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Abstract
In previous work, we presented rules for defining overloaded
functions that ensure type safety under symmetric multiple
dispatch in an object-oriented language with multiple inher-
itance, and we showed how to check these rules without
requiring the entire type hierarchy to be known, thus sup-
porting modularity and extensibility. In this work, we extend
these rules to a language that supports parametric polymor-
phism on both classes and functions.

In a multiple-inheritance language in which any type may
be extended by types in other modules, some overloaded
functions that might seem valid are correctly rejected by our
rules. We explain how these functions can be permitted in
a language that additionally supports an exclusion relation
among types, allowing programmers to declare “nominal
exclusions” and also implicitly imposing exclusion among
different instances of each polymorphic type. We give rules
for computing the exclusion relation, deriving many type
exclusions from declared and implicit ones.

We also show how to check our rules for ensuring the
safety of overloaded functions. In particular, we reduce the
problem of handling parametric polymorphism to one of
determining subtyping relationships among universal and
existential types. Our system has been implemented as part
of the open-source Fortress compiler.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—classes
and objects, inheritance, modules, packages, polymorphism

General Terms Languages
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1. Introduction
A key feature of object-oriented languages is dynamic dis-
patch: there may be multiple definitions of a function (or
method) with the same name—we say the function is over-
loaded—and a call to a function of that name is resolved at
run time based on the “run-time types”—we use the term
ilks—of the arguments, using the most specific definition
that is applicable to arguments having those particular ilks.
With single dispatch, a particular argument is designated as
the receiver, and the call is resolved only with respect to that
argument. With multiple dispatch, the ilks of all arguments
to a call are used to resolve the call. Symmetric multiple dis-
patch is a special case of multiple dispatch in which all ar-
guments are considered equally when resolving a call.

Multiple dispatch provides a level of expressivity that
closely models standard mathematical notation. In particu-
lar, mathematical operators such as + and ≤ and ∪ and es-
pecially · and × have different definitions depending on the
“types” (or even the number) of their operands; in a language
with multiple dispatch, it is natural to define these operators
as overloaded functions. Similarly, many operations on col-
lections such as append and zip have different definitions
depending on the ilks of two or more arguments.

In an object-oriented language with symmetric multiple
dispatch, some restrictions must be placed on overloaded
function definitions to guarantee type safety. For example,
consider the following overloaded function definitions:

f(a: Object, b: Z): Z = 1

f(a: Z, b: Object): Z = 2

To which of these definitions ought we dispatch when f is
called with two arguments of ilk Z ? (We assume that Z is
a subtype of Object , written Z <: Object .)



Castagna et al. [4] address this problem in the context of
a type system without parametric polymorphism or multiple
inheritance by requiring every pair of overloaded function
definitions to satisfy the following properties: (i) whenever
the domain type1 of one is a subtype of the domain type
of the other, the return type of the first must also be a
subtype of the return type of the second; and (ii) whenever
the domain types of the two definitions have a common
lower bound (i.e., a common nontrivial2 subtype), there is
a unique definition for the same function whose domain
type is the greatest lower bound of the domain types of
the two definitions. Thus, to satisfy the latter property for
the example above, the programmer must provide a third
definition, such as:

f(a: Z, b: Z): Z = 3

We call this latter property the Meet Rule because it is
equivalent to requiring that the definitions for each over-
loaded function form a meet semilattice partially ordered by
the subtype relation on their domain types, which we call the
more specific than relation.3 The Meet Rule guarantees that
there are no ambiguous function calls at run time.

We call the first property above the Return Type Rule (or
Subtype Rule). It ensures type preservation when a function
call is resolved at run time (based on the ilks of the argument
values) to a different (and more specific) definition than the
most specific one that could be determined at compile time
(based on the types of the argument expressions).

In this paper, we give new Meet and Return Type Rules
that ensure safe overloaded functions in a language that sup-
ports symmetric multiple dispatch, multiple inheritance, and
parametric polymorphism for both types and functions (i.e.,
generic types and generic functions), as does the Fortress
language we are developing [1]. We prove that these rules
guarantee type safety. This extends previous work [2] in
which we gave analogous rules, and proved the analogous
result, for a core of Fortress that does not support generics.

To handle parametric polymorphism, it is helpful to have
an intuitive interpretation for generic types and functions.
One way to think about a generic type such as ListJT K (a list
with elements of type T —type parameter lists in Fortress
are delimited by white square brackets) is that it represents
an infinite set of ground types: ListJObjectK (lists of ob-
jects), ListJStringK (lists of strings), ListJZK (lists of inte-
gers), and so on. An actual type checker must have rules for
working with uninstantiated (non-ground) generic types, but
for many purposes this model of “an infinite set of ground

1 The “domain type” of a function definition is the type of its parameter.
Hereafter we consider every function to have a single parameter; the ap-
pearance of multiple parameters denotes a single tuple parameter.
2 A type is a nontrivial subtype of another type if it is not the trivial “bottom”
type defined in the next section.
3 Despite its name, this relation, like the subtype relation, is reflexive: two
function definitions with the same domain type are each more specific than
the other. In that case, we say the definitions are equally specific.

types” is adequate for explanatory purposes. Not so, how-
ever, for generic functions.

For some time during the development of Fortress, we
considered an interpretation of generic functions analogous
to the one above for generic types; that is, the generic func-
tion definition:4

tailJXK
`
x: ListJXK

´
: ListJXK = e

should be understood as if it denoted an infinite set of
monomorphic definitions:

tail
`
x: ListJObjectK

´
: ListJObjectK = e

tail
`
x: ListJStringK

´
: ListJStringK = e

tail
`
x: ListJZK

´
: ListJZK = e

. . .

The intuition was that for any specific function call, the usual
rule for dispatch would then choose the appropriate most
specific definition for this (infinitely) overloaded function.

Although that intuition worked well enough for a sin-
gle polymorphic function definition, it failed utterly when
we considered multiple function definitions. For example, a
programmer might want to provide definitions for specific
monomorphic special cases, as in:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tail
`
x: ListJZK

´
: ListJZK = e3

If the interpretation above is taken seriously, this would be
equivalent to:

tail
`
x: ListJObjectK

´
: ListJObjectK = e1

tail
`
x: ListJStringK

´
: ListJStringK = e1

tail
`
x: ListJZK

´
: ListJZK = e1

. . .

tail
`
x: ListJZK

´
: ListJZK = e3

which is ambiguous for calls in which the argument is of
type ListJZK .

It gets worse if the programmer wishes to handle an
infinite set of cases specially. It would seem natural to write:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tailJX <: NumberK
`
x: ListJXK

´
: ListJXK = e2

to handle specially all cases where X is a subtype of
Number . But the model would regard this as an overloaded
function with an infinite number of ambiguities.

It does not suffice to “break ties” by choosing the instan-
tiation of the more specific generic definition. Consider the
following overloaded definitions:

quuxJXK(x: X): Z = 1

quux (x: Z): Z = 2

Intuitively, we might expect that the call quux (x) evaluates
to 2 whenever the ilk of x is a subtype of Z , and to 1

4 The first pair of white square brackets delimits the type parameter decla-
rations, but the other pairs of white brackets provide the type arguments to
the generic type List .



otherwise. However, under the “infinite set of monomorphic
definitions” interpretation, the call quux (x) when x has
type N <: Z would evaluate to 1 because the most specific
monomorphic definition would be the the instantiation of the
generic definition with N .

It is not even always obvious which function definition
is the most specific one applicable to a particular call in
the presence of overloaded generic functions: the overloaded
definitions might have not only distinct argument types, but
also distinct type parameters (even different numbers of type
parameters), so the type values of these parameters make
sense only in distinct type environments. For example, con-
sider the following overloaded function definitions:

fooJX <: ObjectK(x: X, y: Object): Z = 1

fooJY <: NumberK(x: Number, y: Y ): Z = 2

The type parameter of the first definition denotes the type
of the first argument, and the type parameter of the second
definition denotes the type of the second argument; they
bear no relation to each other. How should we compare
such function definitions to determine which is the best to
dispatch to? How can we ensure that there even is a best one
in all cases?

Under the “infinite set of monomorphic definitions” in-
terpretation, these definitions would be equivalent to:

foo(x: Object, y: Object): Z = 1

foo(x: Number, y: Object): Z = 1

foo(x: Z, y: Object): Z = 1

. . .

foo(x: Number, y: Number): Z = 2

foo(x: Number, y: Z): Z = 2

. . .

When foo is called on two arguments of type Z , both
foo(x: Z, y: Object) and foo(x: Number, y: Z) are ap-
plicable (assuming Z <: Number <: Object ). Neither is
more specific than the other, and moreover no definition of
foo(x: Z, y: Z) has been supplied to satisfy the Meet Rule,
so this overloading is ambiguous.

We propose to avoid such ambiguities by adopting an al-
ternate model for generic functions, similar to one proposed
by Bourdoncle and Merz [3], in which each function defini-
tion is regarded not as an infinite set of definitions, but rather
as a single definition whose domain type is existentially
quantified over its type parameters. (A monomorphic defi-
nition is then regarded as a degenerate generic definition.) In
this model, overloaded function definitions are (partially) or-
dered by the subtype relation on existential types. Adapting
dispatch and the Meet Rule to use this new partial order is
straightforward. Adapting the Return Type Rule is somewhat
more complicated, but checking it reduces to checking sub-
typing relationships between universal types. Adopting this
model has made overloaded generic functions in Fortress
both tractable and effective. In particular, the overloading of
foo just shown is permitted and is not ambiguous, because

under this interpretation the second definition is more spe-
cific than the first.

In providing rules to ensure that any valid set of over-
loaded function definitions guarantees that there is always a
unique function to call at run time, we strive to be maximally
permissive: A set of overloaded definitions should be disal-
lowed only if it permits ambiguity that cannot be resolved at
run time. Unfortunately, this goal is in tension with another
requirement, to support modularity and extensibility. In par-
ticular, we assume the program will be composed of several
modules, and that types defined in one module may be ex-
tended by types defined in other modules. We want to be
able to check the rules separately for each module, and not
have to recheck a module when some other module extends
its types.

The difficulty is due to multiple inheritance: Because
the type hierarchy defined by a module may be extended
by types in other modules, two types may have a common
nontrivial subtype even if no type declared in this module
extends them both. Thus, for any pair of overloaded func-
tion definitions with incomparable domain types (i.e., nei-
ther definition is more specific than the other), the Meet
Rule requires some other definition to resolve the potential
ambiguity. Because explicit intersection types cannot be ex-
pressed in Fortress, it is not always possible to provide such
a function definition.

Consider, for example, the following overloaded function
definitions:

print(s: String): ()

print(i: Z): ()

Although this overloading may seem intuitively to be valid,
in a multiple-inheritance type system that allows any type
to be extended by some other module, one could define
a type StringAndInteger that extends both String and
Z . In that case, a call to print with an argument of type
StringAndInteger would be ambiguous. Thus, this over-
loading must be rejected by our overloading rules.

To address this problem, Fortress enables programmers to
declare “nominal exclusion”, restricting how type construc-
tors may be extended, and uses this to derive an exclusion
relation on types. Types related by exclusion must not have
any nontrivial subtype in common. Many languages enforce
and exploit exclusion implicitly. For example, single inheri-
tance ensures that incomparable types exclude each other. If
the domains of two overloaded function definitions exclude
each other, then these definitions can never both be applica-
ble to the same call, so no ambiguity can arise between them.
In the example above, if String and Z exclude each other,5

then the overloaded definitions of print above are valid.
We already exploited exclusion in our prior work on

Fortress without generics, but the constructs Fortress pro-
vides for explicitly declaring exclusion are insufficient for

5 Indeed, String and Z are declared to exclude each other in the Fortress
standard library.



allowing some intuitively appealing overloaded functions
involving generic types. In particular, we could not guaran-
tee type safety when a type extends multiple instantiations
of a generic type. Implicitly forbidding such extension—a
property we call multiple instantiation exclusion—allows
these intuitively appealing overloaded functions.

2. Preliminaries
In this section, we describe the standard parts of the type
system we consider in this paper, and establish terminol-
ogy and notation for entities in this system. To minimize
the syntactic overhead, we avoid introducing a new language
and instead give a straightforward formalization of the type
system. Novel parts of the type system, including the rules
for type checking overloaded function declarations, are de-
scribed in later sections.

2.1 Types
Following Kennedy and Pierce [8], we define a world of
types ranged over by metavariables S, T , U , V , and W .
Types are of five forms: type variables (ranged over by
metavariables X , Y , and Z); constructed types (ranged over
by metavariables K, L, M and N ), consisting of the spe-
cial constructed type Any and type constructor applications,
written CJT K , where C is a type constructor and T is a list
of types; structural types, consisting of arrow types and tuple
types; compound types, consisting of intersection types and
union types; and the special type Bottom , which represents
the uninhabited type (i.e., no value belongs to Bottom). The
abstract syntax of types is defined as follows (where A indi-
cates a possibly empty comma-separated sequence of syn-
tactic elements A):

T ::= X type variable
| Any
| CJTK type constructor application
| T→ T arrow type
| (T) tuple type
| T ∩ T intersection type
| T ∪ T union type
| Bottom

A type may have multiple syntactic forms.6 In particular,
a tuple type of length one is synonymous with its element
type, and a tuple type with any Bottom element is synony-
mous with Bottom . In addition, any types that are provably
equivalent as defined below are also synonymous.

As in Fortress, compound types—intersection and union
types—and Bottom are not first-class: these forms of types
cannot be written in a program; rather, they are used by the
type analyzer during type checking. For example, type vari-
ables may have multiple bounds, so that any valid instantia-
tion of such a variable must be a subtype of the intersection
of its bounds.
6 We abuse terminology by not distinguishing type terms and types.

Type checking is done in the context of a class table T ,
which is a set of type constructor declarations (at most one
declaration for each type constructor) of the following form:

CJX <: {M}K <: {N}

where the only type variables that appear in M and N are
those in X . This declares the type constructor C, and each
Xi is a type parameter of C with bounds Mi. As usual for
languages with nominal subtyping, we allow recursive and
mutually recursive references in T (i.e., a type constructor
can be mentioned in the bounds and supertypes of its own
and other type constructors’ declarations). We say that C
extends a type constructorD ifNi = DJT K for someNi and
T . A class table is well-formed if every type that appears in
it is well-formed, as defined below, and the extends relation
over type constructors is acyclic.

The type constructor declaration above specifies that the
constructed type CJUK (i) is well-formed (with respect to
T ) if and only if |U | = |X| and Ui <: [U/X]Mij for
1 ≤ i ≤ |U | and 1 ≤ j ≤ |Mi| (where <: is the subtyping
relation defined below, and [U/X]Mij is Mij with Uk sub-
stituted for each occurrence of Xk in Mij for 1 ≤ k ≤ |U |);
and (ii) is a subtype of [U/X]Nl for 1 ≤ l ≤ |N |. The class
table induces a (nominal) subtyping relation<: over the con-
structed types by taking the reflexive and transitive closure
of the subtyping relation derived from the declarations in the
class table. In addition, every type is a subtype of Any and
a supertype of Bottom .

We say that a type T (of any form) is well-formed with
respect to T , and write T ∈ T , if every constructed type
occurring in T is well-formed with respect to T . Typically,
the class table is fixed and implicit, and we assume it is well-
formed and often omit explicit reference to it.

Given the type constructor declaration above, we denote
the set of explicitly declared supertypes of the constructed
type CJT K by:

CJT K.extends = {[T/X]N}

and the set of ancestors of CJT K (defined recursively) by:

ancestors(CJT K) = {CJT K} ∪
⋃

M∈CJT K.extends

ancestors(M).

To reduce clutter, nullary applications are written without
brackets; for example, CJ K is written C . We also elide
the braces delimiting a singleton list of either bounds of a
type parameter or supertypes of a class in a type constructor
declaration.

We extend the subtyping relation to structural and com-
pound types in the usual way: Arrow types are contravariant
in their domain types and covariant in their return types. One
tuple type is a subtype of another if and only if they have the
same number of elements, and each element of the first is
a subtype of the corresponding element of the other. An in-
tersection type is the most general type that is a subtype of



each of its element types, and a union type is the most spe-
cific type that is a supertype of each of its element types.

To extend the subtyping relation to type variables, we
require a type environment, which maps type variables to
bounds:

∆ = X <: {M}

In the context of ∆, each type variable Xi is a subtype of
each of its bounds Mij . Note that the type variables Xi may
appear within the bounds Mij . We write ∆ ` S <: T to
indicate the judgment that S is a subtype of T in the context
of ∆. When ∆ is empty, we write this judgment simply as
S <: T . And we say that the types S and T are equivalent,
written S ≡ T , when S <: T and T <: S.

Henceforth, given a type environment, we consider only
types whose (free) type variables are bound in the type
environment. Because our type language does not involve
any type variable binding—type variables are bound only by
generic type constructor or function declarations—the set of
free type variables of T , written FV (T ), is defined as the set
of all type variables syntactically occurring within T .

2.2 Extensibility
To enable modular type checking and compilation, we do
not assume that the class table is complete; there might be
declarations yet unknown. Specifically, we cannot infer that
two constructed types have no common constructed subtype
from the lack of any such type in the class table. However,
we do assume that each declaration is complete, so that all
the supertypes of a constructed type are known.

A class table T ′ is an extension of T (written T ′ ⊇ T )
if every declaration in T is also in T ′. From this, it follows
that for any well-formed extension T ′ of a well-formed class
table T , any type that is well-formed with respect to T is
well-formed with respect to T ′ and the subtyping relation
on T ′ agrees with that of T . That is, T ∈ T implies T ∈ T ′,
and T <: U in T implies T <: U in T ′.

2.3 Values and Ilks
Types are intended to describe the values that might be pro-
duced by an expression or passed into a function. In Fortress,
for example, there are three kinds of values: objects, func-
tions, and tuples; every object belongs to at least one con-
structed type, every function belongs to at least one arrow
type, and every tuple belongs to at least one tuple type. We
say that two types T and U have the same extent if every
value v belongs to T if and only if v belongs to U . No
value belongs to Bottom .

We place a requirement on values and on the type system
that describes them: Although a value may belong to more
than one type, every value v belongs to a unique type ilk(v)
(the ilk of the value) that is representable in the type system7

and has the property that for every type T , if v belongs

7 The type system presented here satisfies this requirement simply by pro-
viding intersection types.

to T then ilk(v) <: T . (This notion of ilk corresponds to
what is sometimes called the “class” or “run-time type” of
the value.8)

The implementation significance of ilks is that it is possi-
ble to select the dynamically most specific applicable func-
tion from an overload set using only the ilks of the argument
values; no other information about the arguments is needed.

In a safe type system, if an expression is determined by
the type system to have type T , then every value computed
by the expression at run time will belong to type T ; more-
over, whenever a function whose ilk is U → V is applied to
an argument value, then the argument value must belong to
type U .

2.4 Generic Function Declarations
A function declaration (for a class table) consists of a name,
a sequence of type parameter declarations (enclosed in white
square brackets), a type indicating the domain of the func-
tion, and a type indicating the codomain of the function (i.e.,
the return type). A type parameter declaration consists of a
type parameter name and its bounds.

For example, in the following function declaration:

fJX <: M,Y <: NK
(
ListJXK,TreeJY K

)
: MapJX,Y K

the name of the function is f , the type parameter decla-
rations are X <: M and Y <: N , the domain type is
the tuple type

(
ListJXK,TreeJY K

)
, and the return type

is MapJX,Y K . We abbreviate a function declaration as
fJ∆KS :T when we do not want to emphasize the bounds.
To reduce clutter, we omit the white square brackets of a dec-
laration when the sequence of type parameter declarations is
empty, and elide braces around singleton lists of bounds.

A function declaration d = fJX <: {N}KS :T may be
instantiated with type arguments W if |W | = |X| and
Wi <: [W/X]Nij for all i and j; we call [W/X]f S :T
the instantiation of d with W . When we do not care about
W , we just say that f U :V is an instance of d (and it is
understood that U = [W/X]S and V = [W/X]T for
some W ). We use the metavariable D to range over finite
collections of sets of function declarations and Df for the
subset of D that contains all declarations of name f .

An instance f U :V of a declaration d is applicable to
a type T if and only if T <: U . A function declaration is
applicable to a type if and only if at least one of its instances
is. For any type T , the set Df (T ) contains precisely those
declarations in Df that are applicable to T .

8 We prefer the term “ilk” to “run-time type” because the notion—and
usefulness—of the most specific type to which a value belongs is not
confined to run time. We prefer it to the term “class,” which is used in The
Java Language Specification [7], because not every language uses the term
“class” or requires that every value belong to a class. For those who like
acronyms, we offer the mnemonic retronyms “implementation-level kind”
and “intrinsically least kind.”



3. Overloading Rules and Resolution
In this section, we define the “meaning” of overloaded
generic functions; that is, we define how a call to such a
function is dispatched, and we give rules for overloaded
declarations that ensure that our dispatch procedure is well-
defined, as Castagna et al. do for overloaded monomorphic
functions [4]. The basic idea is simple: For any set of over-
loaded function declarations, we define a partial order on the
declarations—we call this order the specificity relation—and
dispatch any call to the most specific declaration applicable
to the call, based on the ilks of the arguments. The rules for
valid overloading ensure that the most specific declaration is
well-defined (i.e., unique) for any call (assuming that some
declaration is applicable to the arguments), and that the re-
turn type of a declaration is a subtype of the return type of
any less specific declaration. The latter property is necessary
for type preservation for dynamic dispatch: a more specific
declaration may be applicable to the ilks of the arguments
than the most specific declaration applicable to the static
types of the argument expressions, so we must ensure that
the return type of this more specific declaration is a subtype
of the return type used to type check the program (i.e., at
compile time).

Specifically, we define three rules:9 the No Duplicates
Rule ensures that no two declarations are equally specific;
the Meet Rule ensures that the set of overloaded declarations
form a meet semilattice under the specificity relation; and
the Return Type Rule ensures type preservation for dynamic
dispatch. We prove that any set of overloaded function dec-
larations satisfying these three properties is safe, even if the
class table is extended (Theorem 1).

3.1 Specificity of Generic Function Declarations
For monomorphic function declarations, the specificity rela-
tion is just subtyping on their domain types. However, the
domain type of a generic function declaration may include
type parameters of the declaration, and type parameters of
distinct declarations bear no particular relation to each other.
Furthermore, the subtyping relation between their domain
types of may depend on the instantiation of their type pa-
rameters, as illustrated by foo and quux in the introduction.

Instead of using subtyping, we adopt the following intu-
itive notion of specificity: One declaration is more specific
than another if the second is applicable to every argument
that the first is applicable to. That is, for any d1, d2 ∈ Df ,
d1 is more specific than d2 (written d1 � d2) if d1 ∈ Df (T )
implies d2 ∈ Df (T ) for every well-formed type T . Neatly,
this turns out to be equivalent subtyping over domain types
where the domain type of a generic function declaration is
interpreted as an existential type [3]; we use that formulation
to mechanically check the overloading rules (see Section 6).

9 The meet rule of Castagna et al. requires the existence and uniqueness of
the meet. We split these into two rules.

This definition of specificity introduces a type inference
problem for dynamic dispatch: If d2 is the most specific dec-
laration applicable to the static types of the argument expres-
sions, and d1 � d2 is the most specific declaration applicable
to the ilks of the arguments, then the type parameter instanti-
ations derived by static type inference are relevant to d2, but
not to d1. Because the call is dispatched to d1, we require
type parameters for d1 to be inferred dynamically. Showing
how to do so is beyond the scope of this paper.

3.2 Overloading Rules
Given a class table T , a set D of generic function declara-
tions for T , and a function name f , the set Df is valid (or is
a valid overloading) if it satisfies the following three rules:

No Duplicates Rule For every d1, d2 ∈ Df , if d1 � d2 and
d2 � d1 then d1 = d2.

Meet Rule For every d1, d2 ∈ Df , there exists a declaration
d0 ∈ Df (possibly d1 or d2) such that, d0 � d1 and
d0 � d2 and d0 is applicable to any type T ∈ T to which
both d1 and d2 are applicable.

Return Type Rule For every d1, d2 ∈ Df with d1 � d2,
and every type T 6≡ Bottom such that d1 ∈ Df (T ), if
an instance f S2 :T2 of d2 is applicable to T , then there
is an instance f S1 :T1 of d1 that is applicable to T with
T1 <: T2.

The No Duplicates Rule forbids distinct declarations
from being equally specific (i.e., each more specific than
the other).

The Meet Rule requires every pair of declarations to have
a disambiguating declaration, which is more specific than
both and applicable whenever both are applicable. (If one
of the pair is more specific than the other, then it is the
disambiguating declaration.)

The Return Type Rules guarantees that whenever the type
checker might have used an instance of a declaration d2 to
check a program, and then a more specific declaration d1 is
selected by dynamic dispatch, then there is some instance of
d1 that is applicable to the argument and whose return type
is a subtype of the return type of the instance of d2 the type
checker used, which is necessary for type preservation, as
discussed above.

SinceBottom is well-formed, and tuple types with differ-
ent numbers of arguments have no common subtype other
than Bottom , the Meet Rule requires that an overloaded
function with declarations that take different numbers of
arguments have a declaration applicable only to Bottom .
Such a declaration would never be applied (because no value
belongs to Bottom), and it cannot be written in Fortress
(because Bottom is not first-class). To avoid this technical-
ity, we implicitly augment every set Df with a declaration
fBottom:Bottom. This declaration is strictly more specific
than any declaration that a programmer can write, and its re-



turn type is a subtype of every type, so it trivially satisfies all
three rules when checked with any other declaration in Df .

This technicality raises the following question: Must the
Meet Rule hold for every T ∈ T ? Could we not, for ex-
ample, have excluded Bottom from consideration, as in the
Return Type Rule, and avoided the technicality? If so, for
which types is it necessary that the Meet Rule hold? The an-
swer is, we must check the Meet Rule for a type T ∈ T
to which both d1 and d2 are applicable if there could be a
value of type T such that for any type T ′ ∈ T to which the
value belongs, T <: T ′. In other words, we must check it
for all “leaf” types. Thus, if we did not require extensibil-
ity, we can check the Meet Rule only for those types that
are ilks of values. However, because we require extensibil-
ity, and we support multiple inheritance, we use intersection
types instead.

3.3 Properties of Overloaded Functions
With the rules for valid overloading laid out, we now de-
scribe some useful properties of valid overloaded sets and of
the rules themselves.

Lemma 1 If d1 and d2 are declarations in Df such that
d1 � d2 and d2 6� d1, then the pair (d1, d2) satisfies the
No Duplicates Rule and the Meet Rule.

Proof: The No Duplicates Rule is vacuously satisfied, and
the Meet Rule is satisfied with d0 = d1 since d1 � d2

implies that d1 is applicable to a type T if and only if both
d1 and d2 are applicable to T . �

Lemma 2 For every type T ∈ T , if Df is a valid set with
respect to T then so is Df (T ).

Proof: The No Duplicates Rule and Return Type Rule are
straightforward applications of the respective rules on Df .

Let d1, d2 be declarations in Df (T ) and let d0 ∈ Df be
its disambiguating declaration guaranteed by the Meet Rule
on Df . Then d0 is applicable to exactly those types U to
which d1 and d2 are both applicable. Since d1 and d2 are by
definition both applicable to T , d0 must also be applicable
to T , and hence d0 ∈ Df (T ). Therefore the Meet Rule on
Df (T ) is satisfied. �

To further characterize valid sets of overloaded defini-
tions and the more specific relation �, we interpret them
as meet semilattices. A partially ordered set (A,v) forms
a meet semilattice if, for every pair of elements a, b ∈ A,
their greatest lower bound, or meet, is also in A.

Lemma 3 A valid set of overloaded function declarations
forms a meet semilattice with the more specific relation.

Proof: Suppose Df is a valid set of overloaded function
declarations with respect to class table T . First, (Df ,�)
forms a partially ordered set: clearly � is reflexive and

transitive, and antisymmetry is a direct corollary of the No
Duplicates Rule.

Second, we must show that (i) for every d1, d2 ∈ Df there
exists a d0 ∈ Df such that d0 � d1 and d0 � d2 and (ii) if
there exists a d′0 ∈ Df such that d′0 � d1 and d′0 � d2 then
d′0 � d0.

Let d1 and d2 be declarations in Df . By the Meet Rule,
there exists a declaration d0 ∈ Df that is applicable to a type
T ∈ T if and only if both d1 and d2 are too. Since for every
T to which d0 is applicable we have that d1 and d2 are also
applicable to it, we know that d0 � d1 and d0 � d2.

Now let d′0 ∈ Df be more specific than both d1 and d2.
Then for every type T ∈ T such that d′0 is applicable to T ,
d1 and d2 are also applicable to T ; thus d0 is applicable to T
and d′0 � d0. �

The No Duplicates Rule and the Meet Rule each corre-
sponds to a defining property of meet semilattices (antisym-
metry and the existence of meets, respectively), while the
Return Type Rule guarantees that this interpretation is con-
sistent with the semantics of multiple dynamic dispatch.

Lemma 4 A valid set of overloaded function declarations
Df (T ) has a unique most specific declaration.

Proof sketch: The set Df (T ) forms a meet semilattice by
the previous lemma and moreover it is clearly finite. By
straightforward induction a finite meet semilattice has a least
element, so there exists a unique declaration inDf (T ) that is
more specific than all others. �

3.4 Overloading Resolution Safety
We now prove the main theorem of this paper, that a valid
set of overloaded generic function declarations is safe even
if the class table is extended. Before proving the theorem
we establish two lemmas. First, we show that if a set of
declarations is valid for a given class table, then it is valid
for any (well-formed) extension of that class table. Second,
we show that if a set of overloaded declarations is valid, then
there is always a single best choice of declaration to which
to dispatch any (legal) call to that function (i.e., the unique
most specific declaration applicable to the arguments).

Lemma 5 (Extensibility) If Df is valid with respect to the
class table T , then Df is valid with respect to any extension
T ′ of T .

Proof sketch: In Section 6 we will show that checking the
validity of Df can be reduced to examining subtype rela-
tionships between existential and universal types, which are
constructed solely from types appearing in Df and hence T .
Extension of the class table preserves subtype relationships
between types in T and hence preserves validity of Df . �

Lemma 6 (Unambiguity) If Df is valid with respect to the
class table T , then for every type T ∈ T such that Df (T )



is nonempty, there is a unique most specific declaration in
Df (T ).

Proof: Let T ∈ T be a type such that Df (T ) is nonempty.
This set is valid by Lemma 2 and thus contains a unique most
specific declaration by Lemma 4. �

Theorem 1 (Overloading Safety) SupposeDf is valid with
respect to the class table T . Then for any type S ∈ T ′ ⊇ T ,
ifDf (S) is nonempty then there exists a unique most specific
declaration dS ∈ Df (S). Furthermore for any declaration
d ∈ Df (S) and instance f T :U of d, there exists an instance
f V :W of dS that is applicable to S such that W <: U .

Proof: The Extensibility Lemma lets us consider only the
case when T ′ = T . Now the Unambiguity Lemma entails
that such a dS exists, and the Return Type Rule entails the
rest. �

4. Exclusion
Although the rules in Section 3 allow programmers to write
valid sets of overloaded generic function declarations, they
sometimes reject overloaded definitions that might seem to
be valid. For example, given the type system as we have
described it thus far, the overloaded tail function from the
introduction would be rejected by the overloading rules.

These are not false negatives: multiple inheritance can in-
troduce ambiguities by extending two incomparable types,
as discussed in the introduction. Because we allow class ta-
bles to be extended by unknown modules, we cannot gener-
ally infer that two types have no common nontrivial subtype
from the lack of any such declared type. Therefore, the Meet
Rule requires the programmer to provide a disambiguating
definition for any pair of overloaded definitions whose do-
main types are incomparable.

This problem is not new with parametric polymorphism,
as the print example in the introduction shows. To ad-
dress the problem, Fortress defines an exclusion relation ♦
over types such that two types that exclude each other have
no common nontrivial subtypes; that is, if T ♦ U then
T ∩ U is synonymous with Bottom . Thus, overloaded defi-
nitions whose domain types exclude each other trivially sat-
isfy the Meet Rule: there are no types (other than Bottom)
to which both definitions are applicable. Exclusion allows
us to describe explicitly what is typically implicit in single-
inheritance class hierarchies.

In our previous work on Fortress without generics [2],
we provided a special rule—the Exclusion Rule—to exploit
this information. However, the Exclusion Rule can also be
viewed, as we do in this paper, as a special case of the
Meet Rule, where there are no nontrivial types to which both
definitions are applicable.

Fortress provides three mechanisms to explicitly declare
exclusion [1]: an object declaration, a comprises clause
and an excludes clause. We describe these precisely in

Section 4.1, but for now, we simply note that they do not
help with the overloaded tail function. Specifically, even
with these exclusion mechanisms, we cannot define List so
that the definitions for tail satisfy the Return Type Rule.

To see this, consider the following overloaded definitions
(from Section 1):

tailJT K
`
x: ListJT K

´
: ListJT K

tail
`
x: ListJZK

´
: ListJZK

and the following type constructor declaration:

BadList <:
˘

ListJZK, ListJStringK
¯

Both definitions of tail are applicable to the type BadList ,
and the monomorphic one is more specific. Two instances of
the generic definition are applicable to this type:

tail
`
ListJZK

´
: ListJZK

tail
`
ListJStringK

´
: ListJStringK

The Return Type Rule requires that the return type of each
of these instances be a supertype of the return type of the
monomorphic definition (the monomorphic definition is its
only one instance); that is, it requires ListJZK <: ListJZK
and ListJZK <: ListJStringK . The latter is clearly false.

A similar issue arises when trying to satisfy the Meet Rule
by providing a disambiguating definition for incomparable
definitions, as in the following example (where Z <: R ):

minimumJX <: R, Y <: ZK
`
p: PairJX, Y K

´
: R

minimumJX <: Z, Y <: RK
`
p: PairJX, Y K

´
: R

minimumJX <: Z, Y <: ZK
`
p: PairJX, Y K

´
: Z

The first definition is applicable to exactly those arguments
of type PairJX,Y K for some X <: R and Y <: Z ; the
second is applicable to exactly those arguments of type
PairJX,Y K for some X <: Z and Y <: R . So we might
think that both definitions are applicable to exactly those
arguments of type PairJX,Y K for some X <: Z and
Y <: Z , which is exactly when the third definition is ap-
plicable. However, this is not true! We could, for example,
have the following type constructor declaration:

BadPair <:
˘

PairJR, ZK, PairJZ, RK
¯

The first two definitions of minimum are both applicable to
BadPair but the third is not.

We might say that the problem with the above examples
is not with the definitions of tail and minimum , but with
the definitions of BadList and BadPair ; we must reject the
idea that a value may belong to ListJZK or ListJStringK —
or to PairJZ,RK or PairJR,ZK —but not to both. Indeed,
Fortress imposes a rule that forbids multiple instantiation
inheritance [8], in which a type (other than Bottom) is a
subtype of distinct applications of a type constructor.10 We

10 This definition suffices for the type system described in this paper, in
which all type parameters are invariant. It is straightforward, but beyond
the scope of this paper, to extend this definition to systems that support
covariant and contravariant type parameters.



call this rule multiple instantiation exclusion and adopt it
here.

Multiple instantiation exclusion is easy to enforce stati-
cally, and experience suggests that it is not onerous in prac-
tice: it is already required in Java, for example [7]. Also,
Kennedy and Pierce have shown that in systems that enforce
multiple instantiation exclusion (along with some technical
restrictions), nominal subtyping is decidable [8].11

4.1 Well-Formed Class Tables with Exclusion
To incorporate exclusion into our type system, we first
augment type constructor declarations with two (optional)
clauses—the excludes and comprises clauses—and add
a new kind of type constructor declaration—the object
declaration. We then change the definition of well-formed
class tables to reflect the new features, and to enforce multi-
ple instantiation exclusion.

The syntax for a type constructor declaration with the
optional excludes and comprises clauses, each of which
specifies a list of types, is:

CJX <: {M}K <:{N}
[
excludes {L}

] [
comprises {K}

]
This declaration asserts that for well-formed type CJT K ,

the only common subtype of CJT K and [T/X]Li for any Li

in L is Bottom , and any strict subtype of CJT K must also
be a subtype of [T/X]Ki for some Ki in K.

Omitting the excludes clause is equivalent to having
excludes {} ; omitting the comprises clause is equiva-
lent to having comprises {Any } .12

We define the sets of instantiations of types in excludes
and comprises clauses analogously to CJT K.extends. That
is, for an application CJT K of the declaration above, we
have:

CJT K.excludes = {[T/X]L}

CJT K.comprises = {[T/X]K}

A class table may also include object declarations,
which have the following syntax:

object DJX <: {M}K <:{N}

This declaration is convenient for defining “leaf types”: it
asserts that DJT K has no subtypes other than itself and
Bottom . Although the declaration has no excludes or
comprises clause, this condition implies that DJT K ex-
cludes any type other than its supertypes (and therefore it is
as if it had a clause comprises {} ).

11 They also show that forbidding contravariant type parameters results in
decidable nominal subtyping, so subtyping in our type system is decidable
in any case.
12 To catch likely programming errors, Fortress requires that every Ki in a
comprises clause for CJT K be a subtype of CJT K, but allowing Any to
appear in a comprises clause simplifies our presentation here.

Multiple instantiation exclusion further restricts generic
types: Distinct instantiations of a generic type (i.e., distinct
applications of a type constructor) have no common subtype
other than Bottom .

To define well-formedness for class tables with exclusion
(including multiple instantiation exclusion), we define an
exclusion relation ♦ over well-formed types: S ♦ T asserts
that S and T have no common subtypes other than Bottom .
For constructed types CJT K and DJUK, CJT K ♦ DJUK if

• DJUK ∈ CJT K.excludes;
• for all L ∈ CJT K.comprises,DJUK is not a subtype of L;
• CJT K is declared by an object declaration and CJT K is

not a subtype of DJUK;
• DJUK ♦ CJT K by any of the conditions above;
• C = D and T 6≡ U ; or
• M ♦ N for some M :> CJT K and N :> DJUK.

We augment our notion of a well-formed class table to
require that the subtyping and exclusion relations it induces
“respect” each other. That is, for all well-formed constructed
types M and N , if M ♦ N then no well-formed constructed
type is a subtype of bothM andN . A well-formed extension
to a class table T must preserve this property.

Except for the imposition of multiple instantation exclu-
sion, these changes generalize the standard type system de-
scribed in Section 2: A class table that does not use any of
the new features is well-formed in this augmented system
exactly when it is well-formed in the standard system. On
the other hand, multiple instantiation exclusion restricts the
set of well-formed class tables: a table that is well-formed
when multiple instantiation inheritance is permitted might
not be well-formed under multiple instantiation exclusion.

We extend the exclusion relation to structural and com-
pound types as follows: Every arrow type excludes every
non-arrow type other than Any . Every non-singleton tu-
ple type excludes every non-tuple type other than Any . (A
singleton tuple type is synonymous with its element type,
and so excludes exactly those types excluded by its element
type.) Non-singleton tuple type (V ) excludes non-singleton
tuple type (W ) if either |V | 6= |W | or Vi excludes Wi for
some i. An intersection type excludes any type excluded by
any of its constituent types; a union type excludes any type
excluded by all of its constituent types.Bottom excludes ev-
ery type (including itself—it is the only type that excludes it-
self), and Any does not exclude any type other than Bottom.
(We define the exclusion relation formally in Section 7.)

5. Examples
We now consider several sets of overloaded generic function
declarations, and argue informally why they are (or are not,
in one case) permitted by the rules in Section 3, paying
particular attention to where multiple instantiation exclusion



is required. We give a formal system and algorithm for
performing these checks in Section 6.

First, consider the function foo from Section 1:

fooJX <: ObjectK(x: X, y: Object): Z = 1

fooJY <: NumberK(x: Number, y: Y ): Z = 2

This overloading is valid: The second definition is strictly
more specific than the first because the first definition is
applicable to a pair of arguments exactly if the type of each
is a subtype of Object , whereas the second is applicable to
a pair of arguments exactly if the type of each is a subtype of
Number . Thus, these definitions satisfy the No Duplicates
Rule and the Meet Rule by Lemma 1. And they satisfy the
Return Type Rule because the return type of both definitions
is always Z .

The overloaded definitions for tail are also valid:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tailJX <: NumberK
`
x: ListJXK

´
: ListJXK = e2

tail
`
x: ListJZK

´
: ListJZK = e3

The first definition is applicable to any argument of type
ListJT K for any well-formed type T , the second is applica-
ble to an argument of type ListJT K when T <: Number ,
and the third is applicable to an argument of type ListJZK .
Thus, each definition is strictly more specific than the pre-
ceding one, so the No Duplicates Rule and Meet Rule are
satisfied for each pair of definitions by Lemma 1.

To see that the Return Type Rule is satisfied by the first
two definitions, consider any type W 6≡ Bottom to which
the second definition is applicable—so W <: ListJT K for
some T <: Number —and any instantiation of the first def-
inition with type U that is applicable to W—so W <:
ListJUK . Then W <: ListJT K ∩ ListJUK . By multiple in-
stantiation exclusion, ListJT K ∩ ListJUK ≡ Bottom unless
T ≡ U . Since W 6≡ Bottom, we have T ≡ U , so W <:
ListJUK with U <: Number. Thus, the instantiation of the
second definition with U has return type ListJUK , which
is also the return type of the instantiation of the first defi-
nition under consideration. (In Section 7.8 we describe how
to incorporate this sort of reasoning about validity into our
algorithmic checking of the overloading rules.)

The Return Type Rule is also satisfied by the third defini-
tion and either of the first two because the third definition is
applicable only to arguments of type ListJZK , and because
of multiple instantiation exclusion, the only instantiation of
either the first or second definition that is applicable to such
an argument is its instantiation with Z . That instantiation
has return type ListJZK , which is also the return type of the
third definition.

The minimum example from Section 4 is also valid
under multiple instantiation exclusion, which is necessary
in this case to satisfy the Meet Rule rather than the Return
Type Rule:

minimumJX <: R, Y <: ZK
`
p: PairJX, Y K

´
: R

minimumJX <: Z, Y <: RK
`
p: PairJX, Y K

´
: R

minimumJX <: Z, Y <: ZK
`
p: PairJX, Y K

´
: Z

Any argument to which the first two definitions are both
applicable must be of type PairJX1, Y1K ∩ PairJX2, Y2K
for some X1 <: R, Y1 <: Z, X2 <: Z, and Y2 <: R.
Multiple instantiation exclusion implies that X1 = X2 and
Y1 = Y2, so the argument must be of type PairJX1, Y1K,
where X1 <: R ∩Z = Z and Y1 <: Z ∩R = Z, so the third
definition is applicable to it. And since the third definition is
more specific than the first two, it satisfies the requirement
of the Meet Rule.

The following set of overloaded declarations is also valid
(given the declaration ArrayListJXK <: ListJXK ):

barJXKArrayListJXK: Z
barJY <: ZKListJY K: Z
barJZ <: ZKArrayListJZK: Z

The first two declarations are incomparable: the first is ap-
plicable to ArrayListJT K for any type T , the second to
ListJUK for U <: Z . Thus, both declarations are applica-
ble to any argument of type ArrayListJT K ∩ ListJUK for
any T and U <: Z . Since ArrayListJT K <: ListJT K , this
type is a subtype of ListJT K ∩ ListJUK , which, because of
multiple instantiation exclusion, is Bottom unless T ≡ U ,
in which case, ArrayListJT K ∩ ListJUK ≡ ArrayListJUK .
This is exactly the type to which the third declaration is ap-
plicable, so the Meet Rule is satisfied.

Note that this example is similar to the previous one with
minimum except that rather than having each of the two
definitions being more restrictive on a type parameter, one
uses a more specific type constructor.

Finally, we consider three examples that do not involve
generic types, beginning with the following declarations:

bazJXK(x: X): X

baz (x: Z): Z

This pair is not valid: it does not satisfy the Return Type
Rule. Consider, for example, an argument of type N <: Z .
The second declaration, which is more specific than the first,
and the instantiation of the first declaration with N are both
applicable to this argument, but the return type Z of the
second declaration is not a subtype of the return type N
of the instance of the first declaration. This rejection by the
Return Type Rule is not gratuitous: baz may be called with
an argument of type N in a context that expects an N in
return.

We can fix this example by making the second declaration
generic:

bazJXK(x: X): X

bazJX <: ZK(x: X): X

This pair is valid: the second declaration is strictly more spe-
cific than the first, so the No Duplicates and Meet Rules
are satisfied. To see that the Return Type Rule is satisfied,
consider any type W 6≡ Bottom to which the second dec-
laration is applicable—so W <: Z —and any instantiation



of the first with some type T that is applicable to W—so
W <: T . Then the instantiation of the second declaration
with W has return type W , which is a subtype of the return
type T of the instance of the first declaration under consid-
eration.

6. Overloading Rules Checking
In this section, we describe how to mechanically check the
overloading rules from Section 3. The key insight is that the
more specific relation on overloaded function declarations
corresponds to the subtyping relation on the domain types of
the declarations, where the domain types of generic function
declarations are existential types [3]. Thus, the problem of
determining whether one declaration is more specific than
another reduces to the problem of determining whether one
existential type is a subtype of another.

We then formulate the overloading rules as subtyping
checks on existential and universal types (universal types
arise in the reformulation of the Return Type Rule), and
give an algorithm to perform these subtyping checks. The
algorithm we describe is sound but not complete: it does
rejects some sets of overloaded functions that are valid by
the overloading rules in Section 3, but it accepts many of
them, including all of the valid examples in Section 5.

6.1 Existential and Universal Types
Given a generic function declaration d = fJ∆KS :T , its
domain type, written dom(d), is the existential type ∃J∆KS.
An existential type binds type parameter declarations over
a type, but these type parameters cannot be instantiated;
instead, the existential type represents some hidden type
instantiation and the corresponding instantiated type. We
write ∃JX <: {N}KT to bind each type variable Xi with
bounds {Ni} over the type T , and we use the metavariable δ
to range over existential types.

The arrow type of declaration d above, written arrow(d),
is the universal arrow type ∀J∆KS → T . We use this to for-
mulate the Return Type Rule. A universal type binds type
parameter declarations over some type and can be instanti-
ated by any types fitting the type parameters’ bounds. We
write ∀JX <: {N}KT to bind each type variable Xi with
bounds {Ni} over the type T , and we use the metavariable
σ to range over universal types.

Note that universal and existential types are not actually
types in our system.

6.2 Universal and Existential Subtyping
We define subtyping judgments for universal and existential
types, which we use in checking the overloading rules. We
actually define inner and outer subtyping judgments on uni-
versals and existentials; the former correspond to a relatively
standard interpretation of each (which resembles those de-
fined in [3]); the latter incorporate quantifier reduction, de-
fined in Section 7.8.

Existential Subtyping: ∆ ` δ . δ ∆ ` δ ≤ δ

∆′ = ∆, X <: {M} X ∩ (FV (U) ∪ FV (N)) = ∅
∆′ ` T <: [V /Y ]U ∀i . ∆′ ` Vi <: [V /Y ]{Ni}

∆ ` ∃JX <: {M}KT . ∃JY <: {N}KU

∆ ` δ ≡−→ δr ∆ ` δr . δ′

∆ ` δ ≤ δ′

Universal Subtyping: ∆ ` σ . σ ∆ ` σ ≤ σ

∆′ = ∆, Y <: {N} Y ∩ (FV (T ) ∪ FV (M)) = ∅
∆′ ` [V /X]T <: U ∀i . ∆′ ` Vi <: [V /X]{Mi}

∆ ` ∀JX <: {M}KT . ∀JY <: {N}KU

∆ ` σ′ ≡−→ σ′r ∆ ` σ . σ′r
∆ ` σ ≤ σ′

Figure 1. Subtyping of universal and existential types. Note
that alpha-renaming of type variables may be necessary to
apply these rules.

The inner subtyping judgment on existentials ∆ `
δ1 . δ2, defined in Figure 1, states that δ1 is a subtype
of δ2 in the environment ∆ if the constituent type of δ1 is a
subtype of an instance of δ2 in the environment obtained by
conjoining ∆ and the bounds of δ1.

In the outer subtyping judgment ∆ ` δ ≤ δ′, we
first perform existential reduction to produce δr (denoted
∆ ` δ

≡−→ δr). Then we check whether ∆ ` δr . δ′.
We provide (and explain) the formal definition of existential
reduction in Section 7.8, but for now note that it has the
following properties:

1. ∆ ` δr . δ
2. ∆ ` δ . δ′ implies ∆ ` δr . δ′r
3. (δr)r = δr

4. (∃JKT )r = ∃JKT

The first three properties show that ≤ is a preorder and that
. implies ≤. Adding the fourth property lets us show that
any ground instance T of δ with T 6= Bottom is an instance
of δr

We use existential reduction because merely extending
the subtyping relation for ordinary types with exclusion is
not enough to let us check the overloading rules. For ex-
ample, to check that the first two declarations of Dbar from
Section 5 satisfy the Meet Rule, we must be able to deduce
that the existential

∃JX <: Any, Y <: ZK
(
ArrayListJXK ∩ ListJY K

)



and the existential

∃JW <: ZKArrayListJW K

describe the same set of ground instances of types.
The rules for universals are dual to those for existentials.

The inner subtyping judgment on universals ∆ ` σ1 . σ2,
defined in Figure 1, states that σ1 is a subtype of σ2 in the
environment ∆, if an instance of σ1 is a subtype of the con-
stituent type of σ2 in the environment obtained by conjoin-
ing ∆ and the bounds of σ2. In the outer universal subtyping
judgment ∆ ` σ ≤ σ′, we first perform universal reduction
to produce σ′r (denoted ∆ ` σ′

≡−→ σ′r) and then check
whether ∆ ` σ . σ′r. Again, we provide the formal defi-
nition of universal reduction in Section 7.8, noting that it has
the following properties:

1. ∆ ` σ . σr

2. ∆ ` σ . σ′ implies ∆ ` σr . σ′r

3. (σr)r = σr

4. (∀JKS → T )r = ∀JKS → T

Again the first three properties show that≤ is a preorder and
that . implies ≤. Adding the fourth property lets us show
that any ground instance S → T of δ with S 6= Bottom is
an instance of σr.

We need universal reduction for the same reason we need
existential reduction, to check the overloading rules. For
example to show the first two declarations in Dtail from
Section 5 satisfy the Return Type Rule, we use universal
reduction to show that

∀JX <: Number, Y <: AnyK
(
ListJXK ∩ ListJY K

)
and

∀JW <: NumberKListJW K→ ListJW K

have all the same nontrivial instances.

6.3 Mechanically Checking the Rules
With our interpretations of applicability and specificity into
existential subtyping, we now describe the process of check-
ing the validity of a set of overloaded declarations Df ac-
cording to the rules in Section 3.

We can check the No Duplicates Rule by verifying that
for every pair of distinct function declarations d1, d2 ∈ Df

either d1 6� d2 or d1 6� d2.
The Meet Rule requires that every pair of declarations

d1, d2 ∈ Df has a meet in Df . Because the more specific
relation on function declarations corresponds to the subtyp-
ing relation on the (existential) domain types, we just need
to find a declaration d0 ∈ Df whose domain type dom(d0)
is equivalent to the meet (under ≤) of the existential types
dom(d1) and dom(d2). Figure 2 shows how to compute the
meet of two existential types.

Lemma 7 δ1 ∧ δ2 (as defined in Figure 2) is the meet of δ1
and δ2 under ≤.

Proof: First we show that δ1 ∧ δ2 is the meet of δ1 and δ2
under.. That δ1 ∧ δ2 . δ1 and δ1 ∧ δ2 . δ2 is obvious. For
any δ0, if U and V are instantiations that prove δ0 . δ1 and
δ0 . δ2, respectively, then we can use the instantiation U, V
to prove that δ0 ≤ δ1 ∧ δ2.

Now we show that the meet under . is also the meet
under ≤. Suppose that δ0 ≤ δ1, δ0 ≤ δ1, and ∆ ` δ0

≡−→
δ′0. A little work lets us deduce that δ′0 . δ1 ∧ δ2 and hence
δ0 ≤ δ1 ∧ δ2. The fact that δ1 ∧ δ2 ≤ δ1 and δ1 ∧ δ2 ≤ δ2
follows from the fact that . implies ≤. �

We can check the Return Type Rule using the subtype
relation on universal types.

Theorem 2 Let d1 = fJ∆1KS1 :T1 and d2 = fJ∆2KS2 :T2

be declarations in Df with d1 � d2. They satisfy the Return
Type Rule if arrow(d1) is a subtype of the arrow type σ∧ =
∀J∆1,∆2K(S1 ∩ S2)→ T2.

Proof: Let d∧ = fJ∆1,∆2KS1 ∩ S2 : T2, so arrow(d∧) =
σ∧. Note that d∧ and d1 are equally specific and that d∧ and
d2 satisfy the Return Type Rule. Because arrow(d1) ≤ σ∧,
for every instance U → V of σ∧ with U 6≡Bottom, we can
find an instance U1 → V1 of arrow(d1) with U <: U1 and
V1 <: V . Thus, the pair d1 and d2 satisfy the Return Type
Rule because the pair d∧, d2 does. �

7. Constraint-Based Judgments
Up to this point the precise definitions of subtyping and ex-
clusion between types (and quantifier reduction) have re-
mained unspecified. In this section we describe a small lan-
guage of type constraints and we define subtyping and ex-
clusion with respect to constraints. Finally, with constraint-
based subtyping and exclusion defined, we explain in more
detail the notion of quantifier reduction used in the ≤ judg-
ments (and thus in our rule-checking).

7.1 Inference Variables
Until now we have only considered types whose free vari-
ables are bound in an explicit type environment. To gather
constraints, however, we must check subtype and exclusion
relationships between types with unbound inference vari-
ables. Intuitively, we have no control over the constraints on
a bound type variable (which are fixed by the associated type
environment), but we may introduce constraints on an infer-
ence variable. While the syntax of type variables is uniform,
we conventionally distinguish them by using the metavari-
ables X and Y for bound type variables and I and J for
inference type variables.

7.2 Judgment Forms
In Figure 3, we list the judgments for generating constraints.
A judgment of the form ∆ ` S ∗ T ⇐ C states that under
the assumptions ∆, the constraint C on the inference vari-
ables implies the proposition S ∗ T , where ∗ ranges over
<:, 6<:, ♦, 6♦, ≡, and 6≡. If S and T contain no inference



Existential Meet: δ1 ∧ δ2(
∃JX <: {M}KT

)
∧
(
∃JY <: {N}KU

)
def= ∃JX <: {M}, Y <: {N}K (T ∩ U)

where X ∩ Y = X ∩ (FV (U) ∪ FV (N)) = Y ∩ (FV (T ) ∪ FV (M)) = ∅

Figure 2. The computed meet of existential types.

Primitive Judgments: ∆ ` T ∗ T ⇐ C

∆ ` S <: T ⇐ C ∆ ` S ♦ T ⇐ C
∆ ` S 6<: T ⇐ C ∆ ` S 6♦ T ⇐ C

Derived Judgments: ∆ ` T ∗ T ⇐ C

∆ ` S <: T ⇐ C ∆ ` T <: S ⇐ C′

∆ ` S ≡ T ⇐ C ∧ C′

∆ ` S 6<: T ⇐ C ∆ ` T 6<: S ⇐ C′

∆ ` S 6≡ T ⇐ C ∨ C′

Derived Judgments: ∆ ` T ∗ T ⇒ C

∆ ` S ≡ T ⇐ C
∆ ` S 6≡ T ⇒ ¬C

Figure 3. Constraint-based judgment forms.

variables the judgment behaves like an unconditional judg-
ment (i.e., it only produces the constraints true or false).

Similarly, the judgment of the form

∆ ` S ∗ T ⇒ C

states that under the assumptions ∆, if the proposition S ∗ T
holds, then C must be true of the inference variables. In
particular, when C holds of the inference variables, S ∗ T
does not have to hold for every valid instantiation of the
bound type variables. (Note that we only make use of this
judgment where ∗ is 6≡.)

An important point about both kinds of judgments is
that the types S and T should be considered inputs and the
constraint C should be considered an output.

7.3 Constraint Forms
Our grammar for type constraints is defined in Figure 4. A
primitive constraint is either positive or negative. We define
positive primitive constraints: S <: T specifies that a S is a
subtype of T , and S ♦ T specifies that S must exclude T .
Similarly, we define negative primitive constraints: S 6<: T
and S 6♦ T with the obvious interpretations. A conjunction

Constraint Grammar

C ::= S <: T
| S ♦ T
| S 6<: T
| S 6♦ T
| C ∧ C
| C ∨ C
| false
| true

Constraint Utilities

¬C = C

toConstraint(∆) = C

toBounds(C) = ∆

∆ ` unify(C) = φ , C

Figure 4. Constraints. Note that unify and toBounds are
partial functions.

constraint C1 ∧ C2 is satisfied exactly when both C1 and C2
are satisfied, and a disjunction constraint C1 ∨ C2 is satisfied
exactly when one or both of C1 and C2 are satisfied. The
constraint false is never satisfied, and the constraint true
is always satisfied. The equivalence constraint S ≡ T is
derived as S <: T ∧ T <: S.

Following Smith and Cartwright [16], we normalize all
constraint formulas into disjunctive normal form and sim-
plify away obvious contradictions and redundancies. We fur-
ther make use of some auxiliary meta-level definitions, de-
fined in Figure 4. The negation ¬C of a constraint C has a
standard de Morgan interpretation. Each type environment
∆ = X <: {M} naturally describes a constraint on the vari-
ablesX , which we denote toConstraint(∆). This conversion
has a partial inverse toBound(C) that is defined whenever C
can be written as a conjunction of constraints of the form
X <: M .13

7.4 Subtyping
Figure 5 presents the full definition of our constraint-based
subtyping algorithm as inference rules for the judgment ∆ `
T <: T ⇐ C. Note that our algorithm requires that these
rules be processed in the given order.

Smith and Cartwright similarly define a sound and com-
plete algorithm for generating constraints from the Java sub-
typing relation [16]. We essentially preserve their semantics
with two notable differences. First, our definition includes
additional rules for tuple types to account for the fact that

13 If C has multiple conjuncts of this form for a single X , then the resulting
environment contains multiple bounds for X using the {M} notation.



Subtyping Rules: ∆ ` T <: T ⇐ C

Logical rules

∆ ` Bottom <: T ⇐ true

∆ ` M <: Bottom ⇐ false

∆ ` S → T <: Bottom ⇐ false

∆ ` T <: Any ⇐ true

∆ ` Any <:S → T ⇐ false

∆ ` T <: U ⇐ C ∆ ` T <: V ⇐ C′

∆ ` T <: U ∩ V ⇐ C ∧ C′

∆ ` S <: U ⇐ C ∆ ` T <: U ⇐ C′
∆ ` S ♦ T ⇐ C′′

∆ ` S ∩ T <: U ⇐ C ∨ C′ ∨ C′′

∆ ` T <: U ⇐ C ∆ ` T <: V ⇐ C′

∆ ` T <: U ∪ V ⇐ C ∨ C′

∆ ` S <: U ⇐ C ∆ ` T <: U ⇐ C′

∆ ` S ∪ T <: U ⇐ C ∧ C′

Inference Variables
I 6∈ ∆

∆ ` I <: I ⇐ true

I 6∈ ∆
∆ ` I <: T ⇐ I <: T

I 6∈ ∆
∆ ` S <: I ⇐ S <: I

Bound Variables

∆ ` X <: X ⇐ true

∆ ` ∆(X) <: T ⇐ C
∆ ` X <: T ⇐ C

∆ ` S <: Bottom ⇐ C
∆ ` S <: X ⇐ C

Structural rules

|S| = |T | ∀i. ∆ ` Si <: Ti ⇐ Ci
∀i. ∆ ` Si <: Bottom ⇐ Di

∆ ` (S) <: (T ) ⇐ (
∧
Ci) ∨ (

∨
Di)

|S| 6= 1 ∀i. ∆ ` Si <: Bottom ⇐ Ci
∆ ` (S) <: T ⇐

∨
Ci

∆ ` U <: S ⇐ C ∆ ` T <: V ⇐ C′

∆ ` S → T <:U → V ⇐ C ∧ C′

|U | 6= 1
∆ ` S → T <: (U) ⇐ false

|T | 6= 1
∆ ` M <: (T ) ⇐ false

∆ ` S → T <: M ⇐ false

∆ ` M <:S → T ⇐ false

Constructed types

C 6= D ∀M ∈CJSK.extends. ∆ ` M <:DJT K ⇐ CM
∆ ` CJSK <:DJT K ⇐

∨
CM

∀i. ∆ ` Si ≡ Ti ⇐ Ci

∆ ` CJSK <:CJT K ⇐
∧
Ci

Figure 5. Algorithm for generating subtyping constraints. Apply the first rule that matches.



any tuple is equivalent to Bottom if any of its element types
is equivalent to Bottom .

|S| = |T | ∀i. ∆ ` Si <: Ti ⇐ Ci
∀i. ∆ ` Si <: Bottom ⇐ C′i

∆ ` (S) <: (T ) ⇐ (
∧
Ci) ∨ (

∨
C′i)

|S| 6= 1 ∀i. ∆ ` Si <: Bottom ⇐ Ci
∆ ` (S) <: T ⇐

∨
Ci

Second, our definition includes an additional rule for inter-
section types to account for exclusion since the intersection
of excluding types is equivalent to Bottom. This rule makes
our exclusion and subtyping rules mutually dependent.

∆ ` S <: U ⇐ C ∆ ` T <: U ⇐ C′
∆ ` S ♦ T ⇐ C′′

∆ ` S ∩ T <: U ⇐ C ∨ C′ ∨ C′′

We formally define the subtyping judgment from Sec-
tion 2 as a trivial application of constraint-based subtyping
with the following rule:

∆ ` S <: T ⇐ true
∆ ` S <: T

7.5 Exclusion
Figure 6 presents our definition of constraint-based exclu-
sion as inference rules for the judgment ∆ ` T ♦ T ⇐ C.
As with subtyping, our algorithm requires that these rules be
processed in order. Additionally, if no rule matches, then the
l.h.s. and r.h.s. types should be swapped and the rules tried
again.

To make these rules algorithmic, we break the exclusion
relation on constructed types into four subrelations ♦x, ♦c,
♦o, and ♦m. The first three relations are further decomposed
into the asymmetric relations .x, .c, and .o.

1. CJS K .x DJT K determines whether DJT K has a su-
per type N such that N appears in the excludes clause of
an ancestor of CJS K .

2. CJS K .c DJT K determines whether DJT K excludes
every type in the (nontrivial) comprises clause of CJS K .

3. CJS K .o DJT K determines whether CJS K is an ob-
ject and DJT K is not a supertype of CJS K .

4. CJS K ♦m DJT K determines whether there is a pair of
types (M,N) such that M is an ancestor of CJS K ,
N is an ancestor of DJT K , and M and N are distinct
applications of the same type constructor.

As with subtyping, we formally define the exclusion
judgment described in Section 4 as a trivial application of
constraint-based exclusion with the following rule:

∆ ` S ♦ T ⇐ true
∆ ` S ♦ T

7.6 Negative Judgments and Negation
In the rules for constraint-based exclusion (Figure 6), we
use the negative judgments ∆ ` T 6<: T ⇐ C and
∆ ` T 6♦ T ⇐ C to determine constraints under which
the negations hold. Instead of defining negative judgments
explicitly, we describe how to derive them from their positive
counterparts according to de Morgan’s laws.

For the negative subtyping judgment ∆ ` T 6<: T ⇐ C,
the rules for bound variables are given below:

X ∈ ∆
∆ ` X 6<: T ⇐ false

∆ ` S 6<: ∆(X) ⇐ C
∆ ` S 6<: X ⇐ C

The other rules for ∆ ` T 6<: T ⇐ C are obtained as
follows: For each rule of ∆ ` T <: T ⇐ C that is not
in the section marked “bound variables,” make a new rule
for ∆ ` T 6<: T ⇐ C by replacing each occurrence of a
relation symbol ∗ with its negation, and by swapping each ∧
with ∨ and true with false, and vice versa. For example, the
rule for intersection types on the r.h.s.

∆ ` T <: U ⇐ C ∆ ` T <: V ⇐ C′

∆ ` T <: U ∩ V ⇐ C ∧ C′

becomes the following rule in the negative subtyping judg-
ment

∆ ` T 6<: U ⇐ C ∆ ` T 6<: V ⇐ C′

∆ ` T 6<: U ∩ V ⇐ C ∨ C′

The rules for the negative exclusion judgment ∆ `
T 6♦ T ⇐ C are derived from those of ∆ ` T ♦ T ⇐ C
according to the process above. The rule for bound variables
is

X ∈ ∆
∆ ` X 6♦ T ⇐ false

The negative subtyping judgment should not be confused
with the derived contrapositive judgment ∆ ` T 6≡ T ⇒ C
given in Figure 3, for the two judgments handle bound type
variables very differently. Intuitively, the negative assertion
∆ ` S 6≡ T ⇐ C computes the constraint C that satisfies
the inequivalence for an arbitrary instantiation of the type
variables bound in ∆. Whereas the contrapositive assertion
∆ ` S 6≡ T ⇒ C computes the constraint C that holds
for any instantiation of ∆ such that the inequivalence is
true. The following derivable assertions further illustrate this
distinction, for ∆ = X <: Any, Y <: Any :

∆ `
(
PairJX, IK ∩ PairJY, JK

)
6≡Bottom ⇐ false

∆ `
(
PairJX, IK ∩ PairJY, JK

)
6≡Bottom ⇒ I ≡ J

7.7 Unification
Suppose that C is a conjunction of type equivalences. A
unifier of C is a substitution φ of types for inference type



Exclusion: ∆ ` T ♦ T ⇐ C

Logical rules

∆ ` Bottom ♦ T ⇐ true

∆ ` T <: Bottom ⇐ C
∆ ` Any ♦ T ⇐ C

∆ ` S ♦ U ⇐ C ∆ ` T ♦ U ⇐ C′
∆ ` S ∩ T <: Bottom ⇐ C′′

∆ ` S ∩ T ♦ U ⇐ C ∨ C′ ∨ C′′

∆ ` S ♦ U ⇐ C ∆ ` T ♦ U ⇐ C′

∆ ` S ∪ T ♦ U ⇐ C ∧ C′

Inference Variables
I 6∈ ∆

∆ ` I ♦ I ⇐ false

I 6∈ ∆
∆ ` I ♦ T ⇐ I ♦T

Bound Variables
∆ ` ∆(X) ♦ T ⇐ C

∆ ` X ♦ T ⇐ C

Structural rules
|S| = |T | ∀i.∆ ` Si ♦ Ti ⇐ Ci

∆ ` (S) ♦ (T ) ⇐
∨
Ci

|S| 6= |T |
∆ ` (S) ♦ (T ) ⇐ true

M 6= Any |T | 6= 1
∆ ` M ♦ (T ) ⇐ true

|T | 6= 1
∆ ` S → R ♦ (T ) ⇐ true

∆ ` S → T ♦U → V ⇐ false

M 6= Any
∆ ` M ♦T → U ⇐ true

Constructed types
∆ ` CJSK ♦xDJT K ⇐ Ce
∆ ` CJSK ♦cDJT K ⇐ Cc
∆ ` CJSK ♦oDJT K ⇐ Co
∆ ` CJSK ♦mDJT K ⇐ Cp

∆ ` CJSK ♦DJT K ⇐ Ce ∨ Cc ∨ Co ∨ Cp

∆ ` CJSK .∗DJT K ⇐ C
∆ ` DJT K .∗CJSK ⇐ C′

∆ ` CJSK ♦∗DJT K ⇐ C ∨ C′
where ∗ ∈ {x, c, o}

∆ ` CJSK .∗CJT K ⇐ false
where ∗ ∈ {x, c, o}

C 6= D A = ancestors(CJSK)
∀N ∈

(⋃
M∈AM.excludes

)
. ∆ ` DJT K <: N ⇐ CN

∆ ` CJSK .xDJT K ⇐
∨
CN

C 6= D
∀M ∈CJSK.comprises. ∆ ` M ♦DJT K ⇐ CM

∆ ` CJSK .cDJT K ⇐
∧
CM

C 6= D C does not have a comprises clause

∆ ` CJSK .cDJT K ⇐ false

C 6= D object C ∆ ` CJSK 6<:DJT K ⇐ C
∆ ` CJSK .oDJT K ⇐ C

C 6= D ¬(object C)
∆ ` CJSK .oDJT K ⇐ false

∀M ∈ ancestors(CJSK).
∀N ∈ ancestors(DJT K).

∆ ` M ♦· m N ⇐ CM,N

∆ ` CJSK ♦mDJT K ⇐
∨
CM,N

∀i.∆ ` Si 6≡ Ti ⇐ Ci
∆ ` CJSK ♦· mCJT K ⇐

∨
Ci

C 6= D

∆ ` CJSK ♦· mDJT K ⇐ false

Figure 6. Algorithm for generating exclusion constraints. Each rule is symmetric; apply the first one that matches.



variables such that φ(C) = true. We say that a unifier φ is
more general than a unifier ψ if there exists a substitution τ
such that τ ◦ φ = ψ. In other words φ is more general than
ψ if ψ factors throughout φ.

We can extend the notion of a unifier to an arbitrary
conjunction C in the case that C can be expressed as a
conjunction C′ ∧ C′′ where C′ is entirely equivalences and
C′′ contains no type equivalences. Then we define a unifier
of C to be a unifier of C′. Finally, we can extend the notion
of unifier to a constraint C in disjunctive normal form to be
a unifier of any disjunct of C.

The (partial) function unify in Figure 4 takes a constraint
C and produces a most general unifier φ if one exists. This
is always the case if C consists of a single conjunct. unify
additionally produces the substituted leftover part, φ(C′′).

7.8 Quantifier Reduction
In the evaluation of valid overloadings from Section 5, in-
tensional type analysis was required in order to reason about
certain examples. Since this reasoning justified the valid-
ity of these overloaded functions, we incorporate it into the
present formal system as well.

Whenever two different domain types should be applica-
ble to the same argument type W (in order to validate the
Meet Rule or Return Type Rule), an existentially quantified
intersection type naturally arises as the necessary supertype
of W . Intersection types S ∩ T in our type system naturally
fall into two distinct cases: either S 6♦ T , or S ♦ T in which
case the intersection has the same extent as Bottom . In the
second case, the intersection is trivial andW , as a subtype of
the intersection, must also be trivial. Moreover, because the
argument type W to which both declarations must be appli-
cable is necessarily equivalent to Bottom , then the Meet
Rule and Return Type Rule are both trivially satisfied by
the presence of the implicit overloading on Bottom . In this
manner case analysis on whether an existentially quantified
(intersection) type is Bottomfacilitates the checking of our
rules.

Naı̈vely one might expect this case analysis on S ∩ T
to simply check whether S ♦ T . However, as is the case
when checking generic function declarations, the types S
and T might have free type variables, whose uncertainty
often precludes a definitive statement about S ♦ T . (For
example, CJXK ♦ CJY K holds only if X 6≡ Y .) Our
solution is to reason backwards: Under the assumption that
the intersection is nontrivial (that the types do not exclude),
gather the necessary constraints on type parameters. (For
example, CJXK ∩ CJY K 6≡ Bottom yields the constraint
X ≡ Y .) These constraints are then reduced, resulting
in an instantiation (and potentially tighter bounds on type
parameters) that necessarily follows from our assumption of
nontriviality.14

14 A similar sort of case analysis and constraint solving arises for pattern
matching with generalized algebraic data types (GADTs) [15]: GADTs

We call the general pattern of simplifying an existentially
quantified (intersection) type existential reduction, given by
the judgment ∆ ` δ

≡−→ δ in Figure 7. The first rule
for existential reduction performs the constraint-based case
analysis described above, while the second merely relates
the existential to itself if the premises of the first rule do not
hold. We thus explain the first rule in more detail.

The first premise determines the constraints C that must
be true under the hypothesis that T 6≡ Bottom (i.e. that this
type is nontrivial). Note that the type variables from ∆ are
bound, while any type variables from the existential itself,
∆′, become inference type variables mentioned in C. The
second premise binds C′ to exactly the inference type vari-
ables and bounds denoted by the existential’s type param-
eters; these are the constraints that must hold for T to still
make sense. In the third premise, if unify succeeds, it pro-
duces a substitution φ for any inference type variables from
∆′ constrained by equalities. Because φ is a most general
unifier, it has the property that any other valid substitution
ψ of ∆′’s variables with ψ(T ) 6≡ Bottom must be equal to
τ ◦ φ, for some other substitution τ . Moreover, if unify suc-
ceeds, it produces a set of leftover constraints C′′ that are not
unifiable equalities (but have still been simplified). If it is
possible to express C′′ as some type environment ∆′′, then
we use this as the new type parameters over the simplified
type φ(T ).

Similarly we call the general pattern of simplifying a
universally quantified arrow type universal reduction, given
by the judgment ∆ ` σ1

≡−→ σ2 The first premise reduces
the domain type dom(σ) = ∃J∆′KS, resulting in a new
existential type δ = ∃J∆′′KS′ and a substitution φ mapping
type variables from ∆′ to types with variables in ∆′′. We
then construct a new arrow with domain δ and range φ(T ).

As an example, in order to check that the first two dec-
larations of Dbar from Section 5 satisfy the Meet Rule, we
must reduce the existential

∃JX <: Any, Y <: ZK
(
ArrayListJXK ∩ ListJY K

)
.

Thus we must find the constraint C such that

` ArrayListJXK ∩ ListJY K 6≡Bottom ⇒ C

can be derived, noting that X and Y are actually (un-
bound) type inference variables here. In this instance C =
X ≡ Y due to multiple instantiation exclusion. Then we
convert the bounds on the existential’s type parameters
into the constraint C′ on X and Y as inference variables:
toConstraint(X <: Any, Y <: Z ) = X <: Any, Y <: Z .
Unifying the constraint

C ∧ C′ = X ≡ Y ∧X <: Any ∧ Y <:Z

yields the type substitution φ = [W/X,W/Y ] (for some
fresh variableW ) and the simplified leftover constraint C′′ =

resemble our existential types and pattern matching resembles our function
application.



Existential Reduction: ∆ ` δ ≡−→ δ , φ

∆ ` T 6≡Bottom ⇒ C toConstraint(∆′) = C′
∆ ` unify(C ∧ C′) = φ , C′′ toBounds(C′′) = ∆′′

∆ ` ∃J∆′KT ≡−→ ∃J∆′′Kφ(T ) , φ

otherwise

∆ ` ∃J∆′KT ≡−→ ∃J∆′KT , [/]

Universal Reduction: ∆ ` σ ≡−→ σ , φ

∆ ` ∃J∆′KS ≡−→ ∃J∆′′KS′ , φ
∆ ` ∀J∆′KS → T

≡−→ ∀J∆′′KS′ → φ(T ) , φ

Figure 7. Quantifier reduction judgments.

W <: Z . Since C′′ has the form of a type environment,
toBounds(C′′) = W <: Z , we finally reduce this existential
to ∃JW <: ZK

(
ArrayListJW K ∩ ListJW K

)
. However, due

to the class table declaration of ArrayListJW K this existen-
tial type will be indistinguishable (by .) from the simpler
∃JW <: ZKArrayListJW K .

When checking that the first two declarations Dtail from
Section 5 satisfy the Return Type Rule, we use universal
reduction to prove

` ∀JX <: AnyKListJXK→ ListJXK
≤ ∀JX <: Any, Y <: NumberK

(
ListJXK ∩ ListJY K

)
→ ListJY K

First, note that by reasoning similar to that in the previous
example we know

` ∃JX <: Any, Y <: NumberK
(
ListJXK ∩ ListJY K

)
≡−→ ∃JW <: NumberKListJW K

with substitution [W/X,W/Y ]. Using this substitution we
must now prove

` ∀JX <: NumberKListJXK→ ListJXK
. ∀JW <: NumberKListJW K→ ListJW K

which is clearly true.

8. Overloading Across Modules
To demonstrate the modularity of our design, we present a
lightweight modeling of program modules, and show how
applying our rules to each module separately suffices to
guarantee the safety of the entire program. In our model, a
program is a module, which may be either simple or com-
pound. A simple module consists of (i) a class table and (ii)
a collection of function declarations. That is, a simple mod-
ule is just a program as described in the rest of this paper. It

is well-formed if it satisfies the well-formedness conditions
of a whole program, as described in previous sections.

A compound module combines multiple modules, pos-
sibly renaming members (i.e., classes and functions) of its
constituents. More precisely, a compound module is a col-
lection of filters, where a filter consists of a module and a
complete mapping from names of members of the module to
names. The name of a member that is not renamed is simply
mapped to itself.

The semantics of a compound module is the semantics of
the simple module that results from recursively flattening the
compound module as follows:

• Flattening a simple module simply yields the same mod-
ule.

• Flattening a compound module C consisting of filters
(module/mapping pairs) (c1,m1), . . . , (cN ,mN ) yields a
simple module whose class table and collection of func-
tion declarations are the unions of the class tables and
collections of function declarations of s1, . . . , sN , where
si is the simple module resulting from first flattening ci
and then renaming all members of the resulting simple
module according to the mapping mi.

A compound module is well-formed if its flattened version is
well-formed. This requirement implies that the type hierar-
chies in each constituent component are consistent with the
type hierarchy in the flattened version.

We can now use this model of modularity to see that we
can separately compile and combine modules.

First consider the case of a collection of modules with
no overlapping function names such that each module has
been checked separately to ensure that the overloaded func-
tions within them satisfy the overloading rules. Because the
type hierarchies of each constituent of a compound module
must be consistent with that of the compound module, all
overloaded functions in the resulting compound module also
obey the overloading rules.

Now consider the case of a collection of separately
checked modules with some overlapping function names.
When overloaded functions from separate modules are com-
bined, there are three rules that might be violated by the
resulting overloaded definitions: (1) the Meet Rule, (2) the
No Duplicates Rule, (3) the Return Type Rule. If the Meet
Rule is violated, the programmer need only define yet an-
other module to combine that defines the missing meets of
the various overloaded definitions. If the No Duplicates Rule
or the Return Type Rule is violated, the programmer can fix
the problem by renaming functions from one or more com-
bined components to avoid the clash; the programmer can
then define another component with more overloadings of
the same function name that dispatch to the various renamed
functions in the manner the programmer intends.



Consider the following example:15 Suppose we have a
type Number in module A , with a function:

add : (Number,Number)→ Number

Suppose we have the type and function:

BigNum <: Number
add : (BigNum,BigNum)→ BigNum

in module B and the type and function:

Rational <: Number
add : (Rational,Rational)→ Rational

in module C .
Each of modules B and C satisfy the No Duplicates

and Meet rules. Now, suppose we define two compound
modules D and E , each of which combines modules B
and C without renaming add . In each of D and E , we
have an ambiguity in dispatching calls to add with types
(BigNum,Rational) or (Rational,BigNum) . Our rules
require adding two declarations, one in each of D and E ,
to resolve these ambiguities.

Now let us suppose we wish to combine D and E into a
compound component F . Without renaming, this combina-
tion would violate the No Duplicates Rule; each of D and E
has an implementation of add(Bignum,Rational) . To re-
solve this conflict, the program can rename add from both
D and E , and define a new add in F . This new definition
could dispatch to either of the renamed functions from D or
E , or it could do something entirely different, depending on
the programmer’s intent.

9. Related Work
9.1 Overloading and Dynamic Dispatch.
Castagna et al. proposed rules for defining overloaded func-
tions to ensure type safety [4]. They assumed knowledge of
the entire type hierarchy (to determine whether two types
have a common subtype), and the type hierarchy was as-
sumed to be a meet semilattice (to ensure that any two types
have a greatest lower bound).

Millstein and Chambers devised the language Dubious
to study how to modularly ensure safety for overloaded
functions with symmetric multiple dynamic dispatch (mul-
timethods) in a type system supporting multiple inheritance
[11, 12]. With Clifton and Leavens, they developed Multi-
Java [5], an extension of Java with Dubious’ semantics for
multimethods. Lee and Chambers presented F(EML) [9], a
language with classes, symmetric multiple dispatch, and pa-
rameterized modules. In previous work [2], we built on the
work of Millstein and Chambers to give modular rules for
a core of the Fortress language [1], which supports multiple
inheritance and does not require that types have expressible
meets (i.e., the types that can be expressed in the language
need not form a meet semilattice), but defines an exclusion

15 Suggested by an anonymous reviewer of a previous version of this paper.

relation on types to allow more valid overloadings. For de-
tailed comparison of modularity and dispatch for these sys-
tems, see the related work section of our previous paper [2].

None of the systems described above support polymor-
phic functions or types. F(EML)’s parameterized modules
(functors) provide a form of parametricity but they cannot
be implicitly applied; the functions defined therein cannot
be overloaded with those defined in other functors. This pa-
per extends our previous work [2] with parametric polymor-
phism for both types and top-level functions.

Overloading and multiple dispatch in the context of poly-
morphism has previously been studied by Bourdoncle and
Merz [3]. Their system, ML≤, integrates parametric poly-
morphism, class-based object orientation, and multimeth-
ods, but lacks multiple inheritance. Each multimethod (over-
loaded set) requires a unique specification (principal type),
which greatly simplifies the checking of their equivalent of
the Return Type Rule: the return type of each definition
needs to be compared only with the return type of the prin-
cipal type. Also, to check their equivalent of the Meet Rule,
the entire type hierarchy relevant to the multimethod must be
known, so in general, this check must be done at link time.
Finally, their type system does not provide any exclusion re-
lation. On the other hand, ML≤ allows variance annotations
on type constructors—something we defer to future work.

Litvinov [10] developed a type system for the Cecil lan-
guage, which supports bounded parametric polymorphism
and multimethods. Because Cecil has a type-erasure seman-
tics, statically checked parametric polymorphism has no ef-
fect on run-time dispatch.

9.2 Type classes
Wadler and Blott [17] introduced the type class as a means to
specify and implement overloaded functions such as equal-
ity and arithmetic operators in Haskell. Other authors have
translated type classes to languages besides Haskell [6, 14,
18]. Type classes encapsulate overloaded function declara-
tions, with separate instances that define the behavior of
those functions (called class methods) for any particular type
schema. Parametric polymorphism is then augmented to ex-
press type class constraints, providing a way to quantify a
type variable — and thus a function definition — over all
types that instantiate the type class.

In systems with type classes, overloaded functions must
be contained in some type class, and their signatures must
vary in exactly the same structural position. This uniformity
is necessary for an overloaded function call to admit a princi-
pal type; with a principal type for some function call’s con-
text, the type checker can determine the constraints under
which a correct overloaded definition will be found. Because
of this requirement, type classes are ill-suited for fixed, ad
hoc sets of overloaded functions like:

println(): () = println(“”)
println(s: String): () = . . .



or functions lacking uniform variance in the domain and
range16 like:

bar(x: Z): Boolean = (x = 0)
bar(x: Boolean): Z = if x then 1 else 2 end

bar(x: String): String = x

With type classes one can write overloaded functions with
identical domain types. Such behavior is consistent with the
static, type-based dispatch of Haskell, but it would lead to ir-
reconcilable ambiguity in the dynamic, value-based dispatch
of our system.

A broader interpretation of Wadler and Blott’s [17] sees
type classes as program abstractions that quotient the space
of ad-hoc polymorphism into the much smaller space of
class methods. Indeed, Wadler and Blott’s title suggests that
the unrestricted space of ad-hoc polymorphism should be
tamed, whereas our work embraces the possible expressivity
achieved from mixing ad-hoc and parametric polymorphism
by specifying the requisites for determinism and type safety.

10. Conclusion and Discussion
We have shown how to statically ensure safety of over-
loaded, polymorphic functions while imposing relatively
minimal restrictions, solely on function definition sites. We
provide rules on definitions that can be checked modularly,
irrespective of call sites, and we show how to mechanically
verify that a program satisfies these rules. The type analysis
required for implementing these checks involves subtyping
on universal and existential types, which adds complexity
not required for similar checks on monomorphic functions.
We have defined an object-oriented language to explain our
system of static checks, and we have implemented them as
part of the open-source Fortress compiler [1].

Further, we show that in order to check many “natural”
overloaded functions with our system in the context of a
generic, object-oriented language with multiple inheritance,
richer type relations must be available to programmers—
the subtyping relation prevalent among such languages does
not afford enough type analysis alone. We have therefore
introduced an explicit, nominal exclusion relation to check
safety of more interesting overloaded functions.

Variance annotations have proven to be a convenient and
expressive addition to languages based on nominal subtyp-
ing [3, 8, 13]. They add additional complexity to polymor-
phic exclusion checking, so we leave them to future work.
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