
Robust FPGA Resynthesis Based on
Fault-Tolerant Boolean Matching∗

Yu Hu1, Zhe Feng1, Lei He1 and Rupak Majumdar2

1. Electrical Engineering Department
2. Computer Science Department

University of California, Los Angeles

ABSTRACT
We present FPGA logic synthesis algorithms for stochastic fault rate
reduction in the presence of both permanent and transient defects.
We develop an algorithm for fault tolerant Boolean matching
(FTBM), which exploits the flexibility of the LUT configuration
to maximize the stochastic yield rate for a logic function. Using
FTBM, we propose a robust resynthesis algorithm (ROSE) which
maximizes stochastic yield rate for an entire circuit. Finally, we
show that existing PLB (programmable logic block) templates for
area-aware Boolean matching and logic resynthesis are not effective
for fault tolerance, and propose a new robust template with path
re-convergence. Compared to the state-of-the-art academic tech-
nology mapper Berkeley ABC, ROSE using the proposed robust
PLB template reduces the fault rate by 25% with 1% fewer LUTs,
and increases MTBF (mean time between failures) by 31%, while
preserving the optimal logic depth.

1. INTRODUCTION
Most of today’s programmable logic device (PLD) synthesis

flows target nominal designs. In this view, the low-level and uncer-
tain physics of devices and transistors are abstracted into Boolean
digital signals, 0 and 1, and a circuit is a deterministic function
which maps input bits into output bits (and states). Logic synthe-
sis optimizes the representation of these functions through Boolean
reasoning. Deviations from the nominal behavior, e.g., through
process variations and defects, are controlled at the testing level by
discarding defective chips.

Unfortunately, as faults become more pronounced in emerging
applications and technologies, such as permanent faults arising from
circuit processing at nanometer scales or transient soft errors arising
from high-energy particle hits, the deterministic view becomes lim-
iting. For CMOS circuits vulnerable more to soft errors, these faults
reduce the mean time between failures (MTBF). For future nano-
circuits with more defective devices, they reduce the yield rate.
This implies that logic design and synthesis flows must explicitly
account for and tolerate faults.

Indeed, fault tolerance techniques have been studied extensively
for PLDs [1]. Without considering dynamic re-configuration during
runtime, the following techniques have been developed to tolerate
faults for PLDs: (a) Locating and masking faults by circuit re-
dundancy. For example, column-based redundancy, proposed in
[2, 3], has been used in Altera’s Stratix II FPGA [4]. If one logic
block in a column of logic blocks is found defective during test-
ing of the device, the entire column is bypassed and its function

∗This research is partially supported by the NSF awards
CCR-0306682, CNS-0702881 and CCF-0702743, and a UC
MICRO grant sponsored by Actel.

is implemented by the redundant column. Besides redundant col-
umn and rows, some fine-grained redundancy architectures were
also proposed, e.g., in [5, 6], where redundant routing resources
are evenly distributed in the FPGA to tolerate faults. The afore-
mentioned tolerance is transparent to FPGA users, and the same
synthesis can be used for all chips of the same FPGA application.
This manufacturer-masking approach lowers synthesis cost for
massive production, but suffers from low fault coverage, large area
overhead, and extra delay due to the bypass circuit. For example,
only defective logic blocks within the same column are tolerated
with one extra column as in Stratix II. (b) Chip-wise synthesis,
which has been applied to circuits with high fault rates, especially
for nano-technologies [7, 8, 9]. Here, each fault is located, and
then placement and routing is customized for each chip in order to
work around faults. Chip-wise synthesis is not suitable for massive
production of one FPGA application, and testing costs could be in-
tolerably high for a large number of faults, although there is active
research in reducing the testing cost. (c) Triple-modular redun-
dancy (TMR) [10]. Compared to the previous two approaches ((a)
and (b)), TMR does not require to locate faults during synthesis and
it can tolerate transient soft errors. However it has the practically
highest overhead on area, power and performance. (d) Multiple
configurations. EasyPath by Xilinx, pre-develops multiple syn-
thesis solutions for an FPGA application. During testing, each chip
chooses a synthesis that can tolerate manufacturing defects for the
particular application. Compared to chip-wise synthesis, multiple
configuration reduces testing and synthesis costs. Compared to
TMR, multi-configuration has reduced circuit overhead but cannot
tolerate transient soft errors. Thus, existing techniques suffer from
either expensive testing overhead, excessive overhead on perfor-
mance, power and area, long design time, or a low fault coverage
rate.

We take an alternate route toward fault tolerant designs. We
propose stochastic synthesis for fault tolerance, where the pres-
ence of random faults is reflected in the logic synthesis algorithm.
We model faults in LUT configurations and the faults in interme-
diate wires as random variables, following the probabilistic nature
of faults, and the probability that a LUT configuration bit or an
intermediate wire is defective is given as an input to our synthe-
sis algorithm. (Elsewhere, we discuss how these probabilities may
be computed [11].) Under these fault sources, the fault rate of a
circuit is the percentage of primary input vectors under which the
circuit does not produce the desired logic output values. Stochas-
tic synthesis algorithms explicitly minimize fault rates, along with
traditional metrics such as circuit area or delay.

As a particular example of stochastic synthesis, we propose
ROSE, a RObust reSynthEsis algorithm, which minimizes the stochas-
tic fault rate under random faults in FPGAs while incurring negligi-



ble area and performance overhead. ROSE exploits the flexibility in
implementing a logic block by a programmable logic block (PLB)
template (e.g., in selecting configuration bits), and rewrites logic
blocks to minimize the stochastic fault rate. Unlike manufacturer-
masking, ROSE does not need to locate faults by testing. Unlike
chip-wise synthesis, ROSE uses the same design for different chips
of an FPGA application for stochastic fault tolerance. It can be
directly applied to tolerate faults in less critical tasks, such as in-
ternet routing switches and enterprise servers, to reduce MTBF.
In addition, ROSE is orthogonal to the existing redundancy based
fault-tolerant approaches [2-10], and therefore it also can be used
to further increase the robustness while reducing the overhead of
existing techniques such as TMR and column based redundancy for
FPGAs.

The core algorithmic idea in ROSE is that of fault-tolerant
Boolean matching (FTBM). FTBM generalizes the Boolean match-
ing problem [12, 13] to the setting with stochastic faults. It takes
as input a PLB H, a Boolean function F , and the fault rates for the
inputs and the SRAM bits of the PLB, and outputs either that F
cannot be implemented by PLB H, or the configuration of H which
minimizes the probability that the faults are observable in the out-
put of the PLB under all input vectors. We describe an algorithm
for FTBM by a reduction to stochastic satisfiability (SSAT) [14].
Since SSAT has a high computational cost (and state-of-the-art
SSAT solvers are less developed than SAT solvers), we convert the
SSAT problem into a sequence of deterministic Boolean satisfiabil-
ity problems. While we apply FTBM in resynthesis, it can also be
applied in various synthesis stages, such as technology independent
optimization, technology mapping or post-mapping resynthesis.

ROSE applies FTBM on circuit logic blocks against a set of pre-
defined templates, substituting the block with the minimum fault
rate configuration of the template found by FTBM (provided this
does not increase local logic depth or area). Orthogonally to FTBM,
ROSE enhances robustness by a suitable choice of PLB templates.
We evaluate some PLB templates for fault tolerance. First, we show
that existing templates for area optimization are not effective for
fault tolerance. Second, using the observation that reconvergence
is a prime reason for don’t cares, and that don’t cares can occlude
errors, we propose a new robust template with path reconvergence.
Our template can be obtained by either configuring the existing full
connection between LUTs within a cluster, or hardwiring selected
connections between LUTs to reduce area.

On QUIP [15] benchmarks, ROSE (using the robust template)
reduces the fault rate by 25% with 1% fewer LUTs, and increases
MTBF (mean time between failures) by 31%, while preserving the
optimal logic depth, when compared to the state-of-the-art FPGA
technology mapping, Berkeley ABC mapper [16].

The remainder of this paper is organized as follows. Section
2 provides preliminary definitions. Sections 3 and 4 present the
overall approach and FTBM, respectively. The experimental results
are given in Section 5 and the paper is concluded with future research
directions in Section 6. To the best of our knowledge, this work
is the first in-depth study of stochastic synthesis for FPGA fault
tolerance.

2. PRELIMINARIES

2.1 Boolean Network
A PLB H consists of a network of interconnected logic devices

with a set of input pins and an output pin. A K-LUT is a LUT with
K inputs, one output, and 2K LUT configuration bits.

A LUT-based Boolean network is represented using a directed
acyclic graph (DAG) whose nodes correspond to LUTs and directed

edges correspond to wires connecting the LUTs. The nodes in the
lowest level of the DAG are called circuit inputs (CIs), which
include the primary inputs (PIs) and the outputs of registers. The
nodes in the highest level are called circuit outputs (COs), which
include primary outputs (POs) and the inputs to registers.

A fanin (resp. fanout) cone of node n is a sub-network whose
nodes can reach the fanin edges of n (resp. can be reached from
the fanout edges of n). A maximum fanout free cone (MFFC)
of node n is a subset of the fanin cone such that every path from
a node in the subset to the CO passes through n. Informally, the
MFFC of a node contains all the logic used exclusively by the node.
When a node is removed or substituted, its MFFC can be removed.

A cut C of node n is a set of nodes of the network such that each
path from a CI to n passes through at least one node in C; node
n is called the root of cut C. A cut is K-feasible if the number
of nodes in it does not exceed K. A logic block is a sub-network
which covers all nodes found on the path from the outputs (called
root nodes of the logic block) to the cut, including the roots and
excluding the cut. In this paper, we consider multi-input, single-
output (MISO) logic blocks, but the proposed algorithm can be
applied to multi-output, multi-output (MIMO) logic blocks [44], as
well.

2.2 Boolean Matching
Given a PLB H and a Boolean function F , the Boolean match-

ing problem (BM) either maps function F to PLB H by describing
an appropriate setting of the LUT configuration bits, or concludes
that PLBH cannot implement function F . Boolean matching [17,
18] is one of the most important sub-problems in logic synthesis
and technology mapping for FPGAs.

The Boolean matching problem can be formulated as a (quanti-
fied) Boolean satisfiability problem in the following way [12, 19,
20]. Consider a PLB template H with inputs x′

1, · · · , x′

k, output G,
intermediate wires z1, · · · , zm, and LUT configuration c1, · · · , cn

as shown in Figure 1. Let F be a Boolean function of k inputs,
given as a truth table.

LUT1

c0, SRAM

c1, SRAM

c15, SRAM

x'1 x'2 x'3 x'4

LUT2

c16, SRAM

c17, SRAM

c31, SRAM

x'5 x'6 x'7z1

G

x1 x2 x3 x4 x5 x6 x7 F
0 0 0 0 0 0 0 F0

1 0 0 0 0 0 0 F1

0 1 0 0 0 0 0

1 1 1 1 1 1 1 F127

F2

Lo
gi

c 
bl

oc
k

B
oo

le
an

 fu
nc

tio
n

Figure 1: Illustration of FPGA Boolean matching

We can write a set of Boolean constraints that define each internal
and output wire of H in terms of its inputs (see, e.g., [12, 20]). For



example, the internal wire z1 in Figure 1 can be defined as

(x′

1 ∧ x′

2 ∧ x′

3 ∧ x′

4 → (z1 ↔ c0)) ∧ · · · ∧
(x′

1 ∧ x′

2 ∧ x′

3 ∧ x′

4 → (z1 ↔ c15))

Let Ψ(H) be the conjunction of constraints defining each wire of
H.

Similarly, the truth table for function F can be expressed as a
set of constraints between the input variables x1, · · · , xk and the
output F :

Ψ(F ) = (x1 ∧ x2 ∧ · · · ∧ xk → F0) ∧

(x1 ∧ x2 ∧ · · · ∧ xk → F1) ∧ · · · ∧

(x1 ∧ x2 ∧ · · · ∧ xk → F2k
−1) (1)

where Fi = F if F (i) = 1, otherwise, Fi = F .
The Boolean matching problem for (H, F ) can be then expressed

as the quantified Boolean formula problem that asks, does there exist
some setting of the LUT configuration c1, · · · , cn such that for all
inputs x1, · · · , xk, the output G of H is equivalent to F ? Formally,
we ask:

∃c1 · · · cn∀x1 · · · xk∃z1 · · · zm . Ψ(H) ∧ Ψ(F ) ∧ (G ↔ F ) (2)

By replicating the formula for each possible valuation to the bits
x1 · · ·xk, we reduce the quantified formula to an (existential) satis-
fiability problem. Each satisfying assignment gives an instantiation
of the LUT configuration bits that implement the same function
F . SAT-based Boolean matching offers high flexibility and, with
recent optimizations [21, 19, 20], reasonable performance.

2.3 Fault Model and FTBM
In the presence of faults in the LUT configurations or intermediate

wires between PLBs, we extend the Boolean matching algorithm
in the following way. We model faults in LUT configurations and
the faults in intermediate wires as random variables, and assume
that the probability that a LUT configuration bit or an intermediate
wire is defective is known. Under these fault sources, the fault rate
of a circuit is the percentage of primary input vectors under which
the circuit does not produce the desired logic output values. Based
on the above fault modeling, we formulate fault-tolerant Boolean
matching (FTBM) as follows.

Definition 1. FTBM takes as input a PLB H, a Boolean
function F , and the fault rates for the input pins (represent-
ing intermediate wires between PLBs) and the configuration
bits of the PLB, and outputs either that F cannot be imple-
mented by PLB H, or the configuration of H which mini-
mizes the probability, over all input vectors, that the faults
are observable in the output of the PLB.

Note that faults at PLB input pins result from faults of the upstream
logic and wires between PLBs. While we assume single fault in
our experiments, our algorithm for FTBM (described in Section 4)
allows multiple faults to occur simultaneously.

2.4 Resynthesis for LUT-based Network
Resynthesis [22, 23, 24, 25] is a technique that rewrites cir-

cuit structures to reduce area while maintaining the functionalities
of transition and output functions. It can be performed simulta-
neously with technology mapping or as a post-mapping optimiza-
tion. The simultaneous approaches perform logic resynthesis, such
as Boolean decomposition of logic functions [26, 27], during the
mapping process. Since they explore a large solution space, the
simultaneous approaches tend to be time-consuming, limiting their

Figure 2: Area (LUT#) vs. fault rate for MCNC
benchmark “i10” (one LUT bit fault rate is 0.1%)

use to small designs. To handle large designs, resynthesis is usually
performed after technology mapping for area recovery. Recently,
[12, 19, 28] proposed combinational resynthesis based on Boolean
matching [18] for FPGA area reduction. The resynthesis is per-
formed by mapping logic blocks extracted from a circuit against
a library set of logic blocks (e.g., hard-wired LUTs) and replac-
ing them with a functionally equivalent logic block if area can be
reduced.

While resynthesis guarantees a functionally equivalent circuit, the
fault rate of the resynthesized circuit can be significantly different
from the original one. We demonstrate this by example. Figure 2
shows the area (number of LUTs) vs fault rate for 18 resynthesis
solutions obtained using different options to ABC [16]. Notice that
the same application may be implemented using multiple distinct
configuration settings with different logic masking, resulting in
significantly different fault tolerance but with similar area. Hence,
we propose a robust resynthesis algorithm to simultaneously reduce
circuit area and fault rate.

3. ROBUST RESYNTHESIS
The fault rate of a circuit is impacted by both the synthesis al-

gorithm and the topological structure of the implementation. In
this section, we first describe the overall flow of our proposed ro-
bust resynthesis algorithm ROSE, and then present a robust PLB
template which enables better fault tolerance with ROSE.

3.1 Overall Algorithm of ROSE
Our procedure takes an application mapped to K-LUTs and scans

the combinational portion of the circuit in topological order from
primary inputs to primary outputs. In the course of scanning, new
logic blocks are generated by combining the logic blocks at the input
LUTs. Each logic block is mapped against one or more pre-defined
PLB templates; if a mapping with the minimal fault rate is found
by FTBM, the logic block can be substituted by the PLB template.
However, any substitution that increases the local logic depth or
area is discarded. This ensures that the logic depth and area does
not increase. In our implementation, only MFFCs are considered
as candidates for mapping.

As the resynthesis of a logic block will change the fault rate of
its output and therefore change the fault rates observable by the
inputs of the downstream network, ROSE processes all MFFCs in a
topological order (from CIs to COs) to guarantee that the input fault
rates of a logic block have been correctly updated before the block
is resynthesized. To calculate the fault rate for a logic block, both



faults in LUT configurations and the inputs of the block need to be
considered. After resynthesis, we can obtain the fault rate of the
block output and need to update the fault rates for all downstream
intermediate pins under the fanout cone of the block output (see
Figure 3).

LB1
LB2

Intermediate 
logics

Fault rate
of LB1

Input faults 
of LB2

CIs

Faults in 
config-bits

X

Faults in 
config-bits

X

Figure 3: Propagation of faults in ROSE, where input faults

of LB2 are resulted from the output fault in LB1.

3.2 Robustness of PLB Templates
Besides an effective robust resynthesis algorithm, it is also impor-

tant to find an effective PLB template for fault tolerance, because
different templates may have significantly different capability of
carrying fault tolerance and therefore they can pre-determine the
potential of the effectiveness of FTBM.

We consider Boolean functions with up to 10 inputs. According
to [12], there are three possible PLB templates with no-more-than
three 4-LUTs to implement a Boolean function with up to 10 in-
puts (see Figure 4 (a),(b) and (c)). The inherent disadvantage of
these area efficient PLB templates is the lack of opportunities to
place don’t-cares, which are the major source of logic masking and
fault mitigation. Inspired by a well-known observation that re-
convergence is a prime reason for don’t-cares, we propose a
new PLB template, R-PLB, as shown in Figure 4 (d), which requires
four 4-LUTs and forms re-convergent paths from input to output.

The logic don’t-cares include satisfiability don’t-cares (SDCs)
due to the fact that some combinations are not produced as the
inputs of the node, and observability don’t-cares (ODCs) due to
the fact that under some conditions the output value of the node
does not matter (i.e., is controlled by certain input combinations)
[29]. Figure 5 shows examples of don’t-cares in R-PLB. In Section
5, we will experimentally show the effectiveness of R-PLB for fault
tolerance.

4. FTBM ALGORITHMS
We now describe an algorithm for FTBM, which is the core

of ROSE, and discuss implementation issues. Recall the CNF-
encoding procedure described in Section 2.2, after solving (2), a set
of LUT configurations c1 , · · · , cn will be returned by the SAT solver
if F can be implemented by H. There might exist multiple distinct
implementations (i.e., different configurations) for H all of which
implement F . In fact, we can obtain partial or even all feasible con-
figurations by iteratively adding the negation of previously obtained
configurations into the CNFs and solving an augmented SAT prob-
lem. For each of these feasible configurations, C = (c′1, · · · , c′n),
we evaluate the fault rate at the output of this logic block under
this configuration setting. The configuration, C∗, which results in
the minimal fault rate is chosen as the candidate for mapping or
resynthesis.

4.1 Fault Rate Calculation
The main step of FTBM is an algorithm for fault rate calcula-

tion. We now show how fault rate calculation can be reduced to

stochastic satisfiability (SSAT) [14], a generalization of Boolean
satisfiability where some variables may be “randomly quantified” in
addition to variables that are existentially or universally quantified.
For example, the formula

∃x1,<x2, ∀x3, . . . , ∃xn−1,<xn.(Eϕ(x1, . . . , xn) ≥ β)

asks whether there exists a value for x1 such that for random values
of x2 (chosen from a given distribution), for all values of x3, . . .
there exists a value of xn−1 such that for random values of xn the
expected value Eϕ that the Boolean formula ϕ is satisfied under
the variable assignment is at least β.

For a logic block, we assume two (independent) sources of faults:
defective input bits of the logic block (resulting from the faults of
the upstream logic and wires between PLBs) and defective LUT
configurations inside the block. Assume the fault rate of input bit
x′

i is Pi, i.e., that with probability Pi, the ith input in the mapped
circuit is the opposite of the ith input of the function F . For each i,
we introduce a Boolean variable pi, where pi = 1 with probability
Pi and pi = 0 with probability 1 − Pi and the constraint

pi ↔ (x′

i 6= xi) (3)

to indicate that pi is 1 iff the input bit x′

i is not equal to xi. Similarly,
assume that the fault rate of the LUT configuration ci is Di, i.e.,
with probability Di, the ith LUT configuration bit in the logic
block has a value opposite to the nominal LUT configuration bit.
We introduce a Boolean variable di that is 1 with probability Di,
and add the constraint

di ↔ (c′i 6= ci) (4)

to indicate that the ith LUT configuration bit c′i is different from the
correct value ci iff di is 1.

Then, given a threshold β, the Boolean matching problem under
random faults in the input bits and the LUT configuration of the
logic block is reduced to the stochastic satisfiability instance:

∃c1, · · · , ∃cn,<p1, · · · ,<pk,<d1, · · · ,<dn, ∃c′1, · · · , ∃c′n,

∀x1, · · · , ∀xk, ∃x′

1, · · · , ∃x′

k, ∃z1 · · · ∃zm, ∃G, ∃F

E{Ψ(H) ∧ Ψ(F ) ∧ (G ↔ F )∧
^

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
^

i=1,··· ,k

pi ↔ (x′

i 6= xi)} ≥ β (5)

where Ψ(H) and Ψ(F ) are the constraints that define the internal
and output signals of H and the truth table F , respectively. The
probabilities P (di = 1) = Di are given as inputs to the problem,
and P (pi = 1) = Pi are obtained from the upstream logic block.
If the above SSAT problem is satisfiable, then the choice of the
LUT configuration c1, . . . , cn ensures that the probability that the
circuit implements F even when the LUT configuration and inputs
are flipped is at least β. By a binary search on β, we can find
the maximal probability that the defective circuit implements the
function F for this choice of the LUT configuration.

The above formulation (5) requires all min-terms of G and F are
identical under all input vectors x1, · · · , xk, which is too restrictive
in practice. Therefore, we relax the definition of fault rate as the
percentage of min-terms produced by G that are not equal to the
corresponding min-term in function F . Formally, suppose logic
block H with output G and the LUT configuration set to c1, . . . , cn

implements a Boolean function F (x1, · · · , xk). The fault rate of
logic block H under the input and the LUT configuration faults is
defined as

DF (H) =
1

2k

1,··· ,1
X

x1,··· ,xk=0,··· ,0

DFmin-term(x1,··· ,xk)



4-LUT

4-LUT

4-LUT
4-LUT

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

z1

z3

z2

G

4-LUT

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7
X8
X9

X10
G

z1

z2

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7

z1

G

4-LUT

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10 G

z1

z2

(a) A-PLB0 (b) A-PLB1 (c) A-PLB2 (d) R-PLB

Figure 4: Area efficient PLB templates (a),(b) and (c), and the proposed robust template (d)

2-LUT

2-LUT

00 1
01 1
10 x
11 1

z1

z3

z2

X1

X2

X3

X4

2-LUT

00 x
01 x
10 x
11 x

2-LUTz1

z3

z2

X1

X2
G

(a) (b)

X3 = 1

X4 = 1

Figure 5: Examples of logic masking in R-PLB. For simplicity, we use 2-LUT to replace 4-LUT. (a) LUTs z2 and z3 implement

2-AND and 2-OR, respectively. Gate z2 and z3 form a SDC for LUT G because input vector z2 = 1 ∧ z3 = 0 will never happen

due to the path reconvergence, therefore the faults in configuration bit 10 in LUT G will not affect the output; (b) LUTs z2 and

z3 both implement 2-OR. x3 = 1 ∧ x4 = 1 is the control signal of gate z2 and z3, which masks the output of LUT z1, i.e., makes

z1 an ODC for the output, and therefore any faults in configuration bits in LUT z1 will not affect the output.

where DFmin-term(x1,··· ,xk) is the probability that G and F have
different values when the input is fixed at (x1, . . . , xk) and faults
occur randomly according to Pi and Di. This probability can be
computed by maximizing β in the SSAT formula:

<p1, · · · ,<pk,<d1, · · · ,<dn,

∃c′1, · · · , c′n, ∃x′

1, · · · , ∃x′

k, ∃z1 · · · ∃zm, ∃G, ∃F

E{Ψ(H) ∧ Ψ(F ) ∧ (G(x1, · · · , xk) ↔ F (x1, · · · , xk))∧
^

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
^

i=1,··· ,k

pi ↔ (x′

i 6= xi)} ≥ β (6)

Note that the bits c1, . . . , cn and x1, . . . , xk are assumed to be fixed
in the above formula. Finally, we have

DFmin-term(x1,··· ,xk) = 1 − β̂,

where β̂ is the maximal probability of satisfying formula (6).

4.2 Reduction to Deterministic SAT
While there are tools to solve SSAT directly [30], we found that

their runtimes are too long to be applied directly to our problem.
For example, it takes over four hours on a Xeon 1.9GHz workstation
to solve a SSAT instance with 16 random variables, 14 universal
variables and 2K clauses using the implementation from [30]. In-
stead, we solve Equation (6) iteratively using a deterministic SAT
solver (miniSAT [31] in our experiments), by enumerating satisfy-
ing assignments and evaluating the expectations according to the
probability distributions of the randomly quantified variables.

We first express (6) as a deterministic SAT problem by changing

the random quantifiers before pi’s and di’s to existential quantifiers:

∃p1, · · · , ∃pk, ∃d1, · · · , ∃dn,

∃c′1, · · · , ∃c′n, ∃x′

1, · · · , ∃x′

k, ∃z1 · · · ∃zm, ∃G, ∃F

{Ψ(H) ∧ Ψ(F ) ∧ (G(x1, · · · , xk) ↔ F (x1, · · · , xk))∧
^

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
^

i=1,··· ,k

pi ↔ (x′

i 6= xi)} (7)

Then, we solve an ALL-SAT problem for (7), obtaining all satisfi-
able assignments for pi’s and di’s:

(p1
1, · · · , p1

k, d1
1, · · · , d1

n), · · · , (pm
1 , · · · , pm

k , dm
1 , · · · , dm

n )

The maximal probability of satisfying (6) can be calculated by using
the following formula:

β̂ =
1

2

m
X

i=1

 

k
Y

j=1

Pr(pj = pi
j) ·

n
Y

j=1

Pr (dj = di
j)

!

assuming the independence of each fault 1 and the probabilities Pi

and Di. Note that Pi denotes the probability that either (xi =
0 ∧ x′

i = 1) or (xi = 1 ∧ x′

i = 0). If we distinguish between
these two cases assuming that they are equally probable, we have
that (xi = 0 ∧ x′

i = 1) with the probability (Pi)/2 and (xi =
1 ∧ x′

i = 0) also with the probability (Pi)/2. Therefore we have
to distinguish how the corresponding variables are assigned and to
use Pi/2(Di/2) in our calculation.

An ALL-SAT problem (e.g., 7) can be solved by iteratively adding
the negation of the previously satisfiable solutions into the CNFs,
which is computationally expensive, and we exploit the structure
1Although independence between faults is assumed here for
the reduction from SSAT to deterministic SAT, such reduc-
tion can be done for multiple faults with given correlation.
Therefore, the SSAT-based formulation and algorithm can
be extended to handle multiple faults.



of the problem to speed up the fault rate calculation. We note
that the probabilities Pi and Di are usually very small. So we
rule out certain combinations of pi’s and di’s that have very low
probability of occurrence. For example, we can restrict the search
to assignments in which at most a small number of pi’s and di’s
are one simultaneously. When the fault rate of single bit is low,
this is a nice approximation that may slightly reduce the total fault
rate but with significant speedup of the reasoning runtime. In our
experiments, we shall assume there is a single faulty bit.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Based on Boolean Functions
We have implemented ROSE in C++ in the OAGear package

[32]. We use miniSAT2.0 [31] as the SAT engine in FTBM. All
experimental results are collected on a Ubuntu workstation with
2.6GHZ Xeon CPU and 2GB memory. We test our algorithms
on QUIP benchmarks [15], where each benchmark is mapped by
Berkeley ABC mapper [16] with 4-LUTs. We assume that one and
only one bit of the LUT configuration in the mapped FPGAs is
defective. The fault rate of the chip is the percentage of the input
vectors that produce the defective outputs, and it is calculated by
Monte Carlo simulation with 20K iterations where one bit fault is
randomly injected in each iteration.

We evaluate the effectiveness of the three templates for fault tol-
erance. We first extract 3000 9-input Boolean functions from QUIP
benchmarks by enumerating 9-feasible cuts. Without considering
input faults, we perform FTBM to map these 9-input Boolean func-
tions against A-PLB1, A-PLB2, and R-PLB, respectively. The con-
figurations with minimal or maximal fault rate can be obtained by
using two versions of FTBM algorithms, i.e., FTBM+ and FTBM−,
where FTBM− returns the configurations with the maximal fault
rate while FTBM+ returns the ones with the minimal fault rate.
We compare R-PLB with A-PLB1 and A-PLB2 in terms of (a) the
minimal fault rate that can be achieved by these templates, and (b)
the gap of the fault rates (i.e., the difference between the minimal
and maximal fault rates) under all feasible configurations. Due to
the space limit, we only show the comparison results between R-
PLB and A-PLB2 in Figure 6. In these plots, only those Boolean
functions that can be implemented by both templates are taken. As
shown in the plots, the minimal fault rates achievable by R-PLB
are generally less than those achievable by A-PLB2. In addition,
the solution space, in terms of the gap of the fault rates that can
be produced by all feasible configurations of template R-PLB, is
generally wider than that of template A-PLB2, which indicates that
there exists more flexibility to place don’t-cares in R-PLB. Similar
observations are obtained by comparing R-PLB and A-PLB1. With
these observations, we consider R-PLB as a more effective template
for fault mitigation. Nevertheless, all other templates, A-PLB0, A-
PLB1, and A-PLB2, can be tested by FTBM during technology
mapping or resynthesis to trade-off area and fault rate.

5.2 Evaluation Based on Benchmark Circuits
Under the same setting in Section 5.1, we now evaluate the ef-

fectiveness of ROSE for fault tolerance. All ABC-mapped QUIP
benchmarks are resynthesized by ROSE using area-efficient PLB
templates (Figure 4 (a)-(c)) and the robust PLB template (Figure 4
(d)). In resynthesis using area-efficient templates, each of the three
templates is examined and the configuration with the maximal fault
rate is returned. The logic depths are preserved in all resynthesis
algorithms. The results are summarized in Table 1.

We first show the gap between the minimal fault rate and the
maximal fault rate that can be achieved by ROSE. The FTBM+

and FTBM− mentioned in the previous sub-section are used in
ROSE to obtain the minimal and maximal fault rates, respectively.
As shown in column “gap” in Table 1, ROSE using FTBM+ consis-
tently returns results with smaller fault rates compared to ROSE us-
ing FTBM−, and the gap is up to 2.42%. Note that ROSE only
maximizes the local logic masking, i.e., the best logic masking
introduced by ROSE may not always be the most effective to the
primary outputs. The above observation indicates our approach in
ROSE is a high quality heuristic in terms of global optimization.
In the following experiments, we always use FTBM+ in ROSE.
In addition, ROSE/R using the robust template consistently obtains
a bigger gap than ROSE/A using area-efficient templates. This
demonstrates that the robust template does offer a higher potential
for fault rate reduction.

Moreover, Table 1 compares the fault rates resulted from ABC
(sub-column “ABC”), ROSE using area-efficient templates (sub-
column “ROSE/A”) and ROSE using robust template (sub-column
“ROSE/R”), respectively. Compared to the mapping by ABC, our
ROSE using the robust template reduces fault rate by 25% (1.06%
vs. 0.80%) on average. Compared to ROSE using area-efficient
templates, ROSE using the robust template reduces fault rate by
14% (0.80% vs. 0.93%) on average.

As shown in column “area” of Table 1, our ROSE using area-
efficient templates and the robust template reduces area by 10%
and 1%, respectively, compared to ABC mapping results. Since R-
PLB has larger area compared to area-efficient templates, ROSE/R
results in 11% larger area than ROSE/A.

In addition, Table 1 compares the runtime of the determinis-
tic SAT-based resynthesis using area efficient templates [28]. The
proposed ROSE using two different template sets. It shows that
ROSE using area efficient templates and ROSE using the robust
template has 3X and 10X runtime overhead, respectively, com-
pared to the deterministic resynthesis. The ROSE using the robust
template is slower than the one using area efficient templates be-
cause the robust template contains more LUTs and FTBM requires
more runtime to solve the SAT problem.

5.3 Estimation of MTBF
We now estimate the mean time between failure (MTBF) ob-

tained by different resynthesis algorithms for industrial FPGAs. As
suggested by [33], the MTBF can be estimated by the following
formula:

MTBF = 109/(24 · 365) FITtotal
FITtotal = 100 · Rvulnerability · Rintrinsic error(8)

Rintrinsic error = Area · RFIT
where Rvulnerability is the vulnerability factor, which is the frac-
tion of faults that become errors, and can be estimated by the mean
of the fault rates in Table 1, and Rintrinsic error is the intrinsic error
rate, which is proportional to the area (SRAM bits number) and the
raw FIT rate2 for a single bit, RFIT. Typically, RFIT is 0.001-0.01
FIT/bit and we use 0.01 FIT/bit in our estimation.

The current biggest FPGAs are Stratix III (with up to 338,000
logic cells) [34] from Altera and Virtex-5 LXT (with up to 330,000
logic cells) from Xilinx [35]. We use 330,000 4-LUTs as the typical
industrial FPGA size to estimate the MTBF obtained by our ROSE.
As shown in Table 2, ROSE using the robust template increases
MTBF by 31% (27.15 years vs. 20.66 years) compared to ABC.
Note that the MTBFs in our experimental results match the typical
server system reliability goals as reported in [33], which validates
our experimental settings. Note that the purpose of this comparison
2One FIT is one failure in a billion hours.



0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

50

100

150

200

250

300

350

400

Fault rate (%)

F
re

qu
en

cy
 o

f B
oo

le
an

 fu
nc

tio
ns

A−PLB2
R−PLB

(a) Achievable minimal fault rate

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

150

200

250

300

350

400

450

Fault rate gap (%)

F
re

qu
en

cy
 o

f B
oo

le
an

 fu
nc

tio
ns

A−PLB2
R−PLB

(b) Gap between minimal and maximal fault rates

Figure 6: Comparison between template R-PLB and template A-PLB2

benchmarks gap fault rate area (LUT#) runtime (min)
ROSE/R ROSE/A ABC ROSE/A ROSE/R ABC ROSE/A ROSE/R [28] ROSE/A ROSE/R

barrel64 2.42% 0.64% 2.09% 1.82% 1.63% 1862 1414 1734 1.55 9.22 16.77
fip cordic cla 0.62% 0.35% 1.25% 1.07% 0.93% 1044 823 1027 0.7 0.78 7.10
fip cordic rca 0.54% 0.31% 1.17% 1.03% 0.84% 983 789 970 0.58 0.55 5.88
mux8 128bit 0.30% 0.10% 0.97% 0.94% 0.67% 898 770 898 0.23 0.25 149.03

nut 000 0.51% 0.38% 0.97% 0.83% 0.63% 927 912 926 2.23 182.03 6.38
nut 002 0.44% 0.25% 0.71% 0.60% 0.48% 652 645 652 3.03 4.20 4.80
nut 004 0.32% 0.23% 0.69% 0.58% 0.50% 618 550 615 0.35 1.10 8.27

oc ata ocidec1 0.52% 0.14% 0.72% 0.65% 0.52% 693 660 692 1.5 1.60 4.48
oc ata ocidec2 0.66% 0.18% 0.88% 0.79% 0.64% 838 769 837 1.55 1.72 4.77

oc ata v 0.38% 0.19% 0.55% 0.47% 0.40% 512 452 494 0.15 0.20 3.10
oc cordic p2r 2.06% 0.64% 3.35% 3.09% 3.09% 3175 3131 3175 0.98 19.72 9.12
oc correlator 0.13% 0.20% 0.67% 0.64% 0.59% 611 585 610 0.13 0.22 9.35
oc dct slow 0.37% 0.20% 0.55% 0.46% 0.36% 513 479 512 2.87 36.70 6.50

oc des area opt 0.83% 0.47% 1.26% 1.08% 0.93% 1192 1127 1191 6.63 31.15 6.52
oc des des3area 1.25% 0.52% 2.04% 1.89% 1.44% 1784 1580 1783 3.77 29.32 5.35

oc i2c 0.37% 0.22% 0.62% 0.52% 0.46% 597 548 590 3.25 2.45 28.67
oc rtc 0.60% 0.30% 0.95% 0.79% 0.71% 887 708 881 0.43 0.65 22.13

oc sdram 0.65% 0.28% 0.76% 0.64% 0.60% 731 648 728 0.32 1.50 4.08
os sdram16 0.78% 0.35% 0.97% 0.83% 0.74% 947 821 923 0.45 2.40 69.75
geomean 0.58% 0.30% 1.06% 0.93% 0.80% 980 877 970 0.93 3.07 9.42

normalized mean 1.00 0.87 0.75 1.00 0.90 0.99 1.00 3.29 10.08

Table 1: Comparison of ABC and ROSE using robust and area-efficient PLB templates

is to provide a sanity check for the effectiveness of our approach;
clearly there exist many differences between FPGAs and server
systems, but we do expect “ball-park” parameter values for MTBF
calculations to be similar.

MTBF (year)
benchmark area ABC ROSE using R-PLB
330,000 LUTs 20.66 27.15

ratio 1 1.31

Table 2: MTBF (mean time between failures)

6. CONCLUSIONS AND FUTURE WORK
We are encouraged by the initial success of ROSE in minimizing

the stochastic fault rate while preserving optimal logic depth and
minimally impacting area. On QUIP benchmarks, ROSE reduced
the fault rate by 25% with 1% fewer LUTs, and increased MTBF
by 31%, while preserving the optimal logic depth, when compared
to ABC [16]. We believe that our study of robust FPGA resynthesis
provides a first step toward a general methodology for stochastic
synthesis. In particular, there are several open directions.

• Our experiments assume single fault, but the proposed algo-
rithm can deal with multiple uncorrelated faults, which will
be first explored in future work. In addition, we will ex-
tend the proposed algorithm to consider given correlations
between faults.

• To cope with the runtime overhead of the SAT-based Boolean
matching, we will study more efficient alternatives for Boolean
matching, e.g., building a hybrid algorithm combining SAT
and Boolean decomposition [36], which enables us to per-
form the resynthesis on logic blocks with wider inputs and
leading to optimization for robustness from a more global
point of view. In addition, potential advance of SSAT solvers
will also provide more optimization power of our resynthesis.

• As the essence of the proposed stochastic synthesis is to take
advantage of don’t-cares in a logic network, we will explore
the don’t-cares explicitly for robust resynthesis. For exam-
ple, one can first calculate the complete don’t-cares [29] for a
logic block, and then explore all possible mapping solutions
considering these don’t-cares and select the one which max-



imizes logic masking to prevent the fault propagation. More
generally, one can take advantages of the existing flexibilities
in the network, e.g., Boolean relations [37], Sets of Pairs of
Functions to be Distinguished (SPFDs) [38], and sequential
flexibilities [43]. These may lead to more efficient algorithms
and in turn more globally optimized solutions.

• By introducing additional logic masking, defect-aware logic
synthesis algorithms such as ROSE can make verification and
silicon debugging tasks difficult. In the future, it is necessary
to address the tradeoff between logic masking and testability
or verifiability. One possible solution is to provide proofs of
correctness of transformations [39].

• In the longer term, we shall investigate how other logic syn-
thesis and optimization algorithms can be made fault-tolerant
by exploiting redundancy or flexibility in the solution space.
Finally, we shall investigate how fault tolerance at the logic
synthesis level interacts with algorithm-level fault tolerance
[40].

• Our algorithm applies to standard cell-based circuits as well.
There is some existing work on fault-tolerant logic synthesis
for standard cell designs. For example, [41] developed a
critical-area driven technology mapping, and [42] applied
logic redundancy and structural restructure to mask soft errors
based on a fast simulation. Our work extends these ideas to
an explicit formulation of stochastic synthesis.

7. REFERENCES
[1] A. Djupdal and P. C. Haddow, “Yield enhancing defect

tolerance techniques for FPGAs,” in MAPLD International
Conference, 2006.

[2] S. Durand and C. Piguet, “FPGA with self-repair capabilities,”
in FPGA, 1994.

[3] N. J. Howard, A. M. Tyrrell, and N. M. Allinson, “The yield
enhancement of field-programmable gate arrays,” in TVLSI,
1994.

[4] “Altera stratix II features,” in
http://www.altera.com/products/devices/stratix2/, 2006.

[5] A. Doumar and H. Ito, “Design of switching blocks tolerating
defects/faults in FPGA interconnection resources,” in DFT,
2000.

[6] A. J. Yu and G. G. Lemieux, “Defect-tolerant FPGA switch
block and connection block with fine-grain redundancy for yield
enhancement,” in FPL, 2005.

[7] H. Naeimi, “A greedy algorithm for tolerating defective
crosspoints in NanoPLA design,” in Master Thesis, California
Institute of Technology, 2005.

[8] M. Joshi and W. Al-Assadi, “Development and Analysis of
Defect Tolerant Bipartite Mapping Techniques for
Programmable cross-points in Nanofabric Architecture,”
Springer Netherlands, 2007.

[9] R. Bonam, Y.-B. Kim, and M. Choi, “Defect-tolerant gate
macro mapping and placement in clock-free nanowire crossbar
architecture,” in DFT, 2007.

[10] R. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,” in IBM Journal
of Research and Development , 1962.

[11] Y. Lin and L. He, “Device and architecture concurrent
optimization for FPGA transient soft error rate,” in ICCAD,
2007.

[12] A. Ling, D. Singh, and S. Brown, “FPGA technology mapping:
a study of optimality,” in DAC, 2005.

[13] A. Ling, D. Singh, and S. Brown, “FPGA logic synthesis using
quantified boolean satisfiability,” in SAT, 2005.

[14] C. Papadimitriou, “Games against nature,” Journal of
Computer and Systems Sciences, 1985.

[15] “Altera: QUIP for Quartus II V5.0,” in
http://www.altera.com/education/univ/.

[16] “ABC: A system for sequential synthesis and verification,” in
http://www.eecs.berkeley.edu/ alanmi/abc/.

[17] J. Cong and Y.-Y. Hwang, “Boolean matching for LUT-based
logic blocks with applications to architecture evaluation and
technology mapping,” in TODAES, 2001.

[18] L. Benini and G. D. Micheli, “A survey of Boolean matching
techniques for library binding,” in TODAES, 1997.

[19] J. Cong and K. Minkovich, “Improved SAT-based boolean
matching using implicants for LUT-based FPGAs,” in FPGA,
2007.

[20] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting
symmetry in SAT-based boolean matching for heterogeneous
FPGA technology mapping,” in ICCAD, 2007.

[21] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient
SAT-based boolean matching for FPGA technology mapping,”
in DAC, 2006.

[22] G. D. Micheli, “Synchronous logic synthesis: algorithms for
cycle-time minimization,” in TCAD, 1991.

[23] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware
AIG rewriting,” in DAC, 2005.

[24] S. Malik, E. Sentovich, R. Brayton, and
A. Sangiovanni-Vincentelli, “Retiming and resynthesis:
Optimizing sequential networks with combinational
techniques,” in TCAD, 1991.

[25] R. Brayton and A. Mishchenko, “Sequential rewriting,” in
IWLS, 2007.

[26] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness,
“Logic decomposition during technology mapping,” in TCAD,
1997.

[27] A. Mishchenko, X. Wang, and T. Kam, “A new enhanced
constructive decomposition and mapping algorithm,” in DAC,
2003.

[28] Y. Hu, V. Shih, R. Majumdar, and L. He, “FPGA area
reduction by multi-output function based sequential
resynthesis,” in DAC, 2008.

[29] A. Mishchenko and R. K. Brayton, “SAT-based complete
don’t-care computation for network optimization,” in DATE,
2005.

[30] M. Littman, “Initial experiments in stochastic satisfiability,” in
AAAI/IAAI, 1999.

[31] N. Een and N. Sorensso, http://minisat.se/.

[32] Z. Xiu, D. A. Papa, P. Chong, A. Kuehlmann, R. A. Rutenbar,
and I. L. Markov, “Early research experience with OpenAccess
Gear,” in ISPD, 2005.

[33] S. Mukherjee, J. Emer, and S. K. Reinhardt,
“Radiation-induced soft errors: An architectural perspective,”
in HPCA, 2005.

[34] “Altera stratix III features,” in http://www.altera.com, 2007.

[35] A. Cosoroaba and F. Rivoallon, “Achieving higher system
performance with the Virtex-5 family of FPGAs,” in
http://www.xilinx.com/literature.

[36] A. Mishchenko, R. K. Brayton, and S. Chatterjee, “Boolean
factoring and decomposition of logic networks,” in ICCAD,
2008.

[37] R. K. Brayton and F. Somenzi, “Boolean relations and the
incomplete specification of logic networks,” in VLSI, 1989.

[38] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to
express functional permissibilities for LUT based FPGAs and
its applications,” in ICCAD, 1996.

[39] S. Kundu, S. Lerner, and R. Gupta, “Validating high level
synthesis,” in CAV 08, 2008.

[40] J. von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” in Automata
Studies (C. Shannon and J. McCarthy, eds.), Princeton Univ.
Press, 1956.

[41] A. Nardi and A. Sangiovanni-Vincentelli, “Logic Synthesis for
Manufacturability,” in IEEE Des. Test, 2004.

[42] S. Krishnaswamy, S. Plaza, I. Markov, and J. Hayes,
“Enhancing Design Robustness with Reliability-aware
Resynthesis and Logic Simulation,” in ICCAD, 2007.

[43] M. Case, V. Kravets, A. Mishchenko, and R. Brayton,
“Merging nodes under sequential observability,” in DAC, 2008.

[44] Y. Hu, V. Shih, R. Majumdar, and L. He, “FPGA Area
Reduction by Multi-Output Function Based Sequential
Resynthesis,” in DAC, 2008.


