

We then encode this condition for concrete instantiations of eq and hash into a
first-order logic formula, (manually) query the SMT solver Z3% on this formula,
and assume in Rocq that it holds.

The use of an SMT solver means verification is not completely foundational:
we trust Z3 to be sound w.r.t. standard first-order logic semantics. We do, how-
ever, show foundationally (Theorem 84 in §28.2) that our connection between
almost-pure assertions in Iris (which use HDEAs to reason about memory) and

first-order logic (which is agnostic about the heap) is sound.

Case studies (§29). We have applied Daenerys to several interesting case
studies, demonstrating the benefits of combining IDF and Iris and of the SMT-
based automation enabled by HDEAs.

Daenerys is fully mechanized in Rocq, extending the implementation of Iris
and the Iris Proof Mode. See the Daenerys Rocq development for the Rocq
proofs.’

CHAPTER 24: INTRODUCTION

Moura and Bjerner, “Z3: An efficient
SMT solver”, 2008 [MB08].

? Spies et al., Destabilizing Iris (Rocq devel-
opment and appendix), 2025 [Spi+25b].

205

CHAPTER 25

HeAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

In this chapter, we focus on the main heap-dependent expression assertion of
Daenerys, the evaluation assertion e || v. We explain how it works (§25.1), how
it integrates into the program logic (§25.2), and how it supports new automation
for Iris by connecting to first-order logic (§25.3). Throughout this introduction,

we use the rules in Fig. 25.1.

25.1 The Evaluation Assertion

Before we explain e |} v, let us first introduce the language A4y, that we will be
working with in the following. It extends Iris’s HeapLang (see §2 and §3) with
vectors #[vy, ..., v,] (i.e, immutable sequences of values for, e.g., strings) and
bitvectors u (i.e., fixed-size integers such as unsigned 64-bit integers):

Values v,wi=--- | #[vy,...,vy1 | u
Expressions e = ---|e;[ey] | e;le;—es3] | size(e)]|---

Notably, just like HeapLang, A4y, does not distinguish between commands
and expressions: everything is an expression, including recursive functions
fix f x. e and function application e; e;. In particular, the combinator iter
below—applying a function f to integers in the range [n, m)—is a value (and

hence an expression) in Agyn:

iter 2 fixit (n,m,s, f).if m < nthenselseit(n+1, m, f ns,f)

Evaluation e Jv. Let us now explain the evaluation assertion e || v. It is a
simple judgment for reasoning about terminating, deterministic, read-only
expressions. Intuitively, e || v means “if we execute e in the current heap, then
it terminates in the value v”. For example, the entailment

£ Vyee F eadq || 42

where e,qq = iter(0,size(1¢),0,Ai,s. ' €[i1+s) and we = #[13,11,6,12],

means if £ stores the vector we. in memory, then e,gg (which adds up the
elements of the vector stored in £) evaluates to 42. We can prove it using the
rules in Fig. 25.1: First, we focus on the subexpression ! ¢ in evaluation position
with evar-crx for K 2 iter(0,size(e),0,Ais. !¢[i] +5s). We can then justify
the load with evar-Loap, leaving us with K [vyc] || 42. (We ask the reader for
now to ignore the subscript on points-to assertions £ 4 v such as in EvaL-LoAD.)
Next, we compute the vector size with a pure step size(wec) —>pure 4 With Evar-
PURE, leaving iter(0,4,0, i, s. 1[i]+s) || 42 to prove. We continue with pure
steps and dereferencing ¢ until we reach 42 || 42, which holds by evar-var.

207

PART V: DAENERYS CHAPTER 25: HEAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

EVAL-VAL EVAL-PURE EVAL-LOAD EVAL-CTX EVAL-DET
viv e —pure e xe Jvielv tgvik ey eJvsK[v]lwrK[e] |w eJvselwrv=w
EVAL-DUPL
HOARE-EVAL PTS-FRAME FRAME-ELIM P Fe .U,V P F Q
{Pxel_}te{v.Pxelv} {ogvE B gy @P+ P Prelv=Q
FRAME-EVALS HOARE-FRAME
Prel_ {P}e{v.0(v)}
BP xelvB(Pxelv) {@BP = BR} e {v. 8 Q(v) * BR}

What makes e |} v special—particularly from an SL perspective—is that it
does not consume any ownership of the locations that e accesses. Traditionally,
the separating conjunction P * Q enforces that P and Q access disjoint parts
of the heap (and more generally disjoint resources; see §4.3). However, for
ellv, we have £ wec F £ Vyee * €444 |} 42, yet clearly enqq accesses £. The
key rule is Evar-purr: when we prove P + e | v * Q, we do not have to split
up the ownership of P between e ||v and Q—as would usually be the case
(see sep-sprrT in Fig. 2.2). Instead, we can use P for proving e || v and Q. More
broadly, this means that e |} v escapes the usually linear (or affine in Iris) resource
management of separation logic, which makes it easier to reason about. We
will see in §26 that the underlying reason why e |} v enjoys this rule is that it is
based on unstable points-tos £ > v.

25.2 Evaluation and the Program Logic

As in the other chapters, we verify (effectful) programs using a program logic
{P} e {v. Q(v)} (fully introduced in §27). Let us now discuss how e || v integrates
into it. For this, we return to the checksum example (from §24.1). Recall that
our goal in this example is to avoid defining a mathematical representation cs
of checksum. We start with a high-level proof sketch, this time using e |} v:

¢ let buf = produce_buffer() in
7 let chkl = checksum(buf) in
s read_only_client(buf);

9 let chk2 = checksum(buf) in
10 assert(chkl == chk2)

We obtain checksum(buf) chk1 in Line 7 and checksum(buf) |chk2 in Line 9,
and then thread them through to the assert in Line 10. We can prove that the
assert succeeds, because e |} v is deterministic (evar-peT), so chk1 and chk2 are
equal at this point.

Two of these steps warrant a closer look. We discuss how we obtain e || v for
checksum (Lines 6-7) and how we frame it past the read-only client (Lines 7-8).

Connecting evaluation and the program logic. To get from Line 6 to
Line 7, we prove the Hoare triple

{b+> u} checksum(b) {v. b u * checksum(b) || v}.

Figure 25.1: A selection of core

proof rules of Daenerys.

208

PART V: DAENERYS CHAPTER 25: HEAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

In general, we connect evaluation to Hoare triples with the rule HoARE-EVAL
(Fig. 25.1). It allows one to prove a Hoare triple for e if e evaluates, written
el _ = Fv. e v. To apply Hoare-EvaL here, it suffices to prove

bg i+ checksum(b) || _ (CHECKSUM-EVAL)

meaning that if the buffer b currently stores i, then checksum(b) will terminate
in some value.

At first glance, this may seem like it requires us to verify checksum after
all, even though the assertion (in Line 10) only requires that checksum is
deterministic. Recall that providing a mathematical specification like cs for
checksum is exactly the overhead that we are trying to avoid by using HDEAs.
Fortunately, showing that a function deterministically computes some result is
a weaker requirement than showing that it computes a specific result. It suffices
for checksum to be safe, deterministic, and terminating—but a mathematical
function cs on the buffer contents is not needed. We will see in §28.1 how we
can exploit this relaxation by introducing a semantic type system, which will
give us (in many cases) a simple way of proving e |} _ via “type checking” e.

Framing. As the final piece of the proof (Lines 7-8), let us turn our atten-
tion to framing. Recall that, usually in Iris, once we proved a Hoare triple
{P} e {v. Q(v)}, we can frame any assertion R around it (see FramEe-1rIs in §24.2).
However, the assertion e || v is special in that it cannot be framed on its own.
For example, it would be unsound to frame e,4q |} 42 around the Hoare triple
{€ > vee} £ == #[1{_. £—> #[1}, since the contents of £ change. Instead, to
frame e |} v, we have to frame enough ownership alongside it to ensure that the
result of e does not change. For example, the ownership of £ = .. ensures
that e,qq does not change, so we can frame R = £+ Vyec * €add || 42.

In our example (Lines 7-8), we must be careful not to frame buf — i around
the read-only client, since the client also needs ownership of the buffer buf to
justify reading from it. To resolve this tension, we use fractional permissions.
More specifically, we use the fractional points-to £ — 4 v, which generalizes
the regular points-to £+ v (from §4.2.2).2 For q = 1, it is the same as £+ v,
and for any fraction 0 < g < 1, it allows reading but not writing. As with
fractional ghost variables (see §4.2.2), one can split and combine the points-to
assertions based on their fractions (i.e, £ +g4q v 4+ L4V * £ v), and
two points-to assertions for the same location agree on the value stored there
(i.e, t>gv * £y w F v = w). In this case, we split the ownership of
buf - i into buf +>1/, i * buf 1/, ii. We use one half buf -1/, i to frame
checksum(buf) || chk1, and we give the other to the read-only client:

{buf —1/2 ﬁ} read_only_client(buf) {7. buf -1/, 7} (rRoC-SPEC)

The frame modality BP. IDF ensures soundness of the frame rule by ensur-
ing that the framed assertion is “self-framing” (i.e., contains non-zero ownership
for each memory location it depends on). We internalize this notion into Daen-
erys with a revised frame rule, Hoare-FraMmE, and a new modality, the frame
modality BP. The latter is the “gate keeper” that ensures that we frame enough
ownership such that P will not be invalidated. To explain both, let us zoom
in on the proof step around the read-only client (with two intermediate proof
states added in » violet):

! Boyland, “Checking interference with
fractional permissions”, 2003 [Boy03];
Bornat et al., “Permission accounting in

separation logic”, 2005 [Bor+05].

?To obtain a fractional points-to asser-
tion, one can choose the resource algebra

Auth(Loc I ((0,1],+) x Ag(Val)).

We will discuss a version of fractional
points-to assertions with the unstable

points-to assertion £+, v in §26.3.2.

209

PART V: DAENERYS CHAPTER 25: HEAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

iz > {Bbuf >y, @i * B(buf >, 1 * checksum(buf) || chk1)}
13 read_only_client(buf);
1 > {Bbuf), = B(buf 51 % checksum(buf) || chk1)}

We want to pass P £ buf sy, to the read-only client and frame R =
buf 154 * checksum(buf) |l chk1. To do so, HoARE-FRAME asks us to split
our precondition into two parts P and R and put both into a frame modality

“@”.°> We do so in Lines 11-12: For P, we use that fractional ownership of a 3 The reader may wonder whether both
frame modalities in the precondition

of HOARE-FRAME are needed. The frame
modality around R ensures that e does

frame e |} v if we combine it with enough ownership to prove that e evaluates not invalidate R. We discuss the one
around P in §27.1.

points-to assertion £ 4 v can always be put into a frame modality (prs-rramE),

because it precludes others from modifying ¢. For R, we exploit that we can

(rrame-EVALS). Since R contains buf 1/, i, We can use CHECKSUM-EVAL to prove
that checksum(buf) evaluates and obtain BR. (Fractional ownership is enough
for cuecksum-EvaL, since checksum does not need to modify the buffer.)
Finally, after the read-only client, we have to establish the postcondition
in Lines 14-15. But this is easy! The frame modality &P tells us, in particular,
that P holds, so we can just eliminate it (FraME-ELIM). We can then re-assemble
the full points-to assertion for the buffer from the two halves. This completes

the last missing step in our example from the start of this subsection.

25.3 Evaluation and First-Order Logic

We will now show how to connect evaluation e |} v to first-order logic to enable
new automation via SMT solvers. As motivation, consider a small variation of
the checksum example:

16 let buf = produce_buffer() in
17 let chk = checksum(buf) in
18 read_only_client(buf);

19 assert(validate(buf, chk))

In this version, we call a function validate to validate the buffer buf against
the checksum chk. We consider this version, because—unlike for checksum
where it was enough to know that it computes some value—for validate,
it actually matters what the function does. That is, to show that the assert
in Line 19 succeeds, validate cannot be just any function. Instead, we need
that for any buffer b, validate(d, c) returns true if ¢ is the result of checksum(b).

Almost-pure assertions. Suppose checksum returns a 64-bit unsigned in-
teger. Then we can make the desired relationship between validate and
checksum formal in Daenerys as:

Vb, c. buffer(b) = u64(c) = checksum(b) | ¢ = validate(d,c) || true

(CHECK-VAL)

where buffer is defined below and u64 ensures that c is a 64-bit unsigned integer.

To state and prove properties relating HDEAs like cueck-var, we use almost-
pure assertions in Daenerys—assertions F, G : hProp C iProp that largely behave
pure (i.e, non-linear), yet can also refer to the heap:

F,G:hProp:==¢ |e|v|t—yv|FAG|FVG|F=G|3x.Fx|Vx.Fx|---

210

PART V: DAENERYS CHAPTER 25: HEAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

They are a fragment of (our version of) Iris’s propositions iProp, containing
actually-pure assertions ¢, evaluation assertions e |} v, unstable points-to asser-
tions £ >, v (see §26), and standard logical connectives including impredicative,
higher-order quantification (which gives rise to least- and greatest fixpoints).
The unstable points-to allows one (together with e |} v) to constrain the current
memory. For example, we define buffer(b) £ Jii. b+, i to ensure that b is a
buffer in memory.

The hProp-fragment is quite expressive: For example, we can use it to reason
about evaluation e |} v by restating the proof rules from Fig. 25.1 in hProp with
£y vin place of £+, v, conjunction in place of separating conjunction, and

implication in place of entailment:
e—pree A lvaelv vy elvAK[v]w=Kle]w

Hence, one can prove, e.g., £ >y Wec = €add |} 42 in hProp analogously to §25.1.
We will make the hProp-fragment precise in §28.

First-order logic. Suppose we want to prove caeck-var for a concrete imple-
mentation of validate, such as

validate(buf,chk) = (checksum(buf) xor chk == 0).

Does it satisfy the property cueck-var (and, consequently, does the assert
in Line 19 succeed)? The answer is yes!
To prove it, one option would be to roll up our sleeves and use the rules

for e || v above. (In Rocq, we have instantiated the Iris Proof Mode* with hProp ¢ Krebbers, Timany, and Birkedal,
“Interactive proofs in higher-order

))] . . concurrent separation logic”, 2017
problem automatically in first-order logic. If one squints a little, cueck-var looks [KTB17].

for such cases.) However, Daenerys also provides a second option: solve the

a lot like a formula in first-order logic: the functions correspond to first-order
function symbols, the predicates to first-order sorts, and the evaluation e || v
to equality. Following this analogy, cueck-vaL could be restated in first-order
logic (indicated in blue) as:

V(b : buffer), (c : bv64). checksum(b) =, ¢4 ¢ = validate(b, ¢) Zpoo| true

(CHECK-VAL-FO)

This is basically how IDF-based verifiers like Viper® reason about HDEAs 5 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure

. . . . for permission-based reasoning”, 2017
a foundational justification for this correspondence (in §28.2): we show that [MSS17].

(although the details differ substantially; see §28.2). In Daenerys, we develop

one can translate a first-order logic formula 7 such as cueck-var-ro (which has
no concept of “memory”) to an hProp-assertion (7). such as curck-var (which
refers to the current memory via £+, v and e |} v) such that if 7 holds, then we

can assume (1) in Iris.

SMT solvers. The main use-case for this connection is laying the groundwork

for connecting Iris to SMT solvers such as Z3°% or CVC5 to benefit from their ¢ Moura and Bjerner, “Z3: An efficient

built-in automation. Of course, SMT solvers are not foundational, and we by SMT solver”, 2008 [MB08].

no means attempt to verify an SMT solver. Instead, Daenerys provides the 7 Barbosa et al. “cves: A versatile and

assurance that if 7 holds in first-order logic—the language of SMT solvers— industrial-strength SMT solver”, 2022

then the hProp-assertion () —indirectly referring to the heap—can be soundly [Bar+22].

used in Iris. For example, for assert, we derive the following proof rule (from

211

PART V: DAENERYS CHAPTER 25: HEAP-DEPENDENT EXPRESSION ASSERTIONS IN DAENERYS

our generic result, Theorem 84):

HOARE-ASSERT
ET Prel_ P (m)p el true

{P} assert(e) {_. P}

where E 7 means 7 is provable in first-order logic with knowledge of, e.g.,
numbers and bitvectors. Hoare-assErT means that an assert e succeeds if (1)
holds in first-order logic, (2) P suffices to prove that e will evaluate,® and (3)
assuming (rr)F, one can prove that e evaluates to true.

For example, given the implementation of validate, Z3 can prove cHeck-
vaL-ro automatically, because it knows that u xor u = 0 for any 64-bit unsigned
integer u. Thus, if we trust Z3 to be sound w.r.t. to standard first-order logic
semantics, we can verify the assert in Line 19—even though it uses heap-
accessing functions like validate—without ever (1) specifying checksum as a
mathematical function cs and (2) reasoning about bitvector arithmetic in Iris.

8 Analogously to the rule HOARE-FRAME,
we need the assumption P + e || _here

to ensure that—given the ownership

of P—the result of e is not affected by
any other parts of the program such as
concurrent threads. We discuss a proof
technique for this assumption in §28.1.

212

CHAPTER 26

DESTABILIZING THE FOUNDATIONS OF IRIS

Having used the evaluation assertion e |} v (in §25), let us now define it. To do
so, we have to go down to the core of Iris and change its underlying notion of
resources. As we have already touched upon in the previous chapters, almost
everything in Iris boils down to resources, including the heap with £+, v, but

L invariants,® reﬁnements,3 time complexity,4 and

also state transition systems,
even to some extent step-indexing (see Part III). In Daenerys, we generalize

Iris’s resources one step further by introducing unstable resources.

26.1 Unstable Resources

To define e |} v, we need a new resource assertion, the unstable points-to £ > v.
Like a normal points-to £ >4 v, it asserts the value of £ in the current heap. But
unlike £ 4 v, (1) it can co-exist with the full ownership of ¢ in the sense that
LV v =w -k L>4v * £+, w holds, including for ¢ = 1 and (2) it does
not prevent updates to £. As we will see below, this means it goes beyond the

resource model of Iris. But before we get there, let us first use it to define e || v:

elv=3h (e h) ~5, Wh) * (o wen L4 wW) (EVAL-DEF)

That is, e evaluates to v if (1) there is a heap fragment h in which e deterministi-
cally steps to v in the operational semantics,” written (e, h) ~ e (v, 1), and (2)
we have unstable points-to assertions £+, w for all entries in h, which ensures

that e evaluates to v in (a fragment of) the current heap.

Framing by construction. We will define ¢+, v in §26.3.2. Let us first
see why £+, v requires us to modify the model of Iris. The issue is that
¢+, v cannot soundly be framed around code that modifies ¢, yet Iris “bakes in”
framing at its very core as we have seen in §4.2. More specifically, as part of its
design philosophy,® Iris makes framing the defining feature (see Definition 32
in §4.2) of which resource updates it permits via its frame preserving update
a ~» b. We will now explore the essence of the problem and how we resolve it.

To illustrate the issue with Iris’s original resources, we focus on the exclusive
resource algebra Ex(N).” Recall from §4.2.1 that it essentially has only a single
resource, ex(n), carrying full ownership of the number n, and it adheres to the

rules:
EX-VALID

ex(n) €V

EX-EXCL

ex(n) -ex(m) ¢ V

EX-UPD

ex(n) ~ ex(m)

The resource ex(n) on its own is valid (ex-vaLip), and if we compose it with
another copy of ex(_) it becomes invalid (ex-exct). In other words, ex(n) carries

! Jung et al., “Iris: Monoids and invariants
as an orthogonal basis for concurrent
reasoning”, 2015 [Jun+15].

? Jung et al., “Higher-order ghost state”,
2016 [Jun+16].

3 Turon, Dreyer, and Birkedal, “Uni-
fying refinement and Hoare-style
reasoning in a logic for higher-order
concurrency”, 2013 [TDB13]; Frumin,
Krebbers, and Birkedal, “ReLoC: A mech-
anised relational logic for fine-grained
concurrency”, 2018 [FKB18].

4 Mével, Jourdan, and Pottier, “Time
credits and time receipts in Iris”, 2019
[MJP19].

> Concretely, the relation

(e, h) ~get (€', h) restricts the
operational semantics of Agyn

(e,h) ~ (€', H,es) to those steps

that (1) do not change the heap h and (2)
do not fork any additional threads. They
are deterministic in A4y, (and HeapLang).

®See §7.1 in Jung, “Understanding
and evolving the Rust programming
language”, 2020 [Jun20].

7 Technically, we consider the exclusive
resource algebra extended with a unit
element ¢ here, so option(Ex(N)).

213

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

full ownership: it cannot exist at the same time as another copy ex(m). Lastly,
we can update ex(n) to ex(m) for any m, since ex(n) carries full ownership
(ex-urp). As we have seen in §4.2.2, the reader can think of ex(n) as the resource

underlying ¢+ n for a particular location £.3 ® That is, recall that in the heap resource
To illustrate why we need to update the foundations of Iris, we will now show ‘glig[%}grg fro %%%f.z, we define k=¥0 =
olk = ex(v)] 1.

that unstable points-to assertions are incompatible with its model. Consider an
extension of the exclusive resource algebra with a resource tmp(n), the analog
of £+ n. This resource co-exists with ex(n) yet—crucially—should still allow
updating ex via ex-upp. Formally, we want that ex(n) = ex(n) - tmp(n) (i.e,
we can always create a temporary copy) and tmp(n) - ex(m) € V =>n=m
(i.e., the two agree on the current value). Unfortunately, if these two hold, then
Ex-UPD is no longer true. To understand why, we have to take a closer look at
the frame-preserving update a ~» b (from Definition 32; specialized to a single
successor element and unital resource algebras). Its defining characteristic is

that it preserves all valid frames ay:
a~wb=Var.(a-ap) eV = (b-ap) eV

This breaks ex-urp in the presence of tmp(n). In ex-urp, we have a = ex(n).
This makes the resource ar = tmp(n) a valid frame of a. But for n # m, the
resource ay is not a valid frame of b = ex(m) (i.e, tmp(n) - ex(m) ¢ V for
n # m). Thus, there are no more updates of ex as soon as we add tmp(n).

Unstable resources and stable updates. This puts us in a pickle! How can
we have both tmp(n) and ex-urp? The issue is that a ~» b preserves too many
frames. Intuitively, we should be allowed to update ex(n) to ex(m), and the
update should invalidate temporary copies tmp(n) rather than preserve them.

To realize this intuition, we extend Iris’s resource algebras with unstable
resources. More specifically, we add two projections |a|s and |a|ynst Such that
a = |alst - |alunst- The first projection, |aly, yields the stable part of a resource.
(Usually, in Iris, all resources are stable.) The second projection, |a|ynst, yields
the unstable part. We then define a new stable update a ~»4 b, which only

preserves the stable parts of the frame resource ay:
a~gb=Var. (a-ap) €V = (b-lagls) €V

Let us consider this definition in the context of our example. In the example,
tmp(n) represents temporary information about the value of ex(n). Thus, we
define |[tmp(n)|s = ¢ making it an unstable resource. More specifically, for
ar = tmp(n), the stable update ~>g now erases tmp(n) from the frame, such
that ex-uprp holds for wsg (i.e., ex(n) wsg ex(m)).

Of course, as we have seen in §4.3, the frame preserving update a ~» b
is a corner stone of resource reasoning in Iris, since it underlies Iris’s update
modality B P. Thus, the introduction of unstable resources (and of a vy b
specifically) ripples through all layers of Iris. We will now discuss how unstable
resources give rise to new modalities (§26.2) and affect resource algebras (§26.3).
We will then discuss how they alter the program logic (§27).

214

PART V: DAENERYS

CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

SUPD-OWN SUPD-MONO
a st b Pr Q SUPD-UPD SUPD-INTRO SUPD-TRANS
Own (a) F Bs Own (b) B PF B O PP+ PP PrpBgP Bt Pst P+ Bs P
FRAME-MONO
SUPD-FRAME P F Q FRAME-ELIM FRAME-IDEMP FRAME-EXISTS
(BP) * (P Q) Bst (BP) x QO B8P + BQ @P + P BP+@@P B(3x. P x) 4+ Ix. (B8P x)
FRAME-ALL FRAME-LATER FRAME-SEP FRAME-PERS
B(Vx. P x) 4 Vx. (BP x) &E(>P) 4~ »(8P) (BP) = (BQ) + B(P * Q) OP+®@P

UNSTABLE-MONO

PrQ
%PFxQ

FRAME-OWN

Own (a) + BOwn (|ast)

UNSTABLE-ELIM
XPFrP

UNSTABLE-ALL
%(Vx. P x) 4 Vx. (% P x)

UNSTABLE-LATER
%(>P) 4 »(% P)

UNSTABLE-SEP

UNSTABLE-IMPL

¥P= %0+ %(%P=%0Q)

26.2 Extending the Base Logic

We start by lifting the new resource algebra operations (i.e., the stable update
a ~»g b and the projections |a|s and |a|ynst) to the assertion level. To this end,

we define three new modalities in Daenerys:’

8P = {(n,a) | (n,lals) € P} %P = {(n,a) | (n,|alunst) € P}

B P = {(n,a) |Vm <n.Vag.a-ar €V = 3b.b - laslst € V A (m,b) EP}

In short, the frame modality BP must be proven using only the stable parts of
the current resource, and analogously the unstable modality % P only using the
unstable parts. The stable update modality B P reflects a ~»g b into the logic
(analogously to how B P reflects a ~» b in Iris; see §4.3). We take a closer look
at each one and discuss their proof rules, depicted in Fig. 26.1.

The stable update modality. The stable update modality B, allows us
to perform stable updates a v b on resources (surp-own). For B, to be a
usable update modality, it is important that the definition of a ~»¢ b ensures
that B, retains (almost; explained below) the same compositionality as the
normal update . Concretely, it is still a monad (supp-INTRO, SUPD-MONO,
and supp-TraNs), which is important to make updates practically usable and
integrate them into the weakest precondition (see §27.2).1° Moreover, we have
BP + B P (supp-urp), which ensures backwards compatibility: existing
resource algebra constructions such as user-defined ghost state (e.g., from §3.6)

can still be reused, since their updates can be turned into stable updates.!!

The frame modality. The frame modality @ illustrates the key difference
between the original update & and the new update B, namely we can only

UNSTABLE-IDEMP

%P xxP

(%P) % (%Q) 4 %(P % Q)

UNSTABLE-EXISTS
%(3x.Px) 4F Ix. (%P x)

UNSTABLE-OWN

Own (a) + % Own (|alunst)

UNSTABLE-DUPL

(%¥P) AQ 4 (%P) = Q

Figure 26.1: Base logic rules for
the stable update modality B P,
the frame modality @P, and the
unstable modality % P

° Technically, in Rocq, we extend the
notion of Iris’s step-indexed resources,
so-called “cameras”. To ease the presen-
tation, we stay here at the same level of
abstraction as in §4.2.

10 At the resource level, the impor-
tant properties of ~sg are reflexivity
(for SUPD-INTRO) and transitivity
(for SUPD-TRANS).

' At the resource level, the important
property here is that a ~» b implies
a ~g b. It is also important that v
does not also apply |_|st to b.

215

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

frame assertions that are guarded by a frame modality (supp-rramg). This rule
holds without &8 for & in Iris (see urp-FraMmE in §3.6) and is the basis for Iris’s
frame rule (rrame-1r1S in §24.2), since B is used in the definition of the weakest
precondition (see §4.1). By adding frame modalities to it here (and using B),
we make sure that it is sound for stable updates to remove unstable resources
(e.g., the temporary resource tmp(n) from above).

Moreover, the frame modality is a co-monad (like the persistency modality O
from §3.3): it is monotone (FrRaME-MONO), we can always eliminate it (FRAME-ELIM),
and it is idempotent (rrame-1DEMP). The rule FraME-ELIM means we never have to
worry about “getting rid” of a frame modality (from our assumptions). The rule
FRAME-IDEMP means we can always “add another” frame modality, which can be
useful for moving inside a frame modality (e.g., with rFrame-monoO). In addition,
the frame modality distributes over existential quantification (FRAME-EXISTS),
universal quantification (rrame-arr), and the later modality (FrAME-LATER). It
does not—in both directions—distribute over the separating conjunction: we
can combine two frameable assertions (Frame-ser), but the opposite direction
does not hold.!? Furthermore, to make sure that persistent assertions (J P (§3.3)
keep their usual meaning (i.e., once created, they persist across updates and
state changes), they are always frameable (rrame-pErs). Lastly, if we own a
resource, we frameably own its stable part (FRAME-OWN).

The unstable modality. The unstable modality % reflects a key property
of unstable resources into the logic that we have not discussed yet: they are
duplicable. More specifically, we will require a = a - |a|ypst (in §26.3). The result
is that when we prove an unstable assertion % P, intuitively, we do not have
to give up any ownership to do so. Formally, it means that the rule unsTaBLE-
purt holds, which says that ordinary conjunction and separating conjunction
coincide for unstable assertions.!?

Like the frame modality, the unstable modality is a co-monad: it is mono-
tone (unsTaBLE-MONO), we can always eliminate it (unsTaBLE-ELIM), and it is
idempotent (unstasLe-iDEMP). It also distributes over existential quantification
(unsTaBLE-EXISTS), universal quantification (unstaBLe-ALL), and the later modal-
ity (unstaBLE-LATER). Unlike the frame modality, the unstable modality does
distribute over separation conjunction in both directions (unstaBLe-sep). When
we own a resource a, we always unstably own its unstable part (uUNsTABLE-OWN).

Furthermore, we have the rule unstasLe-mvpL, which effectively means that
the implication between two unstable assertions x P and % Q is itself an unstable
assertion. We will use it in §28 to show that implication is an almost-pure
assertion (i.e., that the fragment hProp is closed under implication), which
makes the fragment of almost-pure assertions considerably more expressive.
Obtaining unstaBLE-1MPL is non-trivial. The trick to get it are two dedicated
axioms about resources in our definition of resource algebras (see Ra-UNSTABLE-

FLIP and RA-UNSTABLE-EXTENSION in Fig. 26.2).

26.3 Resource Algebras with Unstable Elements

Let us now turn to the resource algebras underlying the logic. In Daenerys, we
introduce partially stable resource algebras M = (A, -, &, |_|cores V> |_sts |_lunst)s
consisting of (1) a carrier set A; (2) a composition a - b for a, b € A; (3) a unit ¢;

2 That is, the rule (P * Q) + 8P * BQ

is unsound. For example, it would be

unsound to turn B(£ v * £+, v) into
(B v) = (Bf >y V), because (Bf —v)
could be used to update ¢ invalidating

(8f -y v) as a frame.

13 The reader may wonder about the
relationship between persistency

O P (backed by |_|.ore) and unstable
propositions x P (backed by |_|unst):

unstable resources can describe larger

parts of a resource, since they are
only temporary whereas persistent

propositions are stable (FRAME-PERS).
For example, we have |ex(n)|.e = € and

lex(n) lunst = tmp(n).

216

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

Resource Algebra

A partially stable resource algebra M = (A, -, &, |_| core» V5 |_|sts |_lunst) 1s a unital resource algebra (§4.2):

ra=a =

a~(b-c)=(a'b)-c a-b=b-a |a|core a<b=>|a|core<|b|core

|a|core ||a|core|core

(a-b)eV=uaeV ceV e-a=a £

|g|c0re -

wherea<b=3c.a-c=banda~ B=Vas.(a-af) €V =3beB.(b-ap) €V.

with Stable and Unstable Elements

lalstlst = lalst (RA-STABLE-IDEMP) llalunstlunst = |@lunst (RA-UNSTABLE-IDEMP)
la-blst =lalst - |blst (RA-STABLE-DISTR) a<b=|alust < |blunst (RA-UNSTABLE-MONO)
lalcorelst = lalcore (RA-CORE-STABLE) a - [blunstlunst = [lalunst - Dlunst (RA-UNSTABLE-FLIP)
|alst - [alunst = @ (RA-DECOMPOSE) a€V = |alumst b€V =a|blunsgt €V
|alunst -a = a (RA-UNSTABLE-DUPL) (RA-UNSTABLE-EXTENSION)

where a >t B = Vayr. (a-af) €V = 3beB.(b-|ag|s) €V

o idi di ol o Figure 26.2: The partially stable
(4) a core projection |a|q; (5) a validity predicate V; (6) a stable projection resource algebra, additions in

|_|st, and (7) an unstable projection |_|ypnst- red

As depicted in Fig. 26.2, they extend Iris’s unital resource algebras from §4.2
(A, - & |_|cores V) by the projections |_|s and |_|ynst- All existing rules still
apply. We focus on the new rules governing the new projections.

The stable projection. A resource decomposes into its stable and unsta-
ble part (ra-pEcomrosk). The stable-projection |a|s defines which part of the
resource will be preserved by the corresponding updates (~g):

b~og b’ implies b-a~wg b - |als

The stable projection is idempotent (ra-sTaBLe-1DEMP), distributes over com-
position (ra-sTABLE-DISTR), and preserves the core (rRa-core-sTABLE). Idempotence
ensures that the frame modality is idempotent (Frame-1DEMP in Fig. 26.1). Dis-
tributivity ensures that we can combine the separating conjunction of two
frame modalities (rrame-sEp in Fig. 26.1). The preservation of the core ensures
that persistent assertions are always frameable (rrame-pERs in Fig. 26.1).

For all unstable resource algebras, we have that a ~» b implies a ~»g b, since
|alst < a (via ra-DECOMPOSE). Moreover, in resource algebras from standard Iris,
all elements are stable (i.e., |a|st = a) such that for them (~»g) and (~) coincide.
More specifically, one can trivially turn regular Iris unital resource algebras
into partially stable resource algebra by picking |a|s = a and |a|ynst = €.

The unstable projection. The unstable projection yields a duplicable part of
a resource (RA-UNSTABLE-DUPL), justifying the key rule unstasre-purL. It is idem-
potent (ra-unsTaBLE-IDEMP) and monotone (RA-UNSTABLE-MONO). Idempotence

ensures that the unstable modality is idempotent (unstaBLe-DEMP in Fig. 26.1).

217

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

fragment rules

FRAG-OP FRAG-CORE FRAG-VAL FRAG-UNIT FRAG-INCL
o(a-b)=oca-ob [0a|core = ©lalcore caeV & aeVy ogy =€ ca<ob & axyub
FRAG-STABLE FRAG-UNSTABLE
loalst = olalst |oalunst = [@lunst

authoritative element rules
AUTH-VAL AUTH-EXCL AUTH-STABLE AUTH-UNSTABLE

ea eV < ac Vy A maximal(a) eq-eb eV < False |ealss = ea |®a|unst = sa

unstable authoritative element rules

AUTH-UNSTABLE-VAL AUTH-UNSTABLE-AGREE AUTH-UNSTABLE-AUTH-OP AUTH-UNSTABLE-OP
caceV — aec Vy A maximal(a) ca-sbeV =a=b eq =eq-ca ca=ea-ea
AUTH-UNSTABLE-UNSTABLE AUTH-UNSTABLE-STABLE

|Ga|unst =ea Galst =&

interaction rules

BOTH-VALID BOTH-UNSTABLE-VALID

eq-ob eV — b<yaAac VyA maximal(a) ca-obeV < b<pyaAlacVyA maximal(a)
BOTH-UPDATE BOTH-UPDATE-STABLE
(a,b) »» (a’,b") = ea-ob ~> eqa’ - ob’ (a,b) vk (a',b) = ea-ob ~y ea’ - ob’

Figure 26.3: The partially stable
authoritative resource algebra

Monotonicity ensures (together with ra-unstasLe-pDUPL) that the unstable modal-
PSAuth.

ity distributes over separating conjunction (unstasLe-sep in Fig. 26.1).

In addition, we impose two key axioms RA-UNSTABLE-FLIP and RA-UNSTABLE-
EXTENSION to obtain the implication rule for unstable propositions (unsTABLE-
wpL in Fig. 26.1). The axiom ra-unstaBLe-FLIP allows one to flip the unstable
projection inside an unstable projection. It is a weaker form of distributivity of
the unstable projection (i.e., weaker than |a - blynst = |@|unst - |Dlunst) that still

suffices for the implication rule.’® The axiom RA-UNSTABLE-EXTENSION €nsures 14 The Sil(M) resource algebra that we
will discuss in §26.3.1 satisfies this rule

that the unstable part |a|ynst is @ “complete snapshot” of a in the sense that 0.2 SAUSHES
but does not satisfy distributivity.

there cannot be an element b that is valid with |a|yns but whose unstable part
|b|unst is not valid with a. It arises because Iris’s implication P = Q is upclosed
with respect to larger resources (see §4.3) and so to prove UNSTABLE-IMPL, We
end up needing to extend the validity predicate for a resource. If the unstable
projection provides a “complete snapshot” as given by rRA-UNSTABLE-EXTENSION,

one can show that the extension does not break validity.

26.3.1 Resource Algebra Combinators

We define the points-to assertions £+, vand £ 4 v in §26.3.2. As usual for Iris
(see §4.2.2), we factor their definition through several reusable combinators—

including new ones for unstable resources. We discuss the combinators.

218

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

stabg(x) €V & g <1 unst(x) € V |stabg (x)[s; = stabg(x) lunst(x)|st = € |stabg (x) [unst = unst(x)
|unst(x) |unst = unst(x) stabg, (x) - stabg, (x) = stabg, 14, (x) stabg(x) = stabg(x) - unst(x)
unst(x) = unst(x) - unst(x) stabg, (x) - stabg,(y) €V & (1 + @ <1 Ax=y)
unst(x) -unst(y) e V=x=y staby (x) ~ag staby (y) maximal(stab (x))

Authoritative resource algebra. We define a version of the authoritative
resource algebra Auth(M) (see §4.2.1) for partially stable resource algebras,
written PSAuth(M), depicted in Fig. 26.3. Compared to the standard Iris author-
itative resource algebra, this version has an additional, unstable element <a,
which is an unstable copy of the full element ea (i.e., a = ea - <a; see auTH-
UNSTABLE-AUTH-0P). Moreover, it can be applied to unstable resource algebras
(i.e., M can have unstable elements), where it lifts the stable and unstable
projections to fragments (see rrac-staBLE and FraGg-unsTaBLE). To fulfill the
property RA-UNSTABLE-EXTENSION, we require that full elements ea are maximal

(see auTn-vAaL) in the sense that
maximal(a) = Vb.b € Vit = |blunst <M |@lunst = b <y a

For this resource algebra, we then obtain a new stable update rule (soTn-
UPDATE-STABLE). It mirrors the regular update rule for the authoritative resource
algebra, but it uses a different notion of the local update, a stable local update
(a,b) M«)SLt (a’,b"), which we define as

(a,b) ok, (a', b)) £ Var.a € Vy A maximal(a) Ab-ar <y a =

a’ € Vy A maximal(a') Ab" - lagls <m @’

Exclusive with fractions. The exclusive resource algebra with fractions
ExFrac(X) > ¢ | stabg(x) | unst(x) generalizes the resource algebra Ex(N) by
(1) enabling fractional ownership of the exclusive element and (2) adding un-
stable elements. We have two elements stab,(x) (the counter part of ex(x)) and
unst(x) (the counter part of tmp(x)). Their key rules are depicted in Fig. 26.4.
The element staby (x) carries fractional ownership, it is always stable, and it
is maximal for fraction 1. We can stably update it for fraction 1. The element
unst(x) is an unstable, temporary copy.

Silhouette resource algebra. We define the Sil(M) > ¢ | orig(a) | sil(a)
resource algebra, which completes a standard unital resource algebra M to
one with unstable resources.!> The resource algebra is depicted in Fig. 26.5.
Its two key elements are orig(a), which simply embeds elements a € M, and
sil(a), which is an unowned copy of a. When we have two unowned copies
sil(a) - sil(b), we do not add them together. Instead, there must be some c that
includes a and b. (This is useful for, e.g., the unstable points-to to know that
v * £+, wensures v = w.) The orig(a) elements are maximal, so we can

use them in PSAuth constructions.

Figure 26.4: The resource algebra

ExFrac(X).

1 This resource algebra supports only
non-step-indexed (typically called “dis-
crete”) resource algebras as instantiations

of M.

219

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

orig@eVeacV sil@eVeoacV lorig@l=orig@ Isil@li=¢ |orig(a)lums = sil(a)
[sil(@) |unst = sil(a) orig(a) = orig(a) - sil(a) orig(a - b) = orig(a) - orig(b) sil(a) = sil(a) - sil(a)
sil(a) -sil(b) e V& (c.ce VAa<cAb<c) a < b e sil(a) <sil(b) (a ~» b) = (orig(a) ~g orig(b))

((a,b) »» (d’,b")) = ((orig(a), orig(b)) w's't (orig(a’), orig(b"))) maximal(orig(a))

Figure 26.5: The resource algebra

Sil(M).
FRAME-PTS FRAME-HEAP UNSTABLE-PTS UNSTABLE-HEAP GET-PTS-UNSTABLE
log vk By heap(h) + Bheap(h) (o vE X0,V heap, (h) + % heap,(h) Log v Ly v
GET-HEAP-UNSTABLE OWNED-AGREE UNSTABLE-AGREE
heap(h) + heap, (h) togvstgwhqg+q <lsv=w >y vl wrEv=w
HEAP-AGREE PTS-SPLIT UNSTABLE-LOOKUP
heap,(h) = heap, (W) rh=H Uogug VAR Eogv s Log v £y v = heap,(h) + h(£) =v
HEAP-LOOKUP PTS-UPDATE
f>gv * heap(h) + h(£) =v -1 v« heap(h) + B¢ 1w * heap(h[f := w])
PTS-ALLOC

¢ ¢ dom h = heap(h) F B¢ £—1v * heap(h[f :=v])

Figure 26.6: The theory of heaps
26.3.2 Modeling the Unstable Points-To obtained by choosing the re-

Equipped with these resource algebra combinators, we can discuss the model of source algebra PSHeap

the unstable points-to assertion £ +, v. In this version, we obtain the following

resource assertions:
P,Qu=---|Logv | Ly v | heap(h) | heap,(h)

They extend the heap construction from §4.2.2 with two new, unstable as-
sertions: heap,(h), an unstable temporary copy of heap(h) and £+, v, an
unstable temporary copy of the points-to. We first discuss their resulting ghost
theory, depicted in Fig. 26.6, and then we return to how they are defined in
terms of resource algebra combinators.

As usual, points-tos must agree on their values (owNED-AGREE), we can split-
and combine points-to assertions as needed (prs-spLiT), and a points-to assertion
for ¢ determines the value of £ in h (1ear-LookUP). We can update an entry in the
heap with a stable update (prs-urpate) and allocate a new entry (prs-arroc). The
points-to for ¢ > 0 and the heap are frameable (rrame-pTs and FraME-HEAP), and
their unstable counterparts are unstable (unsTaBLE-PTs and UNSTABLE-HEAP). We
can always get an unstable copy from the owned versions (GeT-prs-unsTaBLE and
GET-HEAP-UNSTABLE), and the unstable versions agree: the unstable points-tos
agree on the value in the heap (unsTABLE-AGREE), two unstable heaps agree on

220

PART V: DAENERYS CHAPTER 26: DESTABILIZING THE FOUNDATIONS OF IRIS

the entire heap (uear-acree), and we can look up a location in the unstable
heap (UNSTABLE-LOOKUP).

To obtain this resource theory, we pick the resource algebra PSHeap =
PSAuth(Loc fin, ExFrac(Val)).

SE stbym] P ey o[anst ()]

>
o
o
el
<
~~
>
~
lis
©
—
~
%]
-
(Y
T
-~
<
N—
~
<
m
=
—_
F
5

This resource algebra is a variation of a standard technique for constructing a
resource algebra for heaps in Iris (from §4.2.2). For the regular points-to £+, v,
we use a fragment o containing a singleton map that maps ¢ to the stable
resource stabg(v) (from the resource algebra in Fig. 26.4). Analogously, for the
unstable points-to £, v, we use a fragment o containing a singleton map that
maps ¢ to the unstable resource unst(v) (from the resource algebra in Fig. 26.4).
For the full heap heap(h), we use the authoritative element e containing the
entire heap (where every element has been allocated with fraction 1). For the
unstable copy heap,, (h), we use the new unstable authoritative element ¢ of

our PSAuth resource algebra.

Supporting discardable fractions. Technically, in Rocq, we do not use
exactly this resource algebra construction, but a generalization of it. We de-

fine a version that supports Iris’s discardable fractions.!® Its construction is 16 Vindum and Birkedal, “Contextual
refinement of the Michael-Scott queue

more involved than what is discussed here, but not substantially more inter-
(proof pearl)”, 2021 [VB21].

esting. For it, we choose the partially stable resource algebra Heap(Loc, Val) =
PSView((Loc fin, Val), Sil(Loc in. DFrac x Ag(Val))), where PSView is a ver-
sion of Iris’s view resource algebra extended with unstable elements (general-
izing the PSAuth-resource algebra from §26.3.1), Sil is the silhouette resource
algebra (from §26.3.1), and DFrac is Iris’s resource algebra for discardable
fractions [VB21, §9]. The details of this construction can be found in the

accompanying Rocq development.!” V7 Spies et al., Destabilizing Iris (Rocq de-
velopment and appendix), 2025 [Spi+25b].

221

CHAPTER 27

THE PROGRAM LOGIC

Having generalized the resource model of Iris (§26), let us now use it to obtain
a program logic. We first focus on the concrete program logic for Aqyn (§27.1),
and then we show how one can obtain such program logics via our adaptation

of Iris’s language-generic weakest precondition (§27.2).

27.1 The Agyn Program Logic

A selection of the rules of the A4y,-program logic is depicted in Fig. 27.1. Most of
the rules are completely standard Hoare triple versions of the rules from Part I

(e.g., the structural rules such as HOARE-CONSEQ Or HOARE-BIND).

Heap-dependent expression assertions. The main effect of supporting
HDEAs are the rules Hoare-rraME and HOARE-EVAL, Which we have already
encountered in §25. A second, notable difference is that for loading from a
location (HoARE-LOAD), the unstable points-to assertion suffices.! In addition,
several rules—where the expression e does not modify the current state—have
a built-in instance of framing such as HOARE-VAL, HOARE-LOAD, and HOARE-REF.

Let us now discuss the frame modalities in Hoare-FrRAME. As we have seen
in §25.2, R must be under a frame modality, since otherwise one could frame
unstable assertions around an expression that invalidates these assertions. The
frame modalities in the postcondition only strengthen noare-rFrRaME and can
always be eliminated with rrame-eLv (in Fig. 25.1). To understand why P must
be under a frame modality, let us first look at HOARE-PURE-STEP and HOARE-FORK.
These rules look like the standard Hoare rules and do not contain any frame
modalities. This might be surprising since a concurrent thread could potentially
invalidate their preconditions (e.g., an unstable points-to assertion ¢ v for a
load with HoARE-LOAD). The reason that this cannot happen (and thus no frame
modalities are required in these rules) is that Hoare triples implicitly maintain
that their pre- and postconditions are always frameable (see the definition of
{P} e {v.Q(v)} in §27.2). The price we have to pay for this is that we need
to prove that P in moare-rramE is frameable such that we can use it as the
precondition of e in the premise.

Step-indexing, invariants, and resources. Let us now focus on several
features that make Iris particularly expressive: step-indexing (§3.2), later cred-
its (§12), impredicative invariants (§3.4), and custom resources (§3.6).

We start with step-indexing and later credits. Supporting step-indexing is
straightforward. As before (see §4.1), we use the later modality > P to define

! This rule is a generalization of the

regular rule for loading, since we can
always get an unstable points-to from

a regular points-to with GET-PTS-
UNSTABLE in Fig. 26.6.

223

PART V: DAENERYS CHAPTER 27: THE PROGRAM LoOGIC

HOARE-CONSEQ HOARE-EXISTS
HOARE-VAL P+ P {P'Ye{v.Q' W)}g Y. Q' (v) F Q(v) Vx: X. {P(x)} e {v.Q(W)}g
{PM}v{w. P(w)}g {Pte{v.Q(W)}g {Fx: X.P(x)}e{v.QW)}g
Pr¢ ¢={Pte{v.Q(W)}g {Pte{v.OW)}e W.AQW)}K[v] {w.R(w)}g
{Pre{v.0)}g {P} K[e] {w.R(w)}¢
{Pye{v.QW}g {Pre{Pye{w.QwW)}lg}e{v.0W}g e—pre e {Pre (v.QW)}g
{BP xBR} e {v. BQ(v) * BR} ¢ {P}e{v.Q(v)}¢ {>P}e{v.0(W)}¢
{Pstoyv} 1e{w.Pxv=w}g {t v} t=w{_ . t>1w}lg {P}ref(v) {w.P+ 3. w=1~LxL>1v}g

HOARE-INV-OPEN

HOARE-FORK HOARE-SUPD

{P} e {7. True}T {P} e {'V. Q(V)}S {PR * P} e {'V. >R EQ(V)}S\N R+ @8R atomiC(E) NQS
(P} fork {e} {_.Truels {E> BP}e{v.0(m)}g {P * @N} e {v- Q(v)}s
HOARE-FREE HOARE-EVAL HOARE-FAA

{t 1 v} free(?) {_. True}g {Pxel_}e{v.Pxelv}g {t—1n1} FAA(L,ny) {v.v=nq % £+—>1(n1 + n2)}g

HOARE-CAS-SUC HOARE-CAS-FAIL
VL =V v1, Vo comparable vy FE Ve V1, Vo comparable
{t—=1v1} CAS(L, v, w) {u. u = true * £ 151 w}g {t’ yq vl} CAS(£,v5, w) {u u = false * £ vl}s

Figure 27.1: A selection of rules

an underlying weakest precondition wp e {v. Q(v)} (in §27.2). Thus, one can for the program logic of Agyn.

eliminate a later modality with every program step (e.g., see HOARE-PURE-STEP;
omitted in the other rules), which supports recursive reasoning such as Los
induction (e.g., with HOARE-LOB). Moreover, while we omit them from the
definition in §27.2 for simplicity (and the rules in Fig. 27.1), Daenerys also
supports later credits (from Part III). The key to support them is to define
a version of the later elimination update B, (from §14.2) with the stable
update B, in place of the regular update . Later credits are frameable
(i.e., £n + B£n), and of course the frame rule for the later elimination update
P must be augmented with frame modalities (i.e., resulting in the analogue

of supp-rrame in Fig. 26.1).2 2 For this construction to largely “just
work?”, it is vital that the stable update

N . C e . retains almost the same compositionality
ants (§3.4). To open an impredicative invariant, we use the rule HoARE-INV- as the regular update.

Recall that Iris shares resources between threads using impredicative invari-

oreN in Daenerys. It is almost the same as in standard Iris (see HOARE-INV-OPEN
in §3.4.1). The only user-facing effect that the presence of unstable resources in
the underlying model of Daenerys has on this rule is that (1) we must prove
that the invariant R is frameable (i.e., we prove R + BR) and (2) we may use only
stable resources to prove the postcondition Q. The former is important because
an invariant storing an unstable assertion without the ownership to stabilize
it could be broken when the program invalidates the unstable assertion. The
latter is important since the postcondition must not be allowed to take unstable
assertions out of the invariant without the ownership that stabilizes them.

224

PART V: DAENERYS

To support resources—and in particular user-defined ghost state (§3.6)—
Daenerys provides the rule noare-supp. It allows one to perform a stable update
B in the precondition. (It is the counterpart of Hoare-urp from §3.6.) Since
the regular update entails the stable update (i.e., P B P from Fig. 26.1),
this rule means that we can still reuse the standard Iris ghost state constructions
from the prior chapters. For example, we can still use monotonically growing
natural numbers (from §3.6) and ghost variables (from §4.2.2). To maintain that
the precondition is frameable (as discussed above), the update rule Hoare-surD
requires the resulting P to be under a frame modality.

27.2 The Language-Generic Weakest Precondition

Let us now turn to how we define the Hoare triples in §27.1. In typical Iris fash-
ion, we do so via a weakest precondition wp e {v. Q(v)} (adapted to Daenerys).3
For Hoare triples, we define:

{PYe{v.Q(v)} = DO(@P ~+ wp e {v.80(v)})

That is, as usual, {P} e {v. Q(v)} holds if we can show that the precondition
P implies the weakest precondition of e for post Q. The two frame modalities
maintain implicitly that the precondition P and postcondition Q are frameable.

The weakest precondition is then defined in a language-generic fashion over

a small-step relation (e, h) ~ (e’, I, es) as follows:

wp v{w.Q(w)} = Vh.SI(h) = B SI(h) * Q(v)
wp e {w. Q(w)} = Vh.SI(h) -+ B, progress(e, h)
x Ve' W, es. (e,h) ~ (&', 1, es) - > B,
(SI(R") = Bwp €’ {w. Q(W)} * *ercesBwp e” {_. True})

if e ¢ Val

This definition is a variation of the concurrent weakest precondition from §4.1.
Here, in the value case, we additionally assume the state interpretation SI(h),4
return it, and then as usual prove the postcondition Q after an update.’ In
the case where e is not a value, we as usual assume the state interpretation
and prove that e can make progress in the current heap. Then, we show that
for any successor expression e’, heap h’, and forked-off threads es, we can
re-establish the state interpretation and prove weakest preconditions for e’ and
the forked-off threads e”.

In this definition, we reap the fruits of our more general model (in §26). We
can support HDEAs simply by using the new modalities of Daenerys (high-
lighted in red): we use stable updates =, in the places where Iris would
traditionally use its frame preserving update 5 P (see §27.2). Moreover, we
add the frame modality @ for the successor expression e’ and the forked-off
threads, because in a concurrent setting, they can be executed concurrently, so
we must ensure that, e.g., the verification of e’ does not rely on any unstable
knowledge that could be invalidated by another thread.

Adequacy. For this version of the weakest precondition, we can then reprove
the adequacy theorem of Iris. Instantiated for Adyn,f’ we obtain the result:

Theorem 79 (Adequacy). If+ {True} e {v. p(v)}, then e is safe to execute in
any heap h and all possible return values v satisfy the pure postcondition $(v).

CHAPTER 27: THE PROGRAM LoGIC

* To focus on the key parts of this
definition (and the changes over Iris), we
stay at the same level of abstraction here
as in §4.1. Concretely, we omit the masks
and fancy updates (see §4.5.1) that are
needed to support invariants.

4 Recall from §4.1 that the state inter-
pretation ties the heap h in the weakest
precondition to the points-to resources.
For Agyn, we pick SI(h) = heap(h) for
the heaps from Fig. 26.6 to tie the heap h
to £+—>4vand also £y v.

> We have seen a similar pattern for the
weakest precondition of Transfinite Iris
in §7.3.1. Assuming the state interpreta-
tion in the value case gives one access to
the current heap in both cases.

¢ In Rocq, we have first established a
language generic version of the adequacy
theorem (where one gets to choose

the state interpretation) and have then
instantiated it for Agy,. As in the prior
chapters, we focus here on the concrete
instantiation for Agyn-

225

CHAPTER 28

ALMOST-PURE ASSERTIONS

Recall the fragment of almost-pure assertions F, G : hProp (from §25.3), contain-
ing pure assertions, evaluation, the unstable points-to assertion, and standard
logical connectives, including impredicative quantification (i.e., x can also range
over hProp-assertions):

F,G:hProp:=¢|elv|t—,v|FAG|FVG|F=G|3x.Fx|Vx.Fx|---

In this chapter, we use it to develop two automatable proof techniques for
core aspects of Daenerys: First, we develop a semantic type system ' E e : 7
(§28.1) to streamline stabilizing e |} v (i.e., to move it into a frame modality &;
see §25.2). Then, we develop a correspondence between first-order logic and
hProp-assertions (§28.2) to automate reasoning about program expressions
using SMT solvers (see §25.3). For the correspondence, we will reuse the type

system: it connects program functions in A4y, and first-order logic functions.

Defining almost pure assertions. But before we dive into how almost-pure
assertions help us to improve automation, let us first clarify how they are
defined. Instead of an inductive characterization as suggested above, we define
them extensionally as follows:!

P € iProp,
hProp =
¢ € P(Heap)

P+ %P, and
Vh. heapu(h) * (*h—»veh['_)u V) F ¢(h) S

An almost-pure assertion F = (Pr, ¢r) € hPropis a pair of an Iris proposition P
and a predicate over heaps ¢r. Together, they satisfy two properties: First, the
Iris proposition Pr is unstable. Second, the predicate ¢r characterizes the
proposition Pr when the full heap h is known (i.e., under the assumption
heap, (h) * (*pyen £ 4 v)). We write | F](h) for ¢r(h), and we treat F as if
it was an Iris assertion instead of writing Pr (e.g., in Lemma 80 below).

By construction, almost-pure propositions satisfy the following two lemmas:

Lemma 80. F+ % F, and hence, FAP 4+ F x PandF = P 4 F « P

Proof. The first part follows directly from the definition. The remaining two
parts then follow from the properties of the unstable modality (unsTABLE-DUPL
in Fig. 26.1). m]

Lemma 81. For any heap h, heap,(h) * (3K, yep £—uv) F (F & [F](h)).

Proof. Follows directly from the definition of hProp. m]

! The point of the extensional charac-
terization is that it allows us to support
impredicative quantification in Rocq (i.e.,
hProp assertions can quantify over hProp
assertions). Impredicative quantification
makes the fragment more expressive.
Specifically, it allows one to define least-
and greatest fixpoints inside of hProp.

227

PART V: DAENERYS CHAPTER 28: ALMOST-PURE ASSERTIONS

Lp1(h) = ¢ LleJv](h) = (e,h) ~go (v, h) [y v](h) = h(£) =v
LF AGJ(h) = |F](h) A LG](h) LF v G](h) = |F](h) vV |G](h)
|F = G|(h) £ |F)(h) = |G (h) |Vx. Fx|(h) £ Vx. |Fx|(h)

[3x. Fx|(h) £ 3x. |[Fx](h)

The point of the first property (i.e., Lemma 80) is that when we prove an
hProp-assertion F (e.g., an evaluation e || v, a relationship between HDEAs, or
even a typing I F e : 7 from §28.1), we can keep all of our ownership. That is,
if we can prove P + F, then from Lemma 80 it follows that P + F * P.

The point of the second property (i.e., Lemma 81) is that it allows us to
connect almost-pure assertions inside of Iris to pure assertions at the meta level,
which we rely on for connecting to first-order logic in §28.2. The property
guarantees that, under the assumption heap,(h) * (*pepn €y V), the Iris
proposition Pr is equivalent (inside Iris) to the pure assertion ¢p(h). The
assumption heap,(h) * (¢pyep £ >y v) fully determines the contents of the
heap in the underlying Iris resource.

Almost-pure connectives. Asshown above, Lemma 80 and Lemma 81 follow
directly from the definition of hProp. Implicitly, the proof burden is put onto
the individual connectives (i.e., e | v, £+, v, F A G, etc.). The definition of their
heap predicate |_|(_) is given in Fig. 28.1. To show that they are all almost-pure
assertions, we must show that they satisfy the two defining properties of hProp.
For most connectives, this is straightforward. The two interesting cases are
evaluation e || v and implication F = G.

For evaluation e |} v, the property corresponding to Lemma 80 holds, because
e |} v is defined using only unstable resources (see EvaL-per in §26.1). For the
property corresponding to Lemma 81, we must show:

heap, (h) * (*pven £uv) F (elv & Lelv](h)

Considering that e v = 3h". (e, h') ~3., (v, h') * (k¢ ywep €y W), the for-
ward direction “="” follows from heap (k) including all the unstable points-to
assertions concealed under the definition of e || v (unstaBLe-LookUP in Fig. 26.6).
The backward direction “<” follows, because we have unstable points-to as-
sertions ¢ —, v in our assumption for every entry in h.

For implication F = G, the propety corresponding to Lemma 80 follows us-
ing the implication property of the unstable modality, unstasLe-1mpL in Fig. 26.1.
The property corresonding to Lemma 81 follows structurally. Here, it is impor-
tant that we use an equivalence in Lemma 81 and not an implication, because

otherwise we could not apply the property on the left side of an implication.

28.1 The Semantic Type System

Having defined almost-pure assertions, let us now use them. Recall (from §25.2)
that to stabilize e |} v, we must frame enough ownership P alongside it to ensure
that the result of e does not change (see Frame-EvaLs in Fig. 25.1). Formally, the

Figure 28.1: The mapping

L_1(_) : hProp — Heap — Prop

from hProp-assertions F to pure

assertions | F](h).

228

PART V: DAENERYS

CHAPTER 28: ALMOST-PURE ASSERTIONS

TYPE-LAM TYPE-APP TYPE-VAR TYPE-VAL TYPE-PAIR
ILx:TEe:o T'ee;:7T—> o0 Teey:1 x:7€T veV[r] T'ee :7y Tkey:1ny
F'eElx.e:T—> o0 TEeley:o Fex:rt TeEv:T TE (e, e): 7 X1
TYPE-FST TYPE-SND TYPE-IF TYPE-DEREF
F'ee:7 X1y F'ee:1| X1y I'Ee: bool TEe :7 Teey:7T F'ee:refr
TeEme: 7 TeEme:n T'eifethenejelsee; : 7 Tele:r
TYPE-INT-ADD TYPE-BITVEC-XOR TYPE-BITVEC-EQ
T'Ee:int T'Ee,:int TEe :bvn T'eey:bvn TF'ee :bvn TEey:bvn

TEe +ey:int T'Ee xore :bvn

V[unit] = {0} V[int] 2 {n|nez}

V[optionz] £ {None} U {Somewv | v € V[r]}

V[bool] £ {true, false}

V[rxo] £{(v,w)|veV[c] AweV][c]}
V[buf] £ {b| . broy v AVw ev. w e V[]}

E] £{e|Iv.elvaveV[]} Glr] = {y | vx

side condition that arisesis P + e || _, where e |} _ 2 Fv. e || v. It implicitly means
that P constrains enough of the heap to ensure that e safely terminates in some
value (considering the definition of e |} v in Evar-per). To simplify proving it, we
will now introduce a semantic type system I' k e : 7 that satisfies the property:

Lemma 82.

(0 Ee:71)rell_, meaning closed, well-typed expressions safely evaluate.

The type system has typing rules for the simply-typed lambda calculus
extended with standard data types (e.g., integers, bitvectors, sums, pairs, vectors,
buffers, etc.). A selection of typing rules is depicted in Fig. 28.2. For example,
we can use TYPE-LAM to type A-functions, Tyre-arp for function application, and
TyPE-VAR for variables. Notably, the type system has no rules for expressions that
cause side effects (e.g., heap updates or forking threads), for non-deterministic
expressions (e.g., allocation), and for recursive functions, because evaluation
e |} v requires termination. We will get back to this last point shortly.

Semantic typing. Traditionally, a type system is a fixed collection of syntac-
tic typing rules. Here, we (again)? use a semantic type system T e : 7 defined
via a logical relation, and then prove the typing rules as lemmas aboutI' ke : 7.
The key benefit of the semantic type system, as discussed below, is extensibility.

We define the logical relation—the basis for the typing judgment—in the
hProp-fragment.® The logical relation is depicted in Fig. 28.3. For each type T,
the value relation V[] determines which values are of this type. For unit
V[unit], Booleans V[bool], integers V[int], bitvectors V[bv n], options

T Ee ==¢e;: bool

Figure 28.2: A selection of typing

rules for Agyn-expressions.

V[bvn] £{u|0<u<2"}

Vlr+o] £ {inj;v|veV[]} U{injw|weV[c]}
V(refr]] £ {¢|Iv.t>yvAveV[r]}
V[r-o] 2{f|VW.veV|r] = fve &[]}

st el y(x) e V[]}

Figure 28.3: Select cases of
the logical relation for heap-
dependent expressions in the

hProp-fragment.

? We also use a semantic type system for
channels in Acpan (§8.3 in Part II); for
reorderability (§13.1.2 in Part III); and for
automating reasoning about C programs
(§20.1 in Part IV).

3 Unlike in most Iris logical relations,
the type interpretations do not have to
be persistent in this logical relation. It
suffices that they are hProp-assertions,
because hProp-assertions are duplicable
(see Lemma 80).

229

PART V: DAENERYS CHAPTER 28: ALMOST-PURE ASSERTIONS

V[optionz], sums V[r + o], and pairs V[r x o], this is straightforward.
Where things get more interesting is (1) stateful types like V[ref] and
V[buf £], because they can use the unstable points-to £+, v of hProp to
refer to the current contents of the memory? and (2) function types V[[z — o],
because they can use the implication of hProp to say that a value f is semanti-
cally a function of type 7 — o if, applied to an argument v of type 7, it results
in a value of type o. To express “it results in a value of type ¢”, we define the
expression relation E[r]|, which uses the evaluation e || v of hProp to evaluate e.

With both the value and expression relation in hand, we then define the
semantic typing judgment as

Tee:t2Vy.ye G[T] = y(e) € &[7].

That is, an expression e has type 7 in context I' if for any closing substitu-
tion y € G[T'], the expression after substituting the free variables, y(e), is
semantically of type 7.

Extensibility. This typing judgment satisfies the typing rules above if we
interpret them as implications in hProp (eg., (x : 7 € T) = (' F x : 1)
for Type-var). Thus, we get all the benefits of a syntactic type system (e.g.,
easily automatable rules). The reason why we define it semantically instead
of a collection of syntactic rules is extensibility. For example, recall that the
type system does not have a rule for recursive functions. However, for specific
recursive functions such as the combinator iter (from §25.1), we can still prove

that they are well-typed. Concretely, we can prove
Fiter:intXintXrX(int—->7-o17) 57

simply by unfolding the definition of I' k e : 7 and reasoning about e |} v,

because iter always terminates (when applied to terminating functions f).
Once we have done so, we can then add iter to the type system and—from

here on—type check programs involving iter. For example, we can type check

the following checksum implementation:
checksum(b) = iter(0,length(b),0, i, a. a xor default(nthopt(¥, i),0))

as a function of type buf (bv 64) — bv 64. It iterates over the elements of the
input buffer—accessed with nthopt : buf z X int — option 7—and combines
them with XOR. All we have to do is apply typing rules (which the Rocq
implementation does automatically here).

In fact, we can now trivially derive b+ 4 + checksum(b) || _, which is the

fact caecksum-EvaL from §25.1:
Corollary 83. Ifi is a sequence of 64-bit integers, then br—4ii - checksum(b) | _.

Proof. From b, i, we have b —, i (since in general £ gV F £ v; see GET-
pTs-UNSTABLE in Fig. 26.6). Thus, by definition b € V[buf (bv 64)]. From TvrEe-
varL, we deduce F b : buf (bv 64). Thus, since we can type function application
(tyee-arp), we get E checksum(b) : bv 64. From F checksum(b) : bv 64, we can
then deduce checksum(b) || _ using Lemma 82. O

* Note that—unlike in the logical relation
in, e.g., §8.3 and §13.1.2, we do not need
impredicative invariants here. The reason
is that £ —, v—unlike ¢ — v—is duplicable
(Lemma 80), which makes sharing it
between different program parts trivial.

230

PART V: DAENERYS CHAPTER 28: ALMOST-PURE ASSERTIONS

Sorts S,T == unit]|bool|int|bvn|---
Functions f,g = () |true|false | n| +int | “int | —int | N€Z | XOrpy 1
| ==bvn |ifs |-
Predicates p,q = <int| <int|---
Terms t,s = x| ff
Formulas o,y = True|False|t=ss]|p TlmiAmy | m Vo,

| w7y | Ix:S. | Vx:S. o

28.2 The First-Order Logic Connection

Let us now connect e || v to first-order logic, which enables using an SMT
solver to automate proofs. Our focus is on providing sound foundations for
an SMT integration; developing an automated conversion between Rocq and
SMT, let alone foundationally verifying an SMT solver, is beyond the scope of
this dissertation. Instead, we justify why proving a formula 7 in first-order
logic—oblivious to heaps—means that a corresponding hProp-formula (7). over
HDEAs can be assumed in Daenerys (Theorem 84). The payoff of this result is
that, if one trusts an SMT solver to be sound w.r.t. standard first-order logic,
then one can use it to verify properties with HDEAs (see §29). While IDF-based
verifiers® rely on similar correspondences, to our knowledge, we are the first
to establish one foundationally for HDEAs as rich as ours (e.g., with functions).

We work with a standard multi-sorted first-order logic, depicted in Fig. 28.4,
with (1) sorts such as integers int and bitvectors bv n, (2) functions such as +int
for integer addition, (3) predicates such as <, for integer less-or-equal, (4)
terms consisting of variables x and function applications f 7, and (5) first-order
logic formulas 7 over them. The sorts, terms, and predicates in Fig. 28.4 are
interpreted, meaning their semantics corresponds to the intuitive mathematical
semantics (e.g., +int is integer addition and not subtraction). In addition, the
logic can be freely extended with uninterpreted sorts, functions, and predicates
(indicated by “- - -” in Fig. 28.4), whose semantics is for us to choose.

For example, for the validate-example from §25.3, we use an uninterpreted
sort buffer and two uninterpreted functions validate : buffer X bv 64 — bool and
checksum : buffer — bv 64 to express the key relationship between checksum

and validate as the first-order logic formula 7 cpj:

V(b : buffer), (w : bv 64).)
=
validate(b, w) =poo (checksum(b) xorpygs W ==}y 64 0)

V(b : buffer), (v : bv64).

Tlchk =
checksum(b) =py ¢4 v= validate(b, v) =poo true

This is the kind of formula that an SMT solver like Z3° can prove. But note that
it does not refer to the heap: checksum and validate—to an SMT solver—are
simply function symbols. We will now connect it to an hProp-assertion about

the heap-accessing Aqyn-functions checksum and validate.

The translation. To relate first-order logic and hProp-assertions, we intro-
duce a translation (_) from the former to the latter. The translation is given

Figure 28.4: The syntax of the

first-order logic of Daenerys.

5 Miiller, Schwerhoff, and Summers,

“Viper: A verification infrastructure

for permission-based reasoning”, 2017
[MSS17]; Astrauskas et al., “Leveraging
Rust types for modular specification
and verification”, 2019 [Ast+19]; Wolf
et al., “Gobra: Modular specification
and verification of Go programs”, 2021
[Wol+21]; Eilers and Miiller, “Nagini: A
static verifier for Python”, 2018 [EM18].

°® Moura and Bjerner, “Z3: An efficient
SMT solver”, 2008 [MB08].

231

PART V: DAENERYS CHAPTER 28: ALMOST-PURE ASSERTIONS

Sort Translations
Figure 28.5: Translations of sorts
{unit)s = unit (bool)s = bool (int)s £ int (bvn)s =bvn to semantic types (S)s, function
constants to Agyn-values (f)c,

Function Translations predicates to hProp-predicates

(e =0 (true)c = true (false)c = true (n)c = n (p)p, terms to Agyn-expressions

)Y and formulas to hProp-
(tint)c = Ax,y). x+y (int)e = Mxy). x*y (=int)c = A(x,y).x-y r P

assertions (n)g .
(neg)c = Ax. ~x (xorpyn)c = A(x,y). x xor y
(==pyn)c = AMx,y). x== (ifs)c = A(x, y1, y2). if x then y; else y

Predicate Translations
(Sindp(vi, Vo) 2 Inp,np.vi =ng Avg=ny Any <y
(Sinyp(vi, W) £ 3n,np.vi =ni Ava=nag Ang < my
Term Translations
()7 =y(x) (FO)y = (e (OF

Formula Translations

(True))F/ £ True (False)i’: £ False (t =5 s)’F/ & <t>’T/ = (s)’T/
(PO = P (DY) (1 Ama)l & () A ()]
(m Vo) 2 () V() (m=m)f 2 (m){ = (m)f

(¥x:S.m)L = Yv.v e V[(S)s] = (m)™

(Ix:S.myl 2 Fvov e V[(S)s] A ()™

in Fig. 28.5.7 It translates sorts S to types (S)s (e.g., mapping buffer to the 7 In this presentation, cases for uninter-
type buf (bv 64)), functions f to Aqyn-values (f)c (e.g., mapping checksum to pre,t:tdjorts’ functions, and predicates are
omitted.

checksum), predicates p to hProp-predicates (p)p, terms ¢ to Agyn-expressions
(t)¥, and formulas 7 to hProp-assertions (7'[)'}:/.

We discuss the most interesting cases. For term equality ¢ =g s, we use
evaluation e | v via e; = e; 2 v. e; | v A ey | v. For quantification Vx:S. 7
and 3x:S. 7, we use hProp-quantification, where we use the logical relation
V[] (from §28.1) to constrain the values. For implication 7;=>7,, we map
the implication of first-order logic directly to our hProp-implication F = G.

For example, translating 7.y, we obtain Fp, = <7L’C|—,k>%, which is given by:

Vb, w.b € V[buf (bv64)]] = w € V[bved] =
v validate(b, w) = (checksum(b) xor w==0)
chk =
Vb,v.b € V[buf (bv6d)] = ve V[bved] =
checksum(b) = v = validate(b,v) = true
Superficially, this assertion looks similar to 7. (which is the point of (ﬂ))F/).
However, there is one crucial difference: as an hProp-assertion, F.py implicitly
refers to the current heap. In typical SL fashion, the heap itself is hidden, but it

232

PART V: DAENERYS CHAPTER 28: ALMOST-PURE ASSERTIONS

is constrained via resources such as ¢ —, v. For example, b € V[buf (bv 64)]
contains an unstable points-to for the buffer b (see Fig. 28.3), and e; = e,
implicitly evaluates checksum and validate on the current heap. In contrast,
the formula 7y, is a first-order logic formula and does not mention a heap—
neither explicitly nor implicitly.

Connecting hProp-assertions and first-order logic assertions is useful, be-
cause (as we will show below) it gives us access to formulas proven by the SMT

solver in, e.g., the rule of consequence.

The correspondence. Informally, we wish to prove that if 7 holds in first-
order logic, then we can get (n)i’é in Iris. To make this formal, we must specify
what it means for a formula 7 to hold. To do so, we define a standard Tarski
semantics F 7 for first-order logic (see §30.1), where we make sure that the
interpreted parts of the logic (e.g., bitvectors and integers) have their standard

mathematical semantics. With it, we establish the following result:

Theorem 84.
If= 7 holds, then ((71)0F = wpe{v.0W)}) F wpe{v.Q(v)} holds in Iris.

In other words, if 7 is true in first-order logic, then we can assume <7r>(2 in
Iris when proving a weakest precondition. (The weakest precondition gives us
access to the current heap for <J‘L’>2) From this result, we can derive rules such

as the consequence rule below (and HoARrE-asserT in §25.3):

er Px(n)lrmQ {Q}e{v.R()}
{P}e{v.R(v)}

HOARE-CONSEQ-FOL

If 7 (e.g., mchi) holds in first-order logic, then we can assume <7T>% (e.g., Fchk)
and use it to prove any frameable fact Q from it. In our case studies in §29, we
use it implicitly to justify solving queries about, e.g., functions manipulating
bitvectors and buffers automatically with an SMT solver, which would otherwise
involve tedious manual reasoning about these theories.

From almost-pure to actually-pure. We postpone a detailed discussion
of the proof of Theorem 84 to §30, because it involves instantiating the Tarski
semantics F 7 (for which we first need to define the Tarski semantics; see §30.1).
For now, we focus on the key feature of hProp-assertions that we will use to
bridge the gap between first-order logic and Iris: the function |_] (k) that turns
hProp assertions F into meta-level propositions | F](h). We use it in the proof
of Theorem 84 to transition form first-order logic to Iris via the meta level:

7 in first-order logic ——— |_<7I>?:J (h) at the meta level —— (n)(g in Iris

Concretely, we will start from 7 in first-order logic. We will then obtain
[(n)vgj (h), which is the first-order formula 7 first translated into an hProp-
assertion with (7)2 and then turned into a meta-level proposition (for a fixed
heap h) with |_|(h). From L(;r)%] (h), we will then cross the boundary to Iris
and obtain (71)(2. in Iris with Lemma 81 above.

We will explore the proof of Theorem 84—and in particular the role of
LF](h)—in depth in §30. But before we dive into the details of the proof, we

first consider several case studies of Daenerys in §29.

233

CHAPTER 29

CASE STUDIES

We apply Daenerys to several case studies. First, we take a closer look at a
case study that illustrates the benefits of combining Iris and IDF (§29.1). It
is a variation of the checksum example from §24.1, where we leverage the
combination of Iris’s impredicative invariants (see §3.4.1) and HDEAs. Then,
we consider several case studies in aggregate to highlight different aspects of
Daenerys (§29.2).

29.1 The Best of Both Worlds

The example consists of two parts: (1) a concurrent channel library and (2) an
exchange of a buffer and its checksum over a channel (from a worker-thread
to a client). We first discuss the channel implementation (§29.1.1) and then
proceed with how to verify the exchange (§29.1.2).

29.1.1 Channel Library

For the channel library, Daenerys benefits from its Iris roots. As we have
discussed in §4.5, due to its elaborate, step-indexed model, Iris supports im-
predicative invariants (§3.4.1). They allow us to prove general and modular
specifications for the channel operations, where one can pick an arbitrary Iris
predicate @ to be exchanged over a channel.

Implementation. The implementation of the channels is depicted in Fig. 29.1.
Each channel is represented as a reference to an option. The option is either
None if there is currently no value being transferred over the channel, or
Some(¢) where ¢ is a reference storing the value that is currently being trans-
ferred.!

The three operations for channels are chan, send, and recv.

1. The operation chan initializes an new channel by creating the channel
reference, initially storing None (i.e.,, no value is currently being transferred).

2. The operation send wraps the value it wants to send x in a reference I,
and then tries to store Some([) in the channel reference c. It does so via
an atomic “compare-and-set” operation that tests whether the channel is
currently empty (i.e., currently storing None) and, if so, updates it to Some(1).
If the update succeeds, send returns, and if it fails, send loops to wait for a
point where the channel is empty again.

! We add the additional indirection
via a reference wrapping the value,

because HeapLang and by extension A4y
forbid “compare-and-set” operations on
references that store larger, composite

values such as a pair. See the side
condition vy, v, comparable in, e.g.,
HOARE-CAS-SUC in Fig. 27.1

235

PART V: DAENERYS

Channel Implementation

chan() = ref(None)

leto =!cin

1>

recv(c)
match o with
| None = recv(c)
| Some(l) = if CAS(c, Some(l), None) then !lelse recv(c)
end
send(c, x) £ let] = ref(x) in

if CAS(c, None, Some(1l)) then () else send(c, x)
Channel Specification
{True} chan() {c. ischan(c, @)} persistent(ischan(c,))
{ischan(c, ®) * B®(v)} send(c,v) {_. True}

{ischan(c,®)} recv(c) {v. @ d(v)}

3. The operation recv reads the contents v of the channel reference c. If
they are None, then no value is currently being transferred and the recv
operation loops to wait for a value. If there is some value currently being
transferred (wrapped in a reference J) then recv tries to update ¢ to None
with a “compare-and-set” to claim the value. If the update succeeds, then
the recv can return the contents of [(i.e., the value being transferred). If the
update fails, another call to recv must have been successful at receiving the
value. In this case, recv loops to wait for the next value.

Verification. To verify the channel operations, we prove the specifications
in Fig. 29.1. That is, when we create a channel with chan, we get an abstract
predicate ischan(c, @) that can be shared between threads (i.e., is persistent).
We can send a value v satisfying ® with send and receive a value satisfying ®
on the other end with recv. When we send a value, the predicate ® should not
depend on any unstable resources, which is ensured by the frame modality &.

To define the abstract predicate ischan(c, ®), we use an Iris invariant. Con-
cretely, we define

ischan(c, ®) £ 3¢.¢ = € % | Ipan(0) |

Lhan(£) £ v. £+ v+ (v=None V 3¢/, w.v=Some(£’) * £’ — w * BD w)

1>

It captures the two possible cases the channel reference £ can be in: either (1)
no value is currently being transferred and the reference is storing None, or (2)
some value w is being transferred, wrapped in some reference ¢’. In the latter
case, the invariant stores that ¢ holds for the value being currently transferred.
It does so underneath a frame modality to ensure that the ownership being
transferred via the channel is stable. (Formally, this modality is needed to make
sure that the contents of the invariant are frameable, a side condition of invari-
ants in Daenerys; see §27.1.) With this invariant, verifying the specifications
in Fig. 29.1 is straightforward.

CHAPTER 29: CASE STUDIES

Figure 29.1: The channel imple-

mentation and specification.

236

PART V: DAENERYS

29.1.2 Checksum Exchange

We apply the channels to exchange a buffer and its checksum between a worker
and a client. The worker and client are implemented as follows:

let (p, ¢) = recv(i) in
letb=p()in

lets = c(b)in

send(o, (b, s));

wrk(i, o)

let (i, 0) = (chan(), chan()) in
fork {wrk(i, 0)};

send(i, (produceA, checksumA));

1>

wrk(i, 0)

1>

client()

let (b, s) = recv(o)in
assert(s==checksumA(b));
send(i, (produceB, checksumB));
let (b, s) = recv(o) in

assert(s==checksumB(b))

Implementation. The client client creates an input and an output channel,
spawns the worker thread, and then sends the worker two different workloads:
First, it sends produceA with checksum function checksumA, receives the result
b and s, and ensures that s matches checksumA of b. Then, it repeats the same
process with a different workload and checksum implementation. The worker
wrk (1) receives on the input channel i a workload p (i.e., a function that will
produce a buffer) and a checksum function ¢, (2) produces the buffer b by
executing p, (3) computes the checksum s of b, (4) sends both b and s back via
the output channel o, and (5) repeats the entire process.

Verification. Let us now discuss how we can verify this implementation
given the channel specifications in Fig. 29.1. We start by introducing the two
channel predicates, one for the input channel and one for the output channel:

Dinp (p, ¢) = {True} p() {v.Ib,ti.v =b * b i}
O(c € V[buf (bv64) — bv64]) * y=1/2(p, c)

*

Douip(b,s) = Ju,p,c. b=t c(b) s * y=1/2(p, c)

On the input channel (@), the client sends a pair of two functions p and c.
For p, it sends a Hoare triple that p will compute a buffer. For c, it sends the
fact that c is a well-typed function. In addition, it sends a custom piece of
ghost state, a fractional ghost variable y =1/2(p, c), to track which workload
the worker is currently working on (see §4.2.2). As we will see below, the client
keeps one half y =1,,(p, ¢) and sends the other half to the worker (via ®jyp).

On the output channel (®,up), the worker sends a pair of buffer b and
checksum s. For b, it sends the ownership of the buffer b . For s, it sends
c(b) | s, meaning s is the result of computing the checksum c on the buffer b.
Along with them, it returns the ghost variable y =1/, (p, c).

CHAPTER 29: CASE STUDIES

237

PART V: DAENERYS

m {True}

let (i, 0) = (chan(), chan()) in

m {ischan(i, ®jyp) * ischan(o, Poutp) * y=1(__)}
fork {wrk(i,0)};

[{ischan(i. Dipp) * ischan(o, outp) * W:>1(,.,)}

[] {ischan(I, Dinp) * ischan (o, Doutp) * y F=1/2(produceA, checksumA) = yr:>l,‘2(produceA,checksumA)}

send(i, (produceA, checksumA));
] {ischan(i. tT)i”P) % ischan(o, (T’mup) * Y1 /2(produceA, checksumA)}
let (b, s) = recv(o)in
ischan (i, ®jpp) * ischan(o, Qoutp) * y F1/2(produceA, checksumA) =
) { B (Ju,p,c. b xc(b) | s*y=q/2(p,c)) }
ischan(i, Dipp) * ischan(o, ®outp) * y =1/2(produceA, checksumA) =
. {(Hfi. b1 x checksumA(D) || s * y =1/, (produceA, checksumA)) }

assert(s = checksumA(b));

[{ischan(i. Dipp) * ischan(o, outp) * yr:>1(,.,)}

[] {ischan(I, Dinp) * ischan (o, @outp) * y F1/2(produceB, checksumB) = yr:>1/r2(fproduceB,checksumB)}

send(i, (produceB, checksumB));
] {ischan(‘ i, (T)i”l%) x ischan(o, (Tnml},) * Y1 /2(produceB, checksumB)}
let (b, s) = recv(o)in
ischan (i, ®@ypp) * ischan(o, Poutp) * y F1/2(produceB, checksumB) =
) { B (F, p,c. b i’ xc(b) sxy=q/5(p,c)) }
ischan(i, DQipp) * ischan(o, Doutp) * yr:>1‘,2(produceB. checksumB) =
. {(317/. b i’ x checksumB(b) || s = y =1/, (produceB, checksumB)) }

assert(s = checksumB(b))
m {True}

Given these two predicates, the specifications that we have proven are:

{True} client() {_. True}
{ischan(i, ®iyp) * ischan(o, Cboutp)} wrk(i,o0) {_. True}

The client is safe to execute (i.e., pre- and postcondition True), which means
the asserts inside must succeed. The worker thread is safe to execute given an
input channel adhering to ®i,, and an output channel adhering to ®qyyp.

Proof sketch. To illustrate the basic structure of the proof, we give a proof
outline of the client in Fig. 29.2. Initially, we allocate the two channels (using
the specification of chan in Fig. 29.1). We additionally allocate a new ghost
variable y initially storing an arbitrary pair of values. Next, we fork-off the
worker thread. To do so, we give it a copy of the representation predicate of
the input/output channel ischan(i, ®;,p) * ischan(o, ®ouyp) and keep another
copy to ourselves.

CHAPTER 29: CASE STUDIES

Figure 29.2: Proof outline of the

client. Separation logic states in

m orange.

238

PART V: DAENERYS

CHAPTER 29: CASE STUDIES

Group Case Study Iris [Jun+18b] ViperCore [Dar+25] Viper [MSS17] Daenerys

Channel Library ® @) O []

“ Checksum Exchange O @) [] []
Popcount 32-bit Integer © { ® ([]

#2 Popcount Buffer d la Redis [Red25b] ©)) o
Priority Bit Map d la RefinedC [Ref25] [] [] ® []

#3 Iterative Linked-List O O [] [J
#4 Polymorphic Hashmap O O [] []
Iris Concurrent Logical Relation [Tim+24b] [) @) O [

. Barrier [Jun+16], Reader-Writer Lock, Spinlock () @) @) []
Foundational Model [[@) [

Next, we start with the first checksum-and-produce combination. We update
the ghost variable and split it into two halves: y =1/, (produceA, checksumA) *
y =1/2(produceA, checksumA). Moreover, we prove the following specifica-
tions for produceA and checksumA:

{True} produceA() {v.3b,ui.v=">0 * b u}

£ checksumA : buf (bv 64) — bv 64

Together, we can then send ®;,,(produceA, checksumA) to the worker thread
via the input channel. (The assertion ®;,, (produceA, checksumA) is frameable,
meaning ®;np(produceA, checksumA) + @®;,, (produceA, checksumA), so we
can cross the frame modality in the specification of send.)

Next, we receive on the output channel the resulting combination of buffer
b and checksum s, meaning ®ouip (b, s). We have two halves of the ghost vari-
able y: y = 1/2(produceA, checksumA) and y =1/,(p, c) at this point. Just like
for a fractional points-to, this means the two must agree (so p = produceA
and ¢ = checksumA). Thus, the client has just received the knowledge of
checksumA(b) || s. It can use it to justify that the assert succeeds.

Finally, we can combine the ghost variable again into one, and analogously

proceed with the second checksum-and-produce combination.

29.2 Aggregate Evaluation

We apply Daenerys to several case studies, depicted in Fig. 29.3. We discuss
them below in five groups. To give an impression how Daenerys compares
to other approaches, Fig. 29.3 provides a comparison with Iris,? tools based
on Viper> as expressive representatives of SL and IDF, and with ViperCore,* a
recent foundational formalization of IDF and a subset of Viper.

#1 The best of both worlds. With the example discussed in §29.1, Group 1
illustrates how the marriage of Iris and IDF goes beyond what either approach
typically provides in isolation. Similar to the example in §25.2, HDEAs allow
us here to avoid proving functional correctness of (two) checksum implemen-
tations. Instead, we can simply send the assertion ¢(b) |} s from the worker to
the client. We get the best of both worlds. The verification of the channels is

Figure 29.3: Evaluation of Daen-
erys. We compare with the other
approaches Iris, ViperCore, and
Viper-based verifiers and mark
whether they support the case
study. We write @ for yes, O for
no, and © for case studies that
could conceivably be done but
require significant manual effort
in Iris.

? Jung et al., “Iris from the ground up:
A modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

3 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure
for permission-based reasoning”, 2017
[MSS17]; Wolf et al., “Gobra: Modular
specification and verification of Go
programs”, 2021 [Wol+21]; Eilers and
Miiller, “Nagini: A static verifier for
Python”, 2018 [EM18]; Astrauskas et al.,
“Leveraging Rust types for modular
specification and verification”, 2019
[Ast+19].

* Dardinier et al., “Formal foundations for
translational separation logic verifiers”,
2025 [Dar+25].

239

PART V: DAENERYS

1>

TTpc32

<.

Vx. aux(X) Zpy 32 aux3(aux2(aux1(x)))) =

Vx. True = Vr. pc32(X) Zpysz I = 1 Zpy32 ones(x)

beyond the scope of Viper (due to the higher-order abstract predicate), and
reasoning about checksum as an HDEA is beyond Iris.

#2 Leveraging SMT solvers. Group 2 contains case studies that illustrate the
benefit of the connection to first-order logic (§28.2). Specifically, we consider
case studies where SMT solvers provide automation that otherwise, in a regular
Iris proof, would require tedious manual reasoning about, e.g., bitvectors. A

poster child example in this category is the function®

pc32(x) £ let y = x - (x> 1&0x55555555) in
let z = (y&0x33333333) + ((y > 2) &0x33333333) in
(((z+ (2> 4)) & OxOFOFQFOF) * 0x01010101) > 24

It counts the number of ones in the 32-bit bitvector x via an intricate combination
of shifting, masking, addition, and multiplication. However, the SMT solver Z3
can show in an instant that pc32 behaves the same as

ones(x) = (x>31)&ox1+ ---+ (x> 0) &0ox1.

Thus, (1) we encode the desired relationship between the two functions into a
first-order logic formula 7,3, (depicted in Fig. 29.4), (2) we use our first-order

connection (Theorem 84) to show:
E pesz implies {0 <u < 232} pc32(u) {v.v = ones(u)},

and then (3) we ask Z3 to prove the first-order logic formula 7,.3,.

This case study (“Popcount 32-bit Integer” in Fig. 29.3) is a toy version of
“Popcount Buffer”, which is inspired by a popcount implementation from Redis®
and works on a buffer of 32-bit integers, processing seven integers at a time in a
loop using a scaled up version of the expression in pc32.

Furthermore, we verify a version of a bit map implementation previously
verified in RefinedC.” Since Rocq provides little to no automation for bitvectors,
the RefinedC-version requires around 300 lines of manual reasoning about
bitvector arithmetic. In contrast, in Daenerys, we prove not a single lemma
about bitvector arithmetic manually thanks to its connection to SMT solvers.
(This connection requires a significant amount of boilerplate code at the moment
that would be straightforward to automatically generate.) Note that Viper-based
tools can verify all case studies in this category, but in contrast to ours, their
encoding of assertions into first-order logic is not foundational.

Vx. auxT(X) Zpy32 X —by32((X by 32 1) &by 32 0x55555555)) =
y. aux2(y) ibvg,z (y &bv32 @X33333333) +bv32((y >py 32 2) &bv32 @X33333333)) =
Vz. aux3(2) Zbysz ((Z+by32(Z>by32 4)) &by 32 OXOFOFOFOF)) =

Vx. pe32(x) Zhy32 (aux(x) &by 32 0x01010101) >, 3, 24) =

CHAPTER 29: CASE STUDIES

Vx. ones(x) = (x >y 32 31) &by 32 0X1 +y 32+« by 32 (X >y 32 0) &by 32 ox1) =

Figure 29.4: Query 73, for
the Popcount Single example

from Group 2.

’ To match the formulation of traditional
first-order logic, the first-order logic
discussed in §28.2 does not have let-
bindings in its terms. Thus, we encode
the let-bindings in pc32 via auxiliary
functions in this example (see Fig. 29.4).

® Redis, Redis popcount implementation for
potentially large buffers, 2025 [Red25b].

7 Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

240

PART V: DAENERYS

#3 Incremental verification. In Group 3, we incrementally verify a linked-
list with increasingly stronger specifications—one of the strengths of IDF. In
each step, we use an additional function operating on the linked-list to expose
additional information about the data structure. For example, for the set-

function, we prove:

{list(1)} set (L, i,x) {_, _. list(])}
{list(I)} set(l,i,x) {_, old. list(I) * 1len(l) | old {len(l)}}

{list(D)}
set(l,i,x)
{ ’°1d.|ist(l) x1en(l) J old {len(l)} (0 <pp i <pplen(l) = nth(L,i) | x) }
& (V(j : 2). 0<ppj<plen(l) A i #npj = nth(L) | old {nth(,))})

where ey ~np €3 =3ny, ny.e | ny Aey | ng Any~ny for ~€ {<, <}. The first speci-
fication expresses memory safety. The second one establishes that the length of
the list, 1en, does not change. It uses an “old expression” old {e}, which refers
to the value of e in the precondition (defined below). The third specification ad-
ditionally uses an nth-function to say that the i-th value becomes x and that all
others are unchanged. Each step only involves strengthening the postcondition
(thereby leaving proofs of clients intact) and only requires adding to the original
proofs. This form of incremental verification is also supported in Viper-based
tools (although functions such as len are not formalized in ViperCore).

In separation logics like Iris, in contrast, this form of incremental verification
is not supported, because when choosing a representation predicate such as list,
one simultaneously decides on an abstraction of the data structure (e.g., length,
contents, the underlying heap fragment, etc.). If one later wants to track a richer
abstraction of the data structure, one has to define a new predicate and adapt the
verification. (While one could start with a rich abstraction from the beginning
but not expose all information to clients yet, this means already reasoning about
the rich abstraction, e.g., the list contents, when proving simpler properties like
memory safety.) With HDEAs, the predicate stays the same and each function
on the data structure exposes an additional abstraction.

The specifications in this example are slightly different in that they use so-
called “old expressions” old {e}, which refer to the value of e in the precondition.
To encode them in Daenerys, we define a new triple {P} e {v, old. Q(v, old)}.
In the postcondition, it gets access to old : Expr — Val, a function from
expressions to their resulting values if executed in the heap of the precondition.
To define it, we use classical reasoning. Specifically, using the axiom of choice
and excluded middle, one can obtain a evaluation function eval : Heap —

Expr — Val such that if (e, h) MSet (v, h), then eval h e = v. With it, we define:

{P} e {v,0ld. Q(v,0ld)} =
D(Vh BP (heapu(h) * (*t’!—)veh >y V)) - wp e {V. & Q(V, eval h)})

Compared to the regular Hoare-triples {P} e {v. Q(v)} (from §27.2), this version
additionally assumes knowledge about the current heap in the precondition.
In the postcondition, we can then use eval partially instantiated with the pre-
condition heap & to be able to refer to values of expressions in the precondition.

CHAPTER 29: CASE STUDIES

241

PART V: DAENERYS

As shown in the Rocq development, for postconditions that do not care about
old expressions, this triple is equivalent to the regular triple from §27.2.

#4 Polymorphic hashmap. Group 4 verifies a polymorphic hashmap im-
plementation to illustrate how we can use HDEAs to relate different program
expressions without abstracting them to mathematical functions. This hashmap
takes a user-provided equality function eq and a hash function hash and relies

on the following property of these functions:
Vx,y. eq(x, y) = true = hash(x) = hash(y) (EQ-HASH-REL)

What is interesting about eQ-nasu-reL is that we can state the relationship
directly on the code of eq and hash using an almost-pure assertion. In a tradi-
tional Iris proof, one would first model eq and hash as mathematical functions
eq and hash in order to state EQ-HASH-REL as a pure property. Furthermore, we

can use an SMT solver to prove eQ-HasH-REL for concrete instantiations.

#5 Iris examples. In Group 5, we ported existing Iris proofs to Daenerys
to show that Daenerys retains the expressiveness of Iris. We ported the rich
logical relation of Timany et al.® and several fine-grained concurrency examples,
including the challenging Barrier example of Jung et al.” In all cases, the effort
was at most a few hours, and the delta over the original proofs is negligible
(mostly adding frame modalities and introducing them in proofs). Viper-based
tools do not support the expressive Iris features needed for these examples.

CHAPTER 29: CASE STUDIES

8 Timany et al., “A logical approach to
type soundness”, 2024 [Tim+24b].

° Jung et al., “Higher-order ghost state”,
2016 [Jun+16].

242

CHAPTER 30

CONNECTING IRIs WITH FIRST-ORDER LOGIC (APPENDIX)

In this chapter, we discuss the proof of the main theorem connecting the HDEAs

of Daenerys to first-order logic (from §28.2):

Theorem 84.
If £ 7 holds, then ((ﬂ)‘DF = wpe{v.0(Ww)}) F wp e {v.Q(v)} holds in Iris.

We proceed in two steps: First, we make the validity judgment F 7 precise
by defining the Tarski-semantics of multi-sorted first-order logic with inter-
preted theories such as bitvectors and integers (in §30.1). Then, we instantiate
this semantics with a first-order logic model to obtain a proof of Theorem 84
(in §30.2).

30.1 Many-Sorted First-Order Logic

We define the validity judgment F 7 in two layers. First, we discuss our generic
definition of first-order logic and its Tarski-semantics (§30.1.1). It is parametric
over a signature and semantics for, e.g., function symbols. Then, in the second
layer, we instantiate the generic definition to ensure that the interpreted theories
such as bitvectors and integers have their intended meaning (§30.1.2).

30.1.1 Generic First-Order Logic

For the generic first-order logic, we define first-order terms t and formulas 7
in Fig. 30.1, parametrically over a signature Q = (S, C, P, Func, Fpred), Where S
is a collection of first-order sort symbols; C a collection of first-order function
symbols; # a collection of first-order predicate symbols; Ff,c assigns argument
sorts and a result sort to every function symbol f € C; and gy assigns
argument sorts to every predicate symbol p € P. We write kg f : S—»TecC
tomean f € C and Feype f - S — T. We write Fpred P S - Prop € # to mean
p€P and Fpreq p S Prop.

Definition 85. We say a signature Q; = (S1,C1, P 1, Funci, Fpred,) extends a
Signature Q, = (SZ, Cy, P, Ffunc2s '_prcdz); written (), gsjg Qo, 1]7‘ (1) S 28,
(2)C1 2 Cy, (3)P1 2 P2, and (4) the typing judgments agree:

1 Fpred,p : S Prop implies Fpred,p S— Prop for everyp € P, andS € S,.
2. Ffuncof : ST implies Feyneqf : S — T foreveryf € C,, Se Sy, andT e S,.

Tarski semantics. We define the semantics of first-order terms and formulas,
a standard Tarski-semantics, in Fig. 30.2. To define the semantics, we assume

243

PART V: DAENERYS

Terms and Formulas

CHAPTER 30: CONNECTING IR1s WITH FIRST-ORDER LOGIC (APPENDIX)

Terms t,s = x|fi (fe)
Formulas 1,y == True|False |t =ss|pi|m Amy | m V| my=>my | 3x:S. 1| Vx:S. 7 (peP,Ses8)
Well-Sortedness

TYPE-VAR TYPE-FUNC
x:S € Fune £:5 — T Y tterm £ S TYPE-TRUE TYPE-FALSE
> Frerm X : S Y bterm f1:T % Fform True Y form False
TYPE-AND TYPE-OR TYPE-IMPL TYPE-ALL
)y Fform 71 X Fform 7T2 2 Fform 7T1 2 Fform 7T2)y Fform 71)y Fform 7T2 Z, x:S Fform 7T

% Fform 71 A T2

TYPE-EXISTS
2,X:S Form 7T

S Fform 3X:S. T

D) Fform 71 \77T2

TYPE-EQ
> "term t: S

> Fterm S :

Y Fform t =5 S

2 Fform 1 = T2

TYPE-PRED
Fpred p : S — Prop

> Form Vx:S. 7

> "term t: S

)y Fform P t

Dldme 2 ek [FE1M_(e)
[True] ¥ (e) True [False] ¥ (e)

[[m]]?frm(e) A [[ﬂz]]?grm(e)

[[ﬂl]l?grm(f) = [[ﬂz]l?grm(f)
Vd : Ds. [[ﬂ]]?grm(e,x —d)

[t (e) = [s1im(e)

[[77.'1 /\ﬂz]]grm(e)
[[7[1 ﬁﬂ'g]]?grm(f)
[Vx:S. ﬂ]]?grm(e)

[z =s s _(e)

[p 7l (e)

[L (1

form

13

amodel M = (D_, [_Jlfunc [_Ilprea) where D maps each S € S to an inhabited
type Ds, the domain for S; [_] func maps each function e f : S>TecC
to a meta-level function [] func : Ds — Dr; and [_Iprea maps each predicate
Fpred P : S — Prop € % to a meta-level predicate [p]pred : Ds — Prop. We
write M : Q to indicate that the model M interprets the signature Q.

Definition 86. We say a formula = holds in a model M = (D_, [_]lfunc: []| pred).
written M e 7, iff. [7YX () holds, where [7| (€) is defined in Fig. 30.2.

form form

Note the distinction between the meta-level logic and the object language:
The terms and formulas in Fig. 30.1 are just syntax. We give them meaning
via the Tarski-semantics in Fig. 30.2, which interprets every symbol using the
corresponding connective from the ambient meta logic.

To ensure in §30.2 that a model assigns the right semantics to the interpreted
parts of the logic, we define the notion of model extension M' Jpoqe1 M2 Model
extension M! Jpode1 M? ensures that, for the part described by the signature
of M?, the domains are in bijection, the function interpretations are the same
(up to the bijection), and the predicates are equivalent (up to the bijection):

>

[[7'[1 Y ﬂz]]é\grm(e)

[L (L1

[Zx:S. 7™ (e)

Figure 30.1: Terms and formulas
of first-order logic.

[[f]] func ([[?]] {\grm (€)

False
Lo i (o) v [(o)

[[p]]pred(ﬂ?]]?grm(e))
3d : Ds. 7] (e.x > d)

Figure 30.2: The Tarski se-

mantics for a given model
M= (DJ [[J]func; |[7]]pred)

244

PART V: DAENERYS CHAPTER 30: CONNECTING IR1s WITH FIRST-ORDER LOGIC (APPENDIX)

Sort Interpretations
Dyt = {0} Dhool = B Dine = Dpyp={meZ|0<m<2"}
Function Interpretations
[OTancO = 0O [true]lfunc() = true [false]func() = true [7]ancO £ n [+in Jrunc(m, m) £ n+m
[intleunc(n,m) £ n-m [=intlfunc(n,m) £ n—m [negllfunc(a) £ if a thenfalse elsetrue
[x0rby n | func (w1, u2) £ ug ® uy [==bv n [l func (w1, u2) 2 if uy = uy thentrue elsefalse
[ifsllfunc(a, di, d2) = if a thend, elsed,

Predicate Interpretations

Sint]]pred(n: m)En<m |I<int]]pred(n, m)=n<m

Figure 30.3: The base model

Definition 87. Let Q; Jgg Q» where Q1 = (S1,C1,P1, Funci, Fpred;) and M
base-

QZ = (SZ, CZ, PZ» '_funCZs "prcdz)- We Say a mOdEI Ml = (Dia [[*]]%unc’ |[7]];)red)
for signature Q; extends a model M* = (D?, []2 . [[7]];6(1) for signature Q,,
written M' Jpmodel M2, iff.

~

. foreveryS € Sy, there is a function is : D — D{,
2. forevery S € Sy, there is a function rs : Di — DZ,

3. foreveryS € S,, is and rs form a bijection, i.e.,
Y(a:D?),(b:D}).is(a) = b iff. a=rs(b),

N

. for every Feunc f : S—Te C,, we have
Va : Ds. rr([f]f,,. (i (@) = [f]7,,.(@,

5. forevery bpred,p S— Prop € P, we have
Va : Ds. [p]l},oq(i(@) iff: [P]2,.4 (@)
30.1.2 Interpreted Theories

To be sound, we have to make sure that we agree with the SMT solver on the
interpreted theories of the logic (i.e., unit, Booleans, bitvectors, and integers).
To this end, we define the base signature Qa5 (and base model Mpyse below):

Sorts S,T = unit|bool|int|bvn]---
Functions f,g = () |true|false | n| +int | int | —int | N€g | x0rpy
| ::bvnlifsl...
Predicates p,q = <int | <int|---

The signature introduces several standard base sorts such as integers int and
bit vectors bv n, along with canonical functions and predicates on them (e.g.,
addition on integers, or comparison on integers, etc.). (Here, “- - - ” stands for
additional entries in the base signature such as additional first-order functions.)
All functions and predicates have the obvious types. We then define a base
model Mpqse, a standard interpretation for these sorts, functions, and predicates,
depicted in Fig. 30.3. Notably, the base model does not interpret or constrain

245

PART V: DAENERYS CHAPTER 30: CONNECTING IR1s WITH FIRST-ORDER LOGIC (APPENDIX)

Lp1(h) = ¢ LleJv](h) = (e,h) ~go (v, h) [y v](h) = h(£) =v
LF AGJ(h) = |F](h) A LG](h) LF v G](h) = |F](h) vV |G](h)
|F = G|(h) £ |F)(h) = |G (h) |Vx. Fx|(h) £ Vx. |Fx|(h)

[3x. Fx|(h) £ 3x. |[Fx](h)

the uninterpreted parts of the logic (i.e., uninterpreted sorts, uninterpreted
functions, and uninterpreted predicates).

With the base model My, in hand, we can then define the validity judgment
k£ 7 as 7 holds true in all models extending the base model:

Definition 88. Let Qg be a signature such that Qqny Jsig Qpase. We define

Er 2 V(M : Qo). M Imodel Mbase = MET

30.2 From First-Order Logic to Iris, Step by Step

Let us now show the main correspondence:

Theorem 84.
If £ 7 holds, then (<7T>% =wpe{v.QW)}) F wp e {v.Q(v)} holds in Iris.

Considering the definition of validity F 7 (see Definition 88), the proof
consists of four parts: (1) we define a first-order logic model M dyn 1O interpret the
first-order logic (§30.2.1); (2) we prove it extends the base model Mpse (§30.2.2);
(3) we use the resulting assumption M, F 7 to relate 7 and (7[)% (§30.2.3); and
(4) we obtain the Iris entailment ((7); = wp e {v.Q(v)}) - wp e {v.Q(v)}
(§30.2.4). An essential part in all of the steps will be the translation | F|(h)
from §28 to bridge between almost-pure assertions (e.g., (ﬂ)qF) : hProp) and
actually-pure, meta-level assertions used in validity definition (e.g., MEx :
Prop). For convenience, we have restated it in Fig. 30.4.

30.2.1 A Model for Heap-Dependent Expression Assertions

We construct the model M gyn for an arbitrary, but fixed heap k. To indicate the
dependency on h, we write Mélyn. To define, M gyn we must choose domains D
predicate interpretations [[_[[pred, and function interpretations [_[|func. We pick
them as follows:

Ds = {v|ve V[S)s]l(h} [pIlprea @) = LpIp(¥)1(h)

[flfunc (¥) = eval({f)c. h) (V)

That is, we instantiate the domains with sets of values v, where—using the
mapping |_]| (k) that turns hProp-assertions into pure assertions—we know the
value v is in the logical relation at type (S)s.! For the predicates p, we use the
hProp-predicates obtained from the translation (_) and turn them into meta-
level assertions using |_| (k). For functions, we have to turn A4yn-functions
into actual meta-level functions from (well-typed) values to (well-typed) values.

Figure 30.4: The mapping

L_1(0) : hProp — Heap — Prop
from hProp-assertions F to pure
assertions | F](h).

! Since first-order domains must be non-

empty, we only do so for sorts where the
corresponding value relation V[[(S)s] is
non-empty.

246

PART V: DAENERYS CHAPTER 30: CONNECTING IR1s WITH FIRST-ORDER LOGIC (APPENDIX)

To this end, we prove Lemma 89. It turns a well-typed Aqyn-function f into a
meta-level function eval(f, h) (for a fixed heap h): We use it (generalized to
arbitrary function arities) to define [[f] func by picking f £ (f)c.

Lemma 89. Let+ f € V[r; — w:]. For any h, there exists a function eval(f, h) :
Val — Val such that for all valuesv where |v € V[11]](h), we have (f v, h) ~7 .
(eval(f, h)(v), h) and |eval(f, h)(v) € V[z:]](h).

Proof Sketch. Using Lemma 81, we first obtain the pure, meta-level assertion
Lf € V[r1 = =2]]](h). Unfolding the definition of |_](h) (see Fig. 30.4), we
get

Y. lve V[r]l(h) = 3w. (fv,h) ~5, (W h) Alw e V][]](h)

The value w is the desired result of f. We extract it using the axiom of choice.
mi

30.2.2 Proving Model Extension

Having defined the model, we must then show that it is an extension of the
base model My yqc:

Lemma 90. Mé‘yn Tmodel Mbase for any heap h.

Proof Sketch. Recall that the signature of Mp,ge is Qpase. For the sorts S in
Qpase, it is straightforward to construct a bijection between the domains Ds of
the base model My, and well-typed values in our semantic types V[(S)s].
For example, the type of mathematical integers Z is clearly in bijection with
the type of well-typed Agyn-integers Dine = {v | [v € V[int]](h)} (since, as
defined in Fig. 28.3, V[int] = {n | n € Z}). The remaining equivalences of
M g’y o Smodel Mbase then follow by case analysis on our interpreted functions
and predicates. Here, we must make sure that the implementation of, e.g.,
multiplication (-jn¢)c = Axy. x *y (a value in Agyn; see Fig. 28.5) matches (up to
the bijection) the semantics of multiplication on integers, Le., [“int]| func (1, m) =

n - m (in ordinary mathematics; see Fig. 30.3). O

30.2.3 Connecting to the Translation

Using the first-order logic model Mglyn, we now show that valid formulas 7
imply their translation () at the meta level if we turn them from an almost-
pure assertion into an actually-pure assertion with |_|(h):

Lemma 91. Ifk 7, then L(ﬂ)?] (h) for any heap h.
Proof. Fix a heap h. We instantiate F 7 with Mg‘yn, which extends the base

Mh
model My, (Lemma 90). Thus, we obtain [7] foilyr‘: (0). With Lemma 93 (below)
it follows that |_<JT>?J (h) holds. O

Mh
The crux of this lemma is that we want to go from [] foixy; (0) to the hProp-
translation of 7. To state the desired lemma formally, we need to generalize
over non-empty variable mappings. To this end, we relate a first-order vari-
able mapping € (mapping variables to elements of Ds in Mg’yn) to a variable
substitution y (mapping variables to values) with:

agree(2,y,€) ZV¥x:SeX. v.y(x) =vAae(x) =v

247

PART V: DAENERYS CHAPTER 30: CONNECTING IR1s WITH FIRST-ORDER LOGIC (APPENDIX)

Mh
We then first show that the semantics of terms in the model [[] foiry; (0)
corresponds to the operational semantics in Agyn:

Lemma 92. Let Y ke ¢ : S. Ifagree(3, v, €), then for every heap h,

Mh
[l (e) =v il (DFh) ~yy (h)
Proof. By induction on ¥ Fepm £ : S. O

Then we use this result to show the equivalence:

Lemma 93. Let X Fiorm 7. If agree(Z,y, €), then for every heap h,

712 (e) it (LR

Proof. By induction on ¥ Fom 77, using Lemma 92. O

30.2.4 Importing the Fact into Iris

Recall the theorem we wish to prove:
If £ 7 holds, then ((7‘[)?; =wpe{v.0W)}) F wp e {v. Q(v)} holds in Iris.

With Lemma 91, we have now a way to deduce L(ﬂ)gj (h) from F 7 for any
heap h. But while |_<7T>g 1(h) already uses the translation “<7L’>?”, it is still a
meta-level assertion. Thus, let us now transition from the meta level to Iris.

The key to doing so is the equivalence from Lemma 81 (i.e., relating almost-
pure and actually-pure assertions). It—almost—says that if L(JT)(F’)](h) holds at
the meta level, then (n)? holds in Iris. The only thing missing is the precondi-
tion that it imposes, namely heap, (h) * (3k,_,,cp, £ =y V), requiring unstable
resources for the entire current heap. We call this precondition the ambient
heap below:

ambient(h) = heap,(h) * (*pven £ =y Vv)

Fortunately, whenever we prove a weakest precondition, we can always “get
a copy” of the ambient heap (from the state interpretation SI). Concretely, one

can prove the following property for the weakest precondition of Agyn:

GET-AMBIENT-HEAP

(Vh. ambient(h) -« wp e {v.Q(v)}) rwp e {v.Q(v)}
Thus, we can prove the key theorem:

Theorem 84.
If £ 7 holds, then ((ﬂ)‘DF = wpe{v.0(Ww)}) F wp e {v.Q(v)} holds in Iris.

Proof. Let = . With GeT-aMBIENT-HEAP, We can assume the ambient heap. We

are left to prove:
()2 = wp e {v. Q(v)}) » ambient(h) - wp e {v. Q(v)}
for all heaps h. Using the ambient heap, by Lemma 81, it then suffices to prove
() = wp e {v.QW)}) * (1) & L(MEI(W) F wp e {v.Q()}

By Lemma 91 and F 7, we know L(;r)?] (h) holds true for any heap h. Thus,
we can use the equivalence (ﬂ)? = I_<7T>£’J(h) to establish (7{)? and hence
wp e {v. Q(v)}. This concludes the proof. O

248

CHAPTER 31

RELATED WORK

Implicit dynamic frames. There is a long line of work on building auto-

mated verifiers based on implicit dynamic frames! culminating in the work

2 This work aims to build practical verification tools with a

around Viper.
focus on automation. Compared to them, Daenerys is less automated (e.g.,
we manually query the SMT solver) but is—by nature of being connected to
Iris—more expressive (e.g., supporting higher-order functions and impredicative
invariants). See §29.2 for a more detailed comparison.

We discuss the two most closely related pieces of work that do focus on
the meta theory of IDF. Parkinson and Summers® show how to encode SL in
IDF. They define an umbrella logic with a total-heap semantics—similar to a
standard model for IDF—and then show that it has the intended meaning for SL
assertions (stopping short of an SL program logic). We consider the opposite
direction: we integrate IDF into a very expressive SL, Iris. In doing so, we
define an encoding of IDF based on SL resources, which could be understood
as a partial-heap semantics for IDF.

Dardinier et al.* provide a foundational approach for showing the soundness

of verifiers based on intermediate verification languages. They extend a variant
of resource algebras with stable and unstable projections and instantiate it with
a subset of Viper called ViperCore. However, their notion of resource algebras is
less expressive than our Iris-based resource algebras (e.g., no step-indexing, and
no persistency) and their work does not address advanced features (e.g., frame
preserving updates, heap-dependent functions, predicates, or impredicative
invariants). Thus, they do not cover most of the examples described in §29 (see
Fig. 29.3).
Separation logic with unstable resources. There is a long line of work on
separation logics with unstable resources focused on fine-grained concurrency
verification.> None of them use unstable assertions about heaps or program
expressions (i.e., no HDEAs). Instead, they use unstable resources to unstably
assert the current logical state s of a concurrent program. At a technical level,
an interesting difference is that they take the transition system s — s’ as the
primitive and then derive their notion of “stable resources” w.r.t. it. In contrast,
for us, stability is a primitive notion of the resource algebras (see §26) and then
we derive our updates a ~g b from it.

Charguéraud and Pottier® develop a read-only modality RO(P) that tem-
porarily gives read-only access to the memory described by P. Like our
unstable points-to £+ v, their read-only modality is freely duplicable, i.e.,
RO(P) + RO(P) = RO(P). However, read-only access and read-write access

! Smans, Jacobs, and Piessens, “Implicit
Dynamic Frames: Combining dynamic
frames and separation logic”, 2009
[SJP09]; Leino and Miiller, “A basis for
verifying multi-threaded programs”, 2009
[LM09]; Wise et al., “Gradual verification
of recursive heap data structures”, 2020
[Wis+20].

2 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure

for permission-based reasoning”, 2017
[MSS17]; Astrauskas et al., “Leveraging
Rust types for modular specification
and verification”, 2019 [Ast+19]; Wolf
et al., “Gobra: Modular specification
and verification of Go programs”, 2021
[Wol+21]; Eilers and Miiller, “Nagini: A
static verifier for Python”, 2018 [EM18].

3 Parkinson and Summers, “The rela-
tionship between separation logic and
implicit dynamic frames”, 2011 [PS11].

4 Dardinier et al., “Formal foundations for
translational separation logic verifiers”,
2025 [Dar+25].

* Dinsdale-Young et al., “Concurrent
abstract predicates”, 2010 [Din+10];
Svendsen, Birkedal, and Parkinson, “Mod-
ular reasoning about separation of con-
current data structures”, 2013 [SBP13];
Svendsen and Birkedal, “Impredicative
concurrent abstract predicates”, 2014
[SB14]; Nanevski et al., “Communicating
state transition systems for fine-grained
concurrent resources”, 2014 [Nan+14];
Raad, Villard, and Gardner, “CoLoSL:
Concurrent local subjective logic”, 2015
[RVG15]; Dinsdale-Young et al., “Views:
Compositional reasoning for concurrent
programs”, 2013 [Din+13]; Rocha Pinto,
Dinsdale-Young, and Gardner, “TaDA: A
logic for time and data abstraction”, 2014
[RDG14]; D’Osualdo et al., “TaDA Live:
Compositional reasoning for termination
of fine-grained concurrent programs”,
2021 [DOs+21].

¢ Charguéraud and Pottier, “Temporary
read-only permissions for separation
logic”, 2017 [CP17].

249

PART V: DAENERYS

are temporally disjoint: in their work, one can either own RO(£+—>v) or £ - v,
but not both at the same time. Thus, their approach cannot support HDEAs:
For HDEAs, it is crucial that £+ v holds at the same time as ¢ +— v (e.g., for
£ Vyee b £ Vyee * €adq | 42 in §25.1).

Building on the work of Charguéraud and Pottier, Gospel’ is a separation
logic-based specification language for OCaml that allows leaving the math-
ematical model of an abstract predicate implicit and thus enables a form of
incremental verification. However, Gospel still requires one to fix a final math-
ematical abstraction up-front, providing a different kind of incrementality than
HDEAs. In particular, as demonstrated in case study #3 in §29.2, HDEAs do
not require fixing a mathematical abstraction up-front. They allow one to
incrementally add abstractions by considering additional functions (e.g., len,
nth, etc.) that expose different information about the data structure.

Iris. Daenerys alters Iris at a fundamental level by introducing unstable
resources into its resource model and altering the frame rule. However, as
mentioned in §29, for many existing Iris proofs with only stable resources, the
presence of instability should not introduce a noteworthy proof overhead (e.g.,
we have backported several existing Iris proofs by changing only a few lines).

Vindum, Georges, and Birkedal® develop a nextgen update modality +>*P in
Iris that—like our update =, —does not preserve (all) frames. Their modality—
unlike Iris’s [P and our B4, P—is not centered around the concept of (stable)
frame preservation. Instead, it applies a user-specified function ¢ to the current
resource (without being concerned with frame preservation). Also unlike us,
they do not modify the notion of resources in Iris and do not consider HDEAs.

One goal of Daenerys is to improve automation for Iris via HDEAs, laying
the foundation for integrating SMT solvers. This is orthogonal to other lines of
work on automation for Iris,” which focus on different directions for automation
(e.g., automating resource manipulation in concurrent programs). BFF'? and
Katamaran!! provide specialized bitvector solvers. While these solvers provide
end-to-end foundational proofs, they are not as powerful as the bitvector
support of state-of-the-art SMT solvers. For example, they cannot handle
the Popcount 32-bit integer case study in group #2 from §29.2.

SMT solvers and proof assistants. There are several approaches that aim
to integrate the automation of SMT solvers into foundational proof assistants.!?
These approaches address a problem that is orthogonal to the results of this part
of the dissertation: They focus on reflecting proof artifacts of an SMT solver
into a proof assistant, while Daenerys shows how one can leverage (potentially

reflected) results from an SMT solver to reason about heap-accessing programs.

CHAPTER 31: RELATED WORK

7 Charguéraud et al., “GOSPEL - Provid-
ing OCaml with a formal specification
language”, 2019 [Cha+19b].

8 Vindum, Georges, and Birkedal, “The
Nextgen modality: A modality for non-
frame-preserving updates in separation
logic”, 2025 [VGB25].

® Sammler et al., “RefinedC: Automat-
ing the foundational verification of C
code with refined ownership types”,
2021 [Sam+21]; Zhu et al., “BFF: Foun-
dational and automated verification

of bitfield-manipulating programs”,
2022 [Zhu+22]; Mulder, Krebbers, and
Geuvers, “Diaframe: Automated ver-
ification of fine-grained concurrent
programs in Iris”, 2022 [MKG22]; Keuchel
et al., “Verified symbolic execution with
Kripke specification monads (and no
meta-programming)”, 2022 [Keu+22].

10 Zhu et al., “BFF: Foundational and
automated verification of bitfield-
manipulating programs”, 2022 [Zhu+22].

' Keuchel et al., “Verified symbolic
execution with Kripke specification
monads (and no meta-programming)”,
2022 [Keu+22].

12 Blanchette, Bohme, and Paulson,

“Extending Sledgehammer with SMT

solvers”, 2013 [BBP13]; Ekici et al.,

“SMTCoq: A plug-in for integrating SMT

solvers into Coq”, 2017 [Eki+17].

250

251

CHAPTER 32

CoNCLUSION AND FUTURE WORK

The goal of this dissertation was (1) to make Iris more expressive by gener-
alizing step-indexing and (2) to reduce its verification overhead by increasing
automation. To this end, the dissertation has presented four projects, two for
step-indexing and two for automation. We review the contributions of each

project and outline directions for future work.

32.1 Generalizing Step-Indexing

Transfinite Iris. In Transfinite Iris (Part II), we changed the step-indexing
technique underlying Iris to support proving liveness properties. Concretely,
by using ordinals as step-indices instead of natural numbers in the model of Iris
(see §9), we obtained the existential property, a high-level reasoning principle
that can be used to hoist existential quantifiers out of the logic. Leveraging the
existential property, we have then developed a liveness logic on top of the new
model for proving two liveness properties—termination-preserving refinements
(§7.1) and termination (§7.2)—and applied it to several case studies. The price
of the transfinite model is the loss of two commuting rules of Iris (§9.2). To
explore the consequences of their absence, we have adapted the safety logic of
Iris to Transfinite Iris (discussed briefly in §9.2) and used it to recover several
examples originally verified in Iris.

A natural next step for Transfinite Iris would be the extension to the concur-
rent setting. That is, while the safety logic of Transfinite Iris handles concur-
rency, the liveness logic presented in this dissertation only supports proving
liveness properties of sequential programs. To generalize the liveness logic to
concurrency, the main missing aspect is fairness. More specifically, there is
currently nothing at the separation logic level that prevents one from general-
izing the definition of the Transfinite Iris weakest precondition (see Fig. 7.6) to
multiple threads. However, liveness reasoning in a concurrent setting typically
requires the assumption of fairness of the underlying scheduler (e.g., to prove
termination of a program with multiple threads). Transfinite Iris currently has
no notion of fairness. To integrate fairness, a particularly interesting direc-
tion for future work would be to combine Transfinite Iris with Géher et al.’s
Simuliris,! a framework for verifying compiler transformations (in concurrent
languages) by proving fair termination-preserving refinements in Iris. To sup-
port termination-preservation, Géher et al. eschew step-indexing and work
in a fragment of Iris without the later modality, impredicative invariants, and
guarded fixpoints. In contrast, with Transfinite Iris as a foundation, one would
potentially unlock the full range of step-indexed features and open the door to

! Géher et al., “Simuliris: A separation
logic framework for verifying concurrent
program optimizations”, 2022 [Gah+22].

253

CHAPTER 32: CONCLUSION AND FUTURE WORK

verifying compiler transformations that involve advanced language features
such as higher-order state.

A different direction would be the use of Transfinite Iris for reasoning about
angelic non-determinism. That is, since the original publication of Transfinite
Iris, the base logic of Transfinite Iris has been used by Guéneau et al.? to build
a program logic for reasoning about the interoperability between idealized
versions of OCaml and C. In their work, Guéneau et al. do not consider liveness
properties. However, they still make use of the existential property of Trans-
finite Iris, because their underlying operational semantics uses both angelic
and demonic non-determinism. The use of angelic non-determinism results in
existential quantifiers in the definition of their weakest precondition (similar
to the weakest precondition in Fig. 7.6), and the existential property allows
them to hoist these existential quantifiers out of the weakest precondition.
An interesting direction for future work would be to use Transfinite Iris to
build more general program logics for languages with angelic non-determinism.
For example, it would be particularly interesting to integrate Transfinite Iris
with DimSum,® a framework based on Iris for proving refinements between
multi-language programs, which crucially relies on angelic non-determinism.

Lastly, since the original development of Transfinite Iris was published,
it has been an ongoing process to share more of the Rocq implementation
between regular Iris and Transfinite Iris. Completing this process would make
Transfinite Iris easily available for the broader Iris community.

Later Credits.
approach to step-indexing. Concretely, we introduced (in §12) a resource that

With Later Credits (Part III), we introduced a new, amortized

can be used to justify later eliminations after the corresponding physical step
has happened, and this resource is subject to all the traditional separation logic
reasoning principles (e.g., framing, sharing via invariants, etc.). As we have
discussed in §15, the approach works both in regular Iris and in Transfinite Iris.
It can be used to simplify existing proofs (e.g., by using later credits for helping
when proving logical atomicity; see §13.2) and to develop new proofs (e.g., by
using later credits for proving reordering refinements; see §13.1).

Since the original development of later credits, later credits have been inte-
grated into the main Iris distribution, and they are nowadays commonly used
in the Iris community. In particular, Giher et al.* use them to model parts of
the Rust type system, and Chang et al.” use them to verify a high-performance
transaction library using multi-version concurrency control.

Later credits have also found applications beyond Iris: a variant of them
has been integrated into the automated verifier Verus.® In Verus, they are
required whenever one wants to open an invariant to ensure soundness of
the invariant mechanism. That is, while Verus in its current form only allows
simple invariants (akin to the timeless invariants in §3.4), the Verus develop-
ers are preparing for more powerful, higher-order invariants similar to Iris’s
impredicative invariants (see §3.4.1). With these invariants and without later
credits, Verus would then admit paradoxes similar to the paradoxes that exist
for Iris’s invariants’ (e.g., it is unsound to open a non-timeless invariant as
part of a ghost update and get direct access to the contents without a guarding
later). In Iris, these kinds of paradoxes are prevented via the later modality. In
Verus, however, there is no later modality, because it is based on the Rust type

? Guéneau et al., “Melocoton: A pro-
gram logic for verified interoperability
between OCaml and C”, 2023 [Gué+23].

3 Sammler et al., “DimSum: A decen-
tralized approach to multi-language
semantics and verification”, 2023
[Sam+23].

* Giher et al., “RefinedRust: A type
system for high-assurance verification of
Rust programs”, 2024 [Gih+24].

> Chang et al., “Verifying vMVCC, a
high-performance transaction library
using multi-version concurrency control”,
2023 [Cha+23].

¢ Lattuada et al., “Verus: Verifying Rust
programs using linear ghost types”, 2023
[Lat+23].

7 See §8.2 in Jung et al., “Iris from the
ground up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

254

CHAPTER 32: CONCLUSION AND FUTURE WORK

system. Instead, inspired by later credits, Lorch et al.® have added a form of
“open-invariant credits” to guard against unsoundness of Verus in the future.
To open an invariant, one has to spend a credit, and to obtain a credit, one has
to take a physical step in the Rust program.

32.2 Increasing Automation

Quiver. With Quiver (Part IV), we have introduced the approach of abduc-
tive deductive verification (§18) and applied it to specification inference of C
programs, using the abduction engine Argon (§19) and the separation logic
based type system Thorium (§20). In particular, we applied Quiver to several
examples, including a vector implementation and code from popular open
source libraries.

In the future, it would be interesting to apply abductive deductive verification,
and in particular Argon, to other languages and flavors of separation logic.

Moreover, it would be interesting to investigate loop invariant inference. That
is, finding loop invariants in separation logic is a non-trivial task: it requires
finding pure invariants and, additionally, invariants about resources. For re-
stricted fragments of separation logic, loop invariant inference techniques have
been developed.® But for rich separation logics like the one targeted by Quiver,
no loop invariant inference algorithms are known. Thus, like Quiver, deduc-
tive verification tools for expressive separation logics (e.g., VeriFast,!° CN,!!
Viper,'? and RefinedC'®) require user-provided loop invariants. It would be
interesting to investigate how to integrate (a) existing loop invariant inference
algorithms for separation logic when the invariant falls into a supported frag-
ment and (b) existing non-separation logic loop invariant inference techniques
by requiring loop invariant sketches (for the resources) but leaving holes for
the pure invariants.

Daenerys. With Daenerys (Part V), we have brought heap-dependent ex-
pression assertions to Iris in the form of our evaluation assertion e || v. To
do so, we made a fundamental change to the model of Iris (§26): we added
unstable resources such as £+ v, and we introduced the frame modality B8P to
govern framing. On top of the new model, we then developed a program logic
(§27) and connected it to first-order logic via our heap-dependent expression
assertions (§28). Leveraging the connection to first-order logic, we then used
an SMT solver to automate parts of our proofs (e.g., bitvector reasoning in the
population count) in our case studies (§29).

Since we currently manually query the SMT solver in Daenerys, one natural
direction for future work would be to develop a verification tool on top of
Daenerys (e.g., with a frontend, automation for reasoning about separation logic
resources, and an automated translation to SMT). A related, but slightly different
direction, would be to integrate our heap-dependent expression assertions into
existing Iris verification tools like the C verification tool RefinedC.'* Specifically
for RefinedC, one would have to build its separation logic type system on top of
Daenerys, which could have interesting effects on the typing rules (e.g., proof
obligations arising from the frame modality in the frame rule). Moreover, since
the semantics of C can be nontrivial at times (and heavily uses mutation), it
may be worthwhile to consider a different language for the assertion level than

8 Lorch et al., Require open-invariant
credits, 2024 [Lor+24].

? Magill et al., “Inferring invariants in
separation logic for imperative list-
processing programs”, 2006 [Mag+06];
Calcagno et al., “Compositional shape
analysis by means of bi-abduction”,
2009 [Cal+09]; He et al., “Automated
specification discovery via user-defined
predicates”, 2013 [He+13]; Holik et al.,
“Low-level bi-abduction”, 2022 [Hol+22].

10 Jacobs et al., “VeriFast: A powerful,
sound, predictable, fast verifier for C and
Java”, 2011 [Jac+11].

' Pulte et al., “CN: Verifying systems C
code with separation-logic refinement
types”, 2023 [Pul+23].

2 Miiller, Schwerhoff, and Summers,
“Viper: A verification infrastructure
for permission-based reasoning”, 2017
[MSS17].

3 Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

" Sammler et al., “RefinedC: Automating
the foundational verification of C code
with refined ownership types”, 2021
[Sam+21].

255

CHAPTER 32: CONCLUSION AND FUTURE WORK

for the implementation (e.g., a functional one that connects well with first-order
logic). Traditionally, the assertion-level language and the implementation-level
language are the same for implicit dynamic frames based approaches. However,
even for different languages, heap-dependent expression assertions could prove
useful, since they provide a convenient way to refer to program memory at the
assertion level—including via functions operating on it.

Moreover, another interesting direction for future work would be to develop
first-order verification conditions on top of Iris—especially considering that
as part of Daenerys, we have already developed a formal semantics for multi-
sorted first-order logic in Rocq. That is, many automated verifiers, including
Viper,!> Verus,'® and Dafny!” reduce verification to checking a first-order
formula for satisfiability in an SMT solver, a so-called verification condition.
Typically, the translation from the original program to the resulting verification
condition is trusted. It would be interesting to prove soundness of a verification
condition generation approach—either for (a subset of) an existing approach
such as Viper or for a new verification condition generation strategy on top of
Iris. To connect first-order verification conditions (which are checked by an
SMT solver) to a foundational framework based on Iris in Rocq, the multi-sorted
first-order logic of Daenerys could be a useful starting point—it could be used
to bridge the gap between SMT solvers and Rocq.

Lastly, it would also be interesting to explore further use of unstable re-
sources in Iris. That is, the main unstable resource that we use in this disser-
tation is the heap. However, Iris is famous for supporting a wide variety of
resources for ghost state and developing constructions such as the heap by
composing a collection of reusable combinators. In particular, in Daenerys,
we have already defined several reusable combinators on unstable resources
(in §26.3.1), including the Sil(M) resource algebra, which extends a regular
unital resource algebra M with unstable elements. It would be interesting to
explore whether there are further use cases of unstable resources beyond heaps.

5 Miiller, Schwerhoff, and Summers,

“Viper: A verification infrastructure

for permission-based reasoning”, 2017

[MSS17].

16 Lattuada et al., “Verus: Verifying Rust
programs using linear ghost types”, 2023

[Lat+23].

7 Leino, “Dafny: An automatic program
verifier for functional correctness”, 2010

[Lei10].

256

BIBLIOGRAPHY

[ADG16]

[ADR09]

[Ahm+10]

[Ahmo4]
[AMO1]

[App+07]

[App12]

[ARS9]

[Ast+19]

[Atk11]

[Bar+22]

[BBO7]

[BBM14]

[BBP13]

[BBS13]

Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. “Maximal specification synthesis”. In: POPL. ACM,
2016, pp. 789-801. po1: 10.1145/2837614.2837628.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. “State-dependent representation independence”. In:
POPL. ACM, 2009, pp. 340-353. po1: 10.1145/1480881.1480925.

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang.
“Semantic foundations for typed assembly languages”. In: ACM Trans. Program. Lang. Syst. 32.3 (2010),
7:1-7:67. Do1: 10.1145/1709093.1709094.

Amal Ahmed. “Semantics of types for mutable state”. PhD thesis. Princeton University, 2004.

Andrew W. Appel and David A. McAllester. “An indexed model of recursive types for foundational
proof-carrying code”. In: ACM Trans. Program. Lang. Syst. 23.5 (2001), pp. 657-683. po1: 10.1145/504709.
504712.

Andrew W. Appel, Paul-André Melliés, Christopher D. Richards, and Jéréme Vouillon. “A very modal
model of a modern, major, general type system”. In: POPL. ACM, 2007, pp. 109-122. por: 10. 1145/
1190216.1190235.

Andrew W. Appel. “Verified Software Toolchain”. In: NASA Formal Methods. Vol. 7226. LNCS. Springer,
2012, p. 2. DOI1: 10.1007/978-3-642-28891-3_2.

Pierre America and Jan J. M. M. Rutten. “Solving reflexive domain equations in a category of complete
metric spaces”. In: J. Comput. Syst. Sci. 39.3 (1989), pp. 343—-375. pDo1: 10.1016/0022-0000(89)90027-5.

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers. “Leveraging Rust types for
modular specification and verification”. In: Proc. ACM Program. Lang. 3.00PSLA (2019), 147:1-147:30.
DoI: 10.1145/3360573.

Robert Atkey. “Amortised resource analysis with separation logic”. In: Log. Methods Comput. Sci. 7.2
(2011). por: 10.2168/LMCS-7(2:17)2011.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Notzli, et al. “cvc5: A versatile and
industrial-strength SMT solver”. In: TACAS (1). Vol. 13243. LNCS. Springer, 2022, pp. 415-442. por:
10.1007/978-3-030-99524-9_24.

Nick Benton and Peter Buchlovsky. “Semantics of an effect analysis for exceptions”. In: TLDL. ACM, 2007,
pp- 15-26. Do1: 10.1145/1190315.1190320.

Ales Bizjak, Lars Birkedal, and Marino Miculan. “A model of countable nondeterminism in guarded type
theory”. In: RTA-TLCA. Vol. 8560. LNCS. Springer, 2014, pp. 108-123. po1: 10.1007/978-3-319-08918-
8_8.

Jasmin Christian Blanchette, Sascha Bohme, and Lawrence C. Paulson. “Extending Sledgehammer with
SMT solvers”. In: J. Autom. Reason. 51.1 (2013), pp. 109-128. po1: 10.1007/S10817-013-9278-5.

Lars Birkedal, Ales Bizjak, and Jan Schwinghammer. “Step-indexed relational reasoning for countable
nondeterminism”. In: Log. Methods Comput. Sci. 9.4 (2013). po1: 10.2168/LMCS-9(4:4)2013.

257

https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1145/3360573
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/1190315.1190320
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1007/S10817-013-9278-5
https://doi.org/10.2168/LMCS-9(4:4)2013

BIBLIOGRAPHY BIBLIOGRAPHY

[Ben+06]

[Ben+07]

[Ben+09]

[BGK17]

[BGM21]

[Bir+11]

[Bir+12]

[Bir+16]

[Bir+21]

[Blo+17]

[Bor+05]

[Boy03]

[Bro07]

[Cal+09]

[Cal+11]

[Cal+19]

[Cao+18]

Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. “Reading, writing and relations”.
In: APLAS. Vol. 4279. LNCS. Springer, 2006, pp. 114-130. Dor: 10.1007/11924661_7.

Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. “Relational semantics for
effect-based program transformations with dynamic allocation”. In: PPDP. ACM, 2007, pp. 87-96. DOTI:
10.1145/1273920.1273932.

Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. “Relational semantics for
effect-based program transformations: Higher-order store”. In: PPDP. ACM, 2009, pp. 301-312. por:
10.1145/1599410.1599447.

James Brotherston, Nikos Gorogiannis, and Max I. Kanovich. “Biabduction (and related problems) in
array separation logic”. In: CADE. Vol. 10395. LNCS. Springer, 2017, pp. 472-490. po1: 10.1007/978-3-
319-63046-5_29.

Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Mogelberg. “Diamonds are not forever:
Liveness in reactive programming with guarded recursion”. In: Proc. ACM Program. Lang. 5.POPL (2021),
pp- 1-28. po1: 10.1145/3434283.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Stevring, Jacob Thamsborg, and Hongseok
Yang. “Step-indexed Kripke models over recursive worlds”. In: POPL. ACM, 2011, pp. 119-132. por:
10.1145/1926385.1926401.

Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian Stevring. “First steps in
synthetic guarded domain theory: Step-indexing in the topos of trees”. In: Log. Methods Comput. Sci. 8.4
(2012). por: 10.2168/LMCS-8(4:1)2012.

Lars Birkedal, Guilhem Jaber, Filip Sieczkowski, and Jacob Thamsborg. “A Kripke logical relation for
effect-based program transformations”. In: Inf. Comput. 249 (2016), pp. 160-189. por: 10.1016/J.IC.
2016.04.003.

Lars Birkedal, Thomas Dinsdale-Young, Armaél Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos
Tzevelekos. “Theorems for free from separation logic specifications”. In: Proc. ACM Program. Lang. 5ICFP
(2021), pp. 1-29. po1: 10.1145/3473586.

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. “The VerCors tool set: Verification of
parallel and concurrent software”. In: IFM. Vol. 10510. LNCS. Springer, 2017, pp. 102-110. po1: 10.1007/
978-3-319-66845-1_7.

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. “Permission accounting

in separation logic”. In: POPL. ACM, 2005, pp. 259-270. por: 10.1145/1040305.1040327.

John Boyland. “Checking interference with fractional permissions”. In: SAS. Vol. 2694. LNCS. Springer,
2003, pp. 55-72. DOI: 10.1007/3-540-44898-5_4.

Stephen Brookes. “A semantics for concurrent separation logic”. In: Theor. Comput. Sci. 375.1-3 (2007),
pp- 227-270. pO1: 10.1016/J.TCS.2006.12.034.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. “Compositional shape
analysis by means of bi-abduction”. In: POPL. ACM, 2009, pp. 289-300. po1: 10.1145/1480881.1480917.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. “Compositional shape
analysis by means of bi-abduction”. In: J. ACM 58.6 (2011), 26:1-26:66. DOI: 10.1145/2049697 . 2049700.

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Go Huge or Go Home: POPL’19
Most Influential Paper Retrospective. 2019. URL: https://blog.sigplan.org/2020/03/03/go-huge-
or-go-home-popl19-most-influential-paper-retrospective/ (visited on 2024).

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. “VST-Floyd: A
separation logic tool to verify correctness of C programs”. In: J. Autom. Reason. 61.1-4 (2018), pp. 367-422.
DOI: 10.1007/S10817-018-9457-5.

258

https://doi.org/10.1007/11924661_7
https://doi.org/10.1145/1273920.1273932
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1145/3434283
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/J.IC.2016.04.003
https://doi.org/10.1016/J.IC.2016.04.003
https://doi.org/10.1145/3473586
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1145/2049697.2049700
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influential-paper-retrospective/
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influential-paper-retrospective/
https://doi.org/10.1007/S10817-018-9457-5

BIBLIOGRAPHY BIBLIOGRAPHY

[Car+22]

[Cha+15]

[Cha+19a]

[Cha+19b]

[Cha+21]

[Cha+23]

[Cha10]

[Cha11]

[Chl11]

[CLO19]

[CP17]

[Cyr25]

[DAB11]

[Dan+20]

[Dar+25]

[Del00]

[DH10]

[DH12]

Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa
Nardelli. “Applying formal verification to microkernel IPC at Meta”. In: CPP. ACM, 2022, pp. 116-129.
DOI: 10.1145/3497775.3503681.

Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. “Aspect-oriented lineariz-
ability proofs”. In: Log. Methods Comput. Sci. 11.1 (2015). por: 10.2168/LMCS-11(1:20)2015.

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. “Verifying concurrent, crash-
safe systems with Perennial”. In: SOSP. ACM, 2019, pp. 243-258. po1: 10.1145/3341301.3359632.

Arthur Charguéraud, Jean-Christophe Fillidtre, Claudio Lourengo, and Méario Pereira. “GOSPEL - Providing
OCaml with a formal specification language”. In: FM. Vol. 11800. LNCS. Springer, 2019, pp. 484-501. por:
10.1007/978-3-030-30942-8_29.

Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and Nickolai Zeldovich.
“GoJournal: A verified, concurrent, crash-safe journaling system”. In: OSDI USENIX Association, 2021,
pp- 423-439. URL: https://www.usenix.org/conference/osdi21/presentation/chajed.

Yun-Sheng Chang, Ralf Jung, Upamanyu Sharma, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai
Zeldovich. “Verifying vMVCC, a high-performance transaction library using multi-version concurrency
control”. In: OSDI USENIX Association, 2023, pp. 871-886. URL: https://www.usenix.org/conference/
osdi23/presentation/chang.

Arthur Charguéraud. “Program verification through characteristic formulae”. In: ICFP. ACM, 2010, pp. 321~
332.por1: 10.1145/1863543.1863590.

Arthur Charguéraud. “Characteristic formulae for the verification of imperative programs”. In: ICFP.
ACM, 2011, pp. 418-430. po1: 10.1145/2034773.2034828.

Adam Chlipala. “Mostly-automated verification of low-level programs in computational separation logic”.
In: PLDI. ACM, 2011, pp. 234-245. po1: 10.1145/1993498.1993526.

Christopher Curry, Quang Loc Le, and Shengchao Qin. “Bi-abductive inference for shape and ordering
properties”. In: ICECCS. IEEE, 2019, pp. 220-225. po1: 10.1109/ICECCS.2019.00031.

Arthur Charguéraud and Francois Pottier. “Temporary read-only permissions for separation logic”. In:
ESOP. Vol. 10201. LNCS. Springer, 2017, pp. 260—286. DoI: 10.1007/978-3-662-54434-1_10.

Cyrus IMAPD. Cyrus IMAPD memory wrapper operations. https://github.com/cyrusimap/cyrus-
imapd/blob/0552750789f23d205b501582f73358d73cc15706/1ib/xmalloc. c. 2025.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical step-indexed logical relations”. In: Log. Methods
Comput. Sci. 7.2 (2011). por: 10.2168/LMCS-7(2:16)2011.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. “RustBelt meets relaxed
memory”. In: Proc. ACM Program. Lang. 4 POPL (2020), 34:1-34:29. po1: 10.1145/3371102.

Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Miiller.
“Formal foundations for translational separation logic verifiers”. In: Proc. ACM Program. Lang. 9.POPL
(Jan. 2025). por: 10.1145/3704856. URL: https://doi.org/10.1145/3704856.

David Delahaye. “A tactic language for the system Coq”. In: LPAR. Vol. 1955. LNCS. Springer, 2000,
pp- 85-95. DOI: 10.1007/3-540-44404-1_7.

Robert Dockins and Aquinas Hobor. “A theory of termination via indirection”. In: Modelling, Controlling
and Reasoning About State. Vol. 10351. Dagstuhl Seminar Proceedings. 2010. URL: http : / /drops .
dagstuhl.de/opus/volltexte/2010/2805/.

Robert Dockins and Aquinas Hobor. “Time bounds for general function pointers”. In: MFPS. Vol. 286.
Electronic Notes in Theoretical Computer Science. Elsevier, 2012, pp. 139-155. por: 10.1016/J.ENTCS.
2012.08.010.

259

https://doi.org/10.1145/3497775.3503681
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1007/978-3-030-30942-8_29
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi23/presentation/chang
https://www.usenix.org/conference/osdi23/presentation/chang
https://doi.org/10.1145/1863543.1863590
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1109/ICECCS.2019.00031
https://doi.org/10.1007/978-3-662-54434-1_10
https://github.com/cyrusimap/cyrus-imapd/blob/0552750789f23d205b50f582f73358d73cc15706/lib/xmalloc.c
https://github.com/cyrusimap/cyrus-imapd/blob/0552750789f23d205b50f582f73358d73cc15706/lib/xmalloc.c
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3704856
https://doi.org/10.1145/3704856
https://doi.org/10.1007/3-540-44404-1_7
http://drops.dagstuhl.de/opus/volltexte/2010/2805/
http://drops.dagstuhl.de/opus/volltexte/2010/2805/
https://doi.org/10.1016/J.ENTCS.2012.08.010
https://doi.org/10.1016/J.ENTCS.2012.08.010

BIBLIOGRAPHY BIBLIOGRAPHY

[Din+10]

[Din+13]

[Doh+18]

[Doh22]

[DOs+21]

[Dre+10]

[Dre+25]

[Eki+17]

[Elm+10]

[EM18]

[FKB18]

[FKB21a]

[FKB21b]

[Flo67]

[FM12]

[Fro+21]

[Gah+22]

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis.
“Concurrent abstract predicates”. In: ECOOP. Vol. 6183. LNCS. Springer, 2010, pp. 504-528. por: 10.1007/
978-3-642-14107-2_24.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang.
“Views: Compositional reasoning for concurrent programs”. In: POPL. ACM, 2013, pp. 287-300. DOI:
10.1145/2429069.2429104.

Jérdme Dohrau, Alexander J. Summers, Caterina Urban, Severin Miinger, and Peter Miller. “Permission
inference for array programs”. In: CAV (2). Vol. 10982. LNCS. Springer, 2018, pp. 55-74. Do1: 10.1007/978~
3-319-96142-2_7.

Jérome Dohrau. “Automatic inference of permission specifications”. PhD thesis. ETH Zurich, Zirich,
Switzerland, 2022. po1: 10.3929/ethz-b-000588977.

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. “TaDA Live: Compositional
reasoning for termination of fine-grained concurrent programs”. In: ACM Trans. Program. Lang. Syst. 43.4
(2021), 16:1-16:134. po1: 10.1145/3477082.

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. “A relational modal logic for higher-order
stateful ADTs”. In: POPL. ACM, 2010, pp. 185-198. por: 10.1145/1706299.1706323.

Derek Dreyer, Simon Spies, Lennard Giaher, Ralf Jung, Jan-Oliver Kaiser, Hoang-Hai Dang, David Swasey,
Jan Menz, Niklas Miick, and Benjamin Peters. Semantics of type systems (lecture notes). Available at

https://plv.mpi-sws.org/semantics-course/. 2025.

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark W.
Barrett. “SMTCoq: A plug-in for integrating SMT solvers into Coq”. In: CAV (2). Vol. 10427. LNCS. Springer,
2017, pp. 126-133. por: 10.1007/978-3-319-63390-9_7.

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. “Simplifying linearizability
proofs with reduction and abstraction”. In: TACAS. Vol. 6015. LNCS. Springer, 2010, pp. 296—311. por:
10.1007/978-3-642-12002-2_25.

Marco Eilers and Peter Miiller. “Nagini: A static verifier for Python”. In: CAV (1). Vol. 10981. LNCS.
Springer, 2018, pp. 596-603. Do1: 10.1007/978-3-319-96145-3_33.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC: A mechanised relational logic for fine-grained
concurrency’. In: LICS. ACM, 2018, pp. 442-451. po1: 10.1145/3209108.3209174.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. “Compositional non-interference for fine-grained
concurrent programs”. In: SP. IEEE, 2021, pp. 1416—1433. por: 10.1109/SP40001.2021.00003.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC Reloaded: A mechanized relational logic
for fine-grained concurrency and logical atomicity”. In: Log. Methods Comput. Sci. 17.3 (2021). por1:
10.46298/LMCS-17(3:9)2021.

Robert W Floyd. “Assigning meanings to programs”. In: American Mathematical Society. Mathematical
Aspects of Computer Science (1967). Ed. by JT Schwartz.

Pietro Ferrara and Peter Miiller. “Automatic inference of access permissions”. In: VMCAL Vol. 7148. LNCS.
Springer, 2012, pp. 202-218. DOL: 10.1007/978-3-642-27940-9_14.

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martinez, Denis Merigoux,
and Tahina Ramananandro. “Steel: Proof-oriented programming in a dependently typed concurrent
separation logic”. In: Proc. ACM Program. Lang. 5.ICFP (2021), pp. 1-30. por: 10.1145/3473590.

Lennard Gaher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon
Kang, and Derek Dreyer. “Simuliris: A separation logic framework for verifying concurrent program
optimizations”. In: Proc. ACM Program. Lang. 6. POPL (2022), pp. 1-31. por: 10.1145/3498689.

260

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.3929/ethz-b-000588977
https://doi.org/10.1145/3477082
https://doi.org/10.1145/1706299.1706323
https://plv.mpi-sws.org/semantics-course/
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.46298/LMCS-17(3:9)2021
https://doi.org/10.1007/978-3-642-27940-9_14
https://doi.org/10.1145/3473590
https://doi.org/10.1145/3498689

BIBLIOGRAPHY BIBLIOGRAPHY

[Gah+24]

[Gia+20]

[Git25]

[GMo4]

[Gre+24]

[Gué+23]

[Ham+24]

[HBK22]

[He+13]

[Hes06]
[Hoa69]

[Hol+22]

[HW90]

[Inf24]
[Iri24]
[Jac+11]

[JBK13]

[JHK23]

Lennard Géaher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. “RefinedRust: A type
system for high-assurance verification of Rust programs”. In: Proc. ACM Program. Lang. 8. PLDI (June
2024). po1: 10.1145/3656422.

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. “Scala step-by-
step: Soundness for DOT with step-indexed logical relations in Iris”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 114:1-114:29. por: 10.1145/3408996.

Git. Git memory wrapper operations. https://github.com/git/git/blob/2e8e77cbac8ac17f94eee?2
087187fa1718e38b14/wrapper.c. 2025.

Pietro Di Gianantonio and Marino Miculan. “Unifying recursive and co-recursive definitions in sheaf
categories”. In: FoSSaCS. Vol. 2987. LNCS. Springer, 2004, pp. 136—150. por: 10.1007/978-3-540-24727~
2_11.

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars
Birkedal. “Asynchronous probabilistic couplings in higher-order separation logic”. In: Proc. ACM Program.
Lang. 8.POPL (2024), pp. 753-784. por: 10.1145/3632868.

Armaél Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer.
“Melocoton: A program logic for verified interoperability between OCaml and C”. In: Proc. ACM Program.
Lang. 7.00PSLA2 (2023), pp. 716-744. po1: 10.1145/3622823.

Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod.
“An axiomatic basis for computer programming on the relaxed Arm-A architecture: The AxSL logic”. In:
Proc. ACM Program. Lang. 8 POPL (2024), pp. 604-637. po1: 10.1145/3632863.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. “Actris 2.0: Asynchronous session-
type based reasoning in separation logic”. In: Log. Methods Comput. Sci. 18.2 (2022). por: 10.46298/LMCS-
18(2:16)2022.

Guanhua He, Shengchao Qin, Wei-Ngan Chin, and Florin Craciun. “Automated specification discovery
via user-defined predicates”. In: ICFEM. Vol. 8144. LNCS. Springer, 2013, pp. 397-414. por: 10.1007/978-
3-642-41202-8_26.

Gerhard Hessenberg. Grundbegriffe der Mengenlehre. Vol. 1. Vandenhoeck & Ruprecht, 1906.

C. A.R. Hoare. “An axiomatic basis for computer programming”. In: Commun. ACM 12.10 (1969), pp. 576~
580. por: 10.1145/363235.363259.

Lukés Holik, Petr Peringer, Adam Rogalewicz, Veronika Sokova, Tomas Vojnar, and Florian Zuleger.
“Low-level bi-abduction”. In: ECOOP. Vol. 222. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2022, 19:1-19:30. po1: 10.4230/LIPICS.ECOOP.2022.19.

Maurice Herlihy and Jeannette M. Wing. “Linearizability: A correctness condition for concurrent objects”.
In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463-492. po1: 10.1145/78969.78972.

Infer. Infer v1.2.0. https://fbinfer.com. June 2024.
Iris Team. The Iris 4.3 Reference. 2024. URL: https://plv.mpi-sws.org/iris/appendix-4.3.pdf.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens.
“VeriFast: A powerful, sound, predictable, fast verifier for C and Java”. In: NASA Formal Methods. Vol. 6617.
LNCS. Springer, 2011, pp. 41-55. Do1: 10.1007/978-3-642-20398-5_4.

Jonas Braband Jensen, Nick Benton, and Andrew Kennedy. “High-level separation logic for low-level
code”. In: POPL. ACM, 2013, pp. 301-314. po1: 10.1145/2429069.2429105.

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. “Dependent session protocols in separation
logic from first principles (functional pearl)”. In: Proc. ACM Program. Lang. 7.ICFP (2023), pp. 768—795.
Dpor: 10.1145/3607856.

261

https://doi.org/10.1145/3656422
https://doi.org/10.1145/3408996
https://github.com/git/git/blob/2e8e77cbac8ac17f94eee2087187fa1718e38b14/wrapper.c
https://github.com/git/git/blob/2e8e77cbac8ac17f94eee2087187fa1718e38b14/wrapper.c
https://doi.org/10.1007/978-3-540-24727-2_11
https://doi.org/10.1007/978-3-540-24727-2_11
https://doi.org/10.1145/3632868
https://doi.org/10.1145/3622823
https://doi.org/10.1145/3632863
https://doi.org/10.46298/LMCS-18(2:16)2022
https://doi.org/10.46298/LMCS-18(2:16)2022
https://doi.org/10.1007/978-3-642-41202-8_26
https://doi.org/10.1007/978-3-642-41202-8_26
https://doi.org/10.1145/363235.363259
https://doi.org/10.4230/LIPICS.ECOOP.2022.19
https://doi.org/10.1145/78969.78972
https://fbinfer.com
https://plv.mpi-sws.org/iris/appendix-4.3.pdf
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/3607856

BIBLIOGRAPHY BIBLIOGRAPHY

[Jun+15]

[Jun+16]

[Jun+18a]

[Jun+18b]

[Jun+20]

[Jun19]

[Jun20]

[Kai+17]

[Kan+17]

[Keu+22]

[KGP16]

[Kre+17]

[Kre+18]

[KS19]

[KSB17]

[KTB17]

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. “Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning”. In: POPL. ACM,
2015, pp. 637-650. po1: 10.1145/2676726.2676980.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-order ghost state”. In: ICFP. ACM,
2016, pp. 256-269. po1: 10.1145/2951913.2951943.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: Securing the founda-
tions of the Rust programming language”. In: Proc. ACM Program. Lang. 2.POPL (2018), 66:1-66:34. DOT:
10.1145/3158154.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. “Iris
from the ground up: A modular foundation for higher-order concurrent separation logic”. In: J. Funct.
Program. 28 (2018), e20. por: 10.1017/50956796818000151.

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer,
and Bart Jacobs. “The future is ours: Prophecy variables in separation logic”. In: Proc. ACM Program. Lang.
4.POPL (2020), 45:1-45:32. po1: 10.1145/3371113.

Ralf Jung. Logical atomicity in Iris: The good, the bad, and the ugly. Presented at the Iris Workshop
(https://iris-project.org/workshop-2019/). 2019. URL: https://people.mpi-sws.org/~jung/
iris/logatom-talk-2019.pdf.

Ralf Jung. “Understanding and evolving the Rust programming language”. PhD thesis. Saarland University,
2020.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. “Strong logic for
weak memory: Reasoning about release-acquire consistency in Iris”. In: ECOOP. Vol. 74. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017, 17:1-17:29. por: 10.4230/LIPICS.ECOOP.2017.17.

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. “A promising semantics
for relaxed-memory concurrency”. In: POPL. ACM, 2017, pp. 175-189. po1: 10.1145/3009837.3009850.

Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. “Verified symbolic
execution with Kripke specification monads (and no meta-programming)”. In: Proc. ACM Program. Lang.
6.ICFP (2022), pp. 194-224. por1: 10.1145/3547628.

Artem Khyzha, Alexey Gotsman, and Matthew J. Parkinson. “A generic logic for proving linearizability”.
In: FM. Vol. 9995. LNCS. 2016, pp. 426—443. po1: 10.1007/978-3-319-48989-6_26.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. “The
essence of higher-order concurrent separation logic”. In: ESOP. Vol. 10201. LNCS. Springer, 2017, pp. 696—
723. por: 10.1007/978-3-662-54434-1_26.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. “MoSeL: A general, extensible modal framework for interactive
proofs in separation logic”. In: Proc. ACM Program. Lang. 2ICFP (2018), 77:1-77:30. po1: 10.1145/3236772.

Dominik Kirst and Gert Smolka. “Categoricity results and large model constructions for second-order ZF
in dependent type theory”. In: J. Autom. Reason. 63.2 (2019), pp. 415-438. po1: 10.1007/510817-018-
9480-6.

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. “A relational model of types-and-effects in
higher-order concurrent separation logic”. In: POPL. ACM, 2017, pp. 218-231. por: 10.1145/3009837.
3009877.

Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs in higher-order concurrent
separation logic”. In: POPL. ACM, 2017, pp. 205-217. po1: 10.1145/3009837.3009855.

262

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://iris-project.org/workshop-2019/
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://doi.org/10.4230/LIPICS.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3547628
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3236772
https://doi.org/10.1007/S10817-018-9480-6
https://doi.org/10.1007/S10817-018-9480-6
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009855

BIBLIOGRAPHY BIBLIOGRAPHY

[Lat+23]

[Le+14]

[Le+22]

[Leh+23]

[Lei10]

[Lep+22]

[Lev65]

[LF13]

[LF16]

[LF18]

[LM09]

[Lor+24]

[Mag+06]

[Mak+21]

[Mat+22]

[MBog]

[mem25]

(MJ16]

[MJP19]

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell,
Bryan Parno, and Chris Hawblitzel. “Verus: Verifying Rust programs using linear ghost types”. In: Proc.
ACM Program. Lang. 7.00PSLA1 (2023), pp. 286-315. po1: 10.1145/3586037.

Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin. “Shape analysis via second-order
bi-abduction”. In: CAV. Vol. 8559. LNCS. Springer, 2014, pp. 52—-68. po1: 10.1007/978-3-319-08867-9_4.

Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. “Finding
real bugs in big programs with incorrectness logic”. In: Proc. ACM Program. Lang. 6.00PSLA1 (2022),
pp- 1-27. por: 10.1145/3527325.

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. “Flux: Liquid types for Rust”. In: Proc. ACM
Program. Lang. 7.PLDI (2023), pp. 1533-1557. por: 10.1145/3591283.

K. Rustan M. Leino. “Dafny: An automatic program verifier for functional correctness”. In: LPAR (Dakar).
Vol. 6355. LNCS. Springer, 2010, pp. 348-370. Dor: 10.1007/978-3-642-17511-4_20.

Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and Peter
Sewell. “VIP: Verifying real-world C idioms with integer-pointer casts”. In: Proc. ACM Program. Lang.
6.POPL (2022), pp. 1-32. po1: 10.1145/3498681.

Vladimir Iosifovich Levenshtein. “Binary codes capable of correcting deletions, insertions, and reversals”.
In: Soviet Physics Doklady 10 (1965), pp. 707-710.

Hongjin Liang and Xinyu Feng. “Modular verification of linearizability with non-fixed linearization
points”. In: PLDI. ACM, 2013, pp. 459-470. por: 10.1145/2491956.2462189.

Hongjin Liang and Xinyu Feng. “A program logic for concurrent objects under fair scheduling”. In: POPL.
ACM, 2016, pp. 385-399. po1: 10.1145/2837614.2837635.

Hongjin Liang and Xinyu Feng. “Progress of concurrent objects with partial methods”. In: Proc. ACM
Program. Lang. 2.POPL (2018), 20:1-20:31. por: 10.1145/3158108.

K. Rustan M. Leino and Peter Miiller. “A basis for verifying multi-threaded programs”. In: ESOP. Vol. 5502.
LNCS. Springer, 2009, pp. 378-393. Do1: 10.1007/978-3-642-00590-9_27.

Jay Lorch, Travis Hance, Chris Hawblitzel, Andrea Lattuada, and Upamanyu Sharma. Require open-
invariant credits. Verus pull request 1042. 2024. UrL: https://github.com/verus-lang/verus/pull/
1042.

Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. “Inferring invariants in separation

logic for imperative list-processing programs”. In: SPACE 1.1 (2006), pp. 5-7.

Petar Maksimovic, Sacha-Elie Ayoun, José Fragoso Santos, and Philippa Gardner. “Gillian, Part II: Real-
world verification for JavaScript and C”. In: CAV (2). Vol. 12760. LNCS. Springer, 2021, pp. 827-850. DOI:
10.1007/978-3-030-81688-9_38.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. “RustHornBelt: A semantic
foundation for functional verification of Rust programs with unsafe code”. In: PLDI. ACM, 2022, pp. 841-
856. DOI: 10.1145/3519939.3523704.

Leonardo Mendonga de Moura and Nikolaj S. Bjerner. “Z3: An efficient SMT solver”. In: TACAS. Vol. 4963.
LNCS. Springer, 2008, pp. 337-340. poI: 10.1007/978-3-540-78800-3_24.

memcached. memcached. https://www.memcached.org/. 2025.

Mahmoud Mohsen and Bart Jacobs. “One step towards automatic inference of formal specifications using
automated VeriFast”. In: FMICS-AVoCS. Vol. 9933. LNCS. Springer, 2016, pp. 56-64. po1: 10.1007/978-3-
319-45943-1_4.

Glen Mével, Jacques-Henri Jourdan, and Francois Pottier. “Time credits and time receipts in Iris”. In:
ESOP. Vol. 11423. LNCS. Springer, 2019, pp. 3-29. poI: 10.1007/978-3-030-17184-1_1.

263

https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3591283
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3498681
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1007/978-3-642-00590-9_27
https://github.com/verus-lang/verus/pull/1042
https://github.com/verus-lang/verus/pull/1042
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.memcached.org/
https://doi.org/10.1007/978-3-319-45943-1_4
https://doi.org/10.1007/978-3-319-45943-1_4
https://doi.org/10.1007/978-3-030-17184-1_1

BIBLIOGRAPHY BIBLIOGRAPHY

[MJP20]

[MKG22]

[MSS17]

[Nan+14]

[Nan+19]

[OHe07]

[OHe20]

[OP99]

[Ope25]
[ORYO01]

[PB0S]

[Pot+24]

[PP11]

[PS11]

[Pul+23]

[PWZ14]

[Qin+11]

[Raa+20]

Glen Mével, Jacques-Henri Jourdan, and Francois Pottier. “Cosmo: A concurrent separation logic for
multicore OCaml”. In: Proc. ACM Program. Lang. 4.ICFP (2020), 96:1-96:29. por: 10.1145/3408978.

Ike Mulder, Robbert Krebbers, and Herman Geuvers. “Diaframe: Automated verification of fine-grained
concurrent programs in Iris”. In: PLDI. ACM, 2022, pp. 809-824. po1: 10.1145/3519939.3523432.

Peter Miller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A verification infrastructure for
permission-based reasoning”. In: Dependable Software Systems Engineering. Vol. 50. NATO Science for
Peace and Security Series - D: Information and Communication Security. IOS Press, 2017, pp. 104-125.
DoI: 10.3233/978-1-61499-810-5-104.

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and German Andrés Delbianco. “Communicating state
transition systems for fine-grained concurrent resources”. In: ESOP. Vol. 8410. LNCS. Springer, 2014,
pp- 290-310. po1: 10.1007/978-3-642-54833-8_16.

Aleksandar Nanevski, Anindya Banerjee, German Andrés Delbianco, and Ignacio Fabregas. “Specifying
concurrent programs in separation logic: Morphisms and simulations”. In: Proc. ACM Program. Lang.
3.00PSLA (2019), 161:1-161:30. po1: 10.1145/3360587.

Peter W. O’Hearn. “Resources, concurrency, and local reasoning”. In: Theor. Comput. Sci. 375.1-3 (2007),
pp- 271-307. po1: 10.1016/J.TCS.2006.12.035.

Peter W. O’Hearn. “Incorrectness Logic”. In: Proc. ACM Program. Lang. 4POPL (2020), 10:1-10:32. DOTI:
10.1145/3371078.

Peter W. O’Hearn and David J. Pym. “The logic of bunched implications”. In: Bull. Symb. Log. 5.2 (1999),
pp. 215-244. DOL: 10.2307/421090.

OpenSSL. OpenSSL. https://www.openssl.org. 2025.

Peter W. O’'Hearn, John C. Reynolds, and Hongseok Yang. “Local reasoning about programs that alter
data structures”. In: CSL. Vol. 2142. LNCS. Springer, 2001, pp. 1-19. po1: 10.1007/3-540-44802-0_1.

Matthew J. Parkinson and Gavin M. Bierman. “Separation logic, abstraction and inheritance”. In: POPL.
ACM, 2008, pp. 75-86. po1: 10.1145/1328438.1328451.

Francois Pottier, Armaél Guéneau, Jacques-Henri Jourdan, and Glen Mével. “Thunks and debits in
separation logic with time credits”. In: Proc. ACM Program. Lang. 8. POPL (2024), pp. 1482-1508. DOI:
10.1145/3632892.

Alexandre Pilkiewicz and Frangois Pottier. “The essence of monotonic state”. In: TLDL ACM, 2011, pp. 73—
86. DO1: 10.1145/1929553.1929565.

Matthew J. Parkinson and Alexander J. Summers. “The relationship between separation logic and implicit
dynamic frames”. In: ESOP. Vol. 6602. LNCS. Springer, 2011, pp. 439-458. po1: 10.1007/978-3-642-
19718-5_23.

Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel
Krishnaswami. “CN: Verifying systems C code with separation-logic refinement types”. In: Proc. ACM
Program. Lang. 7.POPL (2023), pp. 1-32. por: 10.1145/3571194.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. “GRASShopper - complete heap verification with
mixed specifications”. In: TACAS. Vol. 8413. LNCS. Springer, 2014, pp. 124-139. por: 10.1007/978-3~
642-54862-8_9.

Shengchao Qin, Chenguang Luo, Wei-Ngan Chin, and Guanhua He. “Automatically refining partial
specifications for program verification”. In: FM. Vol. 6664. LNCS. Springer, 2011, pp. 369-385. DoI:
10.1007/978-3-642-21437-0_28.

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules Villard. “Local
reasoning about the presence of bugs: Incorrectness Separation Logic”. In: CAV (2). Vol. 12225. LNCS.
Springer, 2020, pp. 225-252. DoI: 10.1007/978-3-030-53291-8_14.

264

https://doi.org/10.1145/3408978
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/3360587
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.1145/3371078
https://doi.org/10.2307/421090
https://www.openssl.org
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/1328438.1328451
https://doi.org/10.1145/3632892
https://doi.org/10.1145/1929553.1929565
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1145/3571194
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-21437-0_28
https://doi.org/10.1007/978-3-030-53291-8_14

BIBLIOGRAPHY BIBLIOGRAPHY

[RDG14]

[Red25a]

[Red25b]

[Ref25]

[Rey02]

[RKJ08]

[RKJ10]

[Roc+16]

[RVG15]

[S+21]

[Sam+21]

[Sam+23]

[San+20]

[SB14]

[SBP13]

[SJP09]

[SK13]

[SKD21]

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. “TaDA: A logic for time and data
abstraction”. In: ECOOP. Vol. 8586. LNCS. Springer, 2014, pp. 207-231. por: 10.1007/978-3-662-44202~
9_9.

Redis. Redis memory wrapper operations. https://github.com/redis/redis/blob/3fac869f02657d9
4dc89fab23ach8ef188889c96/src/zmalloc. c. 2025.

Redis. Redis popcount implementation for potentially large buffers. https://github.com/redis/redis/
blob/3fac869f02657d94dc89fab23ach8ef188889c96/src/bitops. c#lL40. 2025.

RefinedC Developers. RefinedC verification of a priority bitmap. https://gitlab.mpi-sws.org/iris/
refinedc/-/blob/7945a29d1647970709a9b5ad2ffc53c757e130cc/examples/scheduler/include/
fdsched/priority.h. 2025.

John C. Reynolds. “Separation Logic: A logic for shared mutable data structures”. In: LICS. IEEE Computer
Society, 2002, pp. 55-74. por: 10.1109/LICS.2002.1029817.

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Liquid types”. In: PLDI. ACM, 2008, pp. 159-
169. po1: 10.1145/1375581.1375602.

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Low-level liquid types”. In: POPL. ACM,
2010, pp. 131-144. po1: 10.1145/1706299.1706316.

Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland. “Modular
termination verification for non-blocking concurrency”. In: ESOP. Vol. 9632. LNCS. Springer, 2016,
pp- 176-201. po1: 10.1007/978-3-662-49498-1_8.

Azalea Raad, Jules Villard, and Philippa Gardner. “CoLoSL: Concurrent local subjective logic”. In: ESOP.
Vol. 9032. LNCS. Springer, 2015, pp. 710~735. Do1: 10.1007/978-3-662-46669-8_29.

Sumanth Prabhu S, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza. “Specification synthesis
with constrained Horn clauses”. In: PLDL. ACM, 2021, pp. 1203-1217. po1: 10.1145/3453483.3454104.

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak
Garg. “RefinedC: Automating the foundational verification of C code with refined ownership types”. In:
PLDI ACM, 2021, pp. 158-174. po1: 10.1145/3453483.3454036.

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg,
and Derek Dreyer. “DimSum: A decentralized approach to multi-language semantics and verification”. In:
Proc. ACM Program. Lang. 7.POPL (2023), pp. 775-805. por: 10.1145/3571220.

José Fragoso Santos, Petar Maksimovic, Sacha-Elie Ayoun, and Philippa Gardner. “Gillian, Part I: A
multi-language platform for symbolic execution”. In: PLDL ACM, 2020, pp. 927-942. po1: 10. 1145/
3385412.3386014.

Kasper Svendsen and Lars Birkedal. “Impredicative concurrent abstract predicates”. In: ESOP. Vol. 8410.
LNCS. Springer, 2014, pp. 149-168. Dor: 10.1007/978-3-642-54833-8_9.

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. “Modular reasoning about separation of
concurrent data structures”. In: ESOP. Vol. 7792. LNCS. Springer, 2013, pp. 169-188. po1: 10.1007/978-
3-642-37036-6_11.

Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit Dynamic Frames: Combining dynamic frames and
separation logic”. In: ECOOP. Vol. 5653. LNCS. Springer, 2009, pp. 148-172. po1: 10.1007/978-3-642-
03013-0_8.

Mohamed Nassim Seghir and Daniel Kroening. “Counterexample-guided precondition inference”. In:
ESOP. Vol. 7792. LNCS. Springer, 2013, pp. 451-471. po1: 10.1007/978-3-642-37036-6_25.

Simon Spies, Neel Krishnaswami, and Derek Dreyer. “Transfinite step-indexing for termination”. In: Proc.
ACM Program. Lang. 5.POPL (2021), pp. 1-29. por: 10.1145/3434294.

265

https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/zmalloc.c
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/zmalloc.c
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/bitops.c#L40
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/bitops.c#L40
https://gitlab.mpi-sws.org/iris/refinedc/-/blob/7945a29d1647970709a9b5ad2ffc53c757e130cc/examples/scheduler/include/fdsched/priority.h
https://gitlab.mpi-sws.org/iris/refinedc/-/blob/7945a29d1647970709a9b5ad2ffc53c757e130cc/examples/scheduler/include/fdsched/priority.h
https://gitlab.mpi-sws.org/iris/refinedc/-/blob/7945a29d1647970709a9b5ad2ffc53c757e130cc/examples/scheduler/include/fdsched/priority.h
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1145/3453483.3454104
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1145/3434294

BIBLIOGRAPHY BIBLIOGRAPHY

[SNB15]

[SO08]

[Spi+21a]

[Spi+21b]

[Spi+22a]

[Spi+22b]

[Spi+24a]

[Spi+24b]

[Spi+25a]

[Spi+25b]

[Spi24]

[SSB16]

[Sve+18]

[Swa+20]

[TDB13]

[TH19]

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. “Specifying and verifying concurrent algorithms
with histories and subjectivity”. In: ESOP. Vol. 9032. LNCS. Springer, 2015, pp. 333-358. po1: 10.1007/978~
3-662-46669-8_14.

Matthieu Sozeau and Nicolas Oury. “First-class type classes”. In: TPHOLs. Vol. 5170. LNCS. Springer, 2008,
pp- 278-293. po1: 10.1007/978-3-540-71067-7_23.

Simon Spies, Lennard Géaher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and
Lars Birkedal. Transfinite Iris appendix and Rocq development. 2021. URL: https://iris-project.org/
transfinite-iris/.

Simon Spies, Lennard Géaher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and
Lars Birkedal. “Transfinite Iris: Resolving an existential dilemma of step-indexed separation logic”. In:
PLDI ACM, 2021, pp. 80-95. po1: 10.1145/3453483.3454031.

Simon Spies, Lennard Giher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek
Dreyer. “Later Credits: Resourceful reasoning for the later modality”. In: Proc. ACM Program. Lang. 6 ICFP
(2022), pp. 283-311. DOI: 10.1145/3547631.

Simon Spies, Lennard Giher, Joseph Tassarotti, Ralf Jung, Robbert Rebbers, Lars Birkedal, and Derek
Dreyer. Later Credits Rocq development and technical documentation. Latest development at https :
//plv.mpi-sws.org/later-credits/. 2022. po1r: 10.5281/zenodo.6702804.

Simon Spies, Lennard Giher, Michael Sammler, and Derek Dreyer. “Quiver: Guided abductive inference
of separation logic specifications in Coq”. In: Proc. ACM Program. Lang. 8 PLDI (June 2024). po1: 10.1145/
3656413.

Simon Spies, Lennard Géaher, Michael Sammler, and Derek Dreyer. Quiver: Guided abductive inference of
separation logic specifications in Coq (Rocq development and appendix). Project webpage with appendix:
https://plv.mpi-sws.org/quiver/. June 2024. po1: 10.5281/zenodo. 10940320.

Simon Spies, Niklas Miick, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Miiller, and Derek
Dreyer. “Destabilizing Iris”. In: Proc. ACM Program. Lang. 9.PLDI (June 2025). por: 10.1145/3729284.

Simon Spies, Niklas Miick, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Miiller, and Derek
Dreyer. Destabilizing Iris (Rocq development and appendix). Project webpage with appendix: https:
//plv.mpi-sws.org/iris-daenerys/. June 2025. por: 10.5281/zenodo. 15041580.

Simon Spies. Making adequacy of Iris satisfying. Presented at the 4th Iris Workshop (https://iris-
project.org/workshop-2024/). 2024. urL: https://plv.mpi-sws.org/iris-satisfiability/
talks/iris-workshop-2024.pdf.

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. “Transfinite step-indexing: Decoupling concrete
and logical steps”. In: ESOP. Vol. 9632. LNCS. Springer, 2016, pp. 727-751. DoI: 10.1007/978-3-662-
49498-1_28.

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. “A separation logic
for a promising semantics”. In: ESOP. Vol. 10801. LNCS. Springer, 2018, pp. 357-384. po1: 10.1007/978-
3-319-89884-1_13.

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martinez.
“SteelCore: An extensible concurrent separation logic for effectful dependently typed programs”. In: Proc.
ACM Program. Lang. 4.ICFP (2020), 121:1-121:30. po1: 10.1145/3409003.

Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement and Hoare-style reasoning in a
logic for higher-order concurrency”. In: ICFP. ACM, 2013, pp. 377-390. por: 10.1145/2500365.2500600.

Joseph Tassarotti and Robert Harper. “A separation logic for concurrent randomized programs”. In: Proc.
ACM Program. Lang. 3.POPL (2019), 64:1-64:30. po1: 10.1145/3290377.

266

https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-540-71067-7_23
https://iris-project.org/transfinite-iris/
https://iris-project.org/transfinite-iris/
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3547631
https://plv.mpi-sws.org/later-credits/
https://plv.mpi-sws.org/later-credits/
https://doi.org/10.5281/zenodo.6702804
https://doi.org/10.1145/3656413
https://doi.org/10.1145/3656413
https://plv.mpi-sws.org/quiver/
https://doi.org/10.5281/zenodo.10940320
https://doi.org/10.1145/3729284
https://plv.mpi-sws.org/iris-daenerys/
https://plv.mpi-sws.org/iris-daenerys/
https://doi.org/10.5281/zenodo.15041580
https://iris-project.org/workshop-2024/
https://iris-project.org/workshop-2024/
https://plv.mpi-sws.org/iris-satisfiability/talks/iris-workshop-2024.pdf
https://plv.mpi-sws.org/iris-satisfiability/talks/iris-workshop-2024.pdf
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/3409003
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/3290377

BIBLIOGRAPHY BIBLIOGRAPHY

[Tim+18]

[Tim+24a]

[Tim+24b]

[TJH17]

[Tri+13]

[Tur+13]

[Vaz+14]

[VB21]

[VGB25]

[Vog+11]

[Wer97]

[Wis+20]

[Wol+21]

[YHBOS]

[Zhu+22]

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. “A logical relation for monadic
encapsulation of state: Proving contextual equivalences in the presence of runST”. In: Proc. ACM Program.
Lang. 2.POPL (2018), 64:1-64:28. por: 10.1145/3158152.

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon Gondel-
man, Abel Nieto, and Lars Birkedal. “Trillium: Higher-order concurrent and distributed separation logic for
intensional refinement”. In: Proc. ACM Program. Lang. 8.POPL (2024), pp. 241-272. por: 10.1145/3632851.

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. “A logical approach to type soundness”.
In: 7. ACM (July 2024). 1ssN: 0004-5411. po1: 10.1145/3676954. URL: https://doi.org/10.1145/
3676954.

Joseph Tassarotti, Ralf Jung, and Robert Harper. “A higher-order logic for concurrent termination-
preserving refinement”. In: ESOP. Vol. 10201. LNCS. 2017, pp. 909-936. po1: 10.1007/978-3-662-54434~
1_34.

Minh-Thai Trinh, Quang Loc Le, Cristina David, and Wei-Ngan Chin. “Bi-abduction with pure properties
for specification inference”. In: APLAS. Vol. 8301. LNCS. Springer, 2013, pp. 107-123. por: 10.1007/978-
3-319-03542-0_8.

Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. “Logical relations
for fine-grained concurrency”. In: POPL. ACM, 2013, pp. 343-356. Do1: 10.1145/2429069.2429111.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. “Refinement
types for Haskell”. In: ICFP. ACM, 2014, pp. 269-282. po1: 10.1145/2628136.2628161.

Simon Friis Vindum and Lars Birkedal. “Contextual refinement of the Michael-Scott queue (proof pearl)”.
In: CPP. ACM, 2021, pp. 76-90. por1: 10.1145/3437992.3439930.

Simon Friis Vindum, Aina Linn Georges, and Lars Birkedal. “The Nextgen modality: A modality for non-
frame-preserving updates in separation logic”. In: CPP. New York, NY, USA: ACM, 2025, pp. 83-97. 1SBN:
9798400713477. po1: 10.1145/3703595.3705876. URL: https://doi.org/10.1145/3703595.3705876.

Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans. “Annotation inference for separation logic
based verifiers”. In: FMOODS/FORTE. Vol. 6722. LNCS. Springer, 2011, pp. 319-333. por: 10.1007/978-3-
642-21461-5_21.

Benjamin Werner. “Sets in types, types in sets”. In: TACS. Vol. 1281. LNCS. Springer, 1997, pp. 530-346.
DOI: 10.1007/BFB0@14566.

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Eric Tanter, and Joshua Sunshine.
“Gradual verification of recursive heap data structures”. In: Proc. ACM Program. Lang. 4.00PSLA (2020),
228:1-228:28. po1: 10.1145/3428296.

Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodo Carlos Pereira, and Peter Miiller.
“Gobra: Modular specification and verification of Go programs”. In: CAV (1). Vol. 12759. LNCS. Springer,
2021, pp. 367-379. po1: 10.1007/978-3-030-81685-8_17.

Nobuko Yoshida, Kohei Honda, and Martin Berger. “Logical reasoning for higher-order functions with
local state”. In: Log. Methods Comput. Sci. 4.4 (2008). po1: 10.2168/LMCS-4(4:2)2008.

Fengmin Zhu, Michael Sammler, Rodolphe Lepigre, Derek Dreyer, and Deepak Garg. “BFF: Foundational
and automated verification of bitfield-manipulating programs”. In: Proc. ACM Program. Lang. 6.00PSLA2
(2022), pp. 1613-1638. DOI: 10.1145/3563345.

267

https://doi.org/10.1145/3158152
https://doi.org/10.1145/3632851
https://doi.org/10.1145/3676954
https://doi.org/10.1145/3676954
https://doi.org/10.1145/3676954
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-319-03542-0_8
https://doi.org/10.1007/978-3-319-03542-0_8
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1007/978-3-642-21461-5_21
https://doi.org/10.1007/978-3-642-21461-5_21
https://doi.org/10.1007/BFB0014566
https://doi.org/10.1145/3428296
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.2168/LMCS-4(4:2)2008
https://doi.org/10.1145/3563345

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Modern Separation Logic
	Contributions
	Generalizing Step-Indexing with Transfinite Iris and Later Credits
	Improving Automation with Quiver and Daenerys

	Overview
	Publications
	Collaborations

	I An Iris Primer
	Separation Logic
	Purely Functional Programs
	Ownership Reasoning

	The Modern Separation Logic Iris
	The Weakest Precondition
	Step-Indexing
	Persistency
	Invariants
	Impredicative Invariants

	Concurrency
	A Concurrent Language
	A Concurrent Separation Logic

	Ghost State

	The Model of Iris
	The Program Logic
	Resource Algebras
	Common Resource Algebras
	Common Ghost Theories

	The Base Logic
	Adequacy
	Impredicative Invariants and Fancy Updates
	Fancy Updates
	Step-Indexed Types and Resources

	II Transfinite Iris
	Introduction
	The Existential Property
	Refinements
	Proving Refinements using Simulations
	Step-Indexed Simulations
	The Existential Property
	Termination
	Justifying the Existential Property

	The Program Logics of Transfinite Iris
	Termination-Preserving Refinement
	Result Refinements in Iris
	Termination-Preserving Refinements
	Stuttering

	Termination
	The Liveness Logic
	The Weakest Precondition
	Instantiations of the Liveness Logic

	Case Studies
	Recursive Memoization
	Pure Templates
	Stateful Templates

	A Reentrant Event Loop
	A Logical Relation for Asynchronous Channels
	Language
	Simplified Logical Relation
	Adding Impredicative Polymorphism

	Foundations of Transfinite Iris
	The Existential Property via Transfinite Step-Indexing
	The Base Logic of Transfinite Iris
	Invariants and the Recursive Domain Equation

	Related Work

	III Later Credits
	Introduction
	Later Credits in a Nutshell
	Applications of Later Credits
	Later Credits for Reordering Refinements
	ReLoC: Concurrent Logical Relations in Iris
	Reorderability Extension
	Promises with Later Credits
	Promise Extension
	The Continuation Exchange
	Using Later Credits

	Later Credits for Logical Atomicity
	A Counter with a Backup
	Logical Atomicity
	Helping without Later Credits
	Helping with Later Credits

	Soundness of Later Credits
	Adequacy in Iris
	Modeling Later Credits

	Extensions of Later Credits
	Flexible Step-Indexing
	Transfinite Step-Indexing

	Related Work

	IV Quiver
	Introduction
	Abductive Deductive Verification
	The Essence of Abductive Deductive Verification
	Existential Quantification
	Specification Sketches

	The Abduction Engine Argon
	Basic Goals
	Advanced Goals

	The Type System Thorium
	Separation Logic with Refinement Types à la RefinedC
	Abductive Deductive Verification with Types
	Compositional Specification Inference with Thorium

	Implementation
	Evaluation
	The Vector Case Study
	Aggregate Evaluation

	Related Work

	V Daenerys
	Introduction
	Heap-Dependent Expression Assertions
	Daenerys

	Heap-Dependent Expression Assertions in Daenerys
	The Evaluation Assertion
	Evaluation and the Program Logic
	Evaluation and First-Order Logic

	Destabilizing the Foundations of Iris
	Unstable Resources
	Extending the Base Logic
	Resource Algebras with Unstable Elements
	Resource Algebra Combinators
	Modeling the Unstable Points-To

	The Program Logic
	The Lambda-dyn Program Logic
	The Language-Generic Weakest Precondition

	Almost-Pure Assertions
	The Semantic Type System
	The First-Order Logic Connection

	Case Studies
	The Best of Both Worlds
	Channel Library
	Checksum Exchange

	Aggregate Evaluation

	Connecting Iris with First-Order Logic (Appendix)
	Many-Sorted First-Order Logic
	Generic First-Order Logic
	Interpreted Theories

	From First-Order Logic to Iris, Step by Step
	A Model for Heap-Dependent Expression Assertions
	Proving Model Extension
	Connecting to the Translation
	Importing the Fact into Iris

	Related Work
	Conclusion and Future Work
	Generalizing Step-Indexing
	Increasing Automation

