Verifying Reference Counting Implementations

Michael Emmi, Ranijit Jhald, Eddie Kohlet, and Rupak Majumdar

o

University of California, Los Angeleq,nj e, kohl er, rupak} @s. ucl a. edu
2 University of California, San Diegg,hal a@s. ucsd. edu

Abstract. Reference counting is a widely-used resource manageménh id
which maintains a count of references to each resource bgrimenting the count
upon an acquisition, and decrementing upon a release; mEsowhose counts
fall to zero may be recycled. We present an algorithm to yehié correctness of
reference counting with minimal user interaction. Our aiion performs com-
positional verification through the combination of symbdémporal case split-
ting and predicate abstraction-based reachability. Tempas# splitting reduces
the verification of an unbounded number of processes andimes® to verifi-
cation of a finite number through the use $kolem variablesThe finite state
instances are discharged by symbolic model checking, withuiliary invariant
correlating reference counts with the number of held refees. We have imple-
mented our algorithm in Referee, a reference counting aatpol for C pro-
grams, and applied Referee to two real programs: the mentiogasor of an OS
kernel and the file interface of the Yaffs file system. In batises our algorithm
proves correct the use of reference counts in less than amateni

1 Introduction

Reference counting is a widely-used resource managenient idhere the references
to each resource unie(g.,memory cell, file handle, device structure) are counted. The
programmer increments the count when acquiring a resourdedacrements it when
releasing. A resource may be recycled when its referenceteeaches zero.

Despite its ubiquity, reference counting is difficult to ilement correctly. Ensuring
aresource is not accessed after its count reaches zerogsguécisely reasoning about
shared heap objects in concurrent programs with a stgtisaknown number of shar-
ers. In the most benign case, errors in reference countimgpogsource leaks: when the
last reference to an object is removed but the referencett®naot decremented to zero.
More dangerous errors can allow unprivileged read or wiGtgeas to critical regions of
memory that have been inappropriately reclaimed and redygplossibly compromising
sensitive information.

We show how predicate-abstraction based software modekaigecan be extended
with compositional reasoning techniques to enable th&statification of the correct-
ness of reference counting implementations. (that accessed objects have positive
counts). The problemis difficult as such programs are untbedim several dimensions;
first, an unbounded number of objects may be dynamicallgatkd, second, each unit
may be accessed concurrently by an unbounded number ofrshanel hence, third,

* This research was sponsored in part by the NSF grants CC61@84and CCF-0702743.

the reference count for each individual object may grow wittbound. These compli-
cations prohibit the direct application of finite-statelteifjues such as model checking,
to verify reference counting. Furthermore, standard proganalysis abstractions that
summarize an unbounded number of dynamic objexts Clients, resources) are too
imprecise since they do nobuntthe objects they summarize.

Our approach for verifying reference counting implementz follows the follow-
ing strategy. As a first step, we perfoaampositional reasonintp reduce the verifica-
tion problem to a number of finite-state verification probtewhose combined validity
implies the original program’s [22]. One possible verifioatstrategy is to tag each re-
source with a handle, and ensure that clients only accesaness to which they have
handles. Correctness then follows separately from thesctress of handling each re-
source, and each handling process. This first step is calagoral case splittingve
check validity for a particular tracked resource and a paléir accessee in an environ-
ment that abstracts all other resources and accessors.

Temporal case splitting trades the original complex veatfam problem for an infi-
nite number of separate simpler verification obligationswdver, using symmetry, we
observe that discharging the proof obligation forabitrary symbolically identified
resource, and aarbitrary symbolically identified client, implies discharging each o
the infinitely many obligations induced by case splittingus$, as a second step, we
useSkolem variableso name single, but arbitrary, resources and clients. ThaeBk
variables induce a natural finite abstraction of the systémnithvdistinguishes only the
fixed resources bound to Skolem variables (and abstraaithal resources). Similarly,
instead of tracking every client, the abstraction trackly dime fixed clients bound to
Skolem variables, abstracting the effects of other cliecBk®lemization enablestrong
updateson the tracked resources: we can follow each increment aredemnt to the
tracked resource precisely; all updates to the other ressuaraveak their effects are
unknown.

Unfortunately, the strategies given so far are still ingigfnt; we must also deal
with unbounded reference couwrdlues On the one hand, abstracting a counter’s incre-
ments and decrements by untracked clients results in afdlss precise counter value,
and a proof is generally not possible. On the other hand, ltsg@ct domain remains
infinite (with a different value for each counter value) if wack each of these writes
precisely. To solve this problem we observe that correstiieéows from knowing a
unit’s count is positive if and only if it is referenced by serdlient. To prove this, as
a third step, we introduceraference predicatespecifying themeaningof referencing
a unit, and automatically insert auxiliary variablewhose value, by construction (i.e.
instrumentation) equals the number of client mappingsiatig the reference pred-
icate. Anauxiliary invariant enforces a positive valued auxiliary counter whenever a
client satisfies the reference predicate.

With these steps, we reduce proving an object’s real refereount positive to
checking that (1) the tracked client satisfies the refer@nedicate, and (2) the real ref-
erence counéqualsthe auxiliary count. As (1) follows by precisely trackingettruth
value of the reference predicate for the tracked client, @)dollows from reasoning
about the equality of program variables, the resultinggailon can be discharged using
well-established techniques: either through specialigteedabstract domainfs] that

can prove linear relationships among variables, or, as vgeiment, through predicate
abstraction and counterexample-guided refinement [111R]based model checking.
The meta-argument used for the auxiliary invariant is mépymoved sound outside
of the program analysis, and can teeisedto verify any program that implements ref-
erence counting, once the reference predicate is specifiedmeta-argument used for
the auxiliary invariant is manually proved sound outsidehaf program analysis, and
can be instantiated with different reference predicate®tiy any program that imple-
ments reference counting. Moreover, the soundness of qupaph is independent of
the choice of reference predicate: an invalid predicatllgia failed proof, since either
(1) or (2) will fail to hold.
In summary, our analysis combines four ingredients:

Temporal case splitting to reduce the (infinite state) verification goal over infihjite
many objects to infinitely many (finite state) subgoals oadividual objects,

Skolemization to reduce infinitely many verification subgoals over différebjects,
into a single verification goal over arbitrary object,

Auxiliary state to provide a finite representation of unbounded executictohy
i.e.,the unbounded reference count for a given object, and

Model checking to discharge the finite state verification goals induced leyube of
temporal case splitting, skolemization and auxiliaryestat

While the general techniques have been known [22], we haveeen them successfully
applied in software model checking so far, and believe thatimplementation is an
interesting application of compositional verification toedevant systems problem.

We have implemented these ideas in a static analyzer fdyiregisound reference
counting in C programs. Given a program, and a user-speaifiedf Skolem variables,
our tool instruments the program with auxiliary state angilgry invariant instantia-
tion, and performs model checking on the instrumented piogabstracted by Skolem-
and predicate-abstraction. The model checking engine ofoaliis based on the soft-
ware model checker BAST [13], and uses an iterative refinement of the abstract transi
tion relation based on counterexample traces [12, 15]. E€chrtique is not completely
automatic, and requires that the user identify referenestel datatypes as well as
which variables to perform case-splits on. In our experitsgne have found the iden-
tification of reference counted datatypes and case-spldbigs can be performed with
a limited knowledge of the program. Our analysis relievesglogrammer of the diffi-
cult burden of providing precise inductive assertions atcfion and loop boundaries, a
task which is readily performed by the model checker.

We have applied our tool to two case studies: the virtual mgraobsystem of the
JOS operating system kernel [17], and the file handle interfautines of the YAFFS
file system [23]. In each case, the soundness argument depengrecise reasoning
about arbitrarily many clients acquiring and releasingteses. These modules (each
of a few hundred lines) encapsulate reference countingida@ounting within them
implies sound counting for the entire systems. Each exangide verified by our tool
within a minute.

Acknowledgments We thank the anonymous referees and Alessandro Cimattefpr h
ful comments.

2 Verification Technique

We now formalize our verification technique and illustratiéhwvan example.

Preliminaries: Programs and Safety. For our formal presentation, we assume an
abstract representation of programs by transition systfthg A program P =
(X, L, ¢y, R) consists of a seK of variables, a seL of control locations, an initial
location{y € L, and a transition relatioR. Variables inX have values over integers or
functions. (Functions are used to model (unbounded) atrgysapping natural num-
bers,i.e., the “indices”, to values.) A transitiot¥, p,¢’) € R is a move from control
location ¢ to location?’, satisfyingp, a constraint over free variables frof U X".
The variables fromX denote values at locatighand the variables fromX’ denote the
values of variables fronX at location?’. The sets of locations and transitions naturally
define a directed graph, called the prograogstrol-flow graph(CFG).

A data stateof the programP is a valuation of the variables fro; the set of all
data states is denoteéd. We use constraints to represent sets of data states. Fora co
straintp overX U X’ and a valuationjs, s’) € X' x X7, we write(s, s’) F pif the valua-
tion satisfies the constraipt A state(¢, s) consists of a locatiofi€ L and a data state
A computatiorof the progranP is a sequence of staté%), so), (¢1, $1), - - -, (lk, k) €
(L x X)*, where/, is the initial location and for eache {0,...,k — 1}, there is a
transition(¢;, p, ¢;+1) € R such that(s;, s;11) E p. A data states is reachableat loca-
tion Zif (¢, s) appears in some computation. A stétes) is reachable if the data state
is reachable at locatioh Let o be a set of states. A programis safew.r.t. o iff all
reachable states df are contained irp.

Example. Figure 1 shows an abstraction of a shared memory system ichvelm arbi-
trary number of processes (syntactically identified witth)ghare an unbounded num-
ber of resources, indexed by g, and reference counted byriéne @unt. For readabil-
ity, we present programs in a C-like syntax instead of aswipAll reference counts are
initially zero. Each process first chooses a resource (ljpéhgn acquires the resource
while incrementing its reference count (line 2), performme task, then releases the re-
source while decrementing its reference count (line 5). ¥¢aime lines 2 and 5 execute
atomically. Although implicit, the system may “recycle” @source when its reference
count reaches 0O; to ensure the system does not recycle $ivanees, we seek to verify
the validity of the assertion on line 3. The simple referecment example is “obviously
correct”. However, consider a modified version where theuaeopf the resource and
the increment of the reference count are not performed a&@liyj but in distinct steps.
This implementation is buggy: between the resource adiprisind the reference count
increment, the resource can be freed, if another procegseinago hold the only other
reference to the same resource, and addisref. It follows that theincref operation
can read and write on freed (or worse, reallocated) memonyil& bugs have been
found in Windows device drivers [24].

For this simple example the assertion always holds bec#&aseurrent process at
line 3 holds a reference to resource g, and hence counfl[gThe assertion is an in-
stance of a safety property, and can be checked by ensuahgdhreachable program
state violates it. Unfortunately, there are infinitely maagichable states of the system

Initially

count[g] = 0 for all g Initially
Process pid count[g] = 0 for all g
zr[g] = 0 for all g
1 chooseg;
2 ref[pid] < g; incref count[g]; Process pid
3 assert(count[g] > 0);
4 do work 1 chooseg;
5 ref[pid] « —1; decref count[g]; 2 ref[pid] < g; incref count[g];
update_auxg[g], ref[pid]=g)

Fig. 1. Abstract reference counting 3 assert(pid=P = g¢g=G = count[g]>0);
1 atomic { 4 do work; update_aux£r[g], ref[pid]=g)
2 item < acquire (0); 5 ref[pid] — —1; decref count[g];
3 incref (item);
4} update_auxgr[g], ref[pid]=g)
5 repeat {
6 choose g;
7 tomi . .
8 a?{;‘x_i{tem acquire (g): Fig. 3. _Ab_stract referenc_e_ counting, after
9 decref(item); Skolemization and Auxiliary Instrumenta-
10 item < new_item; tion. The programmer manually identifies
11 incref (item); .
12 the Skolem variables P and G. The system
13} automatically inserts the auxiliary variables and

instrumentation.

Fig. 2. Buggy reference counting

as the set of resources, processes, and counter valuebwarb@linded. Hence we must
perform reachability analysis over afstractionof the system.

Here the usual abstraction techniques for arrays [1, 13}h f1s merging all ele-
ments into a single element, are too imprecise; they proltig analysis from per-
forming strong updates.é., precisely tracking information about a resource), and from
distinguishing individual resources. Similarly, to prabe assertion we would require
an abstract domain that could distinguish the infinitely ynstates where count[g] has
different values. For example, a predicate abstractiohlpated domain would have to
track an unbounded number of predicates of the form count{fjr each index g and
each integer value n that can be stored in count[g].

Step 1: Temporal Case Splitting

Temporal case splitting [22] is a proof technique that degoses the proof of a pro-
gram property into sub-proofs, one for each value in the domfa particular variable.
It is based on the following observation.

Lemma 1. (Case Splitting)l et = be a variable of progranP, and ¢ a set of states.
ThenP is safe w.r.ty iff for eachc in the domain ofr, the programpP is safe w.r.t.
(x=c) = .

Temporal case splitting can lnestedin order to check safety w.r.tz = i) = ¢,
we can further case split on a second variable, and so on.

Example. For the example of Figure 1, we may split the assertion on 3ineto an
infinite number of assertionassert(g=0=- count[g]>0), assert(g=1=- count[g]>0),
and so on, one for each resource. By the same reasoning, wecas®
split further over the process identifier into an infinite rhen of assertions
assert(pid=0=- g=0= count[g]>0), assert(pid=1=- g=0=- count[g]>0), and so
on, one for each process and resource pair. Temporal caigingpils sound in that
if each subgoal is true, then the original safety propersise true. However, by itself
it is not very useful, as it introduces an infinite number di-goals.

Step 2: Skolemization

Though case splitting introduces infinitely many sub-gahis sub-goals argymmetric
as each process behaves in a manner similar to the othertherasources are distinct
copies of the same entity. Instead of checking each congretess and resource sepa-
rately, we can performsinglecheck for ararbitrary process and aarbitrary resource.
If we prove this goal, then the assertion is vdl all processes and all resources. To
namethe arbitrary (but fixed) process and resource, requiretti@programmer iden-
tify Skolem variablesThese are fresh variables, distinct from the original paogvari-
ables, that are non-deterministically initialized with abitrary value from a possibly
unbounded range, and not modified subsequently.

Formally, we introduce Skolem variables as follows. let= (X, L, ¢y, R) be
a program, and leS be a set ofSkolem variableslisjoint from X. We denote by
P[S] = (X US, L, £y, R[S]) the programP augmented with Skolem variables
where(?, o', ¢') € R[S]iffthereis atransition{(, p, ') € Randp’ = pA\,cq 5" = s.
An extended data state is a valuationaJ S, an extended state consists of a location
¢ and an extended data state. To distinguish state® fsfbm states ofP[S] (which
additionally contain valuations to the Skolem variables) qualify states with the pro-
grams by writingP-state, orP[S]-state. By definition, the Skolem variables do not alter
the program’s behavior; they exist solely for the purposthefproof and need not be
maintained at runtime.

Lemma 2. (Skolemizationl etz be a variable of progranP, ¢ a set of P-states,S a
set of Skolem variables, and= S. P is safe w.r.typ iff P[S] is safe w.rt{z = s) = ¢.

Proof. First of all, P is safe w.r.ty iff P[S]is. By Lemma 1P|[S] is safe w.r.typ iff
P[S] is safe w.r.t.(x = ¢) = ¢ for eachc in the domain ofr. Since the set of states
(x =¢) = pisequaltolx = s As = ¢) = ¢ (s is not assigned to ifP[S]), and
thus equal ta(s = ¢) = (z = s) = ¢, P[S] is safe w.rt.p iff P[S] is safe w.r.t.
(s =c¢) = (z = s) = ¢ foreachcin the domain ofz, and again by Lemma 1, ifP[.S]

is safe w.r.t(z = s) = o.

Example. For the program of Figure 1, we (manually) identify two Skuleariables
corresponding to the unbounded arrays of processes andrceso P corresponds to
an arbitrary process, and G corresponds to an arbitraryjuresoSince G and P are
never assigned to (they do not even exist in the originaliaumg, the infinite number of
assertionassert(pid=i = g=j = count[g] > 0), one for each i and j, are equivalent to

the single assertioassert(pid=P=- g=G = count[g]>0), because G=0G=1V - -,
and P=0v P=1vV - - - are both valid formulee.

The key benefit of the Skolem variables is that they induceiadinite abstraction
on the state space. Instead of a possibly unbounded numpeyadsses, we (strongly)
track thesingleprocess whose identifier is equal to P, and effectively maligbe other
processes (whose identifiers are different from P) into drséract “summary” process.
Similarly, instead of an unbounded number of indices of thent array, we strongly
track the resource at index G, and merge the cells whose isd#fterent from G into
a single summary cell. For example, using predicate aligirgonve would track the
predicate ref[P]=G, rather than ref[p1]=G, ref[p2]=G,..effectively dividing these
process-specific facts into the fact at P, and those in arer attitracked process.

Example. Consider the following C program:

1: for (i =0; i <N, i++) a[i] = 0;
2: for (i =0; i <N i++) assert(a[i] == 0);

To verify the assert on Line 2, the analysis must infer thatittop on Line 1 initializes
all the cells with indices betwednandN- 1 with the valued. Instead of reasoning about
an unbounded number of cells, suppose the programmer indesda skolem variable
S, that represents an arbitrary index into the array. Cas#ispglw.r.t. S replaces the
assertion on Line 2 withssert(i ==S => a[i]==0). That s, the verification is re-
duced to an assertion over the single array 6edind all others are ignored. Finally,
notice that predicate abstraction over predicates, i <N, 0<S, S<N, S<i , S=i , S>i ,
anda[S] =0 suffices to prove the reduced assertion. Using these ptedidhe analy-
sis infers that at Line 1, the invariant (a)<{S A S<N A S<i) = a[S] =0 holds, using
which it it infers that at Line 2, the invariant (b)0£S A S<N) = a[S] =0 holds. Fi-
nally, it infers that at the asser§<i A i <N), which with (b) proves the assert. By the
choice of predicates, we made the analysis precisely tfaekell indexed by, while
merging (.e.,ignoring) the values of all other cells.

The choice of Skolems affects the precision but not the soessiof our technique.
A poor choice can yield an abstraction that is too coarse @&ification. A simple
heuristic is to choose a Skolem for each unbounded objegt eocesses, array in-
dices).

Step 3: Auxiliary Variables and Invariants

We need one more step before applying model checking: gtrenopg the program
transition relation using auxiliary invariants.

Formally, letP = (X, L, ¢, R) be a program$S a set of Skolem variables for
P, Y be a set ofauxiliary variablesdisjoint from X U S, and for eacly € Y, an
auxiliary update functionp, mapping current and next values &f U S and cur-
rent values ofY” to a value in the domain of. A monitored programP[S,Y, ¢| =
(X USUY, L, ¢, R[S,Y]) has a transition relatioR[S, Y] such that?, p, ¢') € R[S]
iff (¢,p',¢") € R[S,Y]wherep < pA /\yey y' = ¢y(x, 2, 8,5, y). In other words,
the transition relation is extended by updating the auxili@riables inY” according to

both the current and next values of variablesXiru S and the current values of vari-
ablesinY” (using the functions,). Like Skolem variables, the values stored in auxiliary
variables do not alter program behavidtis safe w.r.t. property iff P[S,Y, ¢] is.

Intuitively, the auxiliary variables, also known asonitors[21], ghost variables
or spec variable§22, 8, 2, 18], are additional variables whose values depenthe
program state, but do not affect the values of other prograriables. The auxiliary
state is solely a proof devicé€., they are not maintained during program execution)
and are used to explicate implicit program invariants.

For programP = (X, L, ¢y, R) and predicate) over X U X', define the)-reduced
programP,, = (X, L, %, Ry), where{?,p, ") € Riff ({,p A, l') € Ry. An auxil-
iary invariantfor P[S,Y, ¢] is a predicate) overX USUY U X' US" UY’ such that
the transition relation oP[S, Y, ¢] restricted to the reachable states is a subset of

Lemma 3. (Auxiliary Invariant) Let P be a program andy a set of states oP. For
Skolem variable§, auxiliary variablesY’, and auxiliary update functiong, if ¢ is an
auxiliary invariant for P[S,Y, ¢] and P[S, Y, ¢], is safe w.r.typ, thenP is safe w.r.typ.

Auxiliary Invariants via Reference Predicates.Even after Skolemization we are left
with verification obligations over unbounded state spaasshe reference counts are
unbounded. To solve this problem, we introduce an auxiliaygriant relating a re-
source’s reference count with the number of references forigference predicates a
quantifier-free predicatél over program variables, that is parameterized by two vari-
ables, asourcei andtarget j. A reference predicatél defines, for each sourde a
reference (target) set
1(i) = {j [(i, 5)}

For each reference predicate, we automatically add auxiliariables that track the
cardinality of I1(¢), by instrumenting the program with an unbounded auxiliaray
27 that maps the domain of sources to the domain of targets.mashiat: A1) in the
initial state, the reference predicate is false for all sesrand targets, andd2) each
transition affects only dinite, namedset of sources and targets. The first assumption
is semantic, and depends on the choice of the referencecptedThe second assump-
tion can be syntactically enforced. Under these assumgtiwa can automatically in-
strument the program with auxiliary transitions that (litiadize «7[] with 0, and,
(2) increment (resp. decrement) the auxiliary countgtfi] whenever for some, a
program transition turngI (i, j) toggles from false to true (resp. from true to false).
This auxiliary instrumentation ensures “by constructitin® invariantx ;7 [i] = |17 (7)|,
i.e.,thatz ;7 [i] equals the cardinality of the reference target/#¢t). Finally, we instru-
ment the programi.€., conjoin the set of reachable states) with the auxiliary lirare
I1(i, j) = xp[i] > 0 forall syntactic sources and targé@nd;. This invariant follows
from the meta-theorem that if for sonigj, the reference predicaié(:, j) holds, then
the reference sdf (i) is non-empty, and hence its cardinality [7] is positive.

This strategy addresses the unboundedness of the referamats as follows. First,
it uses a semantic notion of reference (the reference mtsito instrument the pro-
gram with a “correct-by-construction” reference countecond, in the program re-
duced w.r.t. the auxiliary invariant, we have replacedglabal check that the imple-
mented reference countmsitivewith thelocal check that the implemented reference

countequalsthe auxiliary reference count. Though the auxiliary countg is an un-
bounded array, we can apply case splitting and Skolemizatidhis array as with the
original program variables. Notice, that strategy onlyumsss the simple, enforceable,
requirement#\1, A2 about the reference counts and program. In particular,g@sdmt
assume that the program performs correct reference cauntin

Example. The reference relationship for the program in Figure 1 istusgul by the
predicate:

11(g, pi d) =(r ef [pi d] =g)
which states that there is a reference to the source opfeoin a target process d iff
ref [pi d] =g. For this reference predicate;; is the auxiliary correct-by-construction
reference count array such that[g] equals thenumberof processes that have a
reference tgg. Our tool automatically instruments the program so thaheslement
of z7 is initially 0. Further, transitions are added to increment (resp. desménan
element ofx ;7 whenever the resource corresponding to the element is r@ch(resp.
released). This instrumentation is performed by the fumaipdat e_aux in Figure 3,
which takes as input the countex;[g] and the predicateef [pi d] =g and increments
(resp. decrements) the counter if the predicate toggles fedse to true (resp. true to
false) in executing the transition. Figure 3 shows the progmstrumented with the
case splits induced by the Skolem variables (line 3), thédliank variable x 7, and
the auxiliary update functioapdat e_aux. Finally, our tool automatically strengthens
the program with the auxiliary invarianef [pi d] =g = zx[g] >0 that follows from
the instrumentation and the meta-theorem described alidues, our technique uses
the manually specified reference predicate to instrumenptbgram with correct-by-
construction counters, following which the verificatioskds reduced to proving, that
foreachg, we havecount [g] = zx[g] (which, conjoined with the auxiliary invariant
proves the reference count assertion on at Line 3). Finadiie that via Skolemization,
the above reduces to proviegunt [G = zy[G for an arbitrary object.

Step 4: Model Checking

Once we have introduced Skolem variables and auxiliaryiaass, we can apply a soft-
ware model checker such as81 or BLAST to discharge the assertion. Algorithm 1
shows a worklist based abstract model checking algorithinguen auxiliary invariant.
Its soundness is standard. The procedtnlAbs on Line 8 computes an abstraction
of the concrete transition relation relative to an abstdachain (in our implementation,
predicate abstraction with transition refinement [11, B3).1Notice that the abstrac-
tion assumes that the auxiliary invariant holds along eaahsition. (Techniques to
automatically find appropriate predicates [5, 12] are agthrwal, and can be combined
with our algorithm.)

Lemma 4. (Soundnesdyf Algorithm 1 returnsSAFE and+ is an auxiliary invariant of
P, thenP is safe w.r.tp.

Example. In our example, the model checker runs a program consistirgnoun-
bounded number of processes each executing the code, wamgrenstruction in the
code (each line in the example) is considered atomic. Cenglie predicates:

Algorithm 1: Symbolic Model Checking
Input: ProgramP = (X, L, o, R), Statesp, Predicated, Auxiliary Invarianty
Result SAFE or UNSAFE
Data: Queueworklist, Incremental per-location invariant

1 worklist <« [(€o, true)];
2 n «— M.false;
3 while worklist is not emptydo

4 remove(, §) from worklist;

5 if § = n(¢) is not validthen

6 n—nll— sV n);

7 foreach (¢, p,¢') € R do

8 | add(¢', PredAbs(s A p A1, IT)) to worklist;
9 end

10 end

11 end

12 if VL. n(€) = ¢(£) then return SAFE else return UNSAFE

location abstract states Fig. 4. The reachable abstract program states of the program in

schedulefr true Figure 3 at each program location w.r.t. the predicateq{ggiven

1 a a above. A string of (possibly barred) predicates indicatgsag

2| ab ab ab ab| tial valuation where each non-barred predicate is trueh dacred
3|abed abd abe ab| predicate is false, and each unmentioned predicate maythe ei
4labed abd abe ab| true or false. (Conceptually the partial valuation is aufisjtion of
5|abed abd abe ab| (total) valuations.) The predicates (€) and (f) hold ursedly, and
exit| abd abd ab ab| the stringef is implicitly appended to each valuation. The sched-
uler is responsible for deciding which procgssd executes.

invariant:e f

(a) pi d=P, (b)g=G, (c)count[(>0,
(dref[P] =G (e)zn[G =count[G, (f)count[3 >0.

Predicates (a) and (b) allow usdtronglytrack facts of the “interesting” array indices.

(c) and (d) track whether the (arbitrary) proc@seferences a resource with a positive
count. Predicate (e) tracks whether the auxiliary and dctoianters agree on the ref-

erence counts, and (f) is needed to derive (c) when the casimsremented. These

predicates are sufficient for our model checker to syntleetsie inductive invariant

[G =count[Gg A (ref[P]=G = count[({ >0)

describing an over-approximation of the reachable progtates (Figure 4 shows this
calculation), which suffices to prove the case-split agsedt line 3 of Figure 3. Though
the first two predicates do not appear in the invariant, thieyeasential for its derivation
as they enable strong updates on the Skolemized cellswft , r ef , andx 7.

Temporal case splitting on the Skolem variables reducemfimite number of pro-
cesses and resources to a finite set. Similarly, the auxili@ariant and counter ensure
that we need only to track the relationship between the muyibnd actual counters,

and whether the former is positive, instead of preciselgkireg an unbounded counter.
It is the combination of these techniques that allows theeholdecker to prove such a
complex property of an unbounded system.

Example: Buggy Reference CountingFigure 2 shows a reference count implemen-
tation that is contains a bug that arises from aliasing. Ttogam is motivated by
an actual bug in an implementation of the Python language E&ch client works
atomically in a loop, acquiring a new resource and releatiegold resource in each
iteration. The error occurs when the old resourcé irmis the same as the new re-
source innew_i t em and the resource has reference count @fe., the client holds
the only reference to this resource). Tderr ef on line 9 then decreases the reference
count to0, and frees the resource. However, the client still hold$exreace to the same
resource imew_i t em(from line 8), so the ncref at line 11 erroneously writes to
freed memory, possibly corrupting it. Our tool does find aroetrace for this buggy
program. Furthermore, our technique is able to prove safectirect version of the
program, where the reference count is incremented beferdébrement on line 9.

Limitations. One limitation of our approach is that the Skolem variablesassary for
verification are not mechanically determined; this is l&ft the user of our analysis
tool. In our experience with reference counting we have ébtine number to be small
(one, or two, per structure) and easy to find, but the searchdpropriate Skolems can
be hard in general. Second, our approach is constrainedebintlariants that can be
expressed by the abstract domain, and the design of an afgieoppomain can be hard
for complicated invariants, especially with rich quantiB&ructures. Our technique only
checks that when a resource is accessed, it has a posi@remee count. This property
by itself does not guarantee the absence of memory leaksxéonple, those caused by
cyclic structures of references that are not reachable &roynprogram variable.

3 Case Studies

In addition to the simple examples from Section 2, we havdiegpur tool to two case
studies of reference counting in real systems code: a pdgeatdr derived from the
JOS kernel [17], and the YAFFS file system [23].

We use aogical memory modelmemory is represented as an unbounded array
Mem of elements large enough to hold any structure allocatedhénprogram. Each
memory cell is annotated withaal i d bit, initially each with value0. Pointers are
modeled as indices to theemarray, and indeX denoteshul | . Our implementation
of mal | oc nondeterministically chooses an indexsuch thatvenfi].valid = 0,
setsvenfi].validto1, and return$. Our implementation of r ee(i) ensures that
Men{i].valid = 1,andresetsen{i].validtoO.

We model concurrency by calling the top-level procedurdsictv are considered
atomic, inside of a loop which nondeterministically chamagorocess/thread identifier
pi d and a procedurgr oc and executegr oc aspi d.

JOS Memory Mapping. In JOS [17], a simple operating system used as an educa-
tional aid, memory is organized as an array of physical pageshich user processes

typedef struct env {

int env_nypp;
int env_pgdi r[NVPAGES] ;
struct env *env_prev; env_t *env_alloc(void) {
struct env *env_next; env_t *env;
} env_t; int i, env_pp = page_getfree();
if (env_pp < 0) return NULL;
i nt pages[NPPACES] ; env = (env_t *) malloc(sizeof(env_t));
i nt page_pr ot ect ed][NPPAGES] ; env->env_nypp = env_pp;
env_t *envs = NULL; for (i = 0; i < NVPAGES; i++)
env->env_pgdir[i] = -1;
Fig. 5. Environment data structures in JOS. [+ put on list «/
env- >env_next = envs;
int page_alloc(env_t *env, int vp) { env->env_prev = NULL;
int pp = page_getfree(); if (envs) envs->env_prev = env;
if (pp <0) return -1; envs = env;
if (env->env_pgdir[vp] >= 0) pages[env_pp] ++;
pages[env->env_pgdir[vp]]--; page_protected[env_pp] = 1;
env->env_pgdir[vp] = pp; return env;
pages[pp] ++; }
return O;
} void env_free(env_t *env) {
int page_unmap(env_t *env, int vp) { Int i))
if (env->env_pgdir[vp] >= 0) { for (i =0; i < NVPAGES; i++)
pages[env->env_pgdir[vp]]--; if (env->env_pgdir[i] >= 0)
env->env_pgdir[vp] = -1; pages[env->env_pgdir[i]]--;
} page_prot ect ed[env- >env_nypp] = O;
} pages[env->env_nypp]--;
int page_map(env_t =*srcenv, int srcvp, .
env_t *dstenv, int dstvp) { [+ take off list «/
if (srcenv->env_pgdir[srcvp] < 0) if (env->env_next)
return -1; env- >env_next->env_prev =
pages[srcenv->env_pgdir[srcvp]]++; . env->env_prev;
i f (dstenv->env_pgdir[dstvp] >= 0) if (env->env_prev)
pages[dstenv->env_pgdir[dstvp]]--; env->env_prev->env_next =
dst env->env_pgdi r[dstvp] = env->env_next;
srcenv->env_pgdi r[srcvp] ; el se envs = env->env_next;
return 0;) free(env);
}

Fig.6. Page directory manipulation in JOS. Fig.7.Environment (de)allocation in JOS.
page_get f r ee returns the index to an unused
page, if one is exists, andl otherwise.

(orenvironmentphold virtual page mappings (see Figures 5-7). The envientistruc-
ture env_t) stores the index of a protected physical pagrev(nypp), a virtual page
table env_pgdi r), and pointers used for the kernel's doubly linked list ofieon-
ments énv_pr ev, env_next). Thepages array maintains the number of virtual page
mappings to each physical page,lofor protected pages.¢.,theenv_nypp of some
environment, explicitly marked by thgage_pr ot ect ed array). The kernel ensures
that anenv_pgdi r entry is not protected.

To verify that every liveenv_pgdi r entry has a positive reference count we intro-
duce: a single physical page Skolem variable, one auxitapnter variable for each
page, and an auxiliary invariant insisting mapped pagesliaty counters are positive.
Model checking ensures the auxiliary counters are equab®slreference counters.
Given the Skolems and the auxiliary invariant, our tool @®vthe correct use of ref-

void yaffs_close(...) {

int yaffs_open(...) {
h = yaffsfs_Get Handl ePointer(...);
h = yaffsfs_Get Handl ePointer(...); if (h & h->inUse) {
obj = yaffsfs_FindObject(...); h- >obj - >i nUse- - ;
if (h->obj->inUse <= 0)
h->o0bj = obj; obj->i nUse++; yaffs_Del eteFi | e(h->obj);
h->obj = 0;

Fig. 8. YAFFS reference counting, simplified.

erence counts for any number of pages and environments. @Melmak freedom is
proved by ensuring the values of the actual and auxiliarynteng coincide.) The reach-
ability analysis requires 17 predicates and 29 seconds.

Yaffs File Object Management.The YAFFS log-structured filesystem for flash mem-
ory [23] represents files with heap-allocateaf f s_Obj ect structures, each contain-
ing a reference countinghUse field (Figure 8 shows fragments of a simplified version,
although we have verified the actual implementation). Uaec®ess objects indirectly
through theobj field of ayaf f s_Handl e pointer. The handles are stored in a fixed-
sized array, indexed by an integer file handle descriptor.

File read and write operations access f s_Cbj ect s under the assumption that
their reference counts are positive. To verify, we introglacsingle file object Skolem
variable. As done for JOS, we also introduce auxiliary statérack handle-object
(un)mappings, and equate that state with actual objecterefe counts by symbolic
model checking. Assuming that each file operation occunnitmly, our tool is able
to prove the sound use of reference counts for any numberrmaflaaand objects. The
reachability analysis requires 34 predicates and 36 sexcond

4 Related Work

Compositional Verification. Our use of temporal case splitting with Skolem variables
is inspired by similar approaches in hardware verificati®B][where a hardware de-
sign is decomposed into units of work and the finite instaiotis verified using a
BDD-based model checker. Our work differs from the abovewin tespects. First,
we consider C programs where heap locations are allocateaindigally, and need not
have static names. Second, by using predicate abstractvmmre expressive theories
(e.g.,equality, arithmetic, arrays) we may track relationshipsaeen variables, which
is generally required to prove sound reference counting.

A restricted use of Skolem variables to separate a safeffication problem into
sub-problems has been suggested before [30, 4]. Howevanalysis with a dataflow
analysis back-end [30] merges states at join points, andatgrerform case splits over
the abstract domain used in our examples. There the benéfesparation were re-
stricted to syntactically disjoint choices (for examplehexe there were separate as-
sertions on two arrays, and the abstraction would first ptheeassertion for the first
array while abstracting the second, and then prove it segdgifar the second). We, on

the other hand, perform case splitting on the temporal hieha¥ the program, thus
correlating the choice of a Skolem at one pointin the exeout a subsequent check.
Predicate Abstraction. Skolem variables have been used with predicate abstraction
infer universally quantified invariants over the programtst[9, 19, 20]. However, the
properties considered thus far have been limited, for thetmpart, to simple intrapro-
cedural reasoning about arrays. We believe that one reasdnis is that fast Cartesian
predicate abstraction, implemented as the default in ssévnodel checkers such as
SLAM or BLAST, is too coarse for reasoning about array and pointer va&tDur
work builds on the interpolant-based transition relatiefirement [15] that lazily re-
fines the Cartesian abstraction to the required precisiod,aur reachability engine
uses this refinement for scalability. The use of quantifietifpates in model checking
based on predicate abstraction [27, 7] has, for similaraessbeen limited to small
and abstract encodings of complicated procedueas,@arbage collectors). In these
applications quantifiers are instantiated by matchingisgos implemented in the the-
orem prover, or manually. In contrast, our use of Skolemslentss powerful than full
quantification, is more predictable, and does not rely orchiag heuristics. While we
concentrate on the technique of using predicate abstrewtitth Skolems and auxiliary
state in reachability analysis, techniquegtier quantified predicates [20] are orthogo-
nal, and can be combined with our algorithm to find such pegd& Finally, auxiliary
invariants have been used in software model checldrg,to approximate the shape of
the heap using alias analysis [1, 13], or to infer polyheirariants in a prepass before
applying predicate abstraction [14].

Shape Analysis.Shape analysis [26] and separation logic [25, 3] are powédme-
works for reasoning about heap manipulating programs. &hilr techniques can be
simulated inside shape analysis, our advantage is the w@reatly developed efficient
and scalable predicate abstraction and manipulation eagfnom B.AST) to reason
about heap properties on large programs. Shape analyseldmbeen used to verify
concurrent programs with an unbounded number of threadsigr the use of man-
ually supplied instrumentation predicates [29]. Skolatian and case splitting are
orthogonal—once they are performed, three valued logieth@nalyses can be used
to discharge the reduced model checking tasks.

Work on canonical abstraction of arrays [10, 16] is closeupwork: there, an (un-
bounded) array is abstracted with respect to an iterator ii¢ portion of the array
before, at, and after the iterator; these portions are suimathwith respect to the pred-
icates that hold on them. In contrast, our technique alisteacarray into the locations
indexed by Skolems, and all other locations; additionahegfients are introduced with
additional Skolems and predicate relationships betwearesaat the Skolem indices.
Instead of a specialized dataflow analysis, we perform patisitive model checking
that can then correlate data at Skolem locations. Our expexsiis that for properties
that depend on an arbitrary element of the array, Skoleibizand case splitting pro-
vides a more natural (and often, a more succinct) abstracofithe program.

References

1. T.Ball and S.K. Rajamani. The SLAM project: debuggingisgssoftware via static analy-
sis. InPOPL, 2002.

11.
12.

13.
14.

15.
16.
17.
18.
19.
20.

21.
22.

23.
24.
25.
26.
27.
28.
29.

30.

. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# prograng system: An overview.

In CASSIS2004.

. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Madautomatic assertion check-

ing with separation logic. 1i#MCO, 2005.

. D. Beyer, A.J. Chlipala, T.A. Henzinger, R. Jhala, and Rjwhdar. The Blast query lan-

guage for software verification. IBAS 2004.

. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cewstample-guided abstraction

refinement. INCAV. 2000.

. P.Cousot and R. Cousot. Abstract interpretation: a uhifittice model for the static analysis

of programs by construction or approximation of fixpoints PIOPL, 1977.

. S. Das and D.L. Dill. Counter-example based predicateosley in predicate abstraction.

In FMCAD, 2002.

. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.8axe, and R. Stata. Extended

static checking for Java. IALDI, 2002.

. C. Flanagan and S. Qadeer. Predicate abstraction fevarefwerification. IlPOPL, 2002.
. D. Gopan, T.W. Reps, and S. Sagiv. A framework for numamiglysis of array operations.

In POPL, 2005.

S. Graf and H. Saidi. Construction of abstract statetgragth PVS. InCAV. 1997.

T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillaftbstractions from proofs. In
POPL, 2004.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. lamstraction. IlPOPL, 2002.

H. Jain, F. lvancic, A. Gupta, |. Shlyakhter, and C. Wadging statically computed invari-
ants inside the predicate abstraction and refinement lgoBAV, 2006.

R. Jhala and K.L. McMillan. Interpolant-based trawsitrelation approximation. ICAV,
2005.

R. Jhala and K.L. McMillan. Array abstractions from pi@dn CAV. 2007.

JOS. Jos: An operating system kernel. http://pdos.esaedu/6.828/2005/overview.html.
V. Kuncak, P. Lam, K. Zee, and M.C. Rinard. Modular plugganalyses for data structure
consistencylEEE Trans. Software Eng32(12):988-1005, 2006.

S.K. Lahiri and R.E. Bryant. Constructing quantifiecainants via predicate abstraction. In
VMCAI, 2004.

S.K. Lahiri and R.E. Bryant. Indexed predicate discg¥er unbounded system verification.
In CAV, 2004.

Z. Manna and A. Pnuellfemporal Verification of Reactive Systems: SafSgyringer, 1995.
K.L. McMillan. A methodology for hardware verificatiosimg compositional model check-
ing. Sci. Comput. Program37:279-309, 2000.

Aleph One. Yaffs file system. http://www.yaffs.net/.

S. Qadeer and D. Wu. KISS: Keep it simple, sequentigPLinl, 2004.

J.C. Reynolds. Separation logic: A logic for shared foletdata structures. IbICS, 2002.
M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalya 3-valued logic. POPL,
1999.

N. Shankar. Combining theorem proving and model checttirough symbolic analysis. In
CONCUR 2000.

G. van Rossum. Debugging reference count problems.
http://www.python.org/doc/essays/refcnt/.

E. Yahav. Verifying safety properties of concurrentggrograms using 3-valued logic. In
POPL, 2001.

E. Yahav and G. Ramalingam. Verifying safety propertissig separation and heteroge-
neous abstractions. PLDI, 2004.

