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Abstract. An error was discovered by M.F. Atig in the coverability graph
based decision procedure we defined in [2]. We thank him for bringing the error

to our knowledge. We refer the interested reader to [1] for updated results

about the verification of liveness properties for asynchronous programs.

We show below at Fig. 1 and 2 that the coverability graph does not provide
enough precision to determine the existence of fair infinite runs.

main () {

b:=false;

while(NONDET) {

post h1();

}

post h2();

}

h1() {

b:=true;

}

h2() {

if (b==true)

post h2();

}
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Figure 1. An asynchronous program and its PN counterpart
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Figure 2. The decision procedure of [2] search the coverability
graph for a cycle satisfying some properties. No cycle in the above
graph satisfies those properties. Hence the procedure incorrectly
concludes the non existence of a fair infinite run.
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Abstract
Asynchronous or “event-driven” programming is a popular tech-
nique to efficiently and flexibly manage concurrent interactions. In
these programs, the programmer can post tasks that get stored in a
task buffer and get executed atomically by a non-preemptive sched-
uler at a future point. We give a decision procedure for the fair
termination property of asynchronous programs. The fair termina-
tion problem asks, given an asynchronous program and a fairness
condition on its executions, does the program always terminate on
fair executions? The fairness assumptions rule out certain unde-
sired bad behaviors, such as where the scheduler ignores a set of
posted tasks forever, or where a non-deterministic branch is always
chosen in one direction. Since every liveness property reduces to
a fair termination property, our decision procedure extends to live-
ness properties of asynchronous programs.

Our decision procedure for the fair termination of asynchronous
programs assumes all variables are finite-state. Even though vari-
ables are finite-state, asynchronous programs can have an un-
bounded stack from recursive calls made by tasks, as well as an
unbounded task buffer of pending tasks. We show a reduction from
the fair termination problem for asynchronous programs to fair ter-
mination problems on Petri Nets, and our main technical result is a
reduction of the latter problem to Presburger satisfiability. Our de-
cidability result is in contrast to multi-threaded recursive programs,
for which liveness properties are undecidable.

While we focus on fair termination, we show our reduction to
Petri Nets can be used to prove related properties such as fair non-
starvation (every posted task is eventually executed) and safety
properties such as boundedness (find a bound on the maximum
number of posted tasks that can be in the task buffer at any point).

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification.
General Terms: Languages, Verification, Reliability.
Keywords: asynchronous (event-driven) programming, liveness,
fair termination, Petri Nets.
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1. Introduction
Asynchronous programming is a ubiquitous idiom to manage con-
current interactions with the environment with low overhead. In this
style of programming, rather than waiting for a time-consuming
operation to complete, the programmer can post asynchronous pro-
cedure calls which are stored in a task buffer for later execution,
instead of being executed right away. In addition, the programmer
can also make the usual synchronous procedure calls where the
caller blocks until the callee finishes. A co-operative scheduler re-
peatedly picks posted calls from the task buffer and executes them
atomically to completion. Execution of the posted calls can lead
to further calls being posted. The interleaving of different picks-
and-executes (a pick-and-execute is often referred to as a dispatch)
hides latency in the system. Asynchronous programming has been
used to build fast servers and routers [23, 13], embedded systems
and sensor networks [8], and forms the basis of web programming
using Ajax.

Writing correct asynchronous programs is hard. The loose cou-
pling between asynchronous calls obscures the control and data
flow, and makes it harder to reason about them. The program-
mer must keep track of concurrent interactions, manage data flow
between asynchronously posted calls (including saving and pass-
ing appropriate state between calls), and ensure progress. Since
the scheduling and resource management is co-operative and per-
formed by the programmer, one mis-behaving procedure (e.g., one
that does not terminate, or takes up too many system resources) can
bring down the entire system.

In this paper, we focus on verifying liveness properties of asyn-
chronous programs. Informally, liveness properties specify that
“something good eventually happens,” and can be used to specify
progress properties such as every posted call eventually gets dis-
patched. Specifically, we develop algorithms to check that an asyn-
chronous program terminates under certain fairness constraints on
the scheduler and external events. We call this the fair termination
problem. The fairness conditions on the scheduler rule out certain
undesired paths, in which for example the scheduler postpones for-
ever some posted task. It is known that general liveness properties
can be reduced to checking fair termination [35].

In the following, we restrict attention to asynchronous programs
in which the data ranges over a finite domain of values. The finite-
ness assumption on the data is necessary, since fair termination is
already undecidable for 2-counter machines [22]. However, we do
not restrict the depth of the stack or the size of the task buffer which
could both be unbounded.

For sequential programs with synchronous calls, there has been
a lot of work in automatic techniques to proving fair termination
[20, 15, 30, 21]. It seems natural that one can reduce reasoning
about asynchronous programs to reasoning about synchronous pro-
grams by explicitly modeling the task buffer and the scheduling.
For example, we can add a counter representing the number of



pending instances for each procedure, increment the appropriate
counter at each post, and model the scheduler as a dispatch loop
which picks a non-zero counter, decrements it, and executes the
corresponding procedure. While the reduction is sound, applying
sequential fair termination checking on this sequential program is
not guaranteed to be complete (i.e., terminate with the correct an-
swer on all inputs), since checking termination for programs with
integer counters is undecidable in general. The difficulty arises be-
cause the number of pending calls in the task buffer (a call is pend-
ing if it has been posted but not yet picked), and hence the counters,
can grow unboundedly large.

Our main result is that fair termination is decidable for asyn-
chronous programs. This is unlike the case for multi-threaded
programs communicating through shared variables, for which the
problem is undecidable [27].

Our decidability proof uses constructions on Petri Nets [28] (an
infinite state concurrency model with many decidable properties),
via some language-theoretic reductions. As noted in [2, 11, 32], we
use the fact that the two sources of unboundedness —unbounded
program stack from recursive synchronous calls and unbounded
counters from pending asynchronous calls— can be decoupled:
while a (possibly recursive) procedure is executing, the number of
pending calls can only increase, and the number of pending calls
decreases precisely when the program stack is empty. Accordingly,
our proof of decidability combines two technical constructions.
First, we use Parikh’s theorem [24] from language theory to pre-
cisely summarize the effect of a synchronous call on the state of
the counters. Second, with this summarization, we can construct a
Petri Net that captures the effect of the execution of a posted call in
the system.

Note that by using Parikh’s theorem (which preserves finite ex-
ecutions only) we implicitly assume that each executed procedure
eventually terminates. We check this property using a decision pro-
cedure for synchronous program termination. For this check, the
task buffer can be abstracted away (as no dispatches occur from
within a call) and we can use techniques for liveness checking for
finite-state pushdown systems [1, 36].

With the above check, it remains to show that the Petri Net is
fairly terminating. Using known constructions on Petri Nets [33],
we reduce this question to proving the absence of certain finite
paths in the coverability graph of the Petri Net (for now, think
a coverability graph as a finite automaton that captures the runs
of the Petri Net). Finally, we reduce the existence of such finite
runs to the satisfiability of a formula in the Presburger arithmetic
which can be effectively constructed from the coverability graph
of the Petri Net. Since each step of the reduction is effective, and
satisfiability of Presburger arithmetic is decidable [25], we get our
decision procedure.

Our reduction of problems on asynchronous programs to prob-
lems on Petri Nets enables the use of an extensive algorithmic
repertoire built for Petri Nets. Indeed, we show two alternate proofs
for fair termination which follow from the decidability of more gen-
eral model checking questions on Petri Nets [10, 37].

Moreover, algorithmic analysis on Petri Nets can be used
to provide decision procedures for related questions on asyn-
chronous programs. We mention two applications. First, the fair
non-starvation question asks, given an asynchronous program and
a fairness condition on executions, whether every pending call is
eventually dispatched (i.e., no posted call waits forever). Fair non-
starvation is practically relevant to ensure that an asynchronous
program (such as a server) is responsive. We show a decision pro-
cedure for this problem by adding new constraints to the Presburger
formula for the fair termination problem.

Second, we show a decision procedure for boundedness, a
safety property that computes the maximum possible size of the

task buffer at any point in any execution. For the boundedness prop-
erty we again use a known result on Petri Nets which allows to
compute the maximum possible size D of the task buffer at any
point in any execution (or return infinity, if the task buffer is un-
bounded). Since the task buffer is often implemented as a finite
buffer, let us say of size d, if D > d holds then there is an execu-
tion of the system that leads to an overflow of the buffer, and to a
possible crash. Our decision procedure for the boundedness prob-
lem uses the above reduction to Petri Nets, and the construction of
a coverability graph [12, 33, 34].

Related Work. Event driven programming is a popular way to
write high-performance systems, and the style is supported in most
programming environments either as libraries (such as libasync
[17], libevent [18], or libeel [4]), or as language features [6, 7, 14,
16]. However, it is widely recognized that while the style optimizes
for low overhead and efficient execution, programs written in this
style may be hard to read and debug.

While we focus on analyzing asynchronous programs writ-
ten in C and using a library for asynchronous calls, there have
been several recent attempts at language-level support for writ-
ing asynchronous programs to enable better automatic reasoning
[3, 6, 14, 16]. Many of these language extensions “compile down”
to our basic model, and hence, our decidability results apply. It will
be interesting to see how language level support can be combined
with our algorithms to prove deeper properties of systems.

Our work is inspired by recent results that show the decidability
of safety properties of asynchronous programs [32, 11, 2], and in
particular, of precise meet-over-all-paths dataflow analysis [11].

Our correctness arguments through Petri Nets use powerful al-
gorithmic tools developed for Petri Nets [12, 33, 34]. The reduction
from the existence of a fair non-terminating run in a Petri Net to the
existence of a certain finite run in its coverability graph uses tech-
niques similar to [33]. The reduction of this latter problem as the
satisfiability problem of a Presburger formula is inspired by the en-
coding found in [31].

2. Asynchronous Programs and Properties
We motivate our problem on a simple imperative language. In
our examples, we use C-like syntax with an additional construct
���� f(e) which asynchronously posts a procedure call f with
arguments e.

Figure 1(a) shows a simplified asynchronous implementation of
windowed RPC, in which a client makes n asynchronous procedure
calls in all, of which at most w ≤ n are pending at any one time.
(Assume that n and w are fixed constants). Windowed RPC is a
common systems programming idiom which enables concurrent
interaction with a server without overloading it.

The windowed RPC client is implemented in the procedure
����. Two global counters, ��	� and ���
, respectively track the
number of posted calls and the number of calls that have returned
(i.e., that have been completed). We abstract the server by the
procedure ������� which increments the number of calls that have
returned. The procedure ���� first checks how many posted calls
have returned. If the number of returned calls is n or more, it
terminates. If fewer than n calls have returned, it posts new calls
if required. A new call is posted if (1) the number of calls already
posted is fewer than n, and (2) the number of pending calls (equal to
sent− recv) is lower than the window size w. If these conditions
are satisfied, an asynchronous call to ������� is posted, and the
variable ��	� is incremented. In either case, ���� reposts a call to
itself (this is done by an asynchronous recursive call), either to post
more calls or to wait for pending calls to return.
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(a) Windowed RPC implementation
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(b) A fairly terminating
asynchronous program

Figure 1. Examples of asynchronous programs.

As mentioned in [14], already in this simple case, asynchronous
code with windowed control flow is quite complex as the control
decisions are spread across multiple pieces of code.

2.1 Programming Model

We represent programs using a generalization of control flow
graphs, that include special edges corresponding to asynchronous
procedure calls. Let P be a finite set of procedure names. An asyn-
chronous control flow graph (ACFG) Gp for a procedure p ∈ P is a
pair (Vp, Ep) where Vp is the set of control nodes of the procedure
p, including a unique start node vs

p and a unique exit node ve
p, and

Ep is a set of directed intraprocedural edges between the control
nodes Vp. The edges in Ep are partitioned into edges E(o), E(s),
and E(a), corresponding to one of the following:

• an operation edge corresponding to a basic block of assign-
ments or an assume predicate derived from a branch condition
(E(o));

• a synchronous call edge to a procedure q ∈ P (E(s)); or

• an asynchronous call edge to a procedure q ∈ P (E(a)).

For each call edge, synchronous or asynchronous, from v to v′ we
call the source node v the call-site node, and the target node v′ the
return-site node.

A program G�� comprises a set of pairwise disjoint ACFGs
Gp for each procedure in p ∈ P (we also say handler). The
control locations of G�� are given by V �� =

S
p∈P Vp: the union

of the control locations of the individual procedures. The edges
of G�� are given by E�� =

S
p∈P Ep ∪ E(i), the union of the

(intraprocedural) edges of the individual procedures and a special
set E(i) of interprocedural edges defined as follows. For each
(v, v′) ∈ E(s) that calls procedure q, that is for each synchronous
call edge from call-site v to procedure q returning to return-site v′,
we have:

• an interprocedural call-to-start edge from the call-site v to the
start node vs

q of q (i.e., (v, vs
q) ∈ E(i)); and

• an interprocedural exit-to-return edge from the exit node ve
q of

q to the return-site v′ (i.e., (ve
q , v′) ∈ E(i)).

As in [29], the call-to-start edges (or exit-to-return edges) allow us
to model parameter passing and context restoration in our frame-

work. An asynchronous program A = (P, G��, main) consists of a
set of procedure names P , a program G��, and an initial procedure
main ∈ P which we assume has no parameters and is never called
by any procedure (either synchronously or asynchronously).

Semantics. We consider abstract semantics of asynchronous pro-
grams relative to finite dataflow domains (D, M, d0), where D is a
finite set of dataflow facts, M : S → D → D is a dataflow transfer
function and S =

S
p∈P {E(o)

p }∪E(i)∪{(ve
main, vs

q) | q ∈ P}∪
{(ve

q , ve
main) | q ∈ P}, and d0 ∈ D the initial dataflow state.

The abstract semantics of an asynchronous program A =
(P, G��, main) relative to the dataflow domain (D, M, d0) is given
by a transition system where each state ((v, d), w, m) consists in:
the abstract state (v, d) ∈ V ��×D, the program stack w ∈ (V ��)∗,
and a multiset m over P called the multiset of pending calls. The
initial state is ((vs

main, d0), v
e
main, ∅) in which the abstract state is

(vs
main, d0), the stack content is given by the word ve

main and the mul-
tiset is empty. There is a transition from a state ((v, d), s, m) to the
state ((v′, M(v, v′)(d)), s, m) if there is an edge (v, v′) ∈ E(o)

(internal operation). There is a transition from ((v, d), s,m) to
((vs

q , M(v, vs
q)(d)), s · v′, m) if there is a synchronous call edge

(v, v′) calling q in E(s) (procedure call). There is a transition
from ((ve

q , d), s · v′, m) to ((v′, M(ve
q , v′)(d)), s, m) if there is

a synchronous call edge (v, v′) calling q in E(s) (procedure re-
turn). There is a transition from ((v, d), s, m) to ((v′, d), s, m �
{q}) if there is an asynchronous call edge (v, v′) ∈ E(a) to
a procedure q (asynchronous post).1 There is a transition from
((ve

main, d), ε, m) to ((vs
q , M(ve

main , v
s
q)(d)), ve

main , m \ {q}) if q ∈
m (asynchronous call dispatch). Finally, there is a transition from
((ve

q , d), s · ve
main, m) to ((ve

main, M(ve
q , ve

main)(d)), s,m) (asyn-
chronous return). A run of an asynchronous program relative to
the dataflow domain is a path in the associated transition system,
starting with the initial state. By abuse of notation, we write A to
denote the abstract semantics over a fixed dataflow domain.

We now give some intuition about the control location ve
main

which plays a special role in the above semantics. If the current
state is such that the control location is ve

main and the stack content
is empty (i.e., ((ve

main, d), ε, m) for some multiset m and dataflow
fact d), then a procedure call from the multiset of pending calls, if

1 The symbol � denotes the union between multisets.



any, is dispatched. Otherwise, if the multiset of empty, the program
terminates. Thus ve

main models a special “dispatch loop.”
For simplicity of exposition, we assume that procedures are

parameterless and there are no local variables. For a fixed finite
dataflow domain, parameters can be modeled by copying and re-
naming the functions, one copy for each parameter value, and local
variables can be encoded into the nodes of the control flow graph.

2.2 Progress Guarantees

Consider the desirable property that the windowed RPC fairly ter-
minates, which implies that, at some point in time, every posted call
has returned and the multiset of pending calls is empty. Informally,
this property is true because the procedure ���� posts rpccall at
most n times, and posts itself only as long as recv is less than n.
Each run of rpccall increments recv, so that after n dispatches of
rpccall, the value of recv reaches n, and from this point, all calls
to wrpc do not post any new call. Thus, eventually, the multiset of
pending calls becomes empty.

Notice that we need the assumption that the scheduler fairly
dispatches posted calls: a posted call to q is followed by a dispatch
to q. Without that assumption the program does not terminate:
consider the infinite trace where the scheduler always picks ����
in preference to �������.

Fair Termination. We now define the fair termination property
on the model. An asynchronous program (P, G��, main) fairly
terminates if (i) every execution of a procedure that is called
(synchronous or asynchronous) eventually returns; and (ii) there
is no infinite run that is fair. An infinite run is said to be fair if for
every state ((v, d), w, m) along this run, if the multiset m contains
a call to procedure q then eventually a call to q is dispatched. The
fairness constraint is expressible as a ω-regular property.

Of course, for most server applications, the asynchronous pro-
gram implementing the server should not terminate (indeed, ter-
mination of a server points to a bug). However, each request to
the server should fairly terminate as defined above. Many event li-
braries (e.g., libeel [4]) allow identifying individual requests using
mechanisms such as group-ids or session-ids.

Fair Non-starvation. A second “progress condition” is fair non-
starvation. When an asynchronous program does not terminate, we
can still require that (i) every execution of a procedure that is
called (synchronous or asynchronous) eventually returns; and (ii)
along every infinite fair execution no handler is starved. A starving
handler corresponds to a pending call which is never dispatched,
and hence which waits forever to be executed. Consider a handler !
that posts two calls to itself. An infinite fair execution dispatches a
call to ! each time a dispatch takes place, even though a particular
call to ! may never be run.

Proving fair termination and fair non-starvation for asyn-
chronous programs is difficult for several reasons. First, as the win-
dowed RPC example suggests, reasoning about termination may
require reasoning about the dataflow facts (e.g., the fact that recv
eventually reaches n in the example). Second, at each point, there
can be an unbounded number of pending calls. This is illustrated
by the program in Fig. 1(b), which terminates on each fair execu-
tion, but in which the multiset contains unboundedly many pending
calls (to !#). Third, each handler can potentially be recursive, so the
program stack can be unbounded as well.

We remark that if the finite dataflow domain induces a sound
abstraction of a concrete asynchronous program in which data vari-
ables range over infinite domains, that is, if the finite abstraction has
more behaviors, then our analysis is sound: if the analysis with the
finite dataflow domains shows the asynchronous program fairly ter-
minates (resp. is fair non-starving) then the original asynchronous
program fairly terminates (resp. is fair non-starving).

3. Asynchronous Automata
We now formally introduce asynchronous automata, an automaton
model for asynchronous programs. We give the semantics of asyn-
chronous programs using asynchronous automata, and develop our
theoretical results on asynchronous automata.

Prerequisites. Let Σ be an alphabet. We denote by Σ∗ (respec-
tively, Σω) the set of finite (respectively, countably infinite) se-
quences over Σ. We write Σε for the language Σ ∪ {ε}. Given
w ∈ Σ∗, we use |w| to denote its length.

A counter map is a mapping from Σ to N. For a counter map c,
we write c[a ← i] for the counter map that maps a ∈ Σ to i ∈ N
and maps every b ∈ Σ\{a} to c(b). The counter map 0 maps every
a ∈ Σ to 0.

The Parikh image Parikh : Σ∗ → NΣ maps a word w ∈ Σ∗ to
a counter map Parikh(w) such that Parikh(w)(a) is the number of
occurrences of a in w. For example, Parikh(abbab)(a) = 2 and
Parikh(abbab)(b) = 3. For a language L, we define Parikh(L) =
{Parikh(w) | w ∈ L}.
LEMMA 1. [Parikh’s Lemma [24]] For any context free language
L there is an effectively computable regular language L′ such that
Parikh(L) = Parikh(L′).

3.1 Asynchronous Automata

An asynchronous automaton A = (Q, Σ, δ, q0, a0) consists of a
finite set Q of global states, a finite alphabet Σ, a transition relation
δ ⊆ (Q × Σ) × (Q × Σ∗ × Σε), an initial state q0 ∈ Q, and an
initial handler call a0 ∈ Σ.

A configuration of an asynchronous automaton is a tuple
(q, w, c) ∈ Q×Σ∗ ×NΣ where q is a global state, w is a word of
Σ∗ called the stack content, and c is a counter map of pending calls
(or simply the counter map). The initial configuration is (q0, a0, 0),
where the global state is q0, the stack content is a0, and the counter
map is 0.

We define a transition relation→ on configurations as the union
of a transition relation→s modeling handler steps and a transition
relation→d modeling a dispatch, where→s and→d are defined as
follows:

Handler Step There is a transition (q, wa, c) →s (q′, ww′, c′),
where ((q, a), (q′, w′, a′)) ∈ δ and c′ = c[a′ ← c(a′) + 1] if
a′ ∈ Σ and c′ = c if a′ = ε.

Handler Dispatch There is a transition (q, ε, c) →d (q, a, c′),
where c(a) > 0 and c′ = c[a← c(a)− 1].

In the former case, if a′ 
= ε then we say that a call to a′ has been
posted. In the latter case we say that a pending call to procedure a is
dispatched, or that a is dispatched or simply that a dispatch occurs.

A run of an asynchronous automaton is a (finite or infi-
nite) sequence (q0, a0,0) → (q1, w1, c1) → · · · . Let →∗

(respectively, →∗
s) denote the reflexive transitive closure of →

(respectively, →s). A configuration (q, w, c) is reachable iff
(q0, a0,0) →∗ (q, w, c). Finally, we write Reachε(A) for the set
of pairs {(q, c) | ∃q ∈ Q : (q0, a0,0)→∗ (q, ε, c)}, that is the set
of reachable configurations in which the stack is empty.

Infinite Runs. The infinite runs of an asynchronous automaton fall
into two categories:

1. [Runs of the First Form] infinite runs of the form
(q0, a0,0) →∗

s (q1, ε, c1) →d (q1, a1, c
′
1) →∗

s (q2, ε, c2) →d

. . . in which there are infinitely many→d steps; and

2. [Runs of the Second Form] infinite runs in which there are
finitely many→d steps (and so, in which infinitely many han-
dler steps take place consecutively).
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Figure 2. A simple event processor

3.2 From Programs to Automata

In the following, we prove our theoretical results on asynchronous
automata. We now show that the abstract semantics of asyn-
chronous programs relative dataflow domain (D, M, d0) can be
given by translation to an asynchronous automaton.

Given an asynchronous program A = (P, G��, main) with
G�� = (V ��, E��) we define an asynchronous automaton AG�� =
(Q, Σ, δ, q0, a0) as follows:

• Q = V �� ×D;

• Σ = P ∪ {v′ | ∃(v, v′) ∈ E(s)} ∪ {ve
main};

• a0 = ve
main;

• q0 = (vs
main, d0); and

• δ is the smallest set such that

let (v, v′) ∈ E(o), for every u ∈ Σ and d ∈ D we have
(((v, d), u), ((v′, M(v, v′)(d)), u, ε)) ∈ δ

let (v, v′) ∈ E(s) be an synchronous call edge to procedure
q ∈ P for every u ∈ Σ and d ∈ D we have

(((v, d), u), ((vs
q , M(v, vs

q)(d)), u · v′, ε)) ∈ δ

(((ve
q , d), v′), ((v′, M(ve

q , v′)(d)), ε, ε)) ∈ δ

let (v, v′) ∈ E(a) be an asynchronous call edge to proce-
dure q ∈ P , for every u ∈ Σ and d ∈ D we have

(((v, d), u), ((v′, d), u, q)) ∈ δ

for every q ∈ P , d ∈ D

(((ve
main, d), q), ((vs

q , M(ve
main, v

s
q)(d)), ve

main , ε)) ∈ δ

(((ve
q , d), ve

main), ((v
e
main, M(ve

q , ve
main)(d)), ε, ε)) ∈ δ

3.3 Fair Termination

We now translate the fair termination property of an asynchronous
program into the asynchronous automata model.

An infinite run is a-fair for a handler a ∈ Σ iff for every state
(q, w, c) along this run, if c(a) > 1 then eventually a handler
dispatch transition of the form (q1, ε, c1) →d (q2, a,c2) where
c1(a) > 0 and c2 = c1[a ← c(a) − 1] must occur. An infinite
run is fair iff it is a-fair for all handlers a ∈ Σ. An asynchronous
automaton terminates iff it has no infinite runs. An asynchronous
automaton terminates fairly iff (i) all infinite runs are of the first
form (hence there is no infinite run of the second form), and (ii)
there is no infinite run of the first form that is fair.

The asynchronous program of Fig. 2, initialized with the �����
handler, implements a simple request processor: The program is
terminating: there is only one run, starting with �����, followed
by ���$, and then by ��	$. On the other hand, the program in
Fig. 1(b) is fair terminating, but not terminating. There is an infinite

run in which the scheduler always chooses !" over !#. This run is
not !# fair, and hence not fair.

3.4 Recursion-free Asynchronous Automata

We now address one source of unboundedness: the potentially un-
bounded stack. Our first step will transform, using Parikh’s Lemma,
a given asynchronous automaton A into an “equivalent” recursion-
free asynchronous automaton A′ in which the stack height is always
bounded by one. This equivalence ensures that A does have a (fair)
infinite run of the first form iff A′ does. Moreover, their reachable
configurations coincide as long as we restrict our attention to those
with an empty stack (Lem. 2).

An asynchronous automaton A is recursion-free if no handler
step of A pushes on to the stack, that is, if δ ⊆ (Q × Σ) × (Q ×
Σε ×Σε). Intuitively, in a recursion-free asynchronous automaton,
no handler makes additional synchronous calls, and in particular,
there is no recursion.

We now show that given an asynchronous automaton A, there
exists a recursion-free asynchronous automaton A′ that preserves
the existence of (fair) infinite runs and such that Reachε(A) =
Reachε(A

′). Since we use a construction over finite languages, the
transformation we present below preserves runs of the first form but
eliminates runs of the second form. Proving that an asynchronous
automaton has no infinite runs of the second form is a separate
problem which is addressed in Sect. 4.4. Below we assume the
reader is familiar with the definitions of pushdown automaton and
finite state automaton (see [9] for further details).

LEMMA 2. Let A = (Q, Σ, δ, q0, a0) be an asynchronous
automaton. There exists an asynchronous automaton A′ =
(Q′, Σ, δ′, q′0, a

′
0) such that A′ is recursion-free and such that

(q0, a0,0) →∗
s (q1, ε, c1) →d (q1, z1, c

′
1) · · · →∗

s (qi, ε, ci) →d

(qi, zi, c
′
i) is a run of A iff it is a run of A′. In particular,

Reachε(A) = Reachε(A
′).

PROOF: Given A = (Q,Σ, δ, q0, a0) we define a finite family of
pushdown automata (PDAs) as follows. Define Θ ⊆ ((Q × Σ ×
Σε) × (Q× Σ∗)) to be such that ((q, a, b), (q′, w)) ∈ Θ iff there
exists b ∈ Σε and ((q, a), (q′, w, b)) ∈ δ. The family is given by

{Pj}j∈J = {(Q, Σ, Σ, Θ, z, qi, {qf}) | qi, qf ∈ Q, z ∈ Σ} .

Each member of the family is such that the stack and input alpha-
bets are given by Σ; z is the initial stack symbol; qi and qf are the
initial and final locations. They share the same transition relation
Θ. The only accepting configuration for each PDA is (qf , ε).

From the family {Pj}j∈J of PDAs we define the family
{Fj}j∈J where Fj = (Qj , Σ, δj , q

i
j , Fj) is a finite automaton

such that

Parikh(L(Fj)) = Parikh(L(Pj)) . (1)

By Lemma 1, we can effectively construct such a finite automaton
for a given PDA.

Now let us define an asynchronous automaton A′ =
(Q′, Σ, δ′, q′0, a

′
0) such that

Q′ = Q ∪
[
j∈J

{Qj | Fj = (Qj , Σ, δj , q
i
j , Fj)} .

Moreover, we define δ′ to be the smallest set such that for each
automaton Fj and the associated tuple q1, z, q2 we have

• ((q1, z), (qi
j , z, ε)) ∈ δ′;

• ((qj , z), (q′j , z, a)) ∈ δ′ for each (qj , a, q′j) ∈ δj ;

• ((qf , z), (q2, ε, ε)) ∈ δ′ for each qf ∈ Fj .

Finally we set q′0 = q0 and a′
0 = a0.



It is easily seen from the above construction that A′ is recursion-
free. Then our result is proved by induction on the number i of
times that a dispatch (viz.,→d) occurs.
Case i = 0: (q0, a0,0) = (q′0, a

′
0,0) holds by definition of a′

0 and
q′0.
Case i + 1: In this case we consider a run of the form:

(q0, a0,0)→∗
s (q1, ε, c1)→d (q1, z1, c

′
1) . . .

(qi, ε, ci)→d (qi, zi, c
′
i)→∗

s (q, ε, c) . (2)

For the only-if direction, consider the run of A given by (2). By
induction hypothesis we have a run in A′ which successively visits
configurations (q0, a0,0), (q1, ε, c1), . . . , (qi, ε, ci). By the defini-
tion of the asynchronous automaton A′, we have (qi, ε, ci) →d

(qi, zi, c
′
i). Now, let Pk be the PDA defined above for the triple

(qi, zi, q). (1) shows that the finite automaton Fk is such that
Parikh(L(Fk)) = Parikh(L(Pk)). By definition of A′, we ob-
tain that (qi, zi, c

′
i) →∗

s (q, ε, cx). Moreover cx = c because of
Parikh(L(Fk)) = Parikh(L(Pk)), hence the only if direction fol-
lows. The if direction can be proved using a similar reasoning. �

4. Decision Procedures
We will show that there is a straightforward encoding of recursion-
free asynchronous automata as Petri Nets [28]. Hence, we reduce
our fair termination problem on recursion-free asynchronous pro-
grams to an equivalent one on Petri Nets. Provided the given asyn-
chronous automaton is recursion-free, the encoding into a Petri Net
will be carried out in linear time.

4.1 Petri Nets

A Petri Net N = (S, T, F,m0) consists of a finite set S of places,
a finite set T of transitions disjoint from S, a weight function
F : (S×T )∪(T×S) �→ {0, 1}, and an initial marking m0 ∈ NS .
A marking is a map from S to N. For a marking m of N and p ∈ S,
we say that, in m, the place p contains m(p) tokens. For markings
m, m′, we write m + m′ for the marking obtained by point wise
addition of place contents. We write m ≤ m′ if for all p ∈ S we
have m(p) ≤m′(p) and write m < m′ if m ≤m′ and m 
= m′.
The marking 0 maps every a ∈ Σ to 0. The size of a Petri Net N is
|S|+ |T | where | · | denotes the cardinality of a set.

The semantics of a Petri Net N = (S, T, F,m0) is given as
a labeled transition system (LTS) (C, [·〉 , c0) where the set C of
states is the set of markings NS , the initial state c0 = m0, and
the labeled transition relation [·〉 ⊆ C × T × C is defined as
follows. A transition t ∈ T is enabled at m, written m [t〉, if
m(p) ≥ F (p, t) for each p ∈ S. A transition t that is enabled
at m can fire, yielding a marking m′ such that m′ = m + Δ(t)
where Δ(t), the effect of a transition t, is a function from T to NS

given by Δ(t)(p) = F (t, p) − F (p, t) for every p ∈ S. In this
case, we have (m, t,m′) ∈ [·〉, which we write as m [t〉m′.

Consider a path m1 [t1〉m2 [t2〉 . . . [tn〉mn+1 in the LTS.
Since each transition is deterministic, we can equally speak about
the word that labels the path starting at m1, forgetting about the
intermediate markings.

Using the LTS definition we naturally lift the enabledness and
firing notion from transition to sequences (or set of sequences) of
transitions as follows. Given L ⊆ T ∗ and w ∈ T ∗∪T ω we define:

m1 [L〉m2 iff some v ∈ L labels a path of LTS from m1 to m2

m1 [w〉 iff w labels a path of LTS which starts in m1.

From the above definition we find that m is a reachable state
iff m0 [T ∗〉m and the set of reachable states coincides with
{m |m0 [T ∗〉m}.

Also we lift the effect Δ of a single transition to sequences
(and sets of sequences) in a natural way: Δ(ε) = 0 and Δ(vu) =

Δ(v) + Δ(u). So for every w ∈ T ∗ such that m [w〉m′ we have
m′ = m + Δ(w). The converse, however, does not hold.

4.2 From Asynchronous Automata to Petri Nets

Let A′ = (Q,Σ, δ, q0, a0) be a recursion-free asynchronous au-
tomaton, its associated Petri Net NA′ = (Γ ∪ Σ, T, F,m0) is de-
fined as follows:

• Γ = Q× Σε;

• T = Ts ∪ Td (with Ts ∩ Td = ∅) and F are the smallest sets
which satisfy:

Ts contains a transition t for each ((q, a), (q′, b, c)) ∈ δ′ such
that F ((q, a), t) = 1 F (t, (q′, b)) = 1 and F (t, c) = 1 if
c ∈ Σ (F (t, x) = F (x, t) = 0 elsewhere);

Td is given by
S

a∈Σ T a
d such that for (q, ε) ∈ Γ the set T a

d

contains a transition t such that F ((q, ε), t) = 1, F (a, t) =
1 and F (t, (q, a)) = 1 (F (t, x) = F (x, t) = 0 elsewhere);

• m0 is such that m0(p) = 1 if p = (q0, a0) and 0 otherwise.

Notice that T is well defined since A′ is recursion-free. Also we
conclude from Σ and Q are finite that Γ ∪ Σ is finite and also T is
finite as A′ is recursion-free. In the sequel we often refer to a place
a ∈ Σ as the counter of pending calls to a. As in the case of asyn-
chronous automaton, whenever a transition t ∈ T a

d fires, we say
that a pending call to handler a is dispatched. The following lemma
connects reachable configurations of an asynchronous automaton
with the reachable markings of the associated Petri Net, and allows
us to use algorithms on Petri Nets to solve decision questions on
asynchronous automata.

LEMMA 3. Let A′ be a recursion-free asynchronous automaton
and let NA′ = (Γ ∪ Σ, T, F,m0) be the associated Petri Net.
(1) The size of NA′ is linear in the size of A′. (2) Given the
following relation between configurations of A′ and markings of
NA′ :

mi(p) =

8><
>:

1 if p = (q, ε)

ci(p) if p ∈ Σ

0 otherwise
m′

i(p) =

8><
>:

1 if p = (q, zi)

c′
i(p) if p ∈ Σ

0 otherwise

we have (q0, a0,0) →∗
s (q1, ε, c1) →d

(q1, z1, c
′
1) . . . (qi, ε, ci) →d (qi, zi, c

′
i) is a run of A′ iff

m0 [T ∗
s 〉m1 [Td〉m′

1 [T ∗
s 〉 . . .mi [Td〉m′

i is a path in the LTS of
NA′ .

We now translate the fair termination property from recursion-
free asynchronous automata to Petri Nets as follows. Let A′ be a
recursion-free asynchronous automaton. As we say above, because
the translation from an asynchronous automaton to a recursion-free
one does not preserve infinite runs made of handler steps only, that
is runs of→ω

s , it is a separate problem to check that all infinite runs
are of the first form. Assuming this, what remains to check is that, in
A′ there is no infinite run of the first form that is fair. Accordingly,
on the associated Petri Net NA′ = (Γ ∪ Σ, Td ∪ Ts, F,m0) we
check that there is no path in the LTS starting from m0 that is of
the form (T ∗

s · Td)ω (i.e., of the first form) and also fair. We define
fairness of an infinite path m1 [t1〉m2 [t2〉 . . . [tn〉mn+1 . . . as
follows. An infinite path is a-fair for a handler a ∈ Σ if for
every marking mj along this path, if mj(a) > 1 then a transition
mi [T a

d 〉mi+1 for some i > j must fire. An infinite path is fair if
it is a-fair for all handlers a ∈ Σ.

4.3 Coverability Graph

Our decision procedure to check fair termination on a Petri Net N
is based on the coverability graph of N [33]. We start with some
definitions.



Let Nω = N∪{ω}. An ω-marking for a finite set S of places is
a mapping from S to Nω. Intuitively, ω-markings extend markings,
where ω represents an arbitrary large natural. The arithmetic on Nω

is defined as follows ω ± c = ω = ω + ω for each c ∈ N. Further,
c < ω for each c ∈ N and ω ≤ ω. (In the sequel, whenever ω
occurs, it should be clear from the context if ω refers to the one
used in markings or to the one used in ω-word or ω-language.) For
a set X of ω-markings over S, the downward closure of X (written
↓X ) is given by the set {m ∈ NS | ∃m′ ∈ X : m ≤m′}.

Define Accel to be the acceleration function that takes as input
a set M of ω-markings and an ω-marking m and returns an ω-
marking such that for each p ∈ S we have Accel(M,m)(p) = ω
if there exists m′ ∈ M such that m′ < m and m′(p) < m(p),
and Accel(M,m)(p) = m(p) otherwise.

Given a Petri Net N = (S, T, F,m0), a coverability graph
G(N) is a finite labeled transition system (nodes, [[·〉〉 ,m0) where
the set of states nodes is a finite subset of ω-markings, [[·〉〉 ⊆
nodes × T × nodes is the labeled transition relation, and m0 is
the initial state. In this section we often refer to an element of the
transition relation [[·〉〉 of a coverability graph as a edge. Algorithm 1
shows an algorithm from [33, 34] which given a Petri Net N builds
a coverability graph G(N). The algorithm constructs a coverability
graph by a worklist-based algorithm. The set worklist contains
the set of pairs of ω-markings m and transitions t enabled at m
that are to be explored. The set log stores the set of ω-marking,
transition pairs that have been explored already. The main loop of
the algorithm (lines 5–15) iterates over the worklist, choosing a pair
(m, t) and firing t from m to get m′. If m′ is not already in G(N),
it is accelerated w.r.t. all states that can reach m (lines 9, 10), and
the accelerated node is added to nodes. The transition relation is
updated to reflect an edge from m to m′ through transition t (line
13), and both log and worklist are updated.

Consider a path m1 [[t1〉〉m2 [[t2〉〉 . . . [[tn〉〉mn+1 in G(N).
Since Algorithm 1 consider every pair (m, t) at most once, we can
equally speak about the word that labels the path starting at m1,
forgetting about the intermediate markings. This is as for the LTS
of N .

LEMMA 4. [33] Given a Petri Net N = (S, T, F,m0) Algorithm 1
always terminates and returns a coverability graph G(N) =
(nodes, [[·〉〉 ,m0) such that the following hold:

1. ↓nodes =
?y{m |m0 [T ∗〉m} .

2. Let v be a finite path of G(N) with Δ(v) ≥ 0. There exists
u ∈ T ∗ such that m0 [uv〉.

3. If m [w〉 for some m ∈ nodes and w ∈ T ∗ then there exists
a unique node m′ ∈ nodes such that m [[w〉〉m′ holds and for
each p ∈ S : m′(p) 
= ω → m′(p) = m(p) + Δ(w)(p)
(hence, {p ∈ S |m(p) = ω} ⊆ {p ∈ S |m′(p) = ω}).
In the following, for a Petri Net N , we define G(N) to be the

coverability graph computed by Algorithm 1.

4.4 Proving the Absence of Runs of the Second Form

We now show how to check the absence of runs of the second form,
in which infinitely many handler steps take place consecutively. In-
tuitively, we have to prove that every handler that is called termi-
nates. We start with some observations.

Given an asynchronous automaton A = (Q,Σ, δ, q0, a0), an
infinite sequence of handler steps is enabled at a reachable configu-
ration iff an infinite sequence of handler steps is enabled at a reach-
able configuration that follows a handler dispatch or q0. Every infi-
nite sequence of handler steps remains enabled when prefixed with
a finite sequence of handler steps.

Then we observe that, as far as the handler steps are concerned,
the values of the counters of pending calls are irrelevant. In fact,

Algorithm 1: Coverability graph construction

Input: A Petri Net N = (S, T, F,m0)
Output: A coverability graph G(N) = (nodes, [[·〉〉 ,m0)
begin1

nodes := {m0}, [[·〉〉 := ∅2

worklist := {(m0, t) |m0 [t〉}3

log := ∅4

while worklist 
= ∅ do5
choose (m, t) ∈ worklist and remove from worklist6

let m′ = m + Δ(t)7

if m′ /∈ nodes then8

Let M = {m′′ ∈ nodes |m′′ [[T ∗〉〉m}9

m′ := Accel(M,m′)10

nodes := nodes ∪ {m′}11

end12

[[·〉〉 := [[·〉〉 ∪ {(m, t,m′)}; log := log ∪ {(m, t)}13

worklist := worklist ∪ {(m′, t) /∈ log |m′ [t〉}14

end15

return G(N)16

end17

counters do not disable/enable handler steps. Hence we see that
an infinite sequence of handler steps is enabled at a configura-
tion (q, w, c) iff the same sequence is enabled at every configura-
tion {(q, w, c′) | c′ ∈ NΣ}. This shows that we can abstract away
counters of pending calls for the check. Accordingly we obtain a
model where the unique source of unboundedness is given by the
stack. For this setting, the absence of infinite sequences (of handler
steps) can be established by known model checking algorithms for
pushdown systems [1, 36].

Our procedure to check for the absence of run of the sec-
ond form uses one of the above algorithm to check for the
absence of infinite sequence of handler steps starting from
a finite set of configurations given by {(q0, a0)} ∪ (Q ×
{a ∈ Σ | ∃m ∈ G(NA′) with m(a) > 0}) (counters are omitted
for the above mentioned reason). Recall that in the above defini-
tion A′ is the recursion-free asynchronous automaton of Lem. 2.

4.5 Termination

In what follows we define the decision procedure to check the fair
termination of a Petri Net. We proceed in two steps. First we give
a general decision procedure to check that there is no infinite path
(fair or unfair) in the LTS of a Petri Net. Then we will extend this
decision procedure to check that there is no fair infinite path in the
LTS of NA′ along which some t ∈ Td occurs infinitely often.

Our decision procedure for termination relies on the following
lemma from [33] which reduces the existence of an infinite path in
the LTS of a Petri Net N to the existence of a finite path in G(N).

LEMMA 5. [33] Given a Petri Net N = (S, T, F,m0), there exists
w ∈ T ω : m0 [w〉 in the LTS of N iff in G(N) there exists a path v
such that Δ(v) ≥ 0.

We reduce the search for such a path inG(N) to the satisfiability
of a quantifier-free Presburger formula. Our reduction is inspired
by a similar encoding in [31]. Recall that existential Presburger
formulas φ are defined by the following grammar and interpreted
over natural numbers:

t ::= 0 | 1 | x | t1 + t2 | t1 − t2 where x is a variable

φ ::= t1 = t2 | t1 > t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ1 .
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Δ(t)(p)× x(n,t,n′) ≥ 0 for p ∈ S (9)

Figure 3. Presburger constraints for termination

In the following we use standard abbreviations like c×x for c ∈ N
for the c-times addition x+ . . . +x, t1 ≥ t2 for t1 > t2 ∨ t1 = t2,
and φ1 → φ2 for ¬φ1 ∨ φ2.

The encoding as a Presburger formula is based on the notion
of flows. A multigraph M∗ = (V, W,�) consists of a set V of
nodes, a multiset W of edges, and a node � ∈ V . The multigraph
M∗ is consistent if every node of V has as many incoming edges as
outgoing edges. The multigraph M∗ is said to be connected if there
exists an undirected path between every pair of distinct nodes of
M∗. A flow is a consistent and connected multigraph. Consistency
and connectedness imply that there exists a cycle in M∗ from� to
itself which traverses each edge of W exactly once [31].

Given a coverability graph G(N) = (nodes, [[·〉〉 ,m0) of a Petri
Net N and � ∈ nodes, we define flows M∗ = (V, W,�) of
G(N) in which V ⊆ nodes and each edge e ∈ (nodes × T ×
nodes) of the multiset W belongs to [[·〉〉. Because clearly a flow
induces an Eulerian circuit, we know that a flow defines a (not
necessarily simple) cycle in G(N). The converse also holds: each
(not necessarily simple) cycle of G(N) from� to itself corresponds
to a flow M∗ = (V, W,�) where V is the set of nodes along the
cycle and W is the multiset of all the edges along the cycle. So in
what follows, we often equally speak of cycles and flows.

We now explain how to encode the set of flows of G(N) =
(nodes, [[·〉〉 ,m0) from � to itself as a Presburger formula. In
particular, the formula is such that the set of flows from � to itself
coincides with the set of its satisfying valuations.

Given a coverability graph G(N) = (nodes, [[·〉〉 ,m0) of a Petri
Net N = (S, T, F, m0), we define ΨN to be the conjunction of
the constraints in Figure 3. We now describe each constraint in the
formula in more detail.

The formula ΨN uses the following set of variables. First,
for each n ∈ nodes, define the variables zn which tracks from
which node n the flow starts and ends. Second, for each edge
(n, t, n′) ∈ [[·〉〉, define the weight variable x(n,t,n′) which tracks
the number of times the edge (n, t, n′) occurs in the flow. Third,
for each node n ∈ nodes, the variable un gives a rank to node n,
and ranks are used (as described below) to ensure connectedness.

The constraint (3) encodes the fact that exactly one of the zn’s
valuates to 1 (viz., z�), the others to 0. This allows the constraint
to choose � arbitrarily. Consistency of the flow is encoded by (4)
which ensure that at each node, the sum of weights on the incoming
edges is equal to the sum of weights on outgoing edges. To encode
connectedness of the flow we use the rank variables un. The nodes
of the flow coincide with the nodes with a positive rank (6), except
for � which is ranked 0 (5). Hence a node n belongs to the flow iff
un +zn ≥ 1. Then we rely on the property that a flow is connected
iff each of its nodes but � is adjacent to some node that belongs to
the flow and has a strictly lower rank. This encoding of this property
is given by (7) which can be intuitively interpreted as follows.
If node n belongs to the flow and n 
= � (i.e., un ≥ 1) then
there exists an adjacent node n′ (quantification is encoded by the
disjunction) that belongs to the flow (un′ ≥ 1) and the rank of n′ is
strictly lower than the rank of n (un > un′ ). The constraint 1−zn′
allows to deal with the case in which n is adjacent to n′ = �. It
follows that in the disjunct of (7) we have un > u� ≥ 0 (since
z� = 1) which holds for every positive value of un since u� = 0
by (5).

Conjunct (9) ensures that the global effect of the selected se-
quence of transitions is of positive weight and (8) prohibits select-
ing the empty sequence. Note that Δ(t)(p) is a constant value.

Flows and Valuations. Consider a satisfying valuations of ΨN it
naturally induces a flow (or equally a cycle). On the other hand con-
sider a flow M∗ = (V, W,�) of G(N), M∗ naturally translates to
a valuation of the variables of ΨN as follows. The node � gives
which of the {zn}n∈nodes valuates to 1 else valuates to 0 and the
multiset W of edges gives the valuation of the variables {xe}e∈[[·〉〉
such that the edge e occurs c times in W iff xe valuates to c. Since
a flow is consistent and connected by definition, we can extend the
valuation to the variables {un}n∈nodes such that it satisfies the con-
straints (4), (5), (6), (7). Because of the above translation, we will
sometimes say that a flow M∗ of G(N) satisfies some Presburger
formula built upon ΨN if the valuation corresponding to the flow
M∗ satisfies the Presburger formula. From these explanations, it
can be seen that the following holds.



LEMMA 6. Given a Petri Net N = (S, T, F,m0) we have that ΨN

is satisfiable iff there exists a cycle labeled by v in G(N) such that
Δ(v) ≥ 0.

We also have the following relation between cycles and paths in
the coverability graph.

LEMMA 7. Given a Petri Net N = (S, T, F,m0) and v ∈ T+

such that Δ(v) ≥ 0, there exists a path labeled by v in G(N) iff
there exists a cycle labeled by v in G(N).

PROOF: The if direction trivially follows from the fact that every
cycle is also a path. For the only if direction, since v labels a path
of G(N) and Δ(v) ≥ 0, by Lem. 4 (point 2), there exists u ∈ T ∗

such that m0 [u · v〉. Lemma 4 (point 3) shows that there exists a
unique path in G(N) starting at m0 ∈ nodes and labeled by u · v.
Let m1,m2 ∈ nodes be such that m0 [[u〉〉m1 and m1 [[v〉〉m2.
Since Δ(v) ≥ 0 we have that m2 ≥ m1. We now prove that
m1 [v〉.

We conclude from m0 [u · v〉 that there exists a unique marking
m′

1 such that m0 [u〉m′
1, hence m′

1 = m0+Δ(u) by definition of
[u〉 and finally that m1 ∈ nodes is such that m1 ≥ m′

1 by Lem. 4
(point 3). By monotonicity of Petri Nets and m′

1 [v〉 it follows that
m1 [v〉.

Lemma 4 (point 3), m1 [v〉 and m1 ∈ nodes shows that there
exists m2 ∈ nodes such that m1 [[v〉〉m2 and also that for every
p ∈ S such that m2(p) 
= ω we have m2(p) = m1(p) + Δ(v)(p)
(hence {p ∈ S |m1(p) = ω} ⊆ {p ∈ S |m2(p) = ω}).

We conclude from Δ(v) ≥ 0 that m2 ≥ m1, hence that
m2 [v〉 by monotonicity of Petri Nets and finally that there exists
m3 ∈ nodes such that m2 [[v〉〉m3 by Lem. 4 (point 3). By
repeatedly applying the above reasoning we define a sequence of
nodes of G(N) such that m1 [[v〉〉m2 [[v〉〉 . . .mi [[v〉〉mi+1 . . . .
Moreover using Lem. 4 (point 3) and Δ(v) ≥ 0 we find that for
every i > 1 we have mi+1 ≥ mi. Now using the observation that
since G(N) is finite and thus that the finite set of natural values that
appear in the nodes can be bounded by some b ∈ N we conclude
that there exists j such that mj = mj+1 and so we have a cycle
from mj to mj+1 labeled by v. �

Finally Lem. 6 and Lem. 7 shows that the following corollary.

COROLLARY 1. Given a Petri Net N = (S,T, F,m0) we have:
ΨN is satisfiable iff there exists w ∈ T ω : m0 [w〉 in the LTS of N .

Since Presburger satisfiability is decidable, and each step in
our construction from asynchronous automata to the Presburger
formula is effective, we have that the termination problem is de-
cidable. The problem is EXPSPACE-hard by reduction from the
EXPSPACE-hardness for termination of simple programs [5, 19,
32].

THEOREM 1. [Termination] The termination problem for asyn-
chronous automata is decidable and EXPSPACE-hard.

4.6 Fair Termination

Recall that for fair termination, the definition says that in the LTS
of the Petri Net NA′ = (Γ∪Σ, Ts∪Td, F, m0) associated with the
recursion-free asynchronous automaton A′, there is no path that is
of the form (T ∗

s · Td)ω which is also fair.
Let σ ∈ (T ∗

s ·Td)ω be such that m0 [σ〉, we thus have the infinite
path m0 [σ1〉m1 [σ2〉m2 . . . where σ = σ1σ2 . . . . By definition
we have that σ is fair iff

∀a ∈ Σ ∀i ≥ 0: mi(a) ≥ 1→ ∃j ≥ i : mj [T a
d 〉mj+1 . (10)

Since σ ∈ (T ∗
s · Td)ω for every i ≥ 0 such that mi(a) ≥ 1 we

have ∃� ≥ i : mi [T ∗
s 〉m� [T a

d 〉.

Hence we have that (10) is equivalent to

∀a ∈ Σ∀i ≥ 0: mi [T a
d 〉 → ∃j ≥ i : mj [T a

d 〉mj+1 . (11)

As for termination our solution to the fair termination problem
checks whether some Presburger formula is satisfiable. The for-
mula for fair termination is given by ΨNA′ of Fig. 3 in conjunction
with ΦNA′ given by (12) ∧ (13) where:

un + zn ≥ 1→
X

n1,n2∈nodes
t∈Ta

d
n1[[t〉〉n2

x(n1,t,n2) ≥ 1 (12)

for a ∈ Σ, n ∈ nodes such that n [[T a
d 〉〉.

Intuitively, we require that for each node n of G(NA′) with an
outgoing dispatch a edge, if n occurs in the flow (given by un +
zn ≥ 1) then make sure a dispatch to a occurs in the flow as well.X

n,n′∈nodes,t∈Td
n[[t〉〉n′

x(n,t,n′) ≥ 1 . (13)

The above constraint requires that at least one dispatch occurs (note
that this entails (8)) since Td ⊆ T .

LEMMA 8. Given a Petri Net NA′ = (Γ ∪ Σ, Td ∪ Ts, F,m0) let
M∗ = (V, W,�) be the flow associated to a satisfying valuation
for ΨNA′ ∧ ΦNA′ . Let m ∈ V be such that m(a) ≥ 1 for
a ∈ Σ, then there is a m1 [[t〉〉m2 in G(NA′) such that t ∈ T a

d

and m1 [[t〉〉m2 occurs in W .

PROOF: We distinguish two cases: (i) each node m′ of M∗ is
such that m′(a) ≥ 1 or (ii) some node m′ of M∗ is such that
m′(a) = 0. In case (i), constraints (13) shows that at least one
dispatch transition t ∈ Td must occur in M∗ which means by
definition of t that some place p ∈ Γ of the form p = (q, ε) is such
that m′′(p) ≥ 1 at some node m′′ ∈ V . Hence we find that there
is ta

d ∈ T a
d with m′′ [ta

d〉 (both m′′(p) and m′′(a) contain tokens)
and so that m′′ [[ta

d〉〉mx for some mx holds by Lem. 4 (point 3).
Finally m′′ ∈ V shows that um′′ ≥ 1 and so the precondition of
constraint (12) holds, thus some t ∈ T d

a must occur in M∗.
For the case (ii), i.e., some node m′ of M∗ is such that

m′(a) = 0, hypothesis m(a) ≥ 1 for some node m of M∗ shows
that m and m′ are distinct. Furthermore observe that m(a) ∈
N \ {0} because we cannot get to 0 if we were at ω as shown by
Lem. 4 (point 3). Moreover since m is a node of M∗ we have that
either (a) m occurs before m′ in M∗ or (b) m′ occurs before m
in M∗. In case (a) some t ∈ T a

d must occur in M∗ between node
m and m′ which concludes the proof. In case (b) we find that a
call to handler a ∈ Σ must be posted between m′ and m. Because
the flow starts and ends in� some t ∈ T a

d must occur in M∗ either
between m and � or between � and m′. �

We next show that the LTS of NA′ has an infinite path of the
form (T ∗

s ·Td)ω that is fair iff the Presburger formula ΨNA′ ∧ΦNA′
is satisfiable.

PROPOSITION 1. Given a Petri Net NA′ = (Γ∪Σ, Td∪Ts, F,m0)
we have there exists σ ∈ (T ∗

s ·Td)ω such that m0 [σ〉 and σ satisfies
(11) iff there is a flow M∗ = (V, W,�) in G(NA′) which satisfies
ΨNA′ ∧ ΦNA′ .

PROOF: → By hypothesis, there exists σ ∈ (T ∗
s · Td)ω such

that m0 [σ〉 such that σ satisfies (11), that is, ∀a ∈ Σ∀i ≥
0: mi [T a

d 〉 → ∃j ≥ i : mj [T a
d 〉mj+1.



Our next step is to split σ into τ0τ1 . . . τn . . . where each τi ∈
(T ∗

s · Td)∗. Let mIi be such that m0 [τ0 . . . τi−1〉mIi , the split is
such that for each a ∈ Σ :

�m : mIi

ˆ{w | ∃w′ ∈ T ∗ : ww′ = τi}
¸
m and m [T a

d 〉
or τi ∩ T a

d 
= ∅ . (14)

This intuitively says that along τi for each a ∈ Σ we have that no
T a

d is enabled τi or some T a
d occurs. Splitting this way is possible

because for each a ∈ Σ we have that either (i) there are no pending
call at the beginning of τi and none is posted along τi or (ii) there
are no pending call at the beginning of τi but eventually some call
to a is posted along τi in which case τi must contain a T a

d which
exists by (11) or (iii) there are pending calls to a at the beginning
of τi and so τi must contain a T a

d which exists by (11). Finally, we
show that each τi is finite by contradiction, suppose there is a τi

that is infinite: τi ∈ (T ∗
s · Td)ω . So we have σ = τ0 . . . τi. Since

by hypothesis σ satisfies (11) we find that for each a ∈ Σ either no
transition of T a

d is enabled along τi or that whenever some T a
d is

enabled eventually some transition of T a
d fires, that is τi ∩ T a

d 
= ∅
for τi ∈ (T ∗

s · Td)∗. Hence a contradiction.
Now using Dickson’s Lemma over the infinite se-

quence mI0 ,mI1 , . . . , mIn , . . . of markings given by
m0 [τ0〉mI0 [τ1〉mI1 . . .mIn−1 [τn〉mIn . . . we find that
there exists i > j such that mIj ≤mIi .

Let u = τ0 . . . τj , and let v = τj+1 . . . τi. By definition of the
τ ’s we find that u · vω ∈ (T ∗

s · Td)ω and so vω ∈ (T ∗
s · Td)ω.

Next we show that u · vω satisfies (11). Since vω ∈ (T ∗
s · Td)ω

we find that v repeatedly enables some T a
d for every a ∈ Σ for

which there is a pending call. So, if some transition of T a
d is enabled

somewhere along τ , some transition t of T a
d must fire in τ because

of (14). Remark also that because v is repeated infinitely often,
we have that t eventually fires (if not in the same τ , in its next
occurrence) which shows that u · vω satisfies (11).

It follows that m0 [u · vω〉 (m0 [σ〉 and there is w ∈ T ω such
that σ = u · v ·w shows that m0 [u · v〉. Moreover m0

ˆ
u · vi

¸
for

every i ≥ 1 since Δ(v) ≥ 0).
We conclude from m0 [u · v〉 and Lem. 4 that there is a path in

G(NA′) labeled by v, hence that there is a cycle (or equally a flow)
in G(NA′) labeled by v because of Δ(v) ≥ 0 and Lem. 7.

The proof ends by showing that the cycle labeled by v (or
equally a flow) satisfies ΨNA′ ∧ ΦNA′ .

• (12) follows because u · vω satisfies (11);

• (13) follows because u · vω ∈ (T ∗
s · Td)ω;

• (3), (4), (5), (6) (7) of ΨNA′ follows because v labels a flow;

• (8) of ΨNA′ is entailed by (13) as we said before;

• (9) of ΨNA′ follows by Δ(v) ≥ 0.

← Let v ∈ T ∗ be a word corresponding to the flow M∗ =
(V, W,�). Since Δ(v) ≥ 0, Lem. 4 (point 2) shows that there
exists u ∈ T ∗ such that m0 [uv〉. Then we show that the following
facts hold:

• m0 [u · vω〉 (which follows by (9) that says: Δ(v) ≥ 0);

• u · vω ∈ (T ∗
s ·Td)ω (by (13) that says: at least one Td occurs in

v);

• u · vω satisfies (11). In fact suppose by contradiction that u · vω

does not satisfies (11) that is: ∃a ∈ Σ∃i ≥ 0: mi [T a
d 〉∧(∀j ≥

i : mj [T a
d 〉mj+1 does not hold) Since u ·vω ∈ (T ∗

s ·Td)ω and
by definition of Td we can assume that i is such that i ≥ |u|.
Hence, ∃i ≥ |u| : mi [T a

d 〉 is true shows that mi(a) ≥ 1
and so by Lem. 8 we find that there is an edge m′ [[t〉〉m′′

of G(NA′) such that t ∈ T a
d and t occurs in W , hence a

contradiction since no t ∈ T a
d is supposed to occur in W by

(∀j ≥ i : mj [T a
d 〉mj+1 does not hold).

Hence we have m0 [u · vω〉 is a fair infinite path in the LTS. �

To sum up, the overall decision procedure to check fair termi-
nation combines the above steps: first, translate an asynchronous
automaton A into a recursion-free automaton A′; second, construct
the associated Petri Net NA′ ; third, construct a coverability graph
G(NA′); and fourth, construct and check if the Presburger formula
ΦNA′ ∧ΨNA′ is satisfiable. The decision procedure also separately
checks that every handler reachable in the coverability graph is
terminating using the algorithm in Section 4.4. The EXPSPACE-
hardness of the problem again follows from the reduction from
simple programs.

THEOREM 2. [Fair Termination] The fair termination problem is
decidable for asynchronous automata and EXPSPACE-hard.

4.7 Fair Non-Starvation

Recall that an asynchronous automaton is fair non-starving if (i)
every execution of a handler that is called (synchronously or asyn-
chronously) terminates, and (ii) along every infinite fair execu-
tion no handler is starved. A starving handler corresponds to a
particular pending call that is never dispatched, thus that waits
forever to be executed. Formally, an asynchronous automaton is
fair non-starving if (i) there is no infinite run of the second form
and (ii) for every fair infinite run (q0, a0,0) →∗

s (q1, ε, c1) →d

(q1, a1, c
′
1) . . . of the first form, for every handler a ∈ Σ, we have

ci(a) = 0 for infinitely many i ≥ 0. As before, we check (i) sep-
arately using the decision procedures of Sect. 4.4. We focus on the
decision procedure for (ii).

The decision procedure for fair non-starvation is similar to the
one for fair termination, the two decision procedure differs when it
comes to the Presburger formula. The Presburger formula for fair
non-starvation is stronger than the formula for fair termination, and
obtained by adding constraints to the Presburger formula for fair
termination.

Our encoding is based on the observation that if the asyn-
chronous automaton does not satisfy the fair non-starvation there
exists an infinite run (q0, a0,0)→∗

s (q1, ε, c1)→d (q1, a1, c2) . . .
that is fair and for some a ∈ Σ along this path some pending call
to a is never dispatched (or equally ∃i ≥ 0∀j ≥ i : cj(a) > 0).

We now define the Presburger formula ΥNA′ the variables of
which is given by those of ΦNA′ and ΨNA′ together and the set
{wa

m |m ∈ nodes ∧ a ∈ Σ}. Define a constraint for each variable
wa

m such that wa
m is positive iff in the ω-marking m the counter of

pending calls to a is positive: wa
m ≥ 1 if m(a) ≥ 1 and wm(a) =

0 otherwise. The formula ΥNA′ is defined as the conjunction of the
above constraints with:_

a∈Σ

^
n∈nodes

`
un + zn ≥ 1→ wa

n ≥ 1
´

.

If ΦNA′ ∧ ΨNA′ ∧ ΥNA′ is satisfiable we have that there exists
w ∈ T ω such that m0 [w〉 is a fair path in the LTS of NA′ (given
by ΦNA′ ∧ ΨNA′ ) and along w some counter of pending calls
never gets null (given by ΥNA′ ). That means, in the asynchronous
automaton A′, that some pending call might never be dispatched.
Hence we have that if ΦNA′ ∧ ΨNA′ ∧ ΥNA′ is satisfiable then
some infinite path is fair and along this path some pending call is
never dispatched.

THEOREM 3. [Fair non-starvation] Fair non-starvation is decid-
able for asynchronous automata and EXPSPACE-hard.



5. Alternative Proofs for Fair Termination
Our reduction to Petri Nets enables the use of powerful algorith-
mic techniques on Petri Nets to be used to analyze asynchronous
programs. Indeed, we now show two alternate proofs for the de-
cidability of fair termination by encoding the problem into more
expressive logics whose model checking question remains decid-
able on Petri Nets.

Path Logics [37]. We recall a class of path formulas (from [37])
for which the model checking problem is decidable. Fix a Petri
Net N = (S, T, F,m0). We define a subset of the logic of [37]
that we need to give an alternative decision procedure for fair ter-
mination. Let μ1, μ2, . . . be a family of marking variables rang-
ing over markings and σ1, σ2, . . . a family of transition sequence
variables ranging over T ∗. A basic predicate is either a marking
predicate of the form μj ≥ μi where μj and μi with j > i
are marking variables or markings, or a transition predicate of
the form y ⊗ Parikh(σ) ≥ c or y ⊗ Parikh(σ) = c, where σ
is a transition variable, c ∈ N is a constant, y is a vector of in-
tegers of dimension |T |, and ⊗ denotes the inner product (i.e.,
(a1, . . . , ak)⊗(b1, . . . , bk) =

Pk
i=1 ai×bi). A predicate is either

a marking predicate, a transition predicate, or of the forms P1 ∨P2

or P1 ∧ P2 where P1 and P2 are predicates. A path formula is a
formula of the form

∃μ1, . . . , μm : ∃σ1, . . . , σm :`
m0

σ1−→ μ1
σ2−→ . . . μm−1

σm−−→ μm

´
∧ Φ(μ1, . . . , μm, σ1, . . . , σm)

where Φ is a predicate. The model checking problem for such
a path formula asks if there exists a path in the LTS of N
of the form m0 [σ1〉m1 [σ2〉 . . .mm−1 [σm〉mm for markings
m1, . . . ,mm and transition sequences σ1, . . . , σm ∈ T ∗, such
that Φ(m1, . . . ,mm, σ1, . . . , σm) is true. In this case we say N
satisfies the path formula.

Let NA′ = (Γ∪Σ, Ts ∪Td, F, m0) be the Petri Net associated
with a recursion-free asynchronous automaton A′. Let r = |T |. We
define a path formula such that NA′ satisfies the path formula iff
there is an infinite fair path in the LTS of NA′ :

∃μ1, μ2 : ∃σ1, σ2 : m0
σ1−→ μ1

σ2−→ μ2^
1r ⊗ Parikh(σ2) ≥ 1 ∧ μ2 ≥ μ1^
a∈Σ

“
za ⊗ Parikh(σ2) = 0→

`
(xa − za)⊗ Parikh(σ1) = 0 ∧ xa ⊗ Parikh(σ2) = 0

´”
.

where za and xa are two vectors of integers of dimension r such
that

za(t) =

(
1 if t ∈ Td ∧ F (a, t) = 1

0 otherwise
and

xa(t) =

(
1 if t ∈ Ts ∧ F (t, a) = 1

0 otherwise .

In the above path formula, the first two lines intuitively say
that we want to find a path m0 [σ1 · σ2〉 in the LTS of NA′ where
σ2 
= ε and μ2 ≥ μ1. The monotonicity property of Petri Nets and
μ2 ≥ μ1 shows that m0 [σ1 · σω

2 〉. Intuitively the first two lines
require that σ1 ·σω

2 ∈ T ω is an infinite path of the LTS of NA′ . Let
us now turn to the fairness.

The fairness constraint of the formula requires the path
m0 [σ1 · σω

2 〉 to be such that for each handler a ∈ Σ if no T a
d

occurs infinitely often (za ⊗ Parikh(σ2) = 0) then after firing

σ1 and before firing σ2 there is no pending call to a ((xa −
za) ⊗ Parikh(σ1) = 0) and no call to a is posted along σ2

xa ⊗ Parikh(σ2) = 0.
Above we defined an infinite path to be fair if it is a-fair for

every a ∈ Σ. An infinite path is a-fair iff for every marking mj

along this path, if mj(a) ≥ 1 then a transition mi [T a
d 〉mi+1 for

some i ≥ j must occur. If the infinite paths we consider are of
the form σ1 · σω

2 (we have shown above this is not restrictive) then
a path is a-fair iff there exists σ1 ∈ T ∗ and σ2 ∈ T+ such that
some T a

d occurs in σ2 or if the following condition holds: there is
no pending call to a after firing σ1 and no call to a is posted along
σ2. This last condition intuitively says that after firing σ1, it always
holds that there is no pending call to a, i.e., mj(a) = 0 for every
marking mj in the sequence after firing σ1.

Temporal Logic Model Checking [10]. We recall a class of for-
mulas L(GF ) (from [10]) for which the model checking problem
is decidable. Given a Petri Net N = (S, T, F,m0), we define the
language L(GF ) as follows:

• atomic formulas (predicates) are ge(p, c) and fi(t) where p ∈
S, t ∈ T , c ∈ N with the following interpretation: for any
infinite path σ = m1 [u1〉m2 [u2〉 . . . in the LTS of N and for
any n ∈ N,

〈N, σ, n〉 |= ge(p, c) iff mn(p) ≥ c

〈N, σ, n〉 |= fi(t) iff un+1 = t .

• formulas are either literals, i.e., atomic formulas or their nega-
tions (ge(p, c), ¬ge(p, c), fi(t), ¬fi(t)), or of the form GF f ,
f1 ∧ f2, f1 ∨ f2 where f, f1, f2 are formulas. GF f (it is al-
ways true that f will hold in future) can be formally defined as
follows:

〈N, σ, n〉 |= GF f iff ∀i ≥ n∃j ≥ i : 〈N, σ, j〉 |= f .

The rest of the interpretation is natural.

Given NA′ = (Γ ∪ Σ, Ts ∪ Td, F, m0) the Petri Net associated
with a recursion-free asynchronous automaton A′ we now define
a formula such that there is an infinite path in the LTS of NA′
satisfying the formula iff there is an infinite path in the LTS of NA′
that is fair: ^

a∈Σ

GF
“
¬ge(a, 1) ∨

_
t∈Ta

d

fi(t)
”

.

The formula intuitively says that along every path in the LTS of
NA, for every handler a, if there is a pending call to a then there is
an eventual dispatch to a.

While these produce alternate proofs of decidability, we believe
that our presentation of the problem is most amenable to an im-
plementation (the model checking algorithm from [37] unrolls the
transition relation a doubly exponential number of steps, and the
model checking algorithm of [10] reduces to Petri Net reachabil-
ity, and both have a computability-theoretic rather than practical
value).

6. Boundedness
The reduction of Lem. 3 shows that to every recursion-free asyn-
chronous automaton, there is a Petri Net with the “same” set of
reachable states. This allows algorithmic techniques from the Petri
Net literature to be applied to asynchronous automata. We show
how these techniques can be used to prove boundedness properties.

An asynchronous automaton is bounded if there exists N ∈ N
such that for every reachable configuration (q, w, c), for every
a ∈ Σ we have c(a) ≤ N . The boundedness problem takes as
input an asynchronous automaton, and asks if it is bounded. (Note
that boundedness is a safety property.)



We can decide the boundedness problem for recursion-free
asynchronous automaton by deciding the boundedness problem on
the associated Petri Net. This problem is defined as follows. Given
a Petri Net N = (S, T, F, m0), we say N is bounded if there exists
n ∈ N such that for every reachable marking m, for every place
p ∈ S we have m(p) ≤ n. The boundedness problem takes as
input a Petri Net, and asks if it is bounded.

Let A′ be a recursion-free asynchronous automaton and NA′ =
(Γ∪Σ, T, F,m0) be the associated Petri Net, Lem. 3 shows that A′

is bounded iff NA′ is bounded. Furthermore, the Petri Net NA′ is
bounded iff for each m ∈ nodes of any coverability graph G(NA′)
we have m ∈ NP . The reason why a coverability graph is precise
enough to check for boundedness is given by Lem. 4 (point 1).

Since the size of the Petri Net is linear in the size of the
recursion-free asynchronous automaton, which can be exponential
in the size of the original asynchronous automaton, and the search
for unbounded executions in the coverability graph can be stopped
after a number of steps that is doubly exponential in the size of
the Petri Net [26], we get a triply exponential algorithm. The hard-
ness of the algorithm again follows from a reduction from simple
programs to asynchronous automata.

THEOREM 4. [Boundedness] The boundedness problem is decid-
able for asynchronous automata. It is EXPSPACE-hard.

We note that boundedness is neither a necessary nor a sufficient
condition for fair termination. On the one hand, the asynchronous
program with one handler ! which posts itself is bounded but not
terminating. On the other hand, the asynchronous program from
Fig. 1(b) is fair terminating but unbounded. For each n, there is a
fair terminating run which dispatches the handler !" n times before
dispatching !#.
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