
Open Proofs and Open Terms: a Basis for

Interactive Logic

Herman Geuvers1 and G. I. Jojgov2

1 University of Nijmegen, The Netherlands
herman@cs.kun.nl

2 Eindhoven University of Technology, The Netherlands
G.I.Jojgov@tue.nl

Abstract. In the process of interactive theorem proving one often works
with incomplete higher order proofs. In this paper we address the prob-
lem of giving a correctness criterion for these incomplete proofs by pre-
senting open higher order logic o-Predω as a conservative extension of
Predω. We define a typing system o-λPredω and show that the Curry-
Howard embedding extends to embedding into o-λPredω. We show that
the contexts of this typing system extended with definitions can repre-
sent the notion of proof state and allow for forward reasoning, proof reuse
and free exploration of the given data (’stratch paper’ mechanism).

1 Introduction

Logic is about finished proofs and not about the process of finding a proof. The
derivation rules of a logic define inductively what is derivable. The rules do not
tell us how we should find or construct such a derivation, but they give us a
procedure of checking whether an alleged proof is indeed well-formed. Of course,
the derivation rules are chosen in such a way that they represent ‘obviously
correct’ reasoning steps, but that does not mean that mathematicians actually
reason in this way. The typical situation is that when one tries to prove a result,
one makes intermediates claims, leaves parts temporarily unspecified and freely
explores the possibilities. Then, when the proof is ‘finished’, it is written up in a
style that corresponds - at least in spirit - to natural deduction. If we look more
closely at the process of proof finding, we observe that also in that phase, the
proof-steps are intended to be correct in terms of natural deduction. So, there
should be a correctness criterion for ‘unfinished proofs’, where some parts may
be left open or unspecified, but the steps that have been made are correct. One
place where these unfinished proofs appear is in systems for theorem proving,
where the computer helps to verify theorems.

Theorem proving systems for mathematics can be interactive or batch-oriented.
In the first case the user types in tactics that guide the system through the
proof-construction (or, if the system does not really construct a proof, through
the verification of the theorem in the logic of the system). In the second case
the user inputs a complete proof and the system works as a proof-checker that

checks whether all the proof-steps are correct. Systems like Automath and Mizar
are batch-oriented. It may seem that the user has to provide quite a lot of de-
tails for such a system to be able to verify a proof. (Of course this depends on
the type of proof-steps that the system can infer itself.) Mizar [1] shows that
one can formalize large parts of mathematics in such a system. In interactive
systems, the amount of detail that has to be provided by the user depends on
the power of the tactics. There is another issue that is particularly important for
interactive systems: how to communicate to the user what the present state of
the proof is, in order for the user to make a sensible next step. This is especially
important if we want to use a theorem prover for trying to prove a new result or
for freely exploring the mathematics. (At this moment, theorem provers are not
suited for assisting in proving new results: one formalizes existing proofs.) But
also if one tries to formalize an existing proof, the system needs to communicate
the proof state to the user, in the form of an unfinished proof. More in general,
it is important to understand precisely what these interactive theorem provers
actually operate on. So we want to give a precise meaning to ‘unfinished proofs’
and ‘proof states’.

Important questions that arise when looking at the process of proof finding
and at interactive theorem proving are:

– Can we give a correctness criterion for unfinished proofs? (In such a way
that many of the existing ‘open proofs’ are captured.)

– Can we give a correctness criterion for operations on unfinished proofs? (In
such a way that known tactics are instances of such operations.)

So, we first have to answer the questions what an unfinished proof and what
a proof state are. The way mathematicians (and others) give their proofs closely
represents – at least in spirit – natural deduction. Hence, if we want to formalize
the notion of unfinished proof, natural deduction is a good starting point. So,
then the question is: what is an unfinished natural deduction? And what are
correct operations on these unfinished natural deductions? In this paper we will
mainly be answering the first question, taking inspiration from the second one,
because we know – intuitively and from experience with interactive theorem
provers – quite well what we want to be able to do.

In the following section we take natural deduction for higher order predicate
logic as a starting point and treat a number of examples of ‘open proofs’ and
how we might want to operate on them. These will serve as a motivation for
the rest of the paper. The examples are chosen to be quite trivial, which is
done deliberately to keep the exposition small and to be able to pinpoint at
the crucial issues. Then we define open higher order predicate logic, a version of
higher order predicate logic where we allow unfinished (open) proofs and open
terms. We discuss to which extent this captures the examples. Finally we define
a type theoretic variant of this open higher order predicate logic. We extend
the well-known formulas-as-types embedding to include open proofs and open
terms, yielding a formulas-as-types embedding from open higher order logic to
this type theory. Then we show how this type theory nicely captures the notion
of proof state, which is now a context in this type theory.

2 Motivating Examples

1. An unfinished proof with backward proof construction.
We start with the goal of proving
A→C from hypotheses A→B→C
and A→B (1). We solve this goal
by the rule for introduction of im-
plication (2). This introduces a new
hypothesis A. In (3) we have used
the hypothesis A→B→C to deduce
C by implication-elimination of the
new goals A and B. The first one
is solved in (4) by the assumption A
and the second by introducing a new
goal A and eliminating the assump-
tion A→B. Finally (5) we solve A
trivially by the hypothesis A and we
have a complete derivation of A→C
from A→B→C and A→B.

1. A→B→C A→B 2. A→B→C A→B [A]i

?
A→C

?
C

i

A→C

3. A→B→C A→B [A]i 4. A→B→C A→B [A]i

√

A→B→C

?
A

B→C

?
B

C
i

A→C

√

A→B→C

√

A

B→C

√

A→B

?
A

B

C
i

A→C

5. A→B→C A→B [A]i

√

A→B→C

√

A

B→C

√

A→B

√

A

B

C
i

A→C

2. An unfinished proof with a forward proof construction.

We proceed forward by using elim-
ination rules on the hypotheses. In
(3) we have used the A and A→B
to obtain B which is used in (4) to
deduce B→C. Then we must infer
B again and use it to derive C at
step (4).

Note that in step (4) we would
like to be able to reuse the already
proven result B instead of having to
derive it again, but natural deduc-
tion does not allow this.

1. B→B→C A→B A 2. B→B→C
A→B A

B

?
C

?
C

3. B→B→C

A→B A

B

B→C

?
C

4.
B→B→C

A→B A

B

B→C

A→B A

B

C

3. An unfinished proof with open terms
In this example we have a transi-
tive relation R(x, y) and we want to
prove R(a, c). The question is what
to take for y? We don’t know (yet),
so we want to leave y open.

From this example we see that
open terms arise quite naturally in
interactive theorem proving if we
want to postpone the specific choice
of a value for a variable.

1. ∀x, y, z.R(x, y)→R(y, z)→R(x, z)

?

R(a, c)

2. ∀x, y, z.R(x, y)→R(y, z)→R(x, z)

√

R(a, y)→R(y, c)→R(a, c)
?

R(a, y)

R(y, c)→R(a, c)

?

R(y, c)

R(a, c)

The ‘open place’ y in the example has a different role than a variable: we
seek an value for it and we will not abstract over it. We will call these variables
meta-variables. A term containing a meta-variable will be called an open term.

Convention 1 To clearly distinguish variables from meta-variables, we will un-
derline meta-variables, so y denotes a meta-variable and y is different from y.

4. Delaying the choice for the witness for an existential quantifier
and computing with open terms.
In this example, the meta-
variable n should actually depend
on y, because we want to be
able to instantiate n with y. If
we do that in the last proof (4),
y becomes an unbound variable,
so that is not correct. Hence we
have to be careful with the defi-
nition of instantiation. As we can
see, the problem occurs because
reduction and instantiation do
not commute.

1.
?

∃f∀x.f(x) = x
2.

?

∀x.f(x) = x

∃f∀x.f(x) = x

3.

?

∀x.(λy.n)(x) = x

∀x.(λy.n)(x) = x

∃f∀x.f(x) = x

4.

???

∀x.n = x

∀x.(λy.n)(x) = x

∀x.(λy.n)(x) = x

∃f∀x.f(x) = x

To prove the correctness of instantiation, we would need a more general prop-
erty (Lemma 14), namely that instantiation must commute with the derivation
rules. This property is depicted in the following diagram, which is given together
with its instance to the above example (where it fails).

M
instantiate n := t

! N (λy.n)(x)
instantiate n := y

! (λy.y)(x)

P

β

"instantiate n := t
! ??

β

"

n

β

" instantiate n := y
! ??

β

"

The solution is to record the de-
pendency of a meta-variable on
other terms by writing n[y]. An
alternative solution is to delay
substitutions by using explicit
substitutions. Then we would
have, e.g. x[y := t] = x, for x
a normal variable (x "= y), but
n[y := t] "= n for a meta-variable.
This approach is taken by [11]
and [9]. We will follow the first
approach, which is also taken by
[13].
We illustrate the approach by re-
doing the same example above,
but now with dependencies of
meta-variables recorded.

?

∃f∀x.f(x) = x

?

∀x.f(x) = x

∃f∀x.f(x) = x

?

∀x.(λy.n[y])(x) = x

∀x.(λy.n[y])(x) = x

∃f∀x.f(x) = x

?

∀x.n[x] = x

∀x.(λy.n[y])(x) = x

∀x.(λy.n[y])(x) = x

∃f∀x.f(x) = x

√

∀x.x = x

∀x.(λy.y)(x) = x

∀x.(λy.y)(x) = x

∃f∀x.f(x) = x

5. Using meta-variables to represent unknown formulas.

Suppose we are in arithmetics. The ‘usual’ induction principle is expressed
by the formula Ind1 = ∀P :N→Prop.P (0) ∧ ∀n.P (n)→P (n + 1) → ∀n.P (n).
The ‘course-of-value’ induction principle is expressed by the formula Ind2 =
∀P.(∀n(∀k < n.P (k))→P (n)) → ∀n.P (n).
Suppose we want to prove that Ind1 implies Ind2.
We will show how meta-variables can be used
to prove this implication without having to make
guesses ‘out of the blue’. After some obvious back-
ward steps we have the initial open proof shown on
the right (Φ(P) denotes ∀n(∀k < n.P (k))→P (n)).

Ind1 [Φ(P)]i

?
∀n.P (n)

i

Φ(P)→∀n.P (n)

Ind2

It is clear that we need to use the
hypothesis Ind1. To do that we have
to eliminate the universal quanti-
fier. Since we do not want to make
guesses, we delay the choice and in-
troduce a meta-variable B for the
unknown predicate.

Ind1

B(0) ∧ (∀n.B(n)→B(n + 1))→∀n.B(n) [Φ(P)]i

?
∀n.P (n)

i

Φ(P)→∀n.P (n)

Ind2

An obvious step towards solving the goal is to reduce it to these three sub-
goals:

(1)
Φ(P)

?
B(0)

(2)
Φ(P)

?
∀n.B(n)→B(n + 1)

(3)
Φ(P)

?
∀n.B(n)→P (n)

The idea of course is to use (1) and (2) with implication elimination to obtain
∀n.B(n) from which using (3) we would derive ∀n.P (n). To discard goal (3), it
is sufficient to define B(n) := P (n) ∧ C(n) where C(n) is a fresh meta-variable
of type Prop. After the instantiation goals (1) and (2) look like this:

(1)
Φ(P)

?
P (0) ∧ C(0)

(2)
Φ(P)

?
∀n.(P (n) ∧ C(n))→(P (n + 1) ∧ C(n + 1))

Goal (2) is the hardest to solve. Without much creativity we observe that we
can replace it by the following two goals: (2a) P (n) ∧ C(n) → C(n + 1) and
(2b) ∀m.C(m)→P (m). Analysing goal (2b) shows that we are in the following
situation.

Φ(P) : ∀n(∀k < n.P (k))→P (n)

(∀k < m.P (k))→P (m) [C(m)]j

?
P (m)

j

C(m)→P (m)

and it is now not difficult to see that C(n) can be taken to be the formula
∀k < n.P (k) and the remaining goals (1) and (2a) are easily provable.

3 Open higher order predicate logic

We now give a formal definition of higher order predicate logic with open terms
and open proofs, o-Predω. As usual, we first define the language, then the deriva-
tion rules and then the notion of derivability. We show that o-Predω is conser-
vative over Predω, ordinary higher order predicate logic [3, 6]. This means that,
if we have derived the higher order formula A in o-Predω without unfinished
subproofs, then A is derivable in Predω.

Most of o-Predω is the same as Predω, but we present it nevertheless.

Definition 2 (Language of o-Predω).

– The domains: D ::= Prop | B | D→D, where Prop is the domain of proposi-
tions, B is an arbitrary base domain. We use currying to represent domains
of higher arity. Arbitrary domains will be denoted by σ, τ .

– The terms, Term(o-Predω):

• variables, typed with a domain, notation xσ
i or xi : σ.

• application: (f t) : τ , if f : σ→τ and t : σ.
• abstraction (λx:σ.q) : σ→τ , if q : τ .
• formula constructors A∧B : Prop, A→B : Prop, A∨B : Prop, ¬A : Prop,
∀x:σ.A : Prop, ∃x:σ.A : Prop, if A, B : Prop and σ a domain.

• meta-variable applications: m[t1, . . . , tn] : τ , if t1 : σ1, . . . , tn : σn and
m[y1 : σ1, . . . , yn : σn] : τ is a meta-variable.

Remark 3. We will call ’formula’ any term from the domain Prop. Note that
the definition above allows also metavariables standing for formulas or functions
producing formulas.

Remark 4. Meta-variables themselves are not terms. There are countably many
meta-variables for every σ1, . . . ,σn, τ . We view the ‘assignemnt’ [y1 : σ1, . . . , yn :
σn] : τ as being part of the meta-variable, so, for example m[y : σ] : τ and
m[y : σ] : σ are different meta-variables (but of course we will use different
names as much as possible).

As terms with meta-variables are ordinary terms, meta-variables can occur
in the arguments of another (or the same) meta-variable. For example, if m[y :
σ, z : σ] : σ is a meta-variable and f : σ→σ, then e.g. m[(f a), m[a, (f a)] is a
well-formed term.

If the domains that we quantify over are irrelevant, we will write ∀x.A instead
of ∀x:σ.A. Also, we will often write m[y:σ] : τ or just m[y:σ] or m[y] for m[y1 :
σ1, . . . , yn : σn] : τ .

Definition 5 (Derivation Rules of o-Predω). These are the same as for
Predω plus an extra rule for representing unknown proofs. We show the rules for

→, ∀ and ∃, the conversion rule and the new rule (claim).

[A]i

...
B

i →-I
A→B

A→B A
→-E

B

A[t/x]
∃-I∗∗

∃x:σ.A ∃x:σ.A

[A]i

Σ
B

i ∃-E†

B

Σ
A

∀-I∗
∀x:σ.A

∀x:σ.A
∀-E∗∗

A[t/x]

A
(conv)††

B

B1, . . . , Bn

A
(claim)

∗: if x %∈ FV(assumptions of Σ) †: if x /∈ FV(assumptions of Σ \ {A})
∗∗: for t : σ ††: if A =β B

The rule (claim) represents an unknown derivation of A from B1, . . . , Bn. The
hypotheses of the unknown derivation need to be specified explicitly, for example,
because we need to check side conditions on assumptions in the rest of the rules
(and these refer to the leaves of a derivation). This explicit representation of the
hypotheses also allows us to represent the forward steps that one may want to
do. Sometimes in derivations we will use the symbol ’?’ to denote the (claim)
rule.

As usual, in the →-I rule, the A-leaves that are labelled with i (notation [A]i)
are discharged, so they are no longer assumptions. Similarly, the A-leaves in the
∃-E rule are discharged.

Remark 6. In the conversion rule, =β is defined in terms of

(λx:σ.t)q −→β t[q/x].

The substitution used here extends immediately to terms with meta-variables :

m[t1, . . . , tn][q/x] := m[t1[q/x], . . . , tn[q/x]]

We always work modulo α-conversion. Hence we adopt the variable conven-
tion (also ‘Barendregt convention’) that we always assume all bound variables
(BV) to be different and different from the free variables (FV).

A derivation tree in o-Predω is the same as a derivation in Predω, except
for the fact that we can now also have (claim) nodes in the tree. In the notion
of derivability we also have to take the ‘open parts’ of the derivation tree (the
(claim) nodes) into account. We will call these goals.

It is allowed that variables occur free in the goals. If a variable x occurs free
in a specific formula in a derivation Σ, it may be bound in Σ (by a ∀-I rule or
a ∃-E rule) or it may be free in Σ. We define these notions explicitly, as it is
important for our interpretations of goals.

Definition 7 (Bound occurrences of variables in a derivation). Given
a derivation Σ and a formula A ocurring in Σ with x ∈ FV(A). We say that

x ∈ FV(A) is bound in Σ in one of the two following situations

A
...
B

∀-I†
∀x:σ.B ∃x:σ.C

[C]i

...
A
...
B

i ∃-E††

B

† with x free in all the formulas in the
derivation between A and B (inclu-
sive).

†† with x free in all the formulas in the
derivation between C and A (inclu-
sive).

So, the notion of ‘x ∈ FV(A) is bound in Σ’ is about a specific occurrence of
A in the derivation Σ. It is defined by induction on Σ.

Definition 8 (Goals in a derivation).

1. A goal in o-Predω is a judgement of the form

x1:σ1, . . . , xn:σn, A1, . . . , An ! B,

where A1, . . . , An, B are formulas and x1, . . . , xn ∈ FV(A1, . . . , An, B).
2. A goal x1:σ1, . . . , xn:σn, A1, . . . , An ! B, is a goal of the derivation Σ if Σ

contains an application of the claim rule

A1 . . . An
(claim)

B

with x1:σ1, . . . , xn:σn the free variables in A1, . . . , An, B that are bound in
Σ.

Definition 9 (Derivability in o-Predω). Given a set of formulas Γ , a set
of goals G and a formula B, we say that B is derivable from Γ ; G in o-Predω,
notation

Γ ; G) B,

if there is a derivation Σ with conclusion B, (non-discharged) assumptions in Γ
and all goals of Σ in G.

An important property of Predω is that the derivation rules are compat-
ible with substitution. Hence derivations and derivability are compatible with
substitution:

if Γ) A with derivation Σ, then Γ [t/x]) A[t/x] with derivation Σ[t/x].

For o-Predω we have the same properties, where we have to take note that
in a goal x1:σ1, . . . , xn:σn, A1, . . . , An ! B, the variables x1, . . . , xn are bound
in A1, . . . , An, B. Hence, we do not substitute for these variables.

Lemma 10 (Compatibility of derivability and substitution in o-Predω).
If Γ ; G)i A, then Γ [t/x]; G[t/x])i A[t/x].

Proof. By induction on the derivation treeΣ, one proves that, ifΣ has conclusion
A, assumptions Γ and goals G, then Σ[t/x] is a well-formed derivation with
conclusion A[t/x], assumptions Γ [t/x] and goals G[t/x]. "

Example 11. Consider the following two deriva-
tions on the right, where in the first x occurs
bound and in the second, x occurs free. The
judgements associated with these two deriva-
tions are A, C; (y:σ, A) ! B(y), (y′:σ, C) !

B(y′)→D(y′)) ∀x:σ.D(x) for the first and
A(x), C; A ! B(x), C ! B(x)→D(x)) D(x) for
the second. Note what happens if we substitute t
for x in the two derivations.

A
?

B(x)

C
?

B(x)→D(x)

D(x)

∀x:σ.D(x)

A(x)
?

B(x)

C
?

B(x)→D(x)

D(x)

An important operation on derivations is instantiation (choosing a value for
a meta-variable). Therefore, an equally important property for o-Predω is the
compatibility of the derivation rules with instantiation of meta-variables. We
first give a precise definition of instantiation.

Definition 12. For n[y : A] : B a meta-variable and t : B a term, we call

{n[y : A] := t}

an instantiation (of n[y]). An instantiation extends immediately to all terms.
The only interesting cases are the meta-variable applications. For readability,
denote the instantiation {n[y] := t} by ∗.

(n[q])∗ := t[q∗/y],

(m[q])∗ := m[q∗] for m, n different meta-variables.

Note that the instantiations have to be applied heriditarily (also to q in the
first case), because q may contain n, so for example

n[(f a), n[a, (f a)]]{n[x, y] := g x y} = g (f a)(g (a (f a))).

The well-foundness of the instantiation can easily be proved by induction on
the structure of the term in which we instantiate. Informally, we can think of
the instantiation M{n[y : A] := t} as (a reduct of) (λn.M)(λy.t).

We sometimes have to rename bound variables in derivations before per-
forming an instantiation. This problem is not really new for o-Predω, because it
already appears in Predω (when performing a substitution). To make our point
clear we treat the following example.

Example 13. Consider a derivation Σ of
(P n[]) and a derivation Θ of (P n[x]),
where Θ and Σ do not contain a free
x in its assumptions. We can do a ∀-
introduction and we can perform an instan-
tiation, {n[] := x + y} on Σ, respectively
{n[x] := x + y} on Θ. In the first deriva-
tion, to perform the instantiation, we first
have to rename the bound variable x to z.

Σ

(P n[])

∀x.(P n[])

{n[]:=x+y}(−→

Σ{n[]:=x+y}

(P (x + y))

∀z.(P (x + y)

Θ

(P n[x])

∀x.(P n[x])

{n[x]:=x+y}(−→

Θ{n[x]:=x+y}

(P (x + y))

∀x.(P (x + y))

Lemma 14. Instantiation is compatible with derivations in o-Predω: if Γ ; G)i

A with derivation Σ, then Γ ∗; G∗)i A∗ with derivation Σ∗, if we denote the
instantiation by ∗.

Proof. By induction on the structure of derivation trees. "

Corollary 15. o-Predω is conservative over Predω:

If Γ ; ∅)i A, then Γ) A.

Proof. Suppose Γ ; ∅)i A with derivation Σ. This derivation may still contain
meta-variables, say n1, . . . , nk. Let {n1[] := x1}, . . . , {nk[] := xk} be instan-
tiations for these meta-variables with fresh variables of appropriate sort. If we
perform all these instantiations on Σ, we obtain a derivation Σ′ of Γ ; ∅)i A and
this derivation contains no more meta-variables. But then Σ′ is also a derivation
in Predω, because it contains no applications of the (claim) rule and all the
terms occurring in it are Predω-terms. "

Beyond open derivations
The logic o-Predω defined above gives us the answer to the problem of

what an incomplete derivation is. Interactive theorem proving is however not
only about individual derivations. Often we encounter situations where more
advanced applications are needed:

1. Proof reuse. Consider example 2 in Section 2. There we had to prove the
same formula twice because we needed it in two different places. One would
probably want to avoid this unnecessary effort by reusing proofs that have
already been done.

2. ’Scratch-paper’ mechanism. We may also wish to explore our knowledge
to come to good instantiations, or to reject potential instantiations.
For example, suppose we want to prove
the formula ∃x.ϕ(x) ∧ (x < 2) from
∀x.ϕ(x)→(0 < x) (see (1)). From the
assumption and the formula that we
want to prove we can derive some prop-
erties that x must have (2).

(1)

∀x.ϕ(x)→(0 < x)
?

ϕ(x) ∧ (x < 2)

∃x.ϕ(x) ∧ (x < 2)

From the conclusion of this extra deriva-
tion we may conclude that the only possi-
ble instantiation for x is {x := 1} (assum-
ing the domain of x is the set of the natural
numbers).

(2)

ϕ(x) ∧ (x < 2)

ϕ(x)

∀x.ϕ(x)→(0 < x)

ϕ(x)→(0 < x)

(0 < x)

(0 < x < 2)

This simple example illustrates the need to sometimes pause the construction
of the ’main’ derivation, do some side computations or inferences within its
scope and then come back with the results.

A general problem that emerges from the examples above is that open deriva-
tions do not (yet) capture the notion of proof state. The system o-Predω is just
about individual open derivations. A proof state is, intuitively, a ‘connected’ set
of derivations. We will use type theory to formalize the notion of proof state.

4 The Curry-Howard formulas-as-types embedding

The idea of the Curry-Howard formulas-as-types embedding is to map deriva-
tions of the logic, in our case Predω, to proof terms of an appropriate type
theory, in our case λPredω. The type system λPredω has two ‘sorts’ or ‘univere-
ses’: Type, representing the collection of all domains (D in the logic), and Prop,
representing the collection of all formulas. (Hence Prop : Type, as the collection
of formulas is iteself a domain). We do not give a definition of the type system
λPredω but refer the reader to [6] or [?]. The type theory λPredω represents the
logic Predω faithfully, because we have a soundness and a completeness result,
stated as follows. (We use)λ to denote derivability in the type theory and)L

to denote derivability in the logic.)

– Soundness: If Γ)L A with derivation Σ, then ΓL,Γ)λ [[Σ]] : A, where ΓL
declares the required parts of the language of Predω.

– Completeness: If Γ)λ M : A, then Γ−)L A, where Γ− selects the
A : Prop for which h:A ∈ Γ .

For example the trivial derivation of (Q x))L (P x)→(Q x) maps to

D:Type, P, Q:D→Prop, x:D, h : (Q x)) λz:(P x).h : (P x)→(Q x).

The formulas-as-types embedding can be extended to o-Predω if we define
o-λPredω.

Definition 16. The type system o-λPredω extends the type system λPredω al-
lowing meta-variable declarations in the context of the form

– n[y : σ] : τ with σ, τ : Type, open terms,
– p[y : σ, q : A] : B with σ : Type, A, B : Prop, open proofs,

The derivation rules are as follows.

Γ) σ:Type Γ) τ :Type

Γ, n[y : σ] : τ) Ok

Γ) σ:Type Γ, y : σ) A : Prop Γ, y : σ) B : Prop

Γ, p[y : σ, q : A] : B) Ok

Γ) t : σ (n[y : σ] : τ) ∈ Γ

n[t] : τ

Γ) t : σ Γ) r : A[t/y] (p[y : σ, q : A] : B) ∈ Γ

p[t, r] : B[t/y]

Γ) Ok is the judgement that Γ is well-formed.

The type system o-λPredω enjoys all the nice meta-theoretic properties, like
Subject Reduction, Confluence and Strong Normalization. We do not give the
precise statements and proofs here, because it is outside the scope of this paper.

Lemma 17. The formulas-as-types embedding from Predω to λPredω extends to
a sound and complete formulas-as-types embedding from o-Predω to o-λPredω.

Proof. Given the derivation Σ of Γ ; G) A, the embedding is defined by induc-
tion on Σ. We show how [[Σ]] is defined for some cases. First we have to define
the context in which [[Σ]] is well-typed: from Γ = {A1, . . . , An}, we construct
h1:A1, . . . , hn:An, with h1, . . . , hn fresh variables. We denote this context also
by Γ . A goal (y:σ, A) ! B is translated to the declaration m[y:σ, h:A] : B,
with m a fresh meta-variable. Thus the set of goals G is translated to a sequence
of meta-variable declarations, which we also denote by G. Finally, we need a
context to declare all the free variables and domain symbols that occur in Σ,
Γ and G. This yields the context ΓL. To show that [[Σ]] is indeed a well-typed
term of type A in ΓL,Γ, G requires some meta-theory of the type system, which
we do not provide here. In the following, if we write a derivation Σ with A on
top and B below it, we mean that A and B are part of the derivation Σ.

1. If the last rule is (claim), then

Σ1

B1
. . .

Σn

Bn

A

We construct ΓL as the context of declarations for free variables and domains
in Σ,Γ, G. For each Σi we construct Γi and Gi and by induction we find [[Σi]]
such that ΓL,Γi, Gi)i [[Σi]] : Bi. The goal is translated to a meta-variable
m[y:σ, h:B] : A, with y the variables bound in Σ. We define

[[Σ]] := m[y, [[Σ]]]

and find that ΓL,Γ1, G1, . . . ,Γn, Gn, m[y:σ, h:B] : A)i [[Σ]] : B.
2. If the last rule is (→-I), then

[A]i . . . [A]i

Σ1

B
i

A→B

For Σ1 we construct ΓL, Γ1 and G1 and by induction we find [[Σ1]] such
that ΓL,Γ1, G1)i [[Σ1]] : B. The discharged occurrences of A correspond to
variable declarations h1:A, . . . , hn:A in Γ . We take Γ := Γ \(h1:A, . . . , hn:A)
and G := G1. We define

[[Σ]] := λh:A.([[Σ1]][h/h1, . . . , h/hn])

and find that ΓL,Γ, G)i [[Σ]] : A→B.
3. If the last rule is (∀-I), then

Σ1

B

∀x:σ.B

For Σ1 we construct ΓL, Γ1 and G1 and by induction we find [[Σ1]] such that
ΓL,Γ1, G1)i [[Σ1]] : B. The quantified variable x may occur as a declaration
in ΓL, but it does not occur free in Γ1. So for Σ, we have ΓL = ΓL\(x:σ) and
Γ = Γ1. In the goals of Σ1, x is free, whereas in the goals ofΣ, x is bound. So,
if m[y:σ, h:C] : A is a meta-variable declaration in G1 with x ∈ FV(C, A),
then we replace this with the meta-variable declaration m′[x:σ, y:σ, h:C] : A
in G. We define

[[Σ]] := λx:σ.[[Σ1]]{m[y, h] := m′[x, y, h]

and we find that ΓL \ (x:σ),Γ, G) [[Σ]] : ∀x:σ.B.

Proof states can now be represented as well-formed contexts. For reuse we
also introduce definitions of (meta-)variables.

Definition 18. The derivation rule for definitions is as follows:

Γ, y : A) q : B

Γ, (n[y : A] := q : B)) Ok

Γ) q : B

Γ, (n := q : B)) Ok

The computation rules for definitions are by local instantiation and local
unfolding. That is because in general we do not want to instantiate all meta-
variables at the same time (or unfold all definitions at the same time), but do
that one by one. This reduction depends on the context Γ , where the definitions
are recorded. If (n[y : A] := q : B) ∈ Γ , resp. (n := q : B) ∈ Γ , the rule reads as
follows.

t(n[r])
Γ

−→δ t(q[r/y])

t(n)
Γ

−→δ t[q/n]

where t(n) signifies one specific occurrence of n in t (and similarly for t(n[r]).
Details of extensions of type theory with an explicit definition mechanism can
be found in [12].

We illustrate how the type-theoretic contexts capture the notion of proof
state by the following two examples.

Example 19. Consider the ’scratch-paper’ example from Section 3. We can ac-
comodate both the main derivation and the scratch derivation in one context.
Let M be the term encoding the scratch derivation. The context now is follows.

Γ0,
x[] : ,
hgoal[p : ∀x.ϕ(x)→(0 < x)] : ϕ(x) ∧ (x < 2),
hscratch[p : ∀x.ϕ(x)→(0 < x)] := M(x, p, hgoal) : (0 < x < 2),
hmain[p : ∀x.ϕ(x)→(0 < x)] := 〈x, hgoal[p]〉 : ∃x.ϕ(x) ∧ (x < 2).

A tactic transforms proof states. As proof states are formalized as contexts,
tactics should be context transformers. As an example we show the ‘apply’ tactic.

Example 20 (The Apply tactic). This tactic takes as inputs (1) a proof of a uni-
versally quantified or implicational formula U (2) a goal to be proved (A1, . . . , An) !

B(s). It applies elimination rules to U , using optional arguments, until a proof
of B is obtained or no elimination rule is applicable. In the latter case the tactic
fails. If an optional argument is missing, then a new meta-variable is introduced
and the elimination proceeds with it. Suppose U = ∀x.C1(x)→∀y.C2(x, y)→B(x).

A1, . . . , An

?

B(s)

Apply D s
−→

D

∀x.C1(x)→∀y.C2(x, y)→B(x)

C1(s)→∀y.C2(s, y)→B(s)

A1, . . . , An

?

C1(s)

∀y.C2(s, y)→B(s)

C2(s, y[])→B(s)

A1, . . . , An

?

C2(s, y[])

B(s)

where D is some (open) derivation of ∀x.C1(x)→∀y.C2(x, y)→B(x). Note the
introduction of the two new goals and the meta-variable y. We can represent
this tactic as a mapping between contexts:

Γ, h[p : A] : B(s),∆
Apply M s

−→

Γ,
h′[p : A] : C1(s),
y[] : σ,
h′′[p : A] : C1(s, y[]),
h[p : A] := (M s h′[p] y[] h′′[p]) : B(s),
∆

where Γ) M : ∀x.C1(x)→∀y.C2(x, y)→B(x) represents the derivation D. Note
the introduction and the use of the three new meta-variables h′, h′′ and y.

5 Related Work

Most of the work in the area of incomplete constructions is done in type theory
where a number of systems of open terms in (dependently) typed λ-calculus exist

[13, 10, 4, 11, 9] (see [7] for an overview). They have evolved from existing typing
systems (the Barendregt cube [3], ECC [8], Martin-Löf type theory, etc.) when
their application in (interactive) theorem proving required formalization of the
notion of incomplete term. Simply-typed systems have also been investigated
but we they have only limited application in interactive theorem proving.

TypeLab [13] is based on ECC and represents unknown terms by meta-
variables that are equipped with explicit substitutions. Each meta-variable is
given a context and a type in that context and the idea is that the meta-variable
stands for a well-typed term of the given type in that context.

OLEG [10] also takes ECC as a basis but the approach is to treat meta-
variables declarations as part of the term. This is done by introducing special
binders that locally declare meta-variables. In this way the position of the binder
naturally expresses the context in which the meta-variable should be solved.
Computations with terms containing meta-variable declarations are limited as
such terms are not allowed to leak into types.

Bognar [4] generalizes the concept of context as used in the untyped λ-
calculus [2] and introduces the λ[]-cube. Along with the local declarations of
meta-variables, these systems have explicit operators for instantiation.

6 Conclusions and Further Work

In this paper we formalized incomplete derivations in higher order predicate
logic. By extending the Curry-Howard embeddings to incomplete proofs we fill
in a gap that resulted from the focusing of the studies of incomplete objects
exclusively to type theory.

Among the topics that need to be investigated is the question whether this
framework is flexible enough to ’freely’ do proofs in the way we like. This is a
crucial point with respect to the practical applicability of interactive theorem
proving . Related issues are the problems of finding cannonical set of basic tactics
and tacticals that generate all (useful) tactics and the problems connected with
viewing large proof states.

References

1. The system Mizar. http://www.mizar.org?
2. H. Barendregt. The λ-calculus: Its syntax and semantics, 1984.
3. Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer

Science, pages 117–309. Clarendon Press, 1992.
4. Mirna Bognar. PhD thesis, VU Amsterdam, to appear, 2002.
5. Thierry Coquand and Gérard Huet. The calculus of constructions. In Information

and Computation, number 76(2/3), pages 95–120. 1988.
6. J.H. Geuvers. Logics and Type systems. PhD thesis, University of Nijmegen,

September 1993.
7. G.I. Jojgov. Systems for open terms: An overview. Technical Report CSR 01-03,

Technische Universiteit Eindhoven, 2001.

8. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, July 1990.

9. Lena Magnusson. The Implementation of ALF - a Proof Editor based on Martin-
Löf Monomorphic Type Theory with Explicit Substitutions. PhD thesis, Chalmers
University of Technology / Göteborg University, 1995.

10. Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999.

11. César A. Muñoz. A Calculus of Substitutions for Incomplete-Proof Representation
in Type Theory. PhD thesis, INRIA, November 1997.

12. P. Severi and E. Poll. Pure Type Systems with definitions. In A. Nerode and Yu.V.
Matiyasevich, editors, Proceedings of LFCS’94, St. Petersburg, Russia, number 813
in LNCS, pages 316–328, Berlin, 1994. Springer Verlag.

13. M. Strecker. Construction and Deduction in Type Theories. PhD thesis, Universität
Ulm, 1998.

