
Safety Verification for Real-time Event-driven
Programs

Pierre Ganty and Rupak Majumdar

CS Department, University of California, Los Angeles, CA, USA
{ pganty,rupak }@cs.ucla.edu

Abstract. Embeddded real-time systems are typically programmed in
low level languages which provide support for event-driven task process-
ing and real-time interrupts. We show that the model checking problem
for real-time event-driven Boolean programs for safety properties is un-
decidable. In contrast, the model checking problem is decidable for lan-
guages such as Giotto which statically limit the creation of tasks. This
gives a technical reason (static analyzability) to prefer higher-level pro-
gramming models for real-time programming, in addition to the usual
readability and maintainability arguments.

1 Introduction

Real-time event-driven software is the basis of many safety-critical systems, rang-
ing from automobile and avionics control units to medical devices and to large
scale supervisory control and data acquisition (SCADA) systems. These systems
are often programmed in low level imperative programming languages which offer
the programmer an interface for posting and executing tasks based on external
or internal events and access to a real-time clock. The basic programming model
is as follows. The program is written as a set P of procedures called handlers that
share a finite global state. In addition to core imperative language constructs,
each handler can make asynchronous calls future (p, t), where p ∈ P is a handler,
and t ≥ 0 is an integer time step. Intuitively, future (p, t) schedules the logical
task implemented by p to be executed t time steps from now.

Asynchronous calls are stored in a (timed) task buffer for later execution.
Each element in the task buffer is a pair (p, t), where p is a handler, and t is the
number of time steps in the future when p should be executed. If t = 0 for a pair
(p, t), we say p is enabled.

Execution of the program is controlled by the ticks of a logical clock. Initially,
the task buffer contains a special enabled “main” handler. In each time step, a
scheduler picks and removes an enabled handler from the task buffer and exe-
cutes the code of the handler to completion, in logical zero time. The execution
of a handler can cause new handlers to be posted to the task buffer (through
the execution of future statements). While there are further enabled handlers,
the scheduler non-deterministically picks some enabled handler and runs it to
completion (this can lead to further posted tasks). If there are no enabled han-
dlers in the task buffer, time advances by one tick. This causes every (p, t) pair

2 Pierre Ganty and Rupak Majumdar

in the task buffer to be replaced by (p, t − 1), and the scheduler runs again for
this time step.

In the most primitive setting, the programming language is C or assembly,
with a timer interrupt and a hand-coded scheduler and event manager. More
recently, low level virtual machines such as the E-machine [?] have been proposed
as a clean logical model for real-time programming. Similar models for logical
execution of real-time code are used to implement synchronous languages.

The future construct is a powerful mechanism to express event-driven and
time-triggered actions in an embedded system, and this style of programming
has been used to implement sophisticated real-time control systems such as au-
tonomous helicopter flight control [?]. However, writing correct real-time event-
driven programs is hard, as the control flow of the program is obscured by the
loose coupling between the handlers provided by future. Therefore, it would be
useful to provide algorithmic tools to check for correctness properties of these
programs. For non-real time event-driven programs, in which every asynchronous
call is of the form future (p, 0) for some p ∈ P , checking safety and liveness
properties is indeed decidable [?,?,?], essentially by reduction to Petri nets. In
fact, the safety verification problem is decidable for more general models, such as
event-driven programs with priorities [?]. The decidability results are non-trivial,
as the programs are not finite-state: the task buffer can grow unboundedly large
in the course of the execution.

We show in this paper that checking safety properties for real-time event-
driven programs, on the other hand, is undecidable. We work in the simplified
setting where each future statement is either future (p, 0), signifying the handler
p should be executed in this time step, or future (p, 1), signifying the handler p
should be executed one time step from now. Then, the execution state of the
program contains two task buffers: buffer b0 containing tasks that are enabled
“now” and buffer b1 containing tasks to be executed in the next time step. When
buffer b0 is empty, execution moves to tasks in b1 (and puts future tasks in
the “next” buffer b2. Conceptually, this can be modeled by assigning priorities
to posted tasks, with the tasks in bi having priority over bi+1. However, the
decidability results from [?] for event-driven programs with priorities do not
apply: there are an infinite number of priorities. Using the observation that
only two buffers are “active” at any time, and the techniques of [?], we can
reduce checking safety properties of real-time event-driven programs to checking
coverability for Petri nets with two inhibitor arcs. While in general the latter
problem is undecidable, our reduction produces inhibitor arcs with a specific
structure (to encode the shift from one task buffer to the next and back again),
for which coverability might well be decidable.

Instead, we show undecidability of the problem ab initio. Our proof is a
careful encoding of the execution of a 2-counter machine as a real-time event-
driven program. Intuitively, there is a handler hi for each counter ci (i = 0, 1),
and the value of counter ci is maintained by the number of posted calls to
handler hi. Increment and decrement of counters can be simulated by posting
or executing the corresponding handler. The problem is in simulating zero tests.

Safety Verification for Real-time Event-driven Programs 3

This is not possible in the non-real time case, and not possible for Petri nets.
The technical part of our proof is to use the ability to “postpone” tasks to
the next time step to simulate zero tests. In order to simulate a zero test for
ci, we nondeterministically assume the zero test succeeds, but set a variable
remembering that zero test has been performed. We then copy the state of the
machine (its control location as well as the value of the other counter) to the
next time step. If in this process, an outstanding instance of ci is found, then the
non-deterministic guess is incorrect, and the current branch of the simulation
“dies” by setting an error bit. Additional bookkeeping is performed to separate
machine simulation steps from checking steps. Overall, the effect is that each run
of the 2-counter machine can be simulated by a run of the real-time event-driven
program (where in each time step, the program simulates machine instructions
up to the next conditional), and conversely, any run of the real-time event-driven
program which does not set the error bit corresponds to a run of the 2-counter
machine.

While we focus on the undecidability of control location reachability, our
proof also shows that related analysis problems, such as whether the task buffer
is bounded, or if time always eventually advances, are all undecidable. Moreover,
while we focus on real-time programs, even in non-real time settings, APIs im-
plementing event-driven programming, such as libevent [?], additionally have a
“timeout” call, where certain handlers run when the timer expires. These calls
are ignored or abstracted in decidability proofs for event-driven systems [?,?].
Our results show that safety verification is undecidable if these calls are modeled.

While our result is negative, there is a different interpretation for it. The
E-machine was proposed by its authors as a target language for a real-time com-
piler, and direct programming at the E-machine level was discouraged. Instead,
they proposed the use of higher-level languages such as Giotto [?] or xGiotto [?]
to write code at the programmer level. (More recently, languages like Virgil [?]
has been proposed with similar intent.) By restricting the ability to post tasks
arbitrarily, these higher-level languages ensure that for any Giotto or xGiotto
program, at any point of the execution, there is at most a bounded, statically
determined, number of posted tasks. In this case, just by finiteness of the state
space, all verification problems are decidable. Our result can be interpreted as an
argument for using higher-level programming languages: programs written in the
higher-level languages can come with tool support for precise model checking,
programs written in lower-level languages do not.

Acknowledgments. We thank Tom Henzinger for suggesting this problem.

2 The Computational Models

2.1 Programming Model

We start with some preliminary definitions. Let Σ be a finite and non-empty
set. A multiset M : Σ 7→ N over Σ is a function that maps each symbol of
to a natural value (N denotes the set of all natural numbers). Let us denote by

4 Pierre Ganty and Rupak Majumdar

M[Σ] the set of all multiset over Σ. Given two multisets M,M ′ ∈M[Σ] we define
M⊕M ′ ∈M[Σ] to be multiset such that ∀a ∈ Σ : (M⊕M ′)(a) = M(a)+M ′(a).
We sometimes use the following notation for multisets M = Jq1, (q2)c, q3K (where
c ∈ N) for the multiset M ∈ M[{q1, q2, q3, q4}] such that M(q1) = 1, M(q2) = c
, M(q3) = 1, and M(q4) = 0. Also as for sets we use the symbol ∅ to denote an
empty multiset.

We now define a formal model for real-time event-driven programs. We rep-
resent imperative programs using a generalization of control flow graphs [?], that
include special edges corresponding to asynchronous procedure calls. Let P be a
finite set of procedure names and X a set of Boolean variables. An asynchronous
control flow graph (ACFG) Gp for a procedure p ∈ P is a pair (Vp, Ep) where Vp

is the set of control nodes of the procedure p, including a unique start node vs
p

and a unique exit node ve
p, and Ep is a set of directed edges between the control

nodes Vp. The edges in Ep are partitioned into edges E(o), E(now), and e(next)

corresponding to one of the following:

– an operation edge in E(o) corresponding to an assignment to a variable in
X, or a conditional predicate over X;

– a current post edge in E(now) to a procedure q ∈ P , or
– a next post edge in E(next) to a procedure q ∈ P .

Intuitively, a current post edge corresponds posting an asynchronous task q that
should be executed in the current time step (i.e., future (q, 0)), and a next post
edge corresponds posting an asynchronous task q that should be executed in the
next time step (i.e., future (q, 1)).

A program G./ comprises a set of pairwise disjoint ACFGs Gp for each pro-
cedure in p ∈ P (we also say handler). The control nodes of G./ are given
by V ./ =

⋃
p∈P Vp: the union of the control nodes of the individual proce-

dures. The edges of G./ are given by E./ =
⋃

p∈P Ep, the union of the edges
of the individual procedures. A timed asynchronous program, or TAP for short,
A = (P,X,G./, main) consists of a set of procedure names P , a set of variables
X, a program G./, and an initial procedure main ∈ P such that no asynchronous
call edge calls main.

Semantics. Fix a TAP A = (P,X,G./, main). A valuation is a mapping that
associates a value to each variable in X. For each (v, v′) ∈ E(o), we assume a
binary update relation Up(v,v′) on valuations such that (d, d′) ∈ Up(v,v′) if d′ is
the valuation obtained by executing the operation on edge (v, v′). This is defined
in the usual way for assignments (which updates the valuation to the assigned
variable) and conditionals (which ensures the conditional is true at d and d′ = d).

We now define the abstract semantics of A. The abstract semantics of A is
given by a transition system where each state ((v, d),M1,M2) consists in: the
abstract state (v, d) given by a control node v ∈ V ./ and a valuation d of X; and
two multisets M1,M2 ∈M[P] called respectively the current and next multisets
of pending calls.

The initial state is ((vs
main, d0), ∅, ∅) in which the multisets are empty and the

abstract state (vs
main, d0) consists in the starting node of the main procedure to-

Safety Verification for Real-time Event-driven Programs 5

gether with an initial valuation of the program’s global variables. The transitions
of the program are defined as follows.
Internal operation.There is a transition from a state ((v, d),M1,M2) to the
state ((v′, d′,M1,M2) if there is an edge (v, v′) ∈ E(o) and (d, d′) ∈ Up(v,v′).
Asynchronous call. There is a transition from ((v, d),M1,M2) to ((v′, d),M1⊕
JqK,M2) if there is an edge (v, v′) ∈ E(now) which calls procedure q (asynchronous
post current). There is a transition from ((v, d),M1,M2) to ((v′, d),M1,M2⊕JqK)
if there is an edge (v, v′) ∈ E(next) which calls procedure q (asynchronous post
next). There is a transition from ((ve

main, d),M1 ⊕ JqK,M2) to ((vs
q , d),M1,M2)

if q 6= main (asynchronous call dispatch). Also, there is a transition from
((ve

q , d),M1,M2) to ((ve
main, d),M1,M2) (asynchronous return).

Time transition. There is a transition from ((ve
main, d), ∅,M2) to

((ve
main, d),M2, ∅) ♣ WHY DO YOU NEED THE FOLLOWING:♣ provided

M2 6= ∅.
We now give some intuition about the control node ve

main which plays a special
role in the above semantics. If the current state is such that the control node is
ve
main and (i.e., ((ve

main, d),M1,M2) for some multisets M1,M2 and dataflow fact
d), then a procedure call from the multiset of current pending calls (i.e. M1),
if any, is dispatched. Otherwise, if M1 is empty, we go to the next time frame
(following a time transition) provided there are pending calls to dispatch (i.e.
M2 6= ∅). After firing the time transition the multiset of current pending calls is
now given by M2. The program terminates when both multisets are empty. Thus
ve
main models a special “dispatch loop.” Our programming model and semantics

is a generalization of asynchronous programs studied in [?,?].
A run in the transition system of a TAP A is a finite path that starts with

the initial state. A state s is reachable in a TAP A if there exists a run whose
last state is s.
Abstract state reachability. Given a TAP A = (P,G./, main) and an abstract
state (n, d) of A, the abstract state reachability problem asks if there exists two
multisets M1,M2 ∈M[P] such that the state ((n, d),M1,M2) is reachable in A.

In this paper, we will show that abstract state reachability is undecidable.
Our proof shows that if we can solve the above problem then we can solve
the reachability problem for two counters machine, a turing powerful model.
Naturally our next section recalls the definition of two counters machine and
associated reachability problem.

2.2 Two Counter Machines

A 2-counter machine C (2CM for short), is a tuple 〈{c1, c2}, L, Instr〉 where:

– c1, c2 take their values in N;
– L = {l1, . . . , lu} is a finite non-empty set of u locations;
– Instr is a function that labels each location l ∈ L with an instruction that

has one of the following forms:
• l : cj := cj + 1; goto l′ where j ∈ {1, 2} and l′ ∈ L, this is called an

increment, and we define TypeInst(l) = incj ;

6 Pierre Ganty and Rupak Majumdar

• l : cj := cj − 1; goto l′ where j ∈ {1, 2} and l′ ∈ L, this is called a
decrement, and we define TypeInst(l) = decj ;

• l : if cj = 0 then goto l′ else goto l′′ where j ∈ {1, 2} and l′, l′′ ∈
L, this is called a zero-test, and we define TypeInst(l) = zerotestj ;

Semantics. Those instructions have their usual obvious semantics, in particular,
decrement can only be done if the value of the counter is strictly greater than
zero.

A configuration of a 2CM 〈{c1, c2}, L, Instr〉 is a tuple 〈loc, v1, v2〉 where loc ∈
L is the value of the program counter and, v1 and v2 are positive integers that
gives the values of counters c1 and c2, respectively.

A computation γ of a 2CM 〈{c1, c2}, L, Instr〉 is a finite non-empty sequence of
configurations 〈loc1, v

1
1 , v

2
1〉, 〈loc2, v

1
2 , v

2
2〉, . . . , 〈locr, v

1
r , v

2
r〉 whose length, denoted

by |γ|, equals r−1 and such that (i) “initialization”: loc1 = l1, v1
1 = 0, and v2

1 = 0,
i.e. a computation starts in l1 and the two counters valued to 0; (ii) “consecu-
tion”: for each i ∈ N such that 1 ≤ i ≤ |γ| we have that 〈loci+1, v

1
i+1, v

2
i+1〉 is

the configuration obtained from 〈loci, v
1
i , v

2
i 〉 by applying instruction Instr(loci).

Control location reachability. Given a 2CM C = 〈{c1, c2}, L, Instr〉 and a
control location l ∈ L, the control location reachability problem asks if there
exists a computation γ whose last configuration is 〈l, v1, v2〉 for some v1, v2 ∈ N.
If so we say that control location l is reachable in C.

Theorem 1. The control location reachability for 2CM is undecidable.

3 The Reduction

We are given an instance of the control location reachability problem: a 2CM C =
〈{c1, c2}, L, Instr〉 and a control location lx ∈ L. We are asked if lx is reachable in
C. We will show the abstract state reachability for timed asynchronous programs
is undecidable by encoding a 2CM as a timed asynchronous program. In fact,
we reduce the 2CM control location reachability to the following abstract state
reachability on timed asynchronous program. Given the TAP of the Fig. 1, 2, 3,
4 is there an abstract state (ve

main, d) where d maps cloc to lx, error to false
that is reachable? Also in the above reachable state, d maps Oc1, Oc2 c1 eq 0
and c2 eq 0 to false, and timer to on.

The procedures. Besides main the program has 5 procedures: c 1, c 2,
machine, timeron, timeroff whose details are given below.
c 1, c 2: implements some operations on counters c 1 and c 2, respectively. At
every point in time, the number of pending calls to each of those procedure gives
the corresponding counter’s value;
machine: simulate the counter machine;
timeron: opens a time frame;
timeroff: closes a time frame and spawns the next one by posting timeron().

The variables.
Oc1, Oc2: read Oc1 as “next c 1()” (like in the LTL notation). This variable is

Safety Verification for Real-time Event-driven Programs 7

global error, timer, Oc1, Oc2, c_1_eq_0, c_2_eq_0, cloc, dest;

main() {

error = false;

timer = off;

Oc1=Oc2=false;

c_1_eq_0=c_2_eq_0=false;

cloc=dest=l_1;

post timeron();

}

Fig. 1. main(), and global variables declaration.

timeron () {

if error == true || timer == on || (Oc1||Oc2) == true {

error = true;

return;

}

timer = on;

post timeroff();

post machine();

}

timeroff () {

if error == true || timer == off || (Oc1||Oc2) == true {

error = true;

return;

}

nextpost timeron();

timer=off;

c_1_eq_0=c_2_eq_0=false;

}

Fig. 2. timeron() and timeroff()

8 Pierre Ganty and Rupak Majumdar

c_i () {

if error == true || timer == off || Ocj == true (j!=i) || c_i_eq_0 == true {

error=true;

return;

}

if Oci == true {

Oci = false;

if typeinst(cloc) != dec_i

post c_i();

cloc=dest;

post machine();

}

else if c_j_eq_0 == true (j!=i)

nextpost c_i();

else

post c_i();

}

Fig. 3. c 1() and c 2()

machine() {

if error == true || timer == off || (Oc1||Oc2) == true {

error=true;

return;

}

switch(typeinst(cloc)) {

case inc_i: // of the form c_i:=c_i+1 goto l’

post c_i();

cloc=l’;

post machine();

break;

case zerotest_i: // of the form if c_i=0 then l’ else l’’

if (*) { // non deterministic choice

c_i_eq_0=true;

cloc=l’;

} else {

Oci=true;

dest=l’’;

}

break;

case dec_i: // of the form c_i:=c_i-1 goto l’

Oci=true;

dest=l’;

break;

}

}

Fig. 4. machine()

Safety Verification for Real-time Event-driven Programs 9

used to enforce that when set to true, the next dispatch to occur is c 1() for
otherwise the program sets error to true;
c1 eq 0, c2 eq 0: c1 eq 0 is set to true whenever a zerotest 1 has been simulated
and the if branch has been followed (that should happen whenever there are no
pending call to c 1());
error: is set to true whenever the simulation is unfaithfull. This forces every
subsequent reachable state be such that error valuates to true;
timer: it is switched from off to on at the beginning of a time frame (first
dispatch just after a time transition, if any, or just after executing the main) and
from on to off at the end of a time frame (last dispatch just before the time
transition);
cloc: indicates what the current instruction is;
dest: it is used in some cases to indicate what the next instruction is.

Let us now get more insights on the behavior of the TAP by giving a possible
execution given at Fig. 5.

The diagram gives, for the first time frame, the sequence of procedure that
runs (the double arrows above the dashed and dotted line) and for each of those
the calls that are posted (the dots underneath each running procedure).

First runs the main procedure which will initializes the global variables and
post a call to timeron. So the multiset of pending call is JtimeronK. Now
timeron is dispatched and posts a call to machine and timeroff (yielding
Jmachine, timeroffK). Then comes the dispatch of machine which will perform
the actual simulation of the 2CM. First instruction is an increment of counter 1.
The dispatch of machine posts a call to c 1 (to simulate the actual increment)
and repost itself to continue the simulation (Jmachine, timeroff, c 1K). Second
instruction is an increment to c 2 which is simulated by the dispatch of machine
as given above (Jmachine, timeroff, c 1, c 2K).

Now since we have pending call to c 1 and c 2 they can be dispatched. The
dispatch of c 2 does not modify the state of the TAP (and nor does the dispatch
of c 1). Note that to do so the dispatch of c 2 posts one call to c 2.

The third instruction to simulation is a decrement of counter 1. The dispatch
of machine will set Oc1 to true (Jtimeroff, c 1, c 2K). This enforces the next
dispatch has to be c 1 for otherwise the variable error is set. So the dispatch
of c 1 simulates the actual decrement. It also posts machine to resume the
simulation (Jtimeroff, c 2, machineK).

Now follows a dispatch to c 2 that does not modify the state of the TAP as
described above.

The fourth instruction is a zerotest1. Since counter one equals 0 (we incre-
mented and decremented it starting from value 0) the zero test should follow
the if branch. Doing so in the TAP, the dispatch of machine will set the variable
c1 eq 0 to true. (Jtimeroff, c 2K)

Hence, the dispatch of c 2 will post a call to c 2 in the next time frame.
So we have JtimeroffK for the current time frame and Jc 2K for the next time
frame.

10 Pierre Ganty and Rupak Majumdar

The dispatch of timeroff will post timeron in the next time frame. Now a
time transition takes place. In the new time frame the bag of pending calls is
given by Jc 2, timeronK.

timeron c 2main machine machinemachine c 1 c 2 machine c 2 timeroff

timeron timeroff

machine machine

c 1 c 2

machine c 2 c 2

machine

c 2

inc 1 inc 2 dec 1 zerotest 1/if

time

start of time frame 0 end of time frame 0/
start of time frame 1

c 2 nextpost

Fig. 5. An execution of the TAP

4 The Proof of Correctness

First we start with a series of facts about the program given at Fig. 1, 2, 3, 4.

1. error is initialized to false by main(), if it is switched to true its value
eventually never change. Whenever error is set to true, the dispatch of
c 1(), c 2(), machine(), timeron(), timeroff() does not modify the current
datafact and does not add any call to the multiset of pending calls.

2. Every pending call in the current time frame will be dispatched before mov-
ing to the next time frame (i.e. before taking a timer transition). This fact
holds by semantics of timed asynchronous programs.

3. timer is modified by timeron() and timeroff() only and is initialized by
main().

4. no procedure but timeroff() can switch c1 eq 0 or c2 eq 0 from true to
false and no procedure but machine() can switch c1 eq 0 or c2 eq 0 from
false to true.

5. In a time frame there is at most one post to timeron() and timeroff().

Proof. main(), which is executed only once, posts one call to timeron() in
the same time frame. When timeron() is executed, it posts at most one call
to timeroff() in same time frame, which whenever executed, posts at most
one call to timeron() in the next time frame. Also we have that only main()
and timeroff() post timeron(), only timeron() posts timeroff().

6. In frame i if the first dispatch is not timeron() or the last dispatch is not
timeroff() then error is set to true in i.

Proof. (1) In every time frame i, if the first dispatch is different from
timeron() then error is set to true. This is so because the value of timer is
off by Fact 3, main() and induction hypothesis (the last dispatch of frame

Safety Verification for Real-time Event-driven Programs 11

i− 1 is timeroff()) and the first line of c 1(), c 2(), machine(), timeroff()
which set error to true when timer is off.
(2) In every time frame i, if the last dispatch (before the time transition) is
different from timeroff() then error is set to true. This is so because, after
executing timeroff(), the value of timer is off and by the first line of c 1(),
c 2(), machine(), timeroff() we find that error is set to true. For the case
of timeron() we find that it cannot run after timeroff() because we have
shown above in (1) that the first dispatch of every frame is timeron() for
otherwise error is set to true.

7. the number of pending calls to machine() at any point in time is bounded
by one.

Proof. machine() is posted once by timeron(), by itself, c 1() or c 2(). Fact
5 shows that timeron() posts at most one call to machine(). c 1() (resp.
c 2()) posts machine() whenever Oc1 (resp. Oc2) is true. Whenever Oc1 and
Oc2 are set to true by the dispatch of machine(), it also posts no call to
machine().

8. if Oc1 (resp. Oc2) is true, the next dispatch yields error is set to true unless
this dispatch is c 1() (resp. c 2()).

Proof. it follows from the condition expression of the if statement of the
procedure timeron(), timeroff(), c 2() (resp. c 1()) and machine().

4.1 Proof

The 2CM reaches the state (lx, v1, v2) iff the associated TAP A reaches a state
((ve

main, d),M1,M2) where d maps cloc to lx, error to false, and M1,M2 are
such that

– M1(machine) = 1, we are “between” the simulation of two instructions of
2CM,

– M1(c 1) = v1,M1(c 2) = v2, we want counters to coincide with v1, v2,

In our proof, we will consider each instruction in turn and show how the TAP
simulates it. We will also show that if the TAP does not faithfully simulate the
2CM then it will set error to true.

BC: 〈l1, 0, 0〉 and — after the execution of main() followed by timeron()
— ((ve

main, d),M1,M2) where M1 = Jmachine, timeroffK, M2 = ∅ and d maps
error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to false, on, false, false, false,
false and l1, respectively. Fact 6 shows that if the first dispatch to take place
after executing main() is different from timeron() then error is set to true.

IC: let 〈lx, v1, v2〉 be a state of the 2CM and ((ve
main, d),M1,M2) a state of

the TAP where M1 = Jmachine, timeroff, (c 1)v1 , (c 2)v2K M2 = ∅ and d maps
error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to false, off, false, false, false,
false and lx, respectively.

Fact 6 says that machine(), c 1() or c 2(), if any, cannot be dispatched after
timeroff() for otherwise it yields error set to be true. Since error, timer, Oc1,

12 Pierre Ganty and Rupak Majumdar

Oc2, c1 eq 0, c2 eq 0 valuate to false, off, false, false, false, false, respectively,
we find that the dispatch of c 1() or c 2() leaves the state unchanged. As we will
see below, the update of the current state is given by the dispatch of machine().
So in the explainations below, machine() is assumed to be the dispatch to take
place.

The rest of the proof naturally falls into three parts according to the instruc-
tion at lx:
•TypeInst(lx) = inc1 and is of the form lx : c1 := c1 + 1; goto l′. In that case
the state of the 2CM is updated to 〈lx, v1 + 1, v2〉. In the TAP, the execution of
machine() goes as follows: the conditional of the if statement fails and the block
of code for the inc1 case is executed. The state is updated to ((ve

main, d),M1,M2)
whereM1 = Jmachine, timeroff, (c 1)v1+1, (c 2)v2K (machine() has been posted
by c 1() which posted itself as well); M2 = ∅ and d maps error, timer, Oc1,
Oc2, c1 eq 0, c2 eq 0, cloc to false, off, false, false, false, false and l′ (because
cloc is updated), respectively.
•TypeInst(lx) = dec1 and is of the form lx : c1 := c1−1; goto l′. First, we assume
that v1 > 0. In that case the state of the 2CM will be updated to 〈lx, v1 − 1, v2〉.
In the TAP, the execution of machine() goes as follows: the conditional of the if
statement fails and the block of code for the dec1 case is executed. The datafact
is updated such that Oc1 is set to true and dest is set to l′. A dispatch now takes
place. Fact 8 shows that any dispatch but c 1() yields error to be set to true.
We conclude from v1 > 0, that M1(c 1) > 0, hence that there is a pending call to
c 1(). So after the dispatch of c 1() the state is updated to ((ve

main, d),M1,M2)
whereM1 = Jmachine, timeroff, (c 1)v1−1, (c 2)v2K (machine() has been posted
during the dispatch of c 1()); M2 = ∅ and d maps error, timer, Oc1, Oc2,
c1 eq 0, c2 eq 0, cloc to false, off, false, false, false, false and l′ (because cloc
has been assigned to dest that has been updated to l′ during the dispatch of
machine()), respectively.

Let us now assume that v1 = 0. In that case the instruction is not enabled
and the 2CM is “stuck” in the state 〈lx, v1, v2〉. In the TAP, the execution of
machine() will set Oc1 to true. Fact 8 shows that any dispatch but c 1() yields
error to be set to true which will happen since v1 = 0, hence M1(c 1) = 0
(there is no pending call to c 1()).
•TypeInst(lx) = zerotest1 and is of the form lx : c1 =
0 then goto l′ else goto l′′. Our case study is as follows: v1 = 0 and
v1 6= 0.

Fact: after c1 eq 0 or c2 eq 0 is set to true then every post is added to the
next time frame.

If v1 = 0 then the 2CM updates its state to 〈l′, v1, v2〉.
In the TAP, the execution of machine() goes as follows: the conditional of

the if statement fails and the block of code for the zerotest1 case is executed.

– if branch is taken. (this is a faithfull simulation). The dispatch of machine()
sets c1 eq 0 to true and sets cloc to l′. This, as we will see, leads a time
transition to eventually take place provided the multiset of pending calls
does not contain c 1(). Otherwise, error will be set to true.

Safety Verification for Real-time Event-driven Programs 13

We conclude from v1 = 0, that M1(c 1) = 0, hence that there is no pending
call to c 1(). By fact 6 (timeroff() occurs whenever the multiset of pending
call is Jtimeroff()K) we find that each pending call to c 2(), if any, will be
dispatched before timeroff() and consequently be “moved” to the next time
frame by the statement nextpost. Whenever the multiset of pending calls
is Jtimeroff()K then the dispatch of timeroff() occurs and it resets the
c1 eq 0 to false. Then the time transition takes place since the multiset of
pending calls is empty. As seen in Fact 6 the first dispatch to take place after
the time transition is timeron() which post machine() so that the updated
state is now ((ve

main, d),M1,M2) where M1 = Jmachine, timeroff, (c 2)v2K
(machine() is reposted by timeron() and M1(c 1) = v1 = 0 because no
c 1() has been posted in the new time frame, M1(c 2) = v2 because each
call has been copied from the previous frame); M2 = ∅ (because of the time
transition) and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to
false, off, false, false, false, false and l′ (because cloc has been assigned to
l′), respectively.

– else branch is taken. (this is an unfaithfull simulation) We conclude from
v1 = 0, that M1(c 1) = 0, hence that there is no pending call to c 1(). The
dispatch of machine() sets Oc1 to true and sets dest to l′′. The next dispatch
to occur cannot be c 1() (because there is none to dispatch) and so error
is set to true by Fact 8.

If v1 6= 0 then the 2CM updates its state to 〈l′′, v1, v2〉.
In the TAP, the execution of machine() goes as follows: the conditional of

the if statement fails and the block of code for the zerotest1 case is executed.

– the if branch is taken. (this is an unfaithfull simulation) The dispatch of
machine() sets c1 eq 0 to true and sets cloc to l′. Fact 4 shows that the
only procedure that can change the value of c1 eq 0 is timeroff() and Fact
6 shows it yields an error if timeroff() is not dispatched last in the current
time frame. We conclude from v1 6= 0, that M1(c 1) 6= 0, hence that there is
a pending call to c 1(). Its dispatch yields error to be set to true because
the datafact at the time of dispatch is such that c1 eq 0 is true.

– the else branch is taken. (this is a faithfull simulation). We conclude from
v1 6= 0, that M1(c 1) 6= 0, hence that there is a pending call to c 1(). The
dispatch of machine() sets Oc1 to true and sets dest to l′′. By Fact 8, the
next dispatch to occur has to be c 1() for otherwise error is set to true.
The dispatch of c 1() yields the following updated state ((ve

main, d),M1,M2)
where M1 = Jmachine, timeroff, (c 1)v1 , (c 2)v2K (machine() and c 1() are
posted in c 1()); M2 = ∅ and d maps error, timer, Oc1, Oc2, c1 eq 0,
c2 eq 0, cloc to false, off, false, false, false, false and l′′ (because cloc has
been assigned to dest that has been updated to l′′ during the dispatch of
machine()), respectively.

Theorem 2. The abstract state reachability for TAP is undecidable.

