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Abstract. Role-based access control (RBAC) is a common paradigm to ensure

that users have sufficient rights to perform various system operations. In many

cases though, traditional RBAC does not easily express application-level security

requirements. For instance, in a medical records system it is difficult to express

that doctors should only update the records of their own patients. Further, tradi-

tional RBAC frameworks like Java’s Enterprise Edition rely solely on dynamic

checks, which makes application code fragile and difficult to ensure correct.

We introduce Object-sensitive RBAC (ORBAC), a generalized RBAC model for

object-oriented languages. ORBAC resolves the expressiveness limitations of

RBAC by allowing roles to be parameterized by properties of the business ob-

jects being manipulated. We formalize and prove sound a dependent type system

that statically validates a program’s conformance to an ORBAC policy. We have

implemented our type system for Java and have used it to validate fine-grained

access control in the OpenMRS medical records system.

1 Introduction

Controlled access to data and operations is a key ingredient of system security. Role-

based access control (RBAC) [9] is an elegant and frequently-used access controlmech-

anism in which a layer of roles interposes between users and access privileges. Roles

represent responsibilities within a given organization. Authorizations for resource ac-

cess are granted to roles rather than to individual users and users are given roles accord-

ing to their functions in the organization. Users acquire all privileges associated with

their roles. The intuition behind RBAC is that roles change infrequently within organi-

zations relative to users, and so associating roles with access privileges ensures a stable

and reliable access control policy.

As a concrete scenario, consider a hospital in which users can be doctors or patients.

Doctors should be able to view and update their patients’ records, and patients should

be able to view (but not update) their own records. The RBAC way to represent this

policy is to introduce two roles Doctor and Patient, where the Doctor role is allowed

to both look up and modify patient records and the Patient role is allowed only to look

up a medical record. Users are then classified as having the Doctor or Patient roles and

⋆ This material is based upon work supported in part by the National Science Foundation under

grants CCF-0545850 and CCF-0546170.



inherit the corresponding access privileges. RBAC is available in standard enterprise

software development environments such as Java’s Enterprise Edition (Java EE) [16],

which insert runtime role checks whenever a privileged operation is invoked.

This simple example highlights two key limitations of the RBAC model and its

usage today:

Lack of expressiveness. The role-based implementation described above does not cap-

ture all the constraints of our desired policy. The role-based implementation allows

doctors to access and modify any patient’s record, rather than only their own patients.

Similarly, the role-based implementation allows patients to access any other patient’s

record. One way to solve the problem is to give each user his or her own role, but that

would remove the advantages of using roles altogether! Simply put, the RBAC model

is not fine-grained enough to express common access control requirements.

As a result of this limitation, programmers may be forced to insert manual access

checks that augment the ones provided by systems like Java EE. This manual process

is error prone, and it is difficult to ensure that the inserted checks properly enforce the

desired policy. Alternatively, a system may only enforce a coarse-grained access control

policy but additionally maintain a log of accesses to allow system administrators to

detect finer-grained violations a posteriori.1

Lack of static checking. The reliance solely on dynamic checks in today’s RBAC-based

systems leads to several problems. First, it is difficult for programmers to ensure that

their code properly respects the access control policy. Programmersmust manually keep

track of what roles must be held when each function is invoked, which depends on the

set of privileged operations that can potentially be reached during the function’s exe-

cution. If a function is ever executed in the wrong environment, the only feedback will

be a runtime role failure when a privileged operation is invoked, making the problem

difficult to diagnose and fix.

Further, because of the cost of runtime role checks, the checks are often hoisted

from the privileged operations themselves to the “entry points” of an application. For

example, after user authentication, a single role check could be used to determine which

web page to display (e.g., one for doctors and another for patients). However, in this case

the programmer must manually ensure the sufficiency of this check for all potentially

reachable privileged operations downstream, or else the intended access policy can be

subverted.

In this paper we address both of these limitations of the traditional RBAC model

and associated frameworks. First, we extend the RBAC model to support fine-grained

policies like that of our medical records example above. The basic idea is to allow roles

and privileged operations to be parameterized by a set of index values, which intuitively

are used to distinguish users of the same role from one another. A privileged operation

can only be invoked if both the appropriate role is held and the role’s index values

matches the operation’s index value.

1 This was the case in two recent security breaches in the news: unauthorized access to Britney

Spears’ medical records by employees at UCLA medical center and to Barack Obama’s cell

phone records by employees at Verizon Wireless.



Our parameterized form of RBAC, which we call Object-sensitive RBAC (OR-

BAC), has a natural interpretation and design in the context of an object-oriented lan-

guage (Sect. 2). Traditional RBAC policies control access at the level of a class. For

example, with Java EE a method getHistory in a Patient class can be declared to re-

quire the caller to hold the Patient role. In other words, a user with the Patient role can

invoke the getHistory method on any instance of Patient. In contrast, ORBAC sup-

ports access control at the level of an individual object. For example, getHistory can

now be declared to require the caller to hold the Patient<this.patientId> role, where
the patientId field of Patient stores a patient’s unique identifier.

Second, we provide a type system that statically ensures that a program meets a

specified ORBAC policy, providing early feedback on potential access control viola-

tions. We formalize our static checker for a core Java-like language (Sect. 3). Since

types and roles are parameterized by program values (e.g., this.patientId), our static

checker is a form of dependent type system.

We have implemented our static type system for ORBAC as a pluggable type sys-

tem for Java in the JavaCOP framework [2]. As with frameworks like Java EE, we

leverage Java’s annotation syntax to specify the role requirements on method calls, but

the JavaCOP rules statically ensure the correctness and sufficiency of these annotations.

We have augmented the OpenMRS medical records application [21] with a fine-grained

access control policy using ORBAC and have used our JavaCOP checker to statically

ensure the absence of authorization errors (Sect. 4).

2 Object-sensitive RBAC

We now overview Object-sensitive RBAC and its associated static type system through

a simple medical records example in Java, comparing an implementation using standard

RBAC in Java EE with one using ORBAC.

2.1 Role-Based Access Control

An RBAC policy can be described as a tuple (U,R,P,PA,UA) consisting of a set of
usersU , a set of roles R, and a set of permissions P, together with relations PA⊆ P×R
giving permissions to roles andUA⊆U×R giving (sets of) roles to users [9]. An access
of permission p by user u is safe if there exists a role r ∈ R such that (u,r) ∈ UA (user
u has role r) and (p,r) ∈ PA (role r has permission p).

Figure 1 shows how this model applies to a Patient class for which we wish to

protect access. Our simplified class provides a factory method getPatient, which re-

trieves the specified patient from the database, and two instance methods: getHistory

to return a history of the patient’s visits and addPrescription to associate a new pre-

scription with the patient.

We can group the users of our application into two groups: doctors and patients. In a

typical medical records application, doctors can access the data of their patients and pa-

tients can access their own data (e.g., through a web self-service feature). In a standard

RBAC model, we can represent these two groups with Doctor and Patient roles. Java



public class Patient {

private int patientId;

/* factory method to retrieve a patient */

@RolesAllowed({"Doctor", "Patient"})

public static Patient getPatient(int pid) { ... }

@RolesAllowed({"Doctor", "Patient"})

public List<String> getHistory() { ... }

@RolesAllowed({"Doctor"})

public void addPrescription(String prescription) { ... }

...

}

public class PatientServlet {

void displayHistory(int pid, Request req, Response resp) {

if (req.isUserInRole("Patient")) {

if (req.userId != pid) {

throw new AccessError("Cannot access this patient");

}

}

Patient p = Patient.getPatient(pid);

List<String> hist = p.getHistory();

... code to write html representation of hist to resp ...

}

}

Fig. 1. Standard RBAC version of doctor-patient example

EE supports the specification of an RBAC policy through the @RolesAllowed annota-

tion [16]. This annotation is placed on a method definition to indicate the set of roles

that have permission to invoke the method. In Fig. 1 we have annotated the getPatient

and getHistory methods to permit users with either the Doctor or Patient role to call

these methods. On the other hand, the addPrescription method has been annotated

to ensure that only doctors can add a prescription to a medical record.

The Java EE tools, and other application frameworks, enforce an RBAC policy dy-

namically by inserting runtime checks to verify that the user indeed has at least one of

the specified roles when an annotated method is invoked. These checks are supported

by standard infrastructure that performs user authentication and queries a database or

configuration files to determine role membership.

For example, one might maintain a database of users and the roles granted to each

user in an external LDAP server, where it can be managed by an administrator. The

first time a user attempts to access a protected application resource (e.g., a web page),

he is redirected to a login page. The user is authenticated by comparing his credentials



against those stored in the LDAP server. The user’s identity and roles are then stored in

memory (e.g., in a session context) for use by dynamic access control checks.

Limitations of the RBAC model Consider the PatientServlet class of Fig. 1, which

accesses a patient’s medical record. The displayHistory method writes an HTML

representation of the patient history to a response stream. To do this, it obtains a

Patient object using Patient.getPatient and then calls its getHistory method.

Due to the annotations on these methods, the Java EE framework will insert dynamic

checks on these calls to ensure that the user has either the Doctor or Patient role.

Unfortunately, these checks are not sufficient to enforce the desired access control

policy. For example, the checks allow any patient to access any other patient’s medical

record! Therefore, programmers must manually insert additional checks, as shown at

the beginning of the displayHistory method. A similar check may also be necessary

to ensure that a doctor only accesses the records of her own patients. These kinds of

checks are very fragile and error-prone — one can easily forget or improperly imple-

ment the check on some code path that leads to an invocation of a protected method,

resulting in a serious security vulnerability.

Another limitation of traditional RBAC frameworks like Java EE is the reliance

solely on dynamic checks, which makes it difficult to statically ensure that application

code in fact respects the access policy of a protected class. For example, the programmer

must ensure that the displayHistory method is never invoked by a user who does not

have either the Doctor or Patient roles. This requirement is completely implicit and

can only be understood by examining the implementation of displayHistory (and in

general the implementations of methods transitively called by displayHistory). If a

program disobeys the requirement, the programmer will receive no warning about the

error, which will instead result in a dynamic access check failure. Such dynamic errors

can be difficult to diagnose and fix. Further, if the error is not expected by the calling

code, it may result in very unfriendly behavior from the user’s perspective (e.g., a Java

uncaught exception).

2.2 Object-sensitive RBAC

ORBAC is a natural generalization of the formal model for RBAC defined above. With

ORBAC, we define UA⊆U×R× I to be a ternary relation, in which UA(u,r, i) gives a
user u an indexed role (r, i)∈ R× I, where I is a set of index values. Permissions are also
indexed, and an access by user u to the indexed permission (p, i) ∈ P× I is safe if there
exists a role r ∈ R such that (u,r, i) ∈UA (user u has indexed role (r, i)) and (p,r) ∈ PA
(role r has permission p).

In Fig. 2, we reimplement our example using an ORBAC policy. We use two roles:

Patient and DoctorOf, both of which are parameterized by a patient identifier (a Java

integer). A patient is given the Patient role for his own identifier, allowing him to access

his own record but not those of other patients. A doctor is given aDoctorOf role for each

of her patients, allowing access to those patients but no others.

Conceptually, classes are now parameterized by a set of role indices, which are part

of the class’s static type, analogous with ordinary type parameters in Java. These role



public class Patient {

@RoleParam public final int patientId;

/* factory method to retrieve a patient */

@Requires(roles={"DoctorOf", "Patient"}, params={"pid", "pid"})

@Returns(roleparams="patientId", vals="pid")

public static Patient getPatient(@RoleParam final int pid) { ... }

@Requires(roles={"DoctorOf", "Patient"},

params={"this.patientId", "this.patientId"})

public List<String> getHistory() { ... }

@Requires(roles="DoctorOf", params="this.patientId")

public void addPrescription(String prescription) { ... }

...

}

public class PatientServlet {

@Requires(roles={"DoctorOf", "Patient"},

params={"pid", "pid"})

void displayHistory(@RoleParam final int pid,

Request req, Response resp) {

Patient p = Patient.getPatient(pid);

List<String> hist = p.getHistory();

... code to write html representation of hist to resp ...

}

}

Fig. 2. ORBAC version of doctor-patient example

indices may then be used in role annotations within the class. While our formalism ex-

plicitly parameterizes classes in this way, as shown later, our implementation employs

additional annotations to achieve the same effect without modifying Java’s syntax. Class

role parameters are modeled as public final fields of the class that are declared with the

@RoleParam annotation. For example, the @RoleParam annotation on the patientId

field of Patient indicates that this field will be used as an index in role annotations

within the class. The @RoleParam annotation can also be used on final formal parame-

ters to achieve the effect of method parameterization, as seen on the pid parameter of

the getPatient method.

Our @Requires annotation is analogous to Java EE’s @RolesAllowed annotation,

indicating the set of roles that have permission to invoke the annotated method. To

stay within Java’s metadata syntax we use two parallel arrays, roles and params, to

specify the roles. For example, the @Requires annotation on getPatient in Fig. 2 al-

lows only users with either the DoctorOf<pid> or Patient<pid> role to invoke the

method, where pid is the patient identifier passed to the method. The @Requires an-

notations on the other methods are similar but they use the patientId field of the



receiver as the role index to appropriately restrict access to that Patient object. Un-

like the @RolesAllowed annotation, @Requires does not introduce a dynamic check.

Instead, all calling code is statically checked to ensure at least one of the required roles

is held.

The @Requires annotation is a form of method precondition for access control,

while our @Returns annotation is a form of postcondition. For example, the @Returns

annotation on getPatient asserts that the returned Patient object has a patientId

role parameter field which is equal in value to the patient identifier passed to the method.

Our static type system checks the body of the method to ensure the equality between the

role parameters holds. The type system can then assume that this equality holds after a

call to getPatient. In this way, we support modular typechecking for access control.

Resolving the limitations of the RBAC model The PatientServlet class of Fig.2 il-

lustrates how ORBAC resolves the limitations identified earlier of the RBAC model.

Unlike the version in Fig. 1, no manual access checks are required. These checks are

now part of the access control policy and are reflected in the @Requires annotations

on the methods of Patient. Therefore, it is easy for both humans and tools to reason

about a program’s access control policy just based on program annotations, without

examining the bodies of methods.

Further, access control is now statically checked, providing early feedback on possi-

ble violations. The displayHistory method is annotated with @Requires, restricting

the method to users of the DoctorOf<pid> and Patient<pid> roles. With this annota-

tion, the method’s body can be statically guaranteed to obey the access control policy of

Patient. The call to getPatient satisfies that method’s @Requires clause, so the call

typechecks. The getPatient method’s @Returns clause indicates that the returned

patient object’s patientId parameter is equal to pid, which then allows the call to

getHistory to typecheck successfully.

Subtle errors are now caught statically rather than dynamically. For example, if the

call to getPatient in displayHistory passed a patient identifier other than pid, the

call would correctly fail to typecheck, since a patient could be accessing the record of a

patient other than himself. Also, the annotation on displayHistory in turn allows its

callers to be modularly checked at compile time, ensuring that they have the necessary

roles for the eventual access to Patient.

Incorporating dynamic checks Our static type system makes explicit (via the

@Requires annotation) the precondition that must be satisfied on entry to a method

m to ensure that the access control policies of all methods transitively called by m will

be obeyed. We insist that top-level methods (e.g., main for a standalone application

or service for a servlet-based web application) have no @Requires annotation. That

is, the application’s external interface must have no precondition and thus can assume

nothing about the roles that the current user holds. In order to allow an unprotected

method to call a method protected by a @Requires annotation, our type system provides

a flexible mechanism for interfacing with the program’s authorization and authentica-

tion logic through the definition of role predicate methods. These methods are identified

by the @RolePredicate annotation, which also indicates the role that the method tests

for. Our static type system incorporates a simple form of flow sensitivity to ensure that



public class Request {

@RolePredicate(roles="Patient", params="pid")

public boolean hasPatientRole(@RoleParam final int pid) { ... }

@RolePredicate(roles="DoctorOf", params="pid")

public boolean hasDoctorOfRole(@RoleParam final int pid) { ... }

}

public class PatientServlet {

void displayHistory(@RoleParam final int pid,

Request req, Response resp) {

if (!(req.hasPatientRole(pid) ||

req.hasDoctorOfRole(pid)))

{

throw AccessError("Cannot access this patient");

}

Patient p = Patient.getPatient(pid);

List<String> hist = p.getHistory();

... code to write html representation of hist to response ...

}

Fig. 3. Use of role predicate methods in displayHistory

method calls whose role requirements are not met by the current method’s @Requires

annotation occur only after appropriate dynamic checks succeed.

As a simple example, Fig. 3 contains a new version of PatientServlet’s

displayHistory method that performs the necessary role checks dynamically. The

method no longer has a @Requires clause, but our static type system recognizes that

the method is safe: the dynamic role checks ensure that the calls on the Patient class

are only reached when the user has the appropriate Patient or DoctorOf role. Unlike

the manual dynamic checks in the standard RBAC example shown earlier, these checks

are statically ensured to be sufficient. Any errors in the dynamic checks in Fig. 3 (e.g.,

accidentally using a patient identifier other than pid) will be caught at compile time.

Further, the dynamic checks can be placed as early as possible in the execution of an ap-

plication without the risk that a check will be forgotten on some code path to a protected

method.

The role predicate methods are treated as black boxes by our type system. They are

free to consult a framework’s security infrastructure or to implement authentication and

authorization however the application designer sees fit. In fact, a particular predicate

method could always return true and be used to achieve an effect similar to J2EE’s

@RunAs annotation, which allows components to be invoked with a security identity

other than that of the currently authenticated user. In short, predicate methods provide a

flexible mechanism for incorporating the runtime checks that are necessary to ascertain

security credentials, and our type system ensures that their use is sufficient to satisfy

declared method preconditions.



ClassDecl K ::= classC〈r〉{T f ;M}
MethodDecl M ::= 〈r〉T m(T x) requires Φ{e}
Exprs e ::= x | e. f | e.m〈ρ〉(e) | new T (e) | e� e | use Φ in e

| pack ρ,e | unpack e as r,x in e
Vals v ::= new C〈i〉(v) | pack i,v
Types T ::= C〈ρ〉 | ∃r.T
RoleContext Φ ::= propositional formula over atoms in Q

Roles Q ::= R〈ρ〉
Indices ρ ::= r | i
IndexVarContext ∆ ::= · | ∆,r
VariableContext Γ ::= · | Γ,x : T

Fig. 4. Grammar for the ORBAC language and type system. Metavariable C ranges over class

names, m over method names, f over field names, R over role names, r and q over index variables,

i and j over index constants, and x over program variables.

3 Formal Semantics

We have formalized the static and dynamic semantics of a small Java-like language in

which ORBAC policies can be expressed and statically checked, and we have proven

a type soundness theorem. Figure 4 shows the syntax of our language, a variant of

Featherweight Java [14]. Our language models only the core features necessary to study

the ORBAC model and its static type system formally. For this reason we have omitted

inheritance, although our implementation handles it in the standard way, as described

in Sect. 4.1.

In our Java implementation of ORBAC described in the previous section, index

variables are specially designated fields andmethod parameters. In our formal language,

we explicitly parameterize classes, methods, and roles using the syntax of Java generics.

For greater expressiveness, we include a form of existential types to classify expressions

whose role indices are not statically known. This models, for example, the situation in

our Java implementation where a method’s return type is parameterized by an index, but

no information about this index’s value is provided (e.g., via a @Returns annotation).

Expressions of existential type are introduced in our core language by a pack expression

and eliminated by an unpack expression, in the usual way [24]. Our core language

includes a use expression for dynamically changing the set of held roles, which is a

simplified form of the role predicate methods in our Java implementation.2 Finally, we

include a non-deterministic choice construct (e1� e2) as a simple form of conditional.

Access protection is expressed in our Java implementation using a @Requires an-

notation indicating the set of roles that may invoke a method. This set can be viewed as

a disjunctive predicate to be satisfied on entry to the method. We provide a more gen-

eral mechanism in our formal language; methods include a requires clause which can

specify an arbitrary propositional formula over roles as a precondition for invocation.

2 The use expression can be viewed as a role predicate method that always succeeds. The pos-

sibility of a predicate method returning false can be modeled by combining use with non-

deterministic choice. For example, the expression (useΦ in e1)�e2 models the situation where
e1 is executed if a dynamic check for predicate Φ succeeds, and otherwise e2 is executed.



K ok

r ⊢ T M ok inC〈r〉

classC〈r〉{T f ;M} ok
(C-OK)

M ok in T

r,q ⊢ T r,q ⊢ T r,q ⊢ Φ Φ;r,q;x : T , this :C〈r〉 ⊢ e : T

〈q〉T m(T x) requires Φ{e} ok inC〈r〉
(M-OK)

Φ;∆;Γ ⊢ e : T

Φ;∆;Γ ⊢ x : Γ(x) (T-VAR)

Φ;∆;Γ ⊢ e : T fields(T ) = T f

Φ;∆;Γ ⊢ e. fi : Ti
(T-FIELD)

fields(T ) = T f Φ;∆;Γ ⊢ e : T ∆ ⊢ T

Φ;∆;Γ ⊢ new T (e) : T
(T-NEW)

Φ;∆;Γ ⊢ e1 : T Φ;∆;Γ ⊢ e2 : T

Φ;∆;Γ ⊢ e1� e2 : T
(T-CHOOSE)

∆ ⊢ ρ Φ;∆;Γ ⊢ e : [r 7→ ρ]T

Φ;∆;Γ ⊢ pack ρ,e : ∃r.T
(T-PACK)

r /∈ ∆ Γ(x) undefined
Φ;∆;Γ ⊢ e1 : ∃q.S ∆ ⊢ T Φ;∆,r;Γ,x : [q 7→ r]S ⊢ e2 : T

Φ;∆;Γ ⊢ unpack e1 as r,x in e2 : T
(T-UNPACK)

∆ ⊢ Φ′ Φ′;∆;Γ ⊢ e : T

Φ;∆;Γ ⊢ use Φ′ in e : T
(T-USE)

Φ;∆;Γ ⊢ e : S ∆ ⊢ ρ msig(S,m) = 〈r〉T
Φ′

→ T
Φ;∆;Γ ⊢ e : [r 7→ ρ]T Φ ⇒ [r 7→ ρ]Φ′

Φ;∆;Γ ⊢ e.m〈ρ〉(e) : [r 7→ ρ]T
(T-INVK)

fields(T ) = T f

classC〈r〉{T f ;M} ∈ ClassDecls

fields(C〈ρ〉) = [r 7→ ρ]T f
(FIELDS)

msig(T,m) = 〈r〉T
Φ
→ T

classC〈r〉{T f ;M} ∈ ClassDecls 〈q〉S m(S x) requires Φ{e} ∈M

msig(C〈ρ〉,m) = 〈q〉[r 7→ ρ]S
[r 7→ρ]Φ
→ [r 7→ ρ]S

(M-SIG)

Fig. 5. Typing rules for our formal language.



The typing rules for our formal language are shown in Fig. 5. Expressions are type-

checked under three contexts: Φ is the role context represented as a propositional for-

mula over roles, ∆ keeps track of the index variables that are in scope, and Γ is the

usual free-variable typing context. The rules depend on a set of simple well-formedness

judgments, which ensure that all referenced index variables are in scope. For example,

∆ ⊢ T in the premise of T-NEW ensures that the type being constructed does not refer to
any undefined index variables.

The most interesting rule is T-INVK which includes a logical entailment check in the

premise that guarantees that the current role context Φ satisfies the callee’s requires

precondition after appropriate substitution of actual indices for index parameters. Meth-

ods are typechecked modularly by rule M-OK which uses the Φ specified in a method’s

requires clause as the role context when checking the body.

Rules T-PACK and T-UNPACK are standard for existential type systems. The role

variable r in rule T-UNPACK is required to be fresh, which matches the intuition that

existential types classify objects with unknown index values. An unpacked role variable

r can only be employed to satisfy role checks within a use statement that grants roles

involving r. This is analogous to performing a dynamic role predicate check on an

object with an unknown index in our Java implementation. Rules FIELDS and M-SIG

only apply to class types, so an existential package must be unpacked before its fields

and methods are accessed and values of existential type cannot be directly instantiated.

The dynamic semantics for our formal language is shown in Fig. 6. These evaluation

rules perform role checks that model the dynamic checks on privileged operations used

in most existing RBAC systems. Our type soundness result, however, establishes that

such dynamic role checking is unnecessary for well-typed programs. Like the typing

judgment, the evaluation judgment includes a role context. This context is used in rule

E-INVK, which performs a dynamic entailment check that the current role context is

sufficient to satisfy the method’s declared precondition. Rule E-CONGRUENCE steps

subexpressions according to the evaluation order established by the evaluation contexts,

leaving the role context unchanged. Rule E-USE1 ignores the current role context and

dynamically evaluates its subexpression under the specified context.

We have proven a type soundness theorem, which ensures that well-typed programs

cannot fail dynamic role entailment checks. The theorem is proven using the standard

progress and preservation style [30]. Full details are given in the accompanying techni-

cal report [10]; we provide statements of the key results here:

Lemma 1 (Progress) If Φ; ·; · ⊢ e : T, then either e is a value or there is an expression
e′ such that Φ′ ⊢ e−→ e′ for any Φ′ where Φ′ ⇒ Φ.

Lemma 2 (Preservation) If Φ;∆;Γ ⊢ e : T and Φ ⊢ e−→ e′, then Φ;∆;Γ ⊢ e′ : T .

These lemmas imply a type soundness theorem as well as the key corollary about role

checking:

Theorem 1 (Type Soundness) IfΦ; ·; · ⊢ e : T , then e will not get stuck when evaluated
under any role context Φ′ such that Φ′ ⇒ Φ.

Corollary 1 (Dynamic Entailment Checks Unnecessary) Well-typed programs can-

not fail dynamic role entailment checks.



Evaluation Contexts E ::= [ ] | E. f | E.m〈ρ〉(e) | v.m〈ρ〉(v, . . . ,E,e, . . . ,e)
| new T (v, . . . ,E,e, . . . ,e) | pack ρ,E | unpack E as r,x in e

Φ ⊢ e−→ e

Φ ⊢ e−→ e′

Φ ⊢ E[e] −→ E[e′]
(E-CONGRUENCE)

fields(T ) = T f

Φ ⊢ new T (v). fi −→ vi
(E-FIELD)

mbody(T,m〈ρ〉) = (x,e) msig(T,m) = 〈σ〉S
Φ′

→ S Φ ⇒ [σ 7→ ρ]Φ′

Φ ⊢ new T (v).m〈ρ〉(v′) −→ [x 7→ v′][this 7→ new T (v)]e
(E-INVK)

Φ ⊢ unpack (pack i,v) as r,x in e−→ [x 7→ v][r 7→ i]e (E-UNPACK)

Φ ⊢ e1� e2 −→ e1 (E-CHOOSE1)

Φ ⊢ e1� e2 −→ e2 (E-CHOOSE2)

Φ′ ⊢ e−→ e′

Φ ⊢ use Φ′ in e−→ use Φ′ in e′
(E-USE1)

Φ ⊢ use Φ′ in v−→ v (E-USE2)

mbody(T,m〈ρ〉) = (x,e)

classC〈r〉{T f ;M} ∈ ClassDecls 〈q〉S m(S x) requires Φ{e} ∈M

mbody(C〈ρ〉,m〈σ〉) = (x, [q 7→ σ][r 7→ ρ]e)
(M-BODY)

Fig. 6. Evaluation for our formal language.



4 Experience: The OpenMRS Case Study

We implemented our ORBAC checker as an extension to Java in the JavaCOP pluggable

types framework [2]. To evaluate our approach, we took OpenMRS [21], an existing

open source medical records application, and retrofitted it to use an ORBAC policy

to protect access to patient data. OpenMRS is implemented in Java using the Spring

application framework [28], which is a commonly used alternative to Java EE. Spring

provides several useful modules, including an inversion of control container, an aspect-

oriented programming framework, and integration with the Hibernate framework for

persistence [13]. Spring’s access control framework supports standard RBAC policies,

which can be configured by an administrator.

4.1 Implementation of ORBAC using JavaCOP

Our checker implementation makes use of the annotations @Requires, @Returns, and

@RolePredicate that were introduced in Sect. 2.2.

Several practical issues that are not modeled in the formalism are addressed in our

implementation. Class inheritance is supported. The checker enforces the standard re-

quirements on method overriding: an overriding method must have a compatible, pos-

sibly weaker precondition (@Requires annotation) and a compatible, possibly stronger

postcondition (@Returns clause). Methods without a @Requires annotation are con-

sidered to have the precondition true, so they can be invoked in any context. Hence,

methods that override such methods are required to not have a @Requires annotation.

While our formalism uses arbitrary propositional formulas for requires clauses, our

Java implementation restricts @Requires and @RolePredicate annotations to be dis-

junctions of roles. This means that role contexts are formulas in conjunctive normal

form (CNF); the @Requires clause of a method provides the first conjunct and dy-

namic role predicate checks add conjuncts to the context. This simplifies typechecking

by allowing us to perform a series of subset checks rather than checking arbitrary logical

implication.

We make use of JavaCOP’s support for flow-sensitive reasoning [17] to implement

the static updating of the role context based on role predicate method invocations. Java-

COP’s flow framework properly handles Java’s complex control flow, including excep-

tional control flow. As a result, our checker can statically validate the style of dynamic

checks used in Fig. 3, as well as many other styles.

The implementation of the checker was fairly straightforward. It contains 174 lines

of code in the declarative JavaCOP language and about 450 lines of Java code defining

the flow analysis and some supporting functions and data structures.

4.2 OpenMRS architecture

The OpenMRS source contains over 160,000 lines of code, spread over 633 files, not

including the frameworks and other infrastructure that it depends upon. Figure 7 shows

a simplified UML diagram of some key patient-related classes defined by OpenMRS.

Patients are represented by the Patient class. Each patient has a number of associated
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Fig. 7. Patient-related classes in OpenMRS

encounters, each representing a visit to the hospital or clinic. Each encounter may con-

tain multiple observations (represented by the Obs class) which are used for recording

test results and patient vitals.

The OpenMRS application interacts with the client via Java servlets. In Fig. 7, we

show the two primary servlets for patients, PatientDashBoardController, which

renders to HTML a summary of a patient’s data, and PatientFormController, which

accepts a new or updated patient and saves it to the database. These servlets obtain

patient records from the database via classes implementing the PatientService inter-

face, which defines methods for creating, querying, updating, and voiding patients (as

well as many others not shown here). The implementation of PatientService is pro-

vided by PatientServiceImpl, which in turn uses a class implementing PatientDAO

(DAO stands for “Data Access Object”). The implementation of PatientDAO is pro-



vided by HibernatePatientDAO, which interacts with the Hibernate framework and

isolates Hibernate-specific code.

The patient service implementation PatientServiceImpl is made available to

servlets via the Context class. This class provides static methods for accessing global

system state (e.g., mappings between “service” interfaces and their configured imple-

mentations) as well as state specific to a given user (e.g., a user id and permissions).

OpenMRS access control framework The implementation of RBAC in OpenMRS adds

a level of indirection to the standard RBAC model: methods are protected by assigning

required privileges through annotations in the code, roles are defined as mappings from

role names to sets of privileges, and users are assigned sets of roles. The role-privilege

mapping and the user-role mapping are maintained in the database, permitting them to

be changed by an administrator at runtime.

Access policies are configurable in OpenMRS, but the limitations of the RBAC

model make it impossible to configure a policy that permits access to a specific ob-

ject while preventing access to other objects of the same class. In other words, only

coarse-grained policies, which restrict access at the level of classes rather than objects,

are supported. For example, in one reasonable policy within these restrictions, patients

would have no access to the system at all and every healthcare provider would have

read-write access to all patients.

Access control requirements are defined using method annotations representing the

set of privileges needed to access the method. These annotations are converted to dy-

namic checks by Spring’s aspect-oriented programming framework. For patient data,

these annotations are made on the PatientService class. There are separate privi-

leges defined for viewing, creating, updating, and deleting patients. The administrator

must then assign these privileges to RBAC roles.

Each servlet in OpenMRS may (indirectly) invoke many dynamic privilege checks

inserted by Spring. Unfortunately, there is no easy way to tell which privileges are

required by a servlet. Changes to the implementation of a servlet may inadvertently

change the set of privileges checked in a given situation, leading to runtime errors,

which are displayed as an HTML rendering of a Java stack trace.

Privileges may be explicitly checked in the code by calling the hasPrivilege

method on the Context class. These explicit checks are used in situations where au-

thorization occurs in a conditionally executed block or where an implementation needs

additional authorization requirements beyond those specified for an interface.

4.3 An ORBAC policy for OpenMRS

With ORBACwe were able to create a new fine-grained access control policy for patient

objects, with three roles:

1. Users with the Supervisor role have read and write access to all patients. This role

is unparameterized— it behaves as a standard RBAC role.

2. Users with the ProviderFor role (e.g., doctors) have read and write access to their

patients, but not to other patients. This role is parameterized by the patient’s id.



User Assigned roles Patients allowed Patients allowed Patients denied

read-only access read-write access access

Alice Supervisor Britney, Carol,

Dave

Bob ProviderFor<Carol> Carol Britney, Dave

Britney Patient<Britney> Britney Carol, Dave

Carol Patient<Carol>, Carol Britney Dave

ProviderFor<Britney>

Dave Patient<Dave> Dave Britney, Carol

Fig. 8. Example of access rights for OpenMRS extended with ORBAC

3. Users with the Patient role have read access to their own patient record, but not to

those of other patients. This role is parameterized by the patient’s id.

We only changed the access policies for objects related to patients; other objects in

the system are protected by OpenMRS’s original RBAC policy.

Example 1. Figure 8 shows an example set of user-to-role assignments and the resulting

access rights of these users. There are three patients in the system: Britney, Carol, and

Dave. All three have a Patient role parameterized by their own id and can thus see, but

not modify, their own patient records. Alice holds the unparameterized Supervisor role

and has read-write access to the three patients. Bob is a provider for Carol, and thus

has read-write access to her record, but no access to the other patients. Carol is both a

provider for Britney and a patient herself. She does not have read-write access to her

own record. ⊓⊔

The mechanism for assigning the ProviderFor role turned out to be an interesting

design consideration. The OpenMRS database schema and object model implement a

one-to-many doctor-patient relationship, so one might consider using the presence of

this relationship to grant ProviderFor status. However, in a real healthcare environ-

ment, multiple doctors and nurses might need to interact with a patient and thus see

the patient’s record. We chose to base the granting of the ProviderFor role on whether

there is an encounter record associated with the patient and the provider. This can be

determined by an SQL query against the Encounter table, the results of which can then

be cached to speed up future checks.

The presumed workflow for granting access rights to a patient’s data are as follows:

1. When a patient enters the clinic, a user with Supervisor access looks up the patient’s

record, or creates it if necessary.

2. The Supervisor selects a doctor to see the patient and then creates an encounter

record referencing the patient and the doctor.

3. The doctor now has the ProviderFor role for this patient and can update the patient

record.

Thus, all the providers who have participated in a patient’s care can access the patient

record. Other approaches to granting access rights to patient data are possible and en-

forceable with our pluggable type system.



Implementing the ORBAC policy To implement our fine-grained access control policy

in OpenMRS, we first made the patientId field of the Patient class a role parameter

via the @RoleParam annotation. We then replaced the original privilege annotations on

the PatientService interface with @Requires annotations. For example, the declara-

tion of the getPatient method is now:

@Requires(roles={"ProviderFor", "Patient", "Supervisor"},

params={"patientId", "patientId", ""})

public Patient getPatient(@RoleParam final Integer patientId)

throws APIException;

This method fetches the patient identified by patientId from the database. To call

it, the caller must possess either the ProviderFor, Patient, or Supervisor roles. These

first two roles are parameterized by the specific patientId, while Supervisor is unpa-

rameterized.

To provide dynamic role checks, we first created three new privileges in Open-

MRS, corresponding to our three roles: ORBAC PATIENT, ORBAC PROVIDER, and

ORBAC SUPERVISOR. Each of these privileges has an associated OpenMRS role, which

can then be assigned to users. We added role predicate methods for each of our ORBAC

roles to the Context class. For example, the role predicate for the Patient role is defined

as follows:

@RolePredicate(roles="Patient", params="patientId")

public static boolean hasPatientRole(

@RoleParam final Integer patientId) {

User user = Context.getAuthenticatedUser();

if (user==null || !Context.hasPrivilege("ORBAC_PATIENT"))

return false;

else return user.getUserId().equals(patientId);

}

The method checks if the user has the OpenMRS privilege ORBAC PATIENT and if so it

compares the user’s identifier to the specified patient identifier.

Checking the OpenMRS source code To ensure that the required roles for accessing

patients were enforced, we ran our pluggable type system on the entire OpenMRS code

base (a total of 633 Java files). The checking takes 11 seconds on a MacBook Pro with

a 2.4 GHz Intel Core 2 Duo processor and 2 GB of memory.

We used our type checker in an iterative manner in order to add necessary anno-

tations and dynamic checks until all type errors were resolved. In general we used

@Requires annotations on methods to remove static type errors. As mentioned in

Sect. 2.2, we cannot place a @Requires annotation on the top-level methods in servlets

through which all user requests must pass. This is the natural place to use predicate

methods that perform dynamic security credential checks to satisfy the type checker.

In total, we made changes to 81 (13%) of the files. A total of 298 @Requires annota-

tions and 151 dynamic checks were added. Since the pluggable type system successfully

checks the code, the dynamic role checks that occur within servlet code are guaranteed

to be sufficient on all paths to the protected methods of PatientServiceImpl.



The count of dynamic checks represents individual role predicate calls

(hasPatientRole, hasProviderRole, or hasSupervisorRole). In many cases, these

predicates are used together in a single if statement. In general, dynamic checks for

patient reads use a disjunction of all three predicates, checks for patient writes use a

disjunction of the provider and supervisor predicates, and checks for servlets that gen-

erate reports (which access many patients) use the supervisor predicate alone.

4.4 Limitations and tradeoffs

Final fields and role parameters In the ORBAC example of Sect. 2, role parameter

fields are declared as final. Our type system requires that role parameters do not

change. If role parameters can change, the type system becomes unsound, potentially

allowing prohibited calls.

Unfortunately, Hibernate requires that persisted objects have default constructors

and non-final id fields. These id fields are frequently the same fields used as role param-

eters (e.g., the patientId of class Patient). To address this, we permit role parameter

fields to be non-final but include checks in our pluggable type system to ensure that role

parameter fields are not assigned outside of constructors. We also use the JavaCOP flow

framework to ensure that every constructor initializes all role parameter fields.

ProviderFor vs. Provider roles In our case study, we chose to define for doc-

tors a ProviderFor role which is parameterized by a patient id. This approach

is straightforward and easily handles the case where a patient has multiple

providers. However, it is problematic when representing collections. For example, the

getPatientsByName method of PatientService takes a partial patient name and re-

turns a Collection<Patient> of matching patients. The names of these patients are
then displayed to the user, who can drill down to a specific patient record. We changed

this method to return only those patients accessible to the user. Unfortunately, there

is no way to represent the precise element type of this collection in our type system,

since each patient has a different id. Therefore, we use a collection object with no role

parameter. This lack of static validation cannot cause a security violation, but it does ne-

cessitate the use of dynamic role predicate checks in order to fetch the actual Patient

object when the provider “drills down.”

An alternative would be to instead use a Provider role, which is parameterized by

the doctor’s user id. Thus, the patients returned by getPatientsByName would all be

parameterized by the same value, allowing easier representation in our type system.

This alternative approach is not without disadvantages. In the most obvious imple-

mentation of this policy, the Patient object would be parameterized by two fields:

patientId and providerId. However, this does not work well if a patient can

have multiple providers. One work-around is to change the getPatient method for

PatientServiceImpl to populate the providerId with the current user’s id, if the

user is in the set of providers for the patient.

Access control for encounters and observations In our current implementation, ac-

cesses to objects logically contained within patients, such as encounters and obser-

vations, are not protected by @Requires annotations. In theory, this could lead to an



unsoundness in the security policy, although, in practice, the OpenMRS navigation de-

sign prevents users from accessing these sub-objects without first accessing the parent

Patient instance. To be sure there is no violation, we could add @Requires anno-

tations to encounters and observations. Alternatively, we could use a form of object

ownership [7] to verify that these objects are in fact logically contained within their

associated patient objects.

5 Related Work

Role-based access control [9] has been used successfully in many systems and is now a

NIST standard. Several approaches have been explored by researchers to extend declar-

ative access control models like RBAC to represent and enforce instance-level policies.

However, these approaches have employed only dynamic enforcement of such policies.

The emphasis in some prior work [1, 15, 4] is on clarifying the formal semantics of

a parameterized access control model. For example, Abdallah and Khayat [1] provide

a set-theoretic semantics in a formal specification language, and Barth et al. [4] briefly

mentions a parameterized role extension to a temporal logic for reasoning about privacy.

We adapt a variant of these generalized RBAC models to an object-oriented language,

provide a static type system for enforcing access control, and have implemented and

validated the approach in Java.

The Resource Access Decision facility (RAD) [3] extends RBAC-based access con-

trol policies with access checks based on user relationships. Policies may be configured

to require certain relationship predicates to be true when an activated role is used to ac-

cess an object. For example, a rule might state that doctors can only access the records

of patients to which they have an attending relationship. However, these relationship

predicates are not defined in a declarative manner — a CORBA interface must be im-

plemented in the application to evaluate each predicate. This precludes any use of a

static analysis based on the relationships required by a policy.

The database community has also addressed the enforcement of instance-level ac-

cess control policies (e.g., [12, 26, 20, 22]). In particular, [12] extends RBAC with

parameterized role templates, where the parameters of a template refer to database

columns or constants and serve a similar function as our role parameters. Implementing

fine-grained access control policies at the database level has two key advantages: one

can define policies directly on the data to be protected and the filtering of records can

be integrated with query optimization. However, database-level access control also has

several disadvantages. First, it would be very difficult to statically determine the code

paths in an application which lead to a given dynamically-generated SQL statement,

which would be necessary to statically detect access violations. Second, developers

may also want to enforce restrictions on function invocations in the application, which

would require a separate mechanism from the database-level access control policies.

Third, most modern application deployments store the mapping of users to roles in

an external repository (e.g., an LDAP server). Information stored in such a repository

might not be available to the database query engine.

Instance-level access control policies can also be defined using domain-specific lan-

guages. For example, the XAML standard [8] permits the definition of access policies



for web services which reference data in individual request messages. Cassandra [6,

5] extends Datalog to express constraint rules referencing parameterized RBAC-style

roles. These approaches are appropriate for enforcing access control between applica-

tions but are not so easily applied within an application. To (dynamically) enforce such

policies within an application, one would need to map the entities referenced by the

policy to actual object instances. In addition, the more expressive semantics of these

policies would complicate static analysis.

We enforce access control policies through explicit dynamic and static checks added

to the codebase through annotations. One could also write policies in a separate lan-

guage outside the codebase and automatically insert them into the code at compile time

or runtime (via bytecode manipulation). This approach has been explored [23], with

policies expressed as access constraint rules — boolean expressions over an object and

its relationships. Our ORBAC annotations could be translated to access constraint rules.

Our approach is orthogonal to Hierarchical RBAC [27], where a partial order is de-

fined on roles. If a role R1 is greater than a role R2 in this hierarchy, then any user hold-

ing R1 also holds the permissions associated with R2. This hierarchy is statically defined

and not dependent on individual object instances, so it still only supports coarse-grained

policies. For example, if a Physician role dominates a Healthcare-Provider role in the

hierarchy, assigning two users to Physician roles gives them the exact same permis-

sions, which are a superset of the permissions granted to users assigned the Healthcare-

Provider role. One could extend our ORBAC model to support hierarchies by including

a partial order on (parameterized) roles.

There has also been work on static analysis for RBAC systems. Closest to our work

is that of Pistoia et al. on static analysis of security policies in Java EE [25]. They em-

ploy an interprocedural analysis to identify RBAC policies that are insufficient (i.e., can

lead to runtime authorization failures), redundant (i.e., grants more roles than neces-

sary), and subversive (i.e., allows bypassing access control requirements). Our static

type system prevents the first and third of these errors, but for the more expressive OR-

BAC model. Using a type system as opposed to an interprocedural analysis allows us to

provide modular guarantees about proper access control on each function in a scalable

manner, at the expense of requiring user annotations.

Researchers have explored many forms of dependent type systems [18], whereby

types depend on program values. The closest to our work is the notion of constrained

types in the X10 programming language [19]. In X10, classes are explicitly parame-

terized by a set of properties, which are treated within the class as public final fields.

Our design is similar but uses annotations to implicitly parameterize a class by a des-

ignated set of fields without modifying Java’s syntax. Similarly, an X10 type has the

form C{e}, where C is a class name and e is a constraint on the class’s properties, while
we use annotations to specify constraints. In our type system, these constraints are al-

ways simple equality constraints. The X10 compiler has built-in support for checking

equality constraints, but it also allows users to plug in solvers for other constraints.

The static checking of roles in our type system has no analogue in X10’s con-

strained types. This part of our type system is most closely related to type-and-effect

systems [11], which statically track a set of computational effects. The computational

effects we track are the privileged operations that a function may invoke, which de-



termine the roles that are allowed to invoke the function. Roles are also similar to ca-

pabilities [29], which are a dual to effects. However, roles are disjunctive rather than

conjunctive: it is sufficient for an execution to hold any of a function’s roles, while

capability systems require all capabilities to be held to ensure proper execution.

6 Conclusions

We have presented the design, implementation, formalization, and practical validation

of Object-sensitive RBAC (ORBAC), a generalization of the widely used RBAC model

for access control. ORBAC allows different instances of the same class to be distin-

guished by a designated set of object properties. These properties can then be used

to parameterize roles thereby supporting fine-grained access policies that are useful in

common scenarios but hard to implement in traditional RBAC. We have implemented

a novel static type system that employs forms of dependent types and flow sensitivity

to provide sound yet precise reasoning about an application’s adherence to an ORBAC

policy. Our OpenMRS case study illustrates the practical utility of the ORBAC model

and our type system in a realistic setting.

We have focused on a useful but restricted version of ORBAC. This model can be

naturally extended to support a more expressive policy language. Our current JavaCop-

based implementation could be enhanced to support role predicates as arbitrary propo-

sitional formulas as well as multiple parameters per role, both of which are in our for-

malization. Useful extensions to the type system presented here include the addition of

a partial order on roles, a richer constraint language for index values, and static tracking

of the temporal order of privileged operations. Finally, we would like to investigate both

local and global type inference of object-sensitive roles.
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