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Abstract
The need for flexible forms of serialisation arises under many cir-
cumstances, e.g. for doing high-level inter-process communication
or to achieve persistence. Many languages, including variants of
ML, thus offer pickling as a system service, but usually in a both
unsafe and inexpressive manner, so that its use is discouraged. In
contrast, safe generic pickling plays a central role in the design and
implementation of Alice ML: components are defined as pickles,
and modules can be exchanged between processes using pickling.
For that purpose, pickling has to behigher-orderandtyped(HOT),
i.e. embrace code mobility and involve runtime type checks for
safety. We show how HOT pickling can be realised with a modular
architecture consisting of multiple abstraction layers for separating
concerns, and how both language and implementation benefit from
a design consistently based on pickling.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; E.2 [Data]: Data
Storage Representations

General Terms Languages, Design

Keywords Pickling, serialisation, marshalling, persistence, dis-
tributed programming, components, virtual machines

1. Introduction
Pickling is a service for externalising language-level values from
a process’s heap soup. Many languages offer such services, often
known asserialisationor marshalling. But most of these services
do not deliver picklesHOT – as higher-order, typed, self-contained
object representations, like the functional programming gourmet
would prefer them.

In this paper we present a recipe for such pickles: we discuss
the pickling mechanism inAlice ML [27, 25, 26] and central as-
pects of its implementation in the Alice Programming System[3].
Our recipe is trulyhigher-order, in that it includes pickling of code,
and even entire modules. It also istyped: where necessary, pickles
carry structural type information that is checked upon unpickling.
Both programming language designand implementation can bene-
fit from being designed with HOT pickling in mind.

In previous work, we have already taken a high-level look at
pickling as a language feature with abstract semantics [25], and
we have discussed the implementation of an efficient raw pickling
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service at the lowest level [31]. In this paper, we discuss the higher
levels of a realistic implementation, filling the (wide) gapbetween
the previous papers. In particular, we lay the focus on the treatment
of code and types, as these are the most unique aspects of pickling
in our system, and we show how the whole mechanism can be
realised using an architecture of layered abstractions.

1.1 Motivation

The main purpose of pickling is the support ofopen program-
ming. By that we mean development of programs that are open
to dynamic extension, persistence, communication with other pro-
cesses, and exchange of behaviour. We characterise this by anum-
ber of abilities [27]:modularity, flexible combination of separate
components;dynamicity, importandexport of components at run-
time; portability, exchange of components across different plat-
forms; safety, graceful treatment of erroneous components;secu-
rity, graceful treatment of untrusted components;distribution, com-
munication of components across networks; andconcurrency, han-
dling asynchronous events and non-sequential tasks.

Alice ML is an extension of Standard ML [16] that has been
specifically designed for open programming. In particular,Al-
ice ML features a flexible system of components [25] that can
be exchanged between processes as pickles. We will give a brief
overview of Alice ML in Section 2.

A primary goal in the design of the Alice ML language as well
as its implementation was to identify core primitives and generic
abstractions that enable the realisation of open programming fea-
tures in a modular manner. To this end, a vital decision was tobase
the language semantics on generic pickling as a central primitive.
Modular implementation of this service in turn induced a number
of interesting design decisions in the implementation, such as a
generic store abstraction modelling the heap.

It turns out that this modular design approach not only makes
the architecture more manageable, it also increases the expressive
power of the language in considerable ways. As we will see, Alice
ML is able to make components first-class, it can provide first-class
access to the compiler, it uses one uniform representation for com-
piled “binaries” and serialised runtime values, and it evenallows ar-
bitrarily mixing the notions of compilation and computation, while
processes can still dynamically load, create, and exchangesuch
components. And all that in a strongly typed context.

1.2 Requirements and Architecture

To be adequate as a basis for language-level open programming,
we require a number of properties from pickling:1

• Transparency: the result of unpickling a pickled value should
be an observationally equivalent copy of the original.

1 Note that it is an entirely different problem to interoperate with foreign
languages and existing protocols, which we do not consider here.
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Figure 1. Layered architecture for higher-order typed pickling

• Universality: any type of value should be picklable. Particularly
functional and user-defined types should be readily supported.

• Closedness: a pickle has to be self-contained. That is, it has to
include the whole transitive closure of a value – for functions it
has to carry all necessary code, including library functionality.

• Verifiability: it should be possible to check for malicious values.

• Security: names in a pickle should not be able to silently capture
security-relevantresourcesin a process.

• Portability: representation should be independent from hard-
ware platform, operating system, or other such concerns.

• Adaptivity: on the other hand, the pickling service has to address
these concerns whenunpicklingin a given environment.

• Efficiency: the size of a pickle should be linear in the size of the
represented value in memory. In particular, cycles and allshar-
ing have to be maintained. Moreover, pickling and unpickling
should take linear time.

The pickling architecture of the Alice system we describe meets
all these requirements, except for verifiability. We believe this can
be added as well, but have left the details for future work – Sec-
tion 12 offers a brief discussion. We are not aware of any other
implementation of pickling that meets all these requirements.

Our pickling architecture consists of a number of abstraction
layers. In particular, therepresentationof pickles is defined by a
tower of layers shown in Figure 1. Each layer is comparably small
and easy to implement, more complex aspects can be defined in
high-level terms. Specifically, only the implementations for the bot-
tom two layers in the figure necessarily need to drop down to a
machine-level language such as C – although for efficiency, parts
of the third do, too. The middle representation layers are defined in
terms of ML itself. However, implementation of respective opera-
tions requires access to unsafe primitives defined by the lower lay-
ers, and hence the middle layers have to be part of the “trusted base”
of the system. In contrast, the top layers can be defined completely
in terms of the language proper, either as simple library functional-
ity, or as syntactic sugar.

The lowest two layers have already been described in a previous
ML Workshop paper [31], and we will only briefly recap them here.
Likewise, most details on the upper two layers can be found in
previous work [25]. Consequently, in this paper we focus on the
middle layers, which implement code and types. In the end, this
should also draw the bigger picture of how all the parts integrate
into the overall design.

Before we start off describing the above architecture, we reiter-
ate central points of the design of Alice ML (Secton 2). We then

describe the lower five implementation layers (Sections 3–7, after
which we recap the component system (Section 8). We next dis-
cuss issues of compilation (Section 9) and the addition of distribu-
tion (Section 10) and concurrency (Section 11). Before we wrap up
with related work, we sketch a possible approach for adding pickle
verification (Section 12).

2. Alice ML
Alice ML is a conservative extension of Standard ML [16] designed
for open programming. It adds three central features:

• Packages[25], a variation of dynamics [1] carrying modules.

• Pickling, generic higher-order serialisation as described above.

• Futures [19], enabling laziness and light-weight concurrency
with implicit data-flow synchronisation.

Packages are essential to make pickling type-safe where types
are not known statically. Futures are convenient to deal with asyn-
chronicity and delay in external communication. Based on these
primitives, Alice ML provides derived features for high-level open
programming:

• Persistence, the ability to store values or entire modules in files.

• Components[25], lazily linked, first-class program fragments.

• Proxies[26], mobile RPC wrappers for stationary functions.

All these features uniformly use the pickling mechanism: per-
sistent values are pickles, arguments of remote procedure calls are
passed as pickles, and component files are pickles. Note particu-
larly that Alice ML has no separate notion of binary code format –
the compiler simply produces pickled component values!

As a simple example, the following program fragment dynami-
cally computesa component using the first-class component syntax
comp. . .end. The component exports a functionhello that prints its
own creation date. The component is saved to a file, using the pick-
ling mechanism:

val date = Date.fromTimeLocal (Time.now ())
val component =

comp
import structure TextIO : TEXT IO

from ”x-alice:/lib/system/TextIO”
in

val hello : unit → unit
with

fun hello () = TextIO.print (Date.toString date)
end

do Component.save (”hello”, component)

Once saved, the now persistent component can be imported as if it
was conventionally created by the compiler:

import val hello : unit → unit from ”hello”
do hello ()

Note how the component captures the dynamically pre-computed
date when it iscreated, while importing theprint function in the
process where it islinked.

We delay an example of the use of proxies until Section 10.3.
For a more thorough presentation of the design of the Alice ML
open programming features we refer to other sources [27, 25,26].

3. Abstract Store
The lowest-level abstraction in our architecture is theabstract
store. All data, comprising everything a program allocates on the
heap, but also code and runtime type information, is ultimately
represented in the abstract store.



The abstract store is part of the SEAM framework for extensible
virtual machines [28], on which the Alice system is built. Weonly
give an overview here. For a more technical description of abstract
store and pickling, we refer you to [31, 14]. A technical report
contains a more detailed discussion of the SEAM design [8].

3.1 Data graph

The abstract store contains a graph representing theheap of a
process. Despite this, it is completely agnostic of the language, its
data types, code format, or type system. In fact, there are only four
differentkindsof nodes that can occur in the graph:

• Scalars, leaves in the graph representing bounded integers.

• Chunks, leaf nodes carrying unstructured data of arbitrary size.

• Blocks, inner nodes with a fixed number ofslots referring to
children (successors in the graph).

• Transforms, marking subgraphs to be modified for pickling.

Naturally, scalars are optimised using an unboxed representation,
but this is immaterial to the abstraction. Blocks and chunksare at-
tributed with an optional integerlabel, and a flag indicating whether
the node ismutable, i.e., whether it allows modification of its con-
tents. Transforms will be discussed in Section 3.3.

The store provides an interface forallocatingnodes, forinitial-
ising them, foraccessingthem, and formutatingmutable nodes. It
also offers functionality for inquiring kind and attributes of a node.
Note that the graph can be cyclic.

3.2 Store services

Apart from these primitives, the abstract store provides three cen-
tral services:

• Garbage collection, ensures that no explicit de-allocation of
nodes is necessary, and that the abstract store is internally con-
sistent (no dangling pointers).

• Raw pickling, allows to create an external, platform-independent
binary representation of the subgraph of the store that is reach-
able from a given node. The inverseunpicklingoperation recre-
ates a copy of the subgraph, preserving its structure.

• Minimisation, can be used to minimise the representation of
a given subgraph by inducing maximum sharing, i.e. forming
a minimal equivalent graph [31]. Note that this includes loop
folding for cyclic structures.

Like garbage collection, pickling and minimisation are entirely
generic services in that they can be applied to anything in the
store. Pickling complete reachable subgraphs is essentialfor our
approach. We will see that our encoding of Alice ML data struc-
tures in terms of abstract store nodes satisfies our requirement that
a pickle contains the complete transitive closure of a value.

The raw pickling service currently supports pickling of stateful
data, i.e. mutable nodes. This induces significant complications to
maintain the illusion of atomicity in the presence of concurrent
threads, in particular when futures (Section 11) are present – see
[31] for details. Although the approach described there successfully
addresses these issues, we intend to reconsider this choicefor future
versions of Alice ML, because unrestricted stateful pickling can
grossly break encapsulation of stateful programming abstractions.

3.3 Transformations

For some types of data, it is too strong a requirement to use the
same representation in the abstract store as in a pickle. Forinstance,
floating point numbers could be stored using the native format of
the hardware platform, whereas in a pickle the format must bein
platform-independent IEEE with fixed endianness. Or, we want to

execute code in an optimised format, which could be native code
for the host processor architecture, while the pickled codeagain
must be independent of the hardware. Some data structures may
maintain caches to speed up computation, but pickling the cache is
not necessary as it can be recreated upon unpickling, savingspace
in the pickle.

To this end, the pickling service provides a way of transforming
data between internal and external representations. It is the task
of transformnodes to mark data that requires transformation. A
transform node contains a pointer to a transformation function and
has a child node representing the actual value. The transformation
function is called by the pickling service whenever it encounters a
transform node, passing the child node as argument. Its result is a
(possibly newly allocated) node in the abstract store that is pickled
in place of the child. Conversely, a dual transformation function
must be registered with the unpickling service so that the external
value can be transformed back to the internal representation when
a transform node is encountered in a pickle.

The concrete transformation is thus given as a pair of functions.
That way pickling can be implemented as a generic service of the
store, while being parametric over, but adaptive to, language- or
library-specific, system-dependent representation choices.

If a transform node does not define a corresponding transfor-
mation function, pickling will fail. This can be used deliberately to
mark nodes that are not allowed to be pickled. We make use of this
for the representation of resources (Section 4.1).

3.4 Pickle Format

The pickles created by the abstract store service have a well-
defined, platform-independent binary format. Each pickle contains
a version number, such that incompatible changes in the implemen-
tation can be detected.

A binary pickle consists of a program for a simple stack-based
unpickling machine. It contains a sequence of instructions. Each
instruction may consume abstract store nodes from the stackand
leave a node on the stack. There is one instruction corresponding
to every node kind. Instructions for scalars and chunks simply con-
struct the corresponding node and push it on the stack. A block
instruction has two arguments, a label and the number of slots the
block has. Interpreting it consumes as many stack values as the
block has slots, creates the block node using the arguments,and
pushes it on the stack. A transform instruction consumes theargu-
ment of the transform from the stack, performs the transformation
(identified by a string argument of the instruction), and pushes the
root node of the result back on the stack.

In order to support sharing in the graph, the unpickling machine
also has a set of registers, plus instructions to push and popregis-
ters. For cyclic graphs, an additional pair of instructionsis needed
that creates a placeholder for one node on the cycle and stores it in
a register, and later, after constructing the rest of the cycle, replaces
the placeholder.

For pickling, the store service traverses the data graph in a
depth-first, post-order manner, starting at the root node tobe pick-
led. Sharing and cycles can be detected by keeping track of all
nodes that have already been visited. The transformation ofa node
is triggered as soon as a transform node is found, and the pickler
descends into the result of the transformation.

In a final step, the generated “pickle program” is compressed
using the Zlib compression library.

4. Data
The data layerdefines how language-specific data structures are
mapped to the abstract store. Most basic ML values have a straight-
forward encoding in terms of the abstract store. For instance,



• integers, characters, nullary constructorsandnative pointersto
non-heap “foreign” data are represented as scalars,

• floatsandstringsare boxed as immutable chunks,

• n-ary tuplesor recordsare immutable blocks withn slots,

• unary constructors are immutable blocks with arity dependent
on their argument type (i.e., record arguments aremerged); the
block label encodes the constructor index (for large datatypes,
a secondary index is stored in an additional slot),

• referencesare mutable unary blocks;arraysare either mutable
blocks or chunks, depending on their type,

• functionclosuresare immutable blocks carrying acode object
(see Section 5) and a vector of environment values.

4.1 Resources

Some values have a semantics that is defined only local to the
current process. Classic examples are file handles or nativepointers
to data that lives outside the abstract store (e.g. importedthrough
the foreign function interface).

We collectively call these valuesresources, and we do not allow
to pickle them. Any value that contains a resource is calledsited–
any attempt to pickle it will be rejected. This can be achieved easily
by wrapping all values representing resources in a transform node
without a transformation function.

Alternatively, it would be possible to use transforms to implic-
itly rebind certain resources on the target site. For example, the
stdOut stream could easily be connected to the respective object
in the target process. However, we consciously refrain fromusing
this option – the Alice ML security model is such that a picklecan
never contain any resources. Any resource is considered private,
and must be explicitly acquired on a site, giving rise to a form of
capability-based security. The dynamic component conceptof Al-
ice ML makes it possible to formulate respective abstractions for
distributed programming, as well as controlling resource acquisi-
tion through user-definedsandboxing[26, 25].

A third alternative would be to mirror sitedness in types, using
some suitable effect system, and rule out pickling of sited values
statically. This is an interesting option, but would inducesubstan-
tial changes to the type system of the language. We hence leave
investigation of this idea for future work.

5. Code
The most outstanding property of our pickling architectureis its full
support for higher-order values, i.e. functions. Obviously, this not
only requires transferring closures, but in fact, full codemobility.

Supporting code mobility as part of pickling induces a set of
requirements on the way code is represented:

1. The (primary) code format has to be platform-independentand
relocatable.

2. Code must be movable (and garbage-collectable) with per-
function granularity.

3. The transitive closure of all code fragments reachable from a
given function must be easy to compute.

In the Alice system, these requirements are addressed by thefol-
lowing central design choices forcode objects:

• The external representation of code, the so-calledabstract code,
is a high-level format suitable for efficient runtimecompilation.

• Optionally, just-in-time compilation (jitting) can produce a for-
mat more adequate for efficientexecutionon a given platform
(either native code or byte code).

• Abstract code is represented as a regular ML data structure on
the heap; jitted code lives in a chunk node on the heap.

• Every jitted code object is wrapped by a transform yielding the
respective abstract code object.

• Every source-level function (counting nested functions sepa-
rately) is represented by an individual code object.

The last point is the most important: it is what allows pickling and
garbage collection of code to be performed on the granularity of
single functions.2 The use of transforms for code objects is what
achieves platform-independence. We discuss the other points in the
following subsections. More detailed discussion of the design space
can be found in a technical report describing SEAM [8].

5.1 Abstract Code Format

The Alice abstract code is an instruction-based code formatwith
SSA-style variable bindings. It is graph-structured: every instruc-
tion contains its continuation(s), thus representing control flow.
Variables and instructions are annotated with liveness information
that allows efficient register or stack allocation in a just-in-time
compiler. Most of the instruction set is fairly standard andimmate-
rial to the problem of pickling, thus we do not describe it here.

Thanks to our layered approach, the representation of code can
be defined in terms of a set of ML datatypes. Thus, it can be
constructed and processed in ML itself. In particular, the compiler
can directly generate code as ML values.

More importantly, a consequence of this choice is that the code’s
representation in the store is implicitly defined via the data layer.
Transitively, this also defines its external representation in pickles,
in a platform-independent manner. To produce a “binary”, the com-
piler simply pickles a value from its own heap.

The Alice abstract code currently is untyped. See Section 12for
respective discussion.

5.2 Jitting and Interpreters

Two kinds of jitted code are currently supported in the Alicerun-
time: byte code, available on all platforms [17], andnative code,
used only on x86 platforms. The byte code jitter performs var-
ious dynamic optimisations, especially with respect to futures
(Section 11). Furthermore, all optimisations can cross component
boundaries, which is especially important when software isde-
ployed as many small components.

The type of code can be selected per function – every code
object contains a reference to a suitableinterpreter for executing
the code. Every interpreter also defines its own layout of stack
frames. Calls may freely mix functions executing with different
interpreters. Thus, jitting can be performed selectively for “hot
spots”. In fact, the byte code jitter is even capable of selective re-
jitting of heavily used functions [17].

5.3 Reachable Code

As usual, first-class functions are represented by closuresat run-
time, which contain a reference to a respective code object.

The transitive closure of code reachable from a given function
coincides with the data graph reachable from its representing clo-
sure: when the function can call another function, a reference to
the latter has to appear either in the environment of the function
closure or directly in its code (see next section), rendering it a suc-

2 In experiments we found that by forming the transitive closure at that
granularity, the size of pickled modules with non-trivial imports usually
was in the range of 100%–300% of the original component size,while the
size of the transitive closure atmodulegranularity typically lied in the range
of 400%–1400%. Moreover, cutting off library modules as often proposed
rarely reduced this size by more than a third.



cessor in the data graph. Thus, pickling and garbage collection of
code become trivial.

Given the fine granularity of code objects, no special treatment
is necessary for “persistent” library code: we can afford toinclude
all referenced library functions in a pickle, thus achieving proper
closedness and at the same time vastly simplifying the implemen-
tation by avoiding ad-hoc cut-off and rebinding mechanisms.

5.4 Embedded Values

Because abstract code is a regular ML value, and “binaries” are
written by pickling, code is not restricted to sequential form but can
be arbitrarily structured. In particular, code can containstructured
values as “immediates” – loading an immediate value simply loads
a node, whether scalar or not.

The Alice ML compiler exploits this by performing a general
form of constant folding, orvalue propagation, that is not limited to
scalar types, but can compute values of arbitrary type – especially
algebraic datatypes, such as lists or trees – and embed the result
into the generated code. It induces no extra cost if the same value
is embedded more than once, since pickling maintains sharing.

Even closures can be constructed at (static) compile time and
embedded at call sites where their environment is statically known.
Moreover, in the presence of value propagation, a statically known
environment coincides with an empty one.

The Alice runtime also utilises embedded values for dynamic
specialisation: the abstract code features a special variant of a clo-
sure creation instruction that does not construct a conventional clo-
sure object, but instead creates a copy of the underlying abstract
code object and dynamically embeds the environment values as
immediates. Consecutive jitting can take advantage of thisto per-
form additional optimisations, especially inlining. The static com-
piler generates this instruction for functors and top-level functions
with comparable usage profile.

Last but not least, the ability to embed arbitrary values in gener-
ated code also gives rise to an expressive dynamic compilation fa-
cility (Section 9.1). Dynamic compilation can embed valuesfrom
the actual heap of the host process. By using an internal formof
reflection, value propagation is able to exploit such valuesas well.

6. Types
Achieving type safety for open programming requires strategic use
of dynamic type checking. At its core, Alice ML employspackages
for this purpose (Section 7). To support them, a certain amount of
type information has to be computed at runtime. This includes ML
core types as well as module signatures. Hence, we need a runtime
representation for both.

We implement runtime types byreifying type and signature ex-
pressions to the term level, that is, transforming them intoexpres-
sions that compute suitable type descriptions at runtime. Regard-
ing our layered architecture, the implementation of types is thereby
done in terms ofcodethat constructs type data structures.

6.1 Type representation

Like code, types and signatures are represented in a high-level man-
ner by regular ML data structures. The details of the representation
are again immaterial to our approach – type representationsare
realised as abstract data types. Somewhat idealised signatures for
these abstract types are given in Figure 2.

The modules implementing these signatures have to be part of
the system’s trusted kernel. In practice, they use relatively standard
term structures with optimisations like lazy substitution, caching of
signature look-up tables, and others described in the literature [30].

A peculiar point of Alice ML’s type system is its semantics of
type abstraction: to maintain abstraction safety in the presence of

structure Type :
sig

type ty and tyrow
type tyvar = string
eqtype tycon
val tyvar : tyvar → ty
val tycon : tycon → ty
val arrow : ty × ty → ty
val record : tyrow → ty
val apply : ty list × ty → ty
val func : tyvar list × ty → ty
val poly : tyvar list × ty → ty
val emptyRow : unit → tyrow
val extendRow : tyrow × string × ty → tyrow
val new : int → tycon

end

structure Sig :
sig

type sign and spec
type id = string
type longid = id list
type rea = (longid × ty) list
val sign : spec → sign
val fct : sign × sign → sign
val emptySpec : unit → spec
val valSpec : id × ty → spec
val typSpec : id × int × ty option → spec
val strSpec : id × sign → spec
val sigSpec : id × sign → spec
val seqSpec : spec × spec → spec
val findVal : sign × longid → ty
val findTy : sign × longid → ty option
val findStr : sign × longid → sign
val findSig : sign × longid → sign
val matches : sign × sign → bool
val realise : sign × rea → sign

end

Figure 2. ADTs for runtime type and signatures

dynamic typing, it is based on dynamic generation of fresh type
names [23]. This is mirrored by the functionType.new for gen-
erating fresh type constructors. They are represented by globally
unique identifiers (GUIDs, as provided by suitable operating sys-
tem mechanisms) to emulate a global type heap.

As the only non-obvious operation,Sig.realise instantiates a sig-
nature given arealisationmapping all its abstract types (identified
by relative long identifiers) to concrete type constructors.

6.2 Type reification and erasure

Runtime types are generated by reifying type expressions and dec-
larations to term-level expressions performing appropriate calls to
the type ADTs. Figure 3 gives a semi-formal sketch of a source-to-
source translation performing this reification. It is similar in spirit
to the type erasure translation described by Crary et al. [10]. But
since our code format is untyped, we treat the target language as
typeless, such that we do not have to deal with the introduction of
singleton representation types here.

The translation assumes an injective mapping•$ from type
and signature identifiers to fresh value identifiers. This mapping
is extended to long identifiers in the obvious way.

Note that the transformation only involvesexplicit type and sig-
nature information. This is no accident: Alice ML has been de-
signed such that core language polymorphism stays fully paramet-
ric, and types can be erased on that level [25]. This not only sim-
plifies compilation, it also avoids substantial operational overhead
that would otherwise arise from the presence of dynamic types,



[[type α tycon=ty ]] = val tycon$ = [[λα.ty ]]
[[signature sigid=sigexp]] = val sigid$ = [[sigexp ]]

[[λα.ty ]] = Type.func([”α”], [[ty ]])
[[α]] = Type.tyvar ”α”

[[ty longtycon ]] = Type.apply([[[ty ]]], longtycon$)
[[ty

1
→ ty

2
]] = Type.arrow([[ty

1
]], [[ty

2
]])

[[{〈tyrow 〉}]] = Type.record [[〈tyrow 〉]]
[[ ]] = Type.emptyRow()
[[lab : ty 〈, tyrow 〉]] = Type.extendRow(”lab”, [[ty ]], [[〈tyrow 〉]])

[[longsigid ]] = longsigid$
[[sig spec end]] = Sig.sign [[spec ]]
[[fct strid :sigexp

1

→ sigexp
2
]] = Sig.fct(”strid”, [[sigexp

1
]], [[sigexp

2
]])

[[spec]] = . . .

Figure 3. Type and signature reification

particularly given that separate compilation and dynamic linking of
components precludes many respective optimisations.

7. Packages and Modules
Alice ML featurespackages[25], first-class values containing a
module paired with its signature – essentially a module-based vari-
ation ofdynamics[1]. They are created using the expression form

pack strexp : sigexp

To access the module from a package, it has to be unpacked against
a target signature: the module expression

unpack exp : sigexp

checks that the signature of the packageexp matchessigexp, and
only if that is the case, evaluates to the embedded module – oth-
erwise, the exceptionUnpack is raised. This is theonly form of
dynamic type checking in Alice ML.

From a more type-theoretic point of view, the typepackage is a
form of existential type∃α.α over modules. Since the very purpose
of packages is dynamic type checking, the witness type of theex-
istential – the package signature – cannot be erased. Consequently,
the obvious representation of a package is an actual pair of the un-
derlying module and the representation of the signature.

As for pickling, the two library operations

Pickle.save : string × package → unit
Pickle.load : string → package

allow creating and reading a package as a pickle. Because thepack-
age contains a runtime representation of the signature, so will the
pickle. There is no direct way to access the raw pickling mechanism
from the language level, consequently all pickle files will contain
runtime type information. We call these “cooked” pickles.

7.1 Modules

An ML module can either be a structure or a (potentially higher-
order) functor. Operationally, structures behave like simple records
and functors like functions. As in other ML implementations, that
also is how they are realised in the Alice system. However, there
are noticeable differences:

• To support dynamic typing, type and signature fields are not
erased from structures. Instead, they carry the runtime repre-
sentation of the respective type-level objects.

• Sealing (using the:> operator) replaces all type fields specified
abstractly in the ascribed signature with fresh type names.

• Subtyping isnotcoercive. That is, use of signature subsumption
does not imply narrowing in the representation (however, nar-
rowing is performed where signatures areexplicitly ascribed).
Consequently, the runtime layout of a structure generally is not
known statically. Projection hence is realised via cached hash
look-up, with efficient support from the virtual machine.

The latter design choice makes unpacking and dynamic linking in
Alice ML simpler and potentially more efficient. A tupled repre-
sentation of structures with narrowing is straightforwardfor imple-
mentations where every use of subtyping is static: in that case, both
source and target arity of a structure are statically known,and the
coercion can be performed statically. Projection then amounts to
simple indexing. Unfortunately, the situation is different with pack-
ages:unpack employs subtypingdynamically, such that only the su-
per signature is known statically. To maintain the representational
invariants of a tuple representation,unpack would have to perform
dynamic narrowing on a module of statically unknown signature.
Although possible, it would require a more complex and expensive
form of access to the original structure, e.g. using intensional sig-
nature analysis. Since dynamic linking heavily relies on packages,
we believe that such an approach would be more costly.

7.2 Translation

In the same manner as for types, Figure 4 defines the representation
of modules and packages as a source-to-source translation to an
untyped core SML. In particular, record expressions do not need to
have a statically fixed type in the target language, and projection
#lab is “polymorphic”. Again, we assume an injective embedding
•$ of module identifiers. Note that structure bindings subsume
functors in Alice ML’s higher-order module language.

The translation uses a few auxiliary meta-level operators:

• BINDS(dec) expands to a sequence of bindingsid=id for all
identifiersid bound indec (including types and signatures).

• NARROW(strid , p, sigexp) constructs a representation of the
modulestrid .p narrowed to signaturesigexp.

• SEAL(strid , p, sigexp) constructs a representation of the mod-
ule strid .p sealed by the signaturesigexp.

• NEWREA(p, sigexp) is a realisation mapping every abstract
type insigexp to a fresh type constructor, under pathp.

• SELFREA(strid , p, sigexp) is a realisation mapping every ab-
stract type insigexp to the representation fromstrid .p.

The latter operators are defined in Figure 5, assuming previous
expansion of signature identifiers with their respective definition.
They are all defined by induction over a pathp of nested structures.

Selfification is necessary for package signatures to avoid anoma-
lies in the semantics ofunpack, as described in [25]. The construction-
time selfification given here optimises the deconstruction-time self-
ification given in the formal semantics of packages in that paper.

7.3 Structure access

As a final translation step of the module translation, alllong identi-
fiersappearing in expressions are translated to sequences of record
selections, as shown in Figure 4. But there is an additional twist
not shown in the figure. To keep pickles containing code as small
as possible, it is important to tune the semantics of pickling such
that a long identifierM.x appearing in some function body only
represents a reference to the individual fieldx of the moduleM, not
a reference to the entire module!

For example, the closure representing the function

fun last xs = List.hd(List.rev xs)



[[structure strid=strexp ]] = val strid$ = [[strexp ]]

[[longstrid ]] = longstrid$
[[struct dec end]] = let [[dec]] in {BINDS(dec)} end

[[strexp : sigexp]] = let val strid$ = [[strexp ]]
in NARROW(strid , ǫ, sigexp) end

[[strexp :> sigexp]] = let val strid$ = [[strexp ]]
val rea = NEWREA(ǫ, sigexp)
val sigid$ =

Sig.realise([[sigexp]], rea)
in SEAL(strid , sigid , ǫ, sigexp) end

[[fct strid :sigexp ⇒ strexp]] = fn strid$ ⇒ [[strexp ]]
[[strexp

1
strexp

2
]] = [[strexp

1
]] [[strexp

2
]]

[[let dec in strexp end]] = let [[dec]] in [[strexp ]] end

[[unpack exp : sigexp]] = let val (strid$, sigid$) = [[exp]]
in if Sig.matches(sigid$, [[sigexp]])

then strid$ else raise Unpack
end

[[pack strexp : sigexp]] = let val strid$ = [[strexp ]]
val rea = SELFREA(strid$, ǫ, sigexp)

in (strid$, Sig.realise([[sigexp ]], rea)) end

[[strid1. · · · .stridn.vid ]] = #vid(#stridn$( · · · (strid1$) · · · ))

Figure 4. Module and package translation

should only contain the individual functionshd andrev, but none of
the other definitions from theList module (and other modules tran-
sitively referenced by these!). Semantically, this can be modelled
by trimming closure environments during pickling appropriately.

To achieve the same effect in the implementation, the selections
resulting from the translation of long identifiers arehoistedto the
binding point of the structure itself. For the above example, this
would yield

val List hd = #hd List$
val List rev = #rev List$
· · ·
fun last xs = List hd(List rev xs)

with the auxiliary declarations appearing at the binding point of the
List structure.

8. Components
Componentsform the topmost language layer in Alice ML [25], be-
ing the unit of compilation, linking and deployment. In a nutshell,
a component represents an “unlinked, unevaluated module”,which
may contain free references to modules from other components via
import declarations. Components can be linked dynamically and
acquired from remote locations denoted by a URL.

Components are first-class, they can be dynamically computed
and exported from a running process. In its most general form, a
component is a value of abstract typecomponent created by the
expression form

comp import∗ in spec with dec end

whereimport∗ is a sequence of import declarations of the form

import spec from url

As explained in [25], components can be defined as a derived
concept within the language itself. They can be representedas
simple higher-order functions over packages:3

3 For historical reasons, the actual representation in the Alice system is
slightly different, but with mostly equivalent effect.

NARROW(X, p, sig spec end) = {NARROW(X, p, spec)}
NARROW(X, p, fct Y :sig

1
→ sig

2
) = fn Y $ ⇒

let val Z$ = X.p$(Y $)
in NARROW(Z, ǫ, sig

2
) end

NARROW(X, p, val x : ty) = x=X.p.x
NARROW(X, p, type α t 〈= ty〉) = t$=X.p.t$
NARROW(X, p, structure Y : sig) = Y $=NARROW(X, p.Y, sig)
NARROW(X, p, signature S = sig) = S$=X.p.S$
NARROW(X, p, spec

1
;spec

2
) = NARROW(X, p, spec

1
),

NARROW(X, p, spec
2
)

SEAL(X, S, p, sig spec end) = {SEAL(X, S, p, spec)}
SEAL(X, S, p, fct Y :sig

1
→ sig

2
) = fn Y $ ⇒

let val Z$ = X.p$(Y $)
in NARROW(Z, ǫ, sig

2
) end

SEAL(X, S, p, val x : ty) = x=X.p.x
SEAL(X, S, p, type α t 〈= ty〉) = t$=valOf

(Sig.findTyp(S$, STR(p.t)))
SEAL(X, S, p, structure Y : sig) = Y $=

let val T $ =
Sig.findStr(S$, STR(p.Y ))

in SEAL(X, T, p.Y, sig) end

SEAL(X, S, p, signature T = sig) = S$=Sig.findSig(S$, STR(p.T ))
SEAL(X, S, p, spec

1
;spec

2
) = SEAL(X, S, p, spec

1
),

SEAL(X, S, p, spec
2
)

NEWREA(p, sig spec end) = NEWREA(p, spec)
NEWREA(p, fct Y :sig

1
→ sig

2
) = []

NEWREA(p, val x : ty) = []
NEWREA(p, type α t = ty) = []
NEWREA(p, type α t) = let val t$ = Type.new |α|

in [(STR(p.t), Type.tycon t$)] end

NEWREA(p, structure Y : sig) = NEWREA(p.Y, sig)
NEWREA(p, signature S = sig) = []
NEWREA(p, spec

1
;spec

2
) = NEWREA(p, spec

1
)

@ NEWREA(p, spec
2
)

SELFREA(X, p, sig spec end) = SELFREA(X, p, spec)
SELFREA(X, p, fct Y :sig

1
→ sig

2
) = []

SELFREA(X, p, val x : ty) = []
SELFREA(X, p, type α t = ty) = []
SELFREA(X, p, type α t) = [(STR(p.t), X.p.t$)]
SELFREA(X, p, structure Y : sig) = SELFREA(X, p.Y, sig)
SELFREA(X, p, signature S = sig) = []
SELFREA(X, p, spec

1
;spec

2
) = SELFREA(X, p, spec

1
)

@ SELFREA(X, p, spec
2
)

STR(x1. · · · .xn) = [”x1”, · · · ,”xn”]

Figure 5. Auxiliary definitions for translation

type component = (url → package) → package

Figure 6 recaps the respective decomposition of the compo-
nent syntax. Given that decomposition, all functionality on com-
ponents can be implemented in a library. In particular,component
managers, responsible for controlling dynamic linking and realis-
ing sandboxing, can fully be programmed in the source language.
More details of this can be found elsewhere [25, 27].

The net effect is that components require basically no extrasup-
port from the runtime system. A component is simply represented
by its underlying function representation. A component filepro-
duced by the compiler simply is a pickle of that function. Allthe
VM must be capable of is loading an initial pickle as aboot com-
ponent and applying it to a rudimentary component manager.



comp import∗ in spec with dec end  

fn link ⇒ let import∗ in pack (dec) : (spec) end

import spec from url  

open (unpack link url : sig spec end)

Figure 6. Components decomposed

8.1 Persistence

In fact, the inverse is also true: all Alice ML pickle files areactually
full-fledged components, interchangeable with other components.
That is, the core library primitives for accessing pickles are

Component.save : string × component → unit
Component.load : string → component

The pickling functions previously presented in Section 7 are merely
implemented as

fun save(f, p) = Component.save(f, Component.fromPackage p)
fun load f = DummyComponentManager.link(Component.load f)

where thefromPackage function has the straightforward definition

fun fromPackage p = fn ⇒ p

according to the above decomposition of components. The module
DummyComponentManager simply is a component manager that
allows no imports, i.e. wherelink is defined as follows:

fun link c = c (fn ⇒ raise Error)

This prevents accidental linking of untrusted components in an
insecure manner.

9. Compilation
Since a component file is simply a pickle of a value of type
component, it follows that code generation reduces to dynamically
creating an appropriate closure corresponding to this type. To this
end, the compiler must have access to the lower level abstraction,
such that it can create the respective data structures representing
the code of the function.

9.1 Dynamic Separate Compilation

On the outside, the compiler is just a function

val compile : string → component

This function is provided as part of the library, thus givingthe
programmer a first-class interface to compilation.

On top of this function, functionality similar to Lisp’seval can
easily be realised. The Alice ML library does so in form of a family
of functions, whose simplest member is

val eval : string → package = ComponentManager.link o compile

Here,ComponentManager is the explicit interface to the “current”
component manager, which is responsible for linking [25].

More elaborate variants of thecompile andeval functions allow
threading an environment. For example:

val evalWith : env × string → env × package

The abstract typeenv encapsulates a compilation environment con-
sisting of a static part mapping identifiers to types, kinds,and sig-
natures, and a dynamic part mapping the same identifiers to actual
values, runtime types, and modules, respectively. Throughconsec-
utive uses ofevalWith, incremental compilation and evaluation can
be performed. The environment sensitive compilation function,

val compileWith : env × string → component

can be used with environments resulting from previous callsto
evalWith. Where the compiled program refers to the environment,
the respectivedynamic values will simply be embedded in the
produced code as immediates (Section 5.4). This implies that the
produced component can still directly be pickled as a self-contained
stand-alone object, despite its dependency on dynamic values. To
our knowledge, such a dynamic form of compilation into separate
binary components is not available in any other system except
Oz/Mozart [11], where it is untyped.

9.2 Program Transformations

The semantics of pickling is very sensitive to code transformations.
Consider the following program:

fun f x = (print; x)
fun g x = if true then x else print ”dead”

In conventional terms, the uses ofprint in these definitions are re-
dundant or dead code, and the compiler would be free to remove
them. However,print is a sited value, it cannot be pickled. Hence,
the functionsf andg, referencing this value, should become sited
as well. Partial evaluation, dead code elimination and related trans-
formations change this semantics.

In other words, through pickling, the extent of a transitiveclo-
sure of a value becomes observable where it contains sited val-
ues (which cause failure) or futures (which cause blocking,and
can trigger other computations). To maintain precise semantics, the
compiler would have to be very careful and restrictive aboutdesir-
able optimisations. Obviously, this would be unfortunate.4

The alternative is to consciously under-specify the language se-
mantics in this respect. That is, allow any semantics that iscon-
servativewith respect to the canonical one, in the sense that it can
only make more pickling operations succeed. This is the choice we
adopted for Alice ML.5 For cases where the programmer wants to
deliberately enforce sitedness – e.g. to protect certain abstractions
– the Alice ML library offers an abstract typeα sited that can be
wrapped around respective data structures.

10. Distribution
One important aspect of open programming is the ability to com-
municate over a network. To this end, Alice ML offers a high-level
approach based on pickling and dynamic components, which we
will briefly describe in this section. More details can be found in
other sources [27, 26].

10.1 Proxies

Alice ML adopts remote function callsas the most natural way
to generalise a functional language to a distributed language. The
Alice library provides a single primitive for that:

proxy : (α → β) → (α → β)

This function takes a local function and creates aproxy for it. The
proxy is a mobile wrapper for the local, stationary functions. Prox-
ies can be pickled and thus passed to other processes. When applied
remotely, the call is forwarded to the original site by pickling argu-
ment and result.

In a sense, proxies represent (logical) connections between pro-
cesses. By representing connections as functions, inter-process
communication directly inherits a number of useful properties, in
particular:

1. Connections are first-class and mobile (i.e., can be pickled).

4 Note that tracking sitedness in types would avoid this problem.
5 There is no complete operational semantics of Alice ML, but an “obvious
intuition” can be synthesised from given partial formalisations [25, 19, 24].



2. Communication is statically typed.

3. Communication is two-way and synchronous.

Using proxies first-class, arbitrary communication patterns can be
formed by passing proxies back and forth as higher-order argu-
ments to other proxies. Note that asynchronous communication can
be achieved trivially but orthogonally by wrapping remote calls into
futures [27]. Futures also enable programming of time-outs.

Under the hood, proxies can easily be implemented as closures
that transfer pickles over some TCP connection. The most interest-
ing aspect here is that a proxy is atypedconnection, i.e. commu-
nication is well-typed by construction. Consequently, rawpickles
are sufficient for passing arguments and results, they do notneed to
carry any runtime type information information themselves(unless
verification is desired, cf. Section 12).

10.2 Establishing connections

With proxies representing connections between processes,there
is the question of how such connections areestablished, i.e. how
proxies are initially transferred between processes. The Alice ML
library offers two ways, corresponding to two different scenarios:

• Client/server: a server process canoffer a component on a
network. The library functionoffer : component → url generates
a temporary URL under which a client process can retrieve the
component as a pickle.

• Master/slave: a master process can spawn computations by cre-
ating slave processes on accessible machines using the function
run : host × component → package.

In both scenarios, a dynamically computed component can be
passed between the processes, achieving four goals:

1. Arbitrary functionality can be transmitted between the pro-
cesses.

2. Dynamic data from the original process can be captured, espe-
cially proxies.

3. Functionality available on the target site can be abstracted over
as imports, especially resources.

4. Dynamic linking will check all type assumptions, especially of
contained proxy connections.

The implementation of this functionality again is using pickling.
It largely consists of straightforward utilisation of appropriate oper-
ating system services, such as ports, sockets, and SSH tunnels. By
building on pickling and dynamic components, distributionhence
is made simple and type-safe, yet expressive. Note again that dy-
namic type checking is only necessary forestablishinga connec-
tion, lateruseof it for communication is statically type-safe.

Note also that due to pickling – which means copying – no dis-
tributed garbage collection is necessary. The only inter-process ref-
erences are proxies. Currently, the Alice system does keep func-
tions for which proxies have been created live for the rest ofthe
process’s life time. In principle, this can lead to space leaks when
dynamic communication patterns are implemented. It remains to be
seen whether this is a problem in practice.

10.3 Example

As a simple example for a client/server architecture with bi-
directional communication, consider a minimal chat room con-
sisting of a chat server to which multiple clients can connect using
the generated URL. For simplicity, we omit error handling.

This example does not require the full power of dynamic com-
ponents, because it does little more than communication. Thus the
connection is established by offering merely a package instead of
a full component – no imports are required on the target site.Both

sides need to agree on a signature for the exchanged package.Ba-
sically, it describes the server interface:

signature SERVER =
sig

val register : (string → unit) → unit
val broadcast : string → unit

end

Clients that register with the server will receive all messages sent
by other clients, and they can broadcast messages themselves.

Here is the full code for the server:

val clients = ref nil
fun register client = clients := client :: !clients
fun broadcast message =

List.app (fn receive ⇒ spawn receive message) (!clients)

structure Server = (val register = proxy (mutex () register)
val broadcast = proxy broadcast)

val url = offer (pack Server : SERVER)
do TextIO.print (url ˆ ”\n”)

The server simply keeps a list of registered clients (represented
by their receive functions); broadcasting iterates over this list and
forwards the message to each. In order to avoid having to wait
for each client in turn to receive the message, forwarding happens
asynchronously, using a future created withspawn. Moreover, since
the client list is stateful, we have to avoid race conditionswhen
several clients try to register at the same time. The exported register
function is hence synchronised on a fresh mutex lock.

The code for a client is even simpler:

val [url, name] = CommandLine.arguments ()

structure Server = unpack take url : SERVER
do Server.register (proxy TextIO.print)

fun loop () = case TextIO.inputLine TextIO.stdIn of
| NONE ⇒ OS.Process.exit OS.Process.success
| SOME line ⇒

(Server.broadcast (name ˆ ”: ” ˆ line); loop ())
do loop ()

It expects a server URL and a user name on the command line,
registers with the server, and simply forwards everything typed
by the user to the server. Note that the call toregister is a proxy
call, passing another proxy as argument, thereby establishing the
bi-directional connection.

11. Futures and Concurrency
An important feature of Alice ML we have ignored so far arefu-
tures [27, 19]. Futures are place-holders for undetermined values.
A thread encountering a future blocks implicitly until the value is
available. This is known asdata flow synchronisation, and requires
that futures aretransparent, meaning that they do not form a special
type, and any value can potentially be a future. This gives orthog-
onal support for asynchronicity and enables elegant formulation of
a wide range of concurrency abstractions.

Efficiently integrating futures requires extension of the abstract
store model. We have to throw in one additional kind of node:

• Future, represents a future in the data graph. Depending on the
kind of future [27], future nodes may have at most one child
node, e.g. a closure in the case of a lazy future.

A future node willmorphinto another kind when the value is de-
termined. It may also morph into another future, enabling chaining.
Internal to the abstract store, morphing is realised by marking the
future node as aforward to the actual node, similar to techniques
found in the implementation of logic languages [2]. Forwards are



transparently followed by the store abstraction, and garbage collec-
tion performs path compression by removing forwards.

In order to maintain the closedness property – and avoid the
significant complications of distributed state at system level – fu-
tures are never pickled. Instead, whenever futures are encountered,
the picklertouchesthem, i.e., synchronises and does not proceed
before all futures have been determined.

Apart from the store level, no fundamental changes are neces-
sary to the described system architecture to reconcile pickling with
futures. However, to maximise module-level laziness – and specif-
ically, to support lazy linking – we have to insert lazy suspensions
in three places of the previously described design:

• Type representationsare computed lazily, by wrapping every
reified declaration into a lazy future. That is, we change the
translation scheme from Figure 3 to

[[type α tycon = ty ]] = val tycon$ = lazy [[λα.ty ]]
[[signature sigid = sigexp]] = val sigid$ = lazy [[sigexp ]]

• Structure access(cf. Section 7.3) have to be treated as lazy
projections, i.e., an identifierA.B.C maps to (a hoisted instance
of) lazy #C(#B A). An open declaration is considered sugar for
a sequence of projecting declarations, and thus likewise islazy.

• Importsshould be performed lazily, which is achieved by wrap-
ping theunpack into a lazy future:

import spec from url  

open (lazy unpack link url : sig spec end)

Care also has to be taken to make all layers thread-safe. In par-
ticular, a stateful representation of runtime types requires caution:
because types are implemented in ML land, atomicity cannot be
assumed for type checks, and at the same time, the type graphscan
potentially be shared between different ML threads. Consequently,
algorithms that mutate parts of a type graph for optimisation pur-
poses have to make sure that no other thread can ever see it in incon-
sistent state. In the Alice system, we strategically inserttemporary
futures in the graph to achieve fine-grained locking of subgraphs
during mutation.

11.1 Modules and Types

Futures in Alice ML may not only occur on the level of terms,
but also on the level of modules. Since runtime types may be
computed from types stemming from modules that are futures,this
also induces a notion oftype futures. In particular, Alice ML’s
lazy linking strategy gives rise to a notion oflazy types[18] as a
pervasive phenomenon. Lazy types are touched only by explicit or
implicit uses ofunpack or by pickling, but may, through modules,
trigger arbitrary term-level computations.

Here is a simple example of a lazy computation that is triggered
through a dynamic type check:

structure M = lazy struct do print ”Now.” type t = int end
val p = pack (val it = 5) : (val it : int)
structure X = unpack p : (val it : M.t)

The structureM is constructed lazily. However, the dynamic type
check performed byunpack has to matchint againstM.t, which re-
quires the representation ofM.t. The type checker hence touches
the lazy future representingM, thereby forcing evaluation. In prac-
tice, such cases primarily arise in conjunction with lazy linking
(as defined by the modifiedimport expansion above), where type
checking one import may require loading of a seemingly unrelated
one, because some type information is imported transitively.

Since pickling forces futures, performing it can be anothercause
for triggering lazy computations through type futures. Thefollow-
ing variation of the above example demonstrates this:

structure M = lazy struct do print ”Now.” type t = int end
val p = pack (val it = 5) : (val it : M.t)
do Pickle.save(”five”, p)

Pickling the packagep involves pickling the typeM.t from its
signature, and will hence triggerM.

Thanks to the implementation of runtime types as regular ML
values, realising lazy type semantics requires no extra effort at all –
it is simply reflected by the appearance of term-level futures in the
type data structures.

11.2 Thread Collection and Thunkification

Naturally, every thread possesses its own stack. Like everything
else in the Alice runtime, stacks and thread objects are allocated in
the store. This allows the Alice VM to garbage collect threads that
block on futures that are not reachable anymore and thus can never
be determined.

In principle, this set-up would also allow us to support thread
thunkification. To do so, it would suffice to provide an operation
that delivers the current continuation of a thread, i.e.callcc. The
representation of a captured continuation would contain a reference
to the stack, and consequently, pickling it would amount to thunki-
fying the thread and enable passing it to another process. However,
we have not pursued this possibility, because we are concerned
about the risk of (silently) breaking stateful abstractions with such
a feature, especially locks.

12. Pickle Verification
We argue that the design we have presented so far ensures type
safety for pickles in the sense that there is no way to corruptthe
runtime system fromwithin the language: for any pickle written
by the system, unpickling is always safe, regardless of typemis-
matches. However, there remains the obvious possibility that pick-
les are forgedoutsidethe control of the system (this may include
the use of the library’s low-level I/O subsystem). For thosecases,
the mechanisms presented so far are insufficient to maintaintype
safety. In other words, we protect against accident, but notagainst
malice. To distinguish these cases, we also speak ofinternal vs.
externaltype safety.

To achieve external safety, we not only have to check type-
correct usageof pickles, we also have to check their inherent
consistency. In analogy to Java bytecode verification, we call such
a check pickleverification.

So far, the Alice system implements only a very limited amount
of verification: the raw unpickler checks that the pickle code is a
valid description of a store data graph. This is sufficient tocapture
most practical cases of erroneous pickles, but obviously does not
protect against malicious attackers who craft bogus pickles that
form a valid store graph description, but where that graph does not
comply to the higher-level type system.

Verification of Alice ML pickles is non-trivial. In particular,
it is more difficult than the byte code verification performedin
languages like Java for at least two reasons:

1. Java semantics includes dynamic checks at individual method
calls, so that much pressure is taken from verification and in-
stead shifted to runtime errors. For Alice ML, full static type
safety would have to be established.

2. Pickles do not only include compiler generated code but also
dynamically computed data. In effect, verification must hence
be able to type-check arbitrary portions of the heap.

Despite these difficulties, we believe that the architecture de-
scribed in this paper can be reconciled with verification. Tosee
why, let us first make three observations:



1. The raw pickling service ensures that a pickle can be trans-
formed into a valid data graph. Hence, verification can be per-
formed by a higher layer inspecting the resulting graph.

2. Verification amounts to typecheckinga data graph; the outer-
most type to check against is always known, hence norecon-
structionis necessary.

3. Because pickles are closed, type checking always is performed
against an empty environment.

These points imply that checking can be performed by a directed
algorithm that propagates type information inwards in order to
check subgraphs. Consequently, in most cases, no additional type
annotations are needed in the data graph itself. We identifythe
following exceptions:

• Functions.Obviously, type checking would require a typed
code format and thustyped compilation(i.e., the translations
given in Sections 6–7 had to be refined). The internal type
system would have to be sufficiently expressive to embrace our
compilation of modules. While not straightforward, we see no
principal problem in achieving this. The code typing also gives
the types of respective closure environments.

• Abstract Types.To check values of abstract type, type names
must be mapped to their representation types. This requires
maintaining a type heap [23], either explicitly, or more easily,
implicitly by embedding it pointwise into the representation of
abstract type names with constructornew : int × ty → tycon.

• Exception Constructors.Similarly to abstract types, the con-
structor heap has to be represented in typed form, in order to
derive the argument type of constructed values. Again, the most
obvious way to do this is pointwise, i.e. by hooking the type
information into the representation of individual constructors.

Note thatpackagesalready contain the necessary type information
for the embedded module.

Looking at the list, we are positive that verification would not
require substantial changes to our set-up. The only major change
is the requirement for a typed code format. The remaining bits of
additional runtime type information seem easy and cheap to get.
We leave exploration of these ideas for future work.

13. Related Work
Many of the individual techniques we build upon are influenced by
previous work. We only mention the most prominent systems here,
more comprehensive comparisons of existing mechanisms forpick-
ling and distribution can be found in [14] and [26].Unfortunately,
surprisingly little has been published on the actual implementation
of pickling services, so that most of the discussion is limited to what
can be gathered from system documentation and experimentation.

CLU, Modula-3 and Java. The first pickling mechansim in a pro-
gramming system was developed in the context of CLU [12]. Only
“transmissible” types could be pickled and no type information
was included. Programmers had to provide transformation func-
tions to make abstract types transmissible. CLU later inspired simi-
lar mechanisms for the object-oriented languages Modula-3[7] and
Java [22]. Neither of these mechanisms meets all the requirements
stated in Section 1.2. In particular, they remain limited with respect
to higher-orderness, type safety and portability. Only Java ensures
the latter, and it performs verification on class files. Classfiles can
be transmitted separately to simulate higher-orderness, as done by
Java’s remote method invocation (RMI) [33], but that is fragile and
significantly weakens static guarantees.

Oz/Mozart. The closest relative to Alice ML with respect to its
focus on pickling is the Oz/Mozart system [11], also featuring

higher-order, platform-independent pickles, a componentsystem,
and a first-class compiler. As Oz is a dynamically checked lan-
guage however, no type safety can be guaranteed. No verification
is performed either, such that bogus pickles can crash the system
despite dynamic checking. On the other hand, pickling in Mozart
is more expressive than in Alice ML, providing distributed futures.
The price is a significantly more complex semantics and language
implementation with multiple modes of pickling and a strongneed
for distributed garbage collection, which we wanted to avoid.

Erlang. Erlang [5] is a dynamically checked distributed lan-
guage for embedded telecommunications systems. Processescan
be spawned on different nodes in a network and communicate
through channels, using copying like proxies. Although Erlang is a
higher-order language, functions cannot directly be communicated.
Erlang primarily targets embedded systems, consequently it is not
concerned with security or inhomogeneous networks.

ML. In the world of typed functional programming, both Stan-
dard ML of New Jersey as well as Objective Caml feature pick-
ling mechanisms. In SML/NJ, pickling is used in separate compila-
tion [4] and reuses the garbage collection infrastructure.Objective
Caml provides a library moduleMarshal [15], which allows pick-
ling of arbitrary values (except objects). In neither system pickling
is safe, portable, or higher-order, although Objective Caml enables
pickling of functions as pointers into the address space of the pro-
gram, which limits portability to the exact same program.

HashCaml [6] wraps Ocaml’s marshaller with abstraction-safe
runtime type checking. Unlike our design, it requires type passing
polymorphism. Types are represented as simple hashes externally,
hence subtyping is not supported.

ML derivatives. Acute [29] is an ML-based language for dis-
tributed programming that is closest to Alice ML and provides a
similar generic pickling mechanism. Unlike in Alice ML, pickling
is not separated from dynamic typing, and all inter-processcom-
munication hence dynamically typed. Also, Acute supports implicit
rebinding of resources, which we exclude for security reasons. As
in the current Alice system, no pickle verification is possible.

Facile [32] extended Standard ML with facilities for concur-
rency and distributed programming inspired by theπ-calculus. To
achieve dynamic connectivity, Facile requires taking an indirection
through a centralstructure server, which allows making ML struc-
tures persistent. A structure is retrieved from the server by request-
ing a module with a suitable signature, which naturally implies
a form of dynamic signature check. If several structures match a
given signature, the last one stored is returned.

JoCaml [9] takes a similar stake as Facile, but extending Ob-
jective Caml and with concurrency being based on the richer Join
Calculus. Communication is type-safe but limited to monomorphic
values and no longer higher-order in the most recent version.

Ohori developed a typed translation of high-level inter-process
communication operations into low-level primitives in an ML-like
language [20].

Clean. The only functional language with a type-safe form of per-
sistence is Clean, which features high-level I/O based on dynam-
ics [21]. However, pickles are neither higher-order nor portable.

Pickler combinators. Kennedy implements a limited form of
pickling in form of a combinator library written in ML [13]. Al-
though surprisingly flexible, a library approach is bound tofail on
most of our requirements: combinators are neither universal (espe-
cially, they cannot support higher-orderness), nor can they guaran-
tee properties like transparency or closedness. Efficiencyalso is a
major concern: maintaining sharing requires extra effort and can
only be achieved for a statically bounded number of types, because
it needs an explicit environment per type.



14. Conclusion
Alice ML and the Alice Programming System have been designed
with a universal pickling service in mind, from ground up. Pickling
in this system is higher-order and typed, it embraces persistence,
code mobility and dynamic modularity in a type-safe manner.

We have shown how such a pickling service can be implemented
in a modular architecture based on layered abstractions. The layer-
ing enables separation of concerns, each layer is small and compa-
rably easy to implement. The main innovations lie in (1) the struc-
ture of code with function granularity and embedded higher-order
values, which dynamic separate compilation takes advantage of, (2)
the higher-order representation of components, and (3) theavoid-
ance of type passing polymorphism. The approach has been proved
practical in the existing implementation of the Alice system, which
has been ported to x86, AMD-64 and PowerPC architectures, with
full interoperability.

Both language and implementation considerably benefit from
the expressiveness of pickling and the modular architecture under-
lying it. Alice ML provides a level of dynamicity that – to thebest
of our knowledge – is not available in any other compiled, stat-
ically typed programming language system, including thosewith
much more lax type systems.

The main direction for future work is the integration of full-
scale pickle verification. While verification may not be required in
most cases oflocal distributed programming, it seems a necessity
if we want to truly embrace the idea ofopenprogramming, where
we have to deal with untrusted principals.

Another interesting direction would be to extend the pickling
service to supportincrementalor lazypickling and unpickling, so
that it could be used to realise large structured persistentdatabases
with incremental updates to selected subgraphs. However, it is far
from obvious how this could be achieved.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamictyping

in a statically-typed language. In16th Symposium on Principles of
Programming Languages, pages 213–227, Austin, USA, Jan. 1989.

[2] H. Ait-Kaci. Warren’s Abstract Machine. Logic Programming. MIT
Press, 1991.

[3] Alice Team. The Alice System. Programming Systems Lab, Saarland
University,http://www.ps.un-sb.de/alice/, 2003.

[4] A. Appel and D. MacQueen. Separate compilation for Standard
ML. In Conference on Programming Language Design and
Implementation, pages 13–23. ACM Press, June 1994.

[5] J. Armstrong.Making Reliable Distributed Systems in the Presence of
Software Errors. Doctoral dissertation, Royal Institute of Technology,
Stockholm, Sweden, Dec. 2003.

[6] J. Billings, P. Sewell, M. Shinwell, and R. Strniša. Type-safe
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