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Abstract

The need for flexible forms of serialisation arises underyr@En
cumstances, e.g. for doing high-level inter-process conication

or to achieve persistence. Many languages, including nvariaf
ML, thus offer pickling as a system service, but usually inoghb
unsafe and inexpressive manner, so that its use is diseuliréy
contrast, safe generic pickling plays a central role in #mgh and
implementation of Alice ML: components are defined as pigkle
and modules can be exchanged between processes usinggpickli
For that purpose, pickling has to begher-orderandtyped(HOT),

i.e. embrace code mobility and involve runtime type cheaks f
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service at the lowest level [31]. In this paper, we discussigher
levels of a realistic implementation, filling the (wide) gagtween

the previous papers. In particular, we lay the focus on gwtinent

of code and types, as these are the most unique aspects lifigick

in our system, and we show how the whole mechanism can be
realised using an architecture of layered abstractions.

1.1 Motivation

The main purpose of pickling is the support @fen program-
ming By that we mean development of programs that are open
to dynamic extension, persistence, communication witkermogno-

safety. We show how HOT pickling can be realised with a madula  cesses, and exchange of behaviour. We characterise thialoy-a

architecture consisting of multiple abstraction layerssieparating
concerns, and how both language and implementation bergefit f
a design consistently based on pickling.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage¥ Language Constructs and Features; HJatp: Data
Storage Representations

General Terms Languages, Design

ber of abilities [27]:modularity; flexible combination of separate
componentsgynamicity importand export of components at run-
time; portability, exchange of components across different plat-
forms; safety graceful treatment of erroneous componesegu-
rity, graceful treatment of untrusted componedistribution, com-
munication of components across networks; endcurrency han-
dling asynchronous events and non-sequential tasks.

Alice ML is an extension of Standard ML [16] that has been
specifically designed for open programming. In particulal,

Keywords Pickling, serialisation, marshalling, persistence, dis- jce ML features a flexible system of components [25] that can

tributed programming, components, virtual machines

1. Introduction

Pickling is a service for externalising language-leveluesl from

a process’s heap soup. Many languages offer such servites, o
known asserialisationor marshalling But most of these services
do not deliver pickle$1OT — as higher-order, typed, self-contained
object representations, like the functional programmiogrmet
would prefer them.

In this paper we present a recipe for such pickles: we discus

the pickling mechanism id\lice ML [27, 25, 26] and central as-
pects of its implementation in the Alice Programming Sys{8m
Our recipe is truljhigher-order in that it includes pickling of code,
and even entire modules. It alsotyped where necessary, pickles
carry structural type information that is checked upon ckipig.
Both programming language designdimplementation can bene-
fit from being designed with HOT pickling in mind.

In previous work, we have already taken a high-level look at

pickling as a language feature with abstract semantics @
we have discussed the implementation of an efficient rawlipizk
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be exchanged between processes as pickles. We will giveeh bri
overview of Alice ML in Section 2.

A primary goal in the design of the Alice ML language as well
as its implementation was to identify core primitives andeyée
abstractions that enable the realisation of open progragniiga-
tures in a modular manner. To this end, a vital decision wasse
the language semantics on generic pickling as a centraityém
Modular implementation of this service in turn induced a bem
of interesting design decisions in the implementationhsas a

s generic store abstraction modelling the heap.

It turns out that this modular design approach not only makes
the architecture more manageable, it also increases thiessiye
power of the language in considerable ways. As we will sei€eAl
ML is able to make components first-class, it can provide-@itass
access to the compiler, it uses one uniform representatiocoim-
piled “binaries” and serialised runtime values, and it eatbows ar-
bitrarily mixing the notions of compilation and computatjavhile
processes can still dynamically load, create, and exchangk
components. And all that in a strongly typed context.

1.2 Requirements and Architecture

To be adequate as a basis for language-level open progrgnmin
we require a number of properties from picklihg:

e Transparencythe result of unpickling a pickled value should
be an observationally equivalent copy of the original.

INote that it is an entirely different problem to interoperatith foreign
languages and existing protocols, which we do not consider.h
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Figure 1. Layered architecture for higher-order typed pickling

¢ Universality any type of value should be picklable. Particularly
functional and user-defined types should be readily supgdort

¢ Closednessa pickle has to be self-contained. That is, it has to
include the whole transitive closure of a value — for funesidt
has to carry all necessary code, including library functlin

o Verifiability: it should be possible to check for malicious values.

e Security names in a pickle should not be able to silently capture
security-relevantesourcesn a process.

e Portability: representation should be independent from hard-
ware platform, operating system, or other such concerns.

o Adaptivity. on the other hand, the pickling service has to address
these concerns whampicklingin a given environment.

¢ Efficiency the size of a pickle should be linear in the size of the
represented value in memory. In particular, cycles andredt-
ing have to be maintained. Moreover, pickling and unpickling
should take linear time.

The pickling architecture of the Alice system we describetse
all these requirements, except for verifiability. We betighis can
be added as well, but have left the details for future work e-Se
tion 12 offers a brief discussion. We are not aware of anyrothe
implementation of pickling that meets all these requiretsen

Our pickling architecture consists of a number of abstoacti
layers. In particular, theepresentatiorof pickles is defined by a
tower of layers shown in Figure 1. Each layer is comparablglbm

and easy to implement, more complex aspects can be defined in

high-level terms. Specifically, only the implementatioosthe bot-

tom two layers in the figure necessarily need to drop down to a
machine-level language such as C — although for efficieramisp

of the third do, too. The middle representation layers afieé in
terms of ML itself. However, implementation of respectieeca-
tions requires access to unsafe primitives defined by therltay-

ers, and hence the middle layers have to be part of the “tibstse”

of the system. In contrast, the top layers can be defined aieipl

in terms of the language proper, either as simple librargtional-

ity, or as syntactic sugar.

The lowest two layers have already been described in a prgvio
ML Workshop paper [31], and we will only briefly recap theméer
Likewise, most details on the upper two layers can be found in
previous work [25]. Consequently, in this paper we focus lom t
middle layers, which implement code and types. In the end, th
should also draw the bigger picture of how all the parts irgteg
into the overall design.

Before we start off describing the above architecture, \iterre
ate central points of the design of Alice ML (Secton 2). Wenthe

describe the lower five implementation layers (Sections afteér
which we recap the component system (Section 8). We next dis-
cuss issues of compilation (Section 9) and the addition sifidi-

tion (Section 10) and concurrency (Section 11). Before wagwup

with related work, we sketch a possible approach for addicige
verification (Section 12).

2. Alice ML

Alice ML is a conservative extension of Standard ML [16] desid
for open programming. It adds three central features:

e Packageg25], a variation of dynamics [1] carrying modules.
e Pickling, generic higher-order serialisation as described above.

e Futures[19], enabling laziness and light-weight concurrency
with implicit data-flow synchronisation.

Packages are essential to make pickling type-safe whees typ
are not known statically. Futures are convenient to dedl agyn-
chronicity and delay in external communication. Based as¢h
primitives, Alice ML provides derived features for high#g open
programming:

e Persistencgethe ability to store values or entire modules in files.
e Component$§25], lazily linked, first-class program fragments.
e Proxies[26], mobile RPC wrappers for stationary functions.

All these features uniformly use the pickling mechanisnr: pe
sistent values are pickles, arguments of remote procedlieare
passed as pickles, and component files are pickles. Noteypart
larly that Alice ML has no separate notion of binary code fatm
the compiler simply produces pickled component values!

As a simple example, the following program fragment dynami-
cally computes component using the first-class component syntax
comp. ..end. The component exports a functigsllo that prints its
own creation date. The component is saved to a file, usingitke p
ling mechanism:

val date = Date.fromTimeLocal (Time.now ())
val component =
comp
import structure TextlO : TEXT_IO
from "x-alice: /lib/system / Text|O”
in

val hello : unit — unit
with

fun hello () = TextlO.print (Date.toString date)
end

do Component.save ("hello”, component)

Once saved, the now persistent component can be importéd as i
was conventionally created by the compiler:

import val hello : unit — unit from " hello”
do hello ()

Note how the component captures the dynamically pre-coseput
date when it iscreated while importing theprint function in the
process where it isnked

We delay an example of the use of proxies until Section 10.3.
For a more thorough presentation of the design of the Alice ML
open programming features we refer to other sources [226]5,

3. Abstract Store

The lowest-level abstraction in our architecture is Hiestract
store All data, comprising everything a program allocates on the
heap, but also code and runtime type information, is ultalyat
represented in the abstract store.



The abstract store is part of th&&v framework for extensible
virtual machines [28], on which the Alice system is built. \Bfay
give an overview here. For a more technical description efrabt
store and pickling, we refer you to [31, 14]. A technical rgpo
contains a more detailed discussion of tea8 design [8].

3.1 Data graph

The abstract store contains a graph representinghéa of a

process. Despite this, it is completely agnostic of the laigg, its
data types, code format, or type system. In fact, there dyefouar

differentkindsof nodes that can occur in the graph:

e Scalars leaves in the graph representing bounded integers.
e Chunks leaf nodes carrying unstructured data of arbitrary size.

e Blocks inner nodes with a fixed humber efots referring to
children (successors in the graph).

e Transformsmarking subgraphs to be modified for pickling.

Naturally, scalars are optimised using an unboxed reptaten,
but this is immaterial to the abstraction. Blocks and chuanesat-
tributed with an optional integéabel, and a flag indicating whether
the node isnutable i.e., whether it allows modification of its con-
tents. Transforms will be discussed in Section 3.3.

The store provides an interface falfocating nodes, forinitial-
ising them, foraccessinghem, and fomutatingmutable nodes. It
also offers functionality for inquiring kind and attribstef a node.
Note that the graph can be cyclic.

3.2 Store services

Apart from these primitives, the abstract store providesdtten-
tral services

e Garbage collectionensures that no explicit de-allocation of
nodes is necessary, and that the abstract store is inteoe}
sistent (no dangling pointers).

e Raw pickling allows to create an external, platform-independent
binary representation of the subgraph of the store thatishre
able from a given node. The invergepicklingoperation recre-
ates a copy of the subgraph, preserving its structure.

e Minimisation can be used to minimise the representation of
a given subgraph by inducing maximum sharing, i.e. forming
a minimal equivalent graph [31]. Note that this includesploo
folding for cyclic structures.

Like garbage collection, pickling and minimisation areiesty
generic services in that they can be applied to anything é th
store. Pickling complete reachable subgraphs is essdatialur
approach. We will see that our encoding of Alice ML data struc
tures in terms of abstract store nodes satisfies our regeirethat
a pickle contains the complete transitive closure of a value

The raw pickling service currently supports pickling oftefal
data, i.e. mutable nodes. This induces significant conmpsics to
maintain the illusion of atomicity in the presence of coment
threads, in particular when futures (Section 11) are ptesesee
[31] for details. Although the approach described theresssfully
addresses these issues, we intend to reconsider this ¢bofature
versions of Alice ML, because unrestricted stateful pinlican
grossly break encapsulation of stateful programming abstms.

3.3 Transformations

For some types of data, it is too strong a requirement to use th
same representation in the abstract store as in a pickl$tance,
floating point numbers could be stored using the native fowha
the hardware platform, whereas in a pickle the format mushbe
platform-independent IEEE with fixed endianness. Or, wetwan

execute code in an optimised format, which could be natideco
for the host processor architecture, while the pickled cagain
must be independent of the hardware. Some data structungs ma
maintain caches to speed up computation, but pickling theecs

not necessary as it can be recreated upon unpickling, sapice

in the pickle.

To this end, the pickling service provides a way of transfagnm
data between internal and external representations. heigask
of transformnodes to mark data that requires transformation. A
transform node contains a pointer to a transformation faneind
has a child node representing the actual value. The tranatan
function is called by the pickling service whenever it enueus a
transform node, passing the child node as argument. Ité iesu
(possibly newly allocated) node in the abstract store thpidkled
in place of the child. Conversely, a dual transformationcfion
must be registered with the unpickling service so that thiereal
value can be transformed back to the internal representatieen
a transform node is encountered in a pickle.

The concrete transformation is thus given as a pair of fonsti
That way pickling can be implemented as a generic servicheof t
store, while being parametric over, but adaptive to, lagguar
library-specific, system-dependent representation elsoic

If a transform node does not define a corresponding transfor-
mation function, pickling will fail. This can be used deliiagely to
mark nodes that are not allowed to be pickled. We make usésof th
for the representation of resources (Section 4.1).

3.4 Pickle Format

The pickles created by the abstract store service have a well
defined, platform-independent binary format. Each pickletains

a version number, such that incompatible changes in theeimmgh-
tation can be detected.

A binary pickle consists of a program for a simple stack-dase
unpickling machine. It contains a sequence of instructidesch
instruction may consume abstract store nodes from the stagk
leave a node on the stack. There is one instruction corre&mpn
to every node kind. Instructions for scalars and chunks lsicgn-
struct the corresponding node and push it on the stack. Akbloc
instruction has two arguments, a label and the number of thet
block has. Interpreting it consumes as many stack valuebeas t
block has slots, creates the block node using the argumemds,
pushes it on the stack. A transform instruction consumesutie-
ment of the transform from the stack, performs the transébion
(identified by a string argument of the instruction), andhassthe
root node of the result back on the stack.

In order to support sharing in the graph, the unpickling nreeh
also has a set of registers, plus instructions to push andgupe-
ters. For cyclic graphs, an additional pair of instructieeeded
that creates a placeholder for one node on the cycle andsstane
a register, and later, after constructing the rest of théecyeplaces
the placeholder.

For pickling, the store service traverses the data graph in a
depth-first, post-order manner, starting at the root nodetpick-
led. Sharing and cycles can be detected by keeping trackl of al
nodes that have already been visited. The transformatiamofie
is triggered as soon as a transform node is found, and théepick
descends into the result of the transformation.

In a final step, the generated “pickle program” is compressed
using the Zlib compression library.

4, Data

The data layerdefines how language-specific data structures are
mapped to the abstract store. Most basic ML values haveiglstra
forward encoding in terms of the abstract store. For inganc



e integers charactersnullary constructorsandnative pointergo
non-heap “foreign” data are represented as scalars,

o floatsandstringsare boxed as immutable chunks,
e n-arytuplesor recordsare immutable blocks with slots,

e unary constructors are immutable blocks with arity depahde
on their argument type (i.e., record argumentsraegged; the
block label encodes the constructor index (for large dptgy
a secondary index is stored in an additional slot),

o referencesare mutable unary blocksyraysare either mutable
blocks or chunks, depending on their type,

¢ function closuresare immutable blocks carryinga@de object
(see Section 5) and a vector of environment values.

4.1 Resources

e Abstract code is represented as a regular ML data structure o
the heap; jitted code lives in a chunk node on the heap.

e Every jitted code object is wrapped by a transform yieldimg t
respective abstract code object.

e Every source-level function (counting nested functiongase
rately) is represented by an individual code object.

The last point is the most important: it is what allows piokliand
garbage collection of code to be performed on the granulafit
single functiong. The use of transforms for code objects is what
achieves platform-independence. We discuss the othetspaithe
following subsections. More detailed discussion of thegrespace
can be found in a technical report describirga® [8].

5.1 Abstract Code Format
The Alice abstract code is an instruction-based code fowmitht

Some values have a semantics that is defined only local to the SSA-style variable bindings. It is graph-structured: gvestruc-

current process. Classic examples are file handles or nativagers
to data that lives outside the abstract store (e.g. impdhemligh
the foreign function interface).
We collectively call these valuessourcesand we do not allow
to pickle them. Any value that contains a resource is callsti—
any attempt to pickle it will be rejected. This can be achiesasily
by wrapping all values representing resources in a tramsfade
without a transformation function.
Alternatively, it would be possible to use transforms to licyp
itly rebind certain resources on the target site. For example, the

tion contains its continuation(s), thus representing r@rfiow.
Variables and instructions are annotated with livenessrimétion
that allows efficient register or stack allocation in a jiurstime
compiler. Most of the instruction set is fairly standard amdnate-
rial to the problem of pickling, thus we do not describe iténer
Thanks to our layered approach, the representation of caxle c
be defined in terms of a set of ML datatypes. Thus, it can be
constructed and processed in ML itself. In particular, tbepiler
can directly generate code as ML values.
More importantly, a consequence of this choice is that tlie'so

stdOut stream could easily be connected to the respective object representation in the store is implicitly defined via theadaer.

in the target process. However, we consciously refrain fusing
this option — the Alice ML security model is such that a pic&smn
never contain any resources. Any resource is considerget@yi
and must be explicitly acquired on a site, giving rise to arfaf
capability-based security. The dynamic component concept-
ice ML makes it possible to formulate respective abstrastifor
distributed programming, as well as controlling resourcgussi-
tion through user-definesandboxind26, 25].

A third alternative would be to mirror sitedness in typesngs
some suitable effect system, and rule out pickling of siteldies
statically. This is an interesting option, but would indwstéstan-
tial changes to the type system of the language. We hence leav
investigation of this idea for future work.

5. Code

The most outstanding property of our pickling architectaries full
support for higher-order values, i.e. functions. Obvigugiis not
only requires transferring closures, but in fact, full codebility.

Supporting code mobility as part of pickling induces a set of
requirements on the way code is represented:

1. The (primary) code format has to be platform-independeuit

relocatable.

. Code must be movable (and garbage-collectable) with per-
function granularity.

. The transitive closure of all code fragments reachaldefa
given function must be easy to compute.

In the Alice system, these requirements are addressed Hplthe
lowing central design choices fapde objects

¢ The external representation of code, the so-calletract code
is a high-level format suitable for efficient runtimempilation

e Optionally, just-in-time compilationjifting) can produce a for-
mat more adequate for efficieekecutionon a given platform
(either native code or byte code).

Transitively, this also defines its external representaitiopickles,
in a platform-independent manner. To produce a “binary&,dbm-
piler simply pickles a value from its own heap.

The Alice abstract code currently is untyped. See Sectidorl2
respective discussion.

5.2 Jitting and Interpreters

Two kinds of jitted code are currently supported in the Alice-
time: byte code available on all platforms [17], andative code
used only on x86 platforms. The byte code jitter performs var
ious dynamic optimisations, especially with respect tourfes
(Section 11). Furthermore, all optimisations can crosspmment
boundaries, which is especially important when softwarelds
ployed as many small components.

The type of code can be selected per function — every code
object contains a reference to a suitainierpreter for executing
the code. Every interpreter also defines its own layout ofksta
frames. Calls may freely mix functions executing with diéfet
interpreters. Thus, jitting can be performed selectivaly ‘hot
spots”. In fact, the byte code jitter is even capable of selece-
jitting of heavily used functions [17].

5.3 Reachable Code

As usual, first-class functions are represented by closatresn-
time, which contain a reference to a respective code object.
The transitive closure of code reachable from a given foncti
coincides with the data graph reachable from its reprasgmio-
sure: when the function can call another function, a refezeio
the latter has to appear either in the environment of thetimmc
closure or directly in its code (see next section), rendgitia suc-

2In experiments we found that by forming the transitive ctesat that
granularity, the size of pickled modules with non-triviahports usually
was in the range of 100%—-300% of the original component sibde the
size of the transitive closure atodulegranularity typically lied in the range
of 400%-1400%. Moreover, cutting off library modules agnfproposed
rarely reduced this size by more than a third.



cessor in the data graph. Thus, pickling and garbage cialfeof
code become trivial.

Given the fine granularity of code objects, no special treatm
is necessary for “persistent” library code: we can afforéhtdude
all referenced library functions in a pickle, thus achigvjproper
closedness and at the same time vastly simplifying the imefe
tation by avoiding ad-hoc cut-off and rebinding mechanisms

5.4 Embedded Values

Because abstract code is a regular ML value, and “binaries” a
written by pickling, code is not restricted to sequentiahfidout can
be arbitrarily structured. In particular, code can conthuctured
values as “immediates” — loading an immediate value sinmpudyl$

a node, whether scalar or not.

The Alice ML compiler exploits this by performing a general
form of constant folding, ovalue propagationthat is not limited to
scalar types, but can compute values of arbitrary type —cépe
algebraic datatypes, such as lists or trees — and embedghi re
into the generated code. It induces no extra cost if the satue v
is embedded more than once, since pickling maintains sharin

Even closures can be constructed at (static) compile tinde an
embedded at call sites where their environment is stagikatbwn.
Moreover, in the presence of value propagation, a stagigalbwn
environment coincides with an empty one.

The Alice runtime also utilises embedded values for dynamic
specialisationthe abstract code features a special variant of a clo-
sure creation instruction that does not construct a corvegltclo-
sure object, but instead creates a copy of the underlyingaaibs
code object and dynamically embeds the environment valses a
immediates. Consecutive jitting can take advantage oftthjzer-
form additional optimisations, especially inlining. Thittic com-
piler generates this instruction for functors and top-léuactions
with comparable usage profile.

Last but not least, the ability to embed arbitrary valuesanag-
ated code also gives rise to an expressive dynamic conapil &k
cility (Section 9.1). Dynamic compilation can embed valéresn
the actual heap of the host process. By using an internal &rm
reflection, value propagation is able to exploit such vaaswell.

6. Types

Achieving type safety for open programming requires sgiatase
of dynamic type checking. At its core, Alice ML emplogackages
for this purpose (Section 7). To support them, a certain arnofi
type information has to be computed at runtime. This inciudé
core types as well as module signatures. Hence, we needimeunt
representation for both.

We implement runtime types hreifying type and signature ex-
pressions to the term level, that is, transforming them @xjres-
sions that compute suitable type descriptions at runtinegalRd-
ing our layered architecture, the implementation of tyjsabéreby
done in terms otodethat constructs type data structures.

6.1 Type representation

Like code, types and signatures are represented in a highrAan-
ner by regular ML data structures. The details of the reprtasien
are again immaterial to our approach — type representatioss
realised as abstract data types. Somewhat idealised wigador
these abstract types are given in Figure 2.

The modules implementing these signatures have to be part of

the system’s trusted kernel. In practice, they use relgtatandard
term structures with optimisations like lazy substitutioaching of
signature look-up tables, and others described in thetites [30].

A peculiar point of Alice ML's type system is its semantics of
type abstraction: to maintain abstraction safety in thesgmee of

structure Type :

sig
type ty and tyrow
type tyvar = string
eqtype tycon
val tyvar : tyvar — ty
val tycon : tycon — ty
val arrow : ty X ty — ty
val record : tyrow — ty
val apply : ty list X ty — ty
val func : tyvar list X ty — ty
val poly : tyvar list X ty — ty
val emptyRow : unit — tyrow
val extendRow : tyrow X string X ty — tyrow
val new : int — tycon

end

structure Sig :
sig
type sign and spec
type id = string
type longid = id list
type rea = (longid X ty) list
val sign : spec — sign
val fct : sign X sign — sign
val emptySpec : unit — spec
val valSpec : id X ty — spec
val typSpec : id X int X ty option — spec
val strSpec : id X sign — spec
val sigSpec : id X sign — spec
val seqSpec : spec X spec — spec
val findVal : sign X longid — ty
val findTy : sign X longid — ty option
val findStr : sign X longid — sign
val findSig : sign x longid — sign
val matches : sign x sign — bool
val realise : sign X rea — sign
end

Figure 2. ADTSs for runtime type and signatures

dynamic typing, it is based on dynamic generation of fregrety
names [23]. This is mirrored by the functiofype.new for gen-
erating fresh type constructors. They are represented diyatly
unique identifiers (GUIDs, as provided by suitable opeptgs-
tem mechanisms) to emulate a global type heap.

As the only non-obvious operatioig.realise instantiates a sig-
nature given aealisationmapping all its abstract types (identified
by relative long identifiers) to concrete type constructors

6.2 Type reification and erasure

Runtime types are generated by reifying type expressiodsiac-
larations to term-level expressions performing appraeréalls to
the type ADTSs. Figure 3 gives a semi-formal sketch of a sotoee
source translation performing this reification. It is sianiln spirit
to the type erasure translation described by Crary et a]. Bl
since our code format is untyped, we treat the target largyaag
typeless, such that we do not have to deal with the introdoaif
singleton representation types here.

The translation assumes an injective mapp#sgfrom type
and signature identifiers to fresh value identifiers. Thigppireg
is extended to long identifiers in the obvious way.

Note that the transformation only involvesplicittype and sig-
nature information. This is no accident: Alice ML has been de
signed such that core language polymorphism stays fullgrpat-
ric, and types can be erased on that level [25]. This not anly s
plifies compilation, it also avoids substantial operatlanerhead
that would otherwise arise from the presence of dynamicsype



val tycon$ = [A\@.ty]
val sigid$ = [sigezp]

type @ tycon=ty]
signature sigid=sigexp]

Aa.ty] = Type.func(["a’], [ty])

a]] = Type.tyvar "o

[ty longtycon] = Type.apply([[ty]], longtycon$)
tyy — tys] = Typearrow([ty, ], [ty,])
{(tyrow)}] = Type.record [(tyrow)]

| = Type.emptyRow()

lab : ty (, tyrow)] = Type.extendRow(" lab", [ty], [{tyrow)])

longsigid]

sig spec end]

fct strid:sigexp,
— sigeap,]

[spec]

= longsigid$
= Sig.sign [spec]

Sig.fet(" strid", [sigezp,], [sigezp,])

Figure 3. Type and signature reification

particularly given that separate compilation and dynaimidmg of
components precludes many respective optimisations.

7. Packages and Modules

Alice ML featurespackageg25], first-class values containing a
module paired with its signature — essentially a modulesthagri-
ation ofdynamicq1]. They are created using the expression form

pack strexp : sigexp

To access the module from a package, it has to be unpackeatstgai
atarget signaturethe module expression

unpack exp : sigexp

checks that the signature of the packagge matchessigezp, and
only if that is the case, evaluates to the embedded modulé— ot
erwise, the exceptiownpack is raised. This is th@nly form of
dynamic type checking in Alice ML.

From a more type-theoretic point of view, the tygpekage is a
form of existential typéla.ac over modules. Since the very purpose
of packages is dynamic type checking, the witness type oéxhe
istential — the package signature — cannot be erased. Qmrabg
the obvious representation of a package is an actual pdieatfn-
derlying module and the representation of the signature.

As for pickling, the two library operations

Pickle.save : string X package — unit
Pickle.load : string — package

allow creating and reading a package as a pickle. Becaugaithe
age contains a runtime representation of the signaturelsthe
pickle. There is no direct way to access the raw pickling raegm
from the language level, consequently all pickle files wilhtain
runtime type information. We call thesedoked pickles.

7.1 Modules

An ML module can either be a structure or a (potentially highe
order) functor. Operationally, structures behave likegéemecords
and functors like functions. As in other ML implementatiotisat
also is how they are realised in the Alice system. Howevereth
are noticeable differences:

e To support dynamic typing, type and signature fields are not
erased from structures. Instead, they carry the runtimestep
sentation of the respective type-level objects.

e Sealing (using the> operator) replaces all type fields specified
abstractly in the ascribed signature with fresh type names.

e Subtyping isnotcoercive. That is, use of signature subsumption
does not imply narrowing in the representation (however;, na
rowing is performed where signatures a&eplicitly ascribed).
Consequently, the runtime layout of a structure generalhyoit
known statically. Projection hence is realised via cacheshh
look-up, with efficient support from the virtual machine.

The latter design choice makes unpacking and dynamic linkin
Alice ML simpler and potentially more efficient. A tupled rep
sentation of structures with narrowing is straightforwmdimple-
mentations where every use of subtyping is static: in the daoth
source and target arity of a structure are statically knamnd, the
coercion can be performed statically. Projection then artsoto
simple indexing. Unfortunately, the situation is differernth pack-
agesunpack employs subtypingynamically such that only the su-
per signature is known statically. To maintain the represt@mnal
invariants of a tuple representatiampack would have to perform
dynamic narrowing on a module of statically unknown sigratu
Although possible, it would require a more complex and exspen
form of access to the original structure, e.g. using intami sig-
nature analysis. Since dynamic linking heavily relies ockages,
we believe that such an approach would be more costly.

7.2 Translation

In the same manner as for types, Figure 4 defines the repatisent
of modules and packages as a source-to-source translatian t
untyped core SML. In particular, record expressions do eetlrto
have a statically fixed type in the target language, and giioje
#lab is “polymorphic”. Again, we assume an injective embedding
e$ of module identifiers. Note that structure bindings subsume
functors in Alice ML's higher-order module language.

The translation uses a few auxiliary meta-level operators:

e BINDS(dec) expands to a sequence of bindings=:d for all
identifiersid bound indec (including types and signatures).

NARROW(strid, p, sigexp) constructs a representation of the
modulestrid.p narrowed to sighaturgigexp.

SEAL(strid, p, sigexp) constructs a representation of the mod-
ule strid.p sealed by the signaturggexp.

NEWREA(p, sigexp) is a realisation mapping every abstract
type insigexp to a fresh type constructor, under path

SELFREA(strid, p, sigexp) iS a realisation mapping every ab-
stract type insigezp to the representation frogirid.p.

The latter operators are defined in Figure 5, assuming prsvio

expansion of signature identifiers with their respectivénitéeon.

They are all defined by induction over a pathf nested structures.
Selfification is necessary for package signatures to avaichan

lies in the semantics aihpack, as described in [25]. The construction-

time selfification given here optimises the deconstructiore self-

ification given in the formal semantics of packages in thaepa

7.3 Structure access

As a final translation step of the module translationladl identi-
fiersappearing in expressions are translated to sequencesoodirec
selections, as shown in Figure 4. But there is an additiomgsit t
not shown in the figure. To keep pickles containing code adlsma
as possible, it is important to tune the semantics of pigkénch
that a long identifieM.x appearing in some function body only
represents a reference to the individual fietof the modulev, not
a reference to the entire module!

For example, the closure representing the function

fun last xs = List.hd(List.rev xs)



[structure strid=strezp] = val strid$ = [strezp]
[longstrid]

[struct dec end]
[strezp : sigexp]

= longstrid$
= let [dec] in {BINDS(dec)} end
= let val strid$ = [strexp]
in NARROW( strid, €, sigezp) end
= let val strid$ = [strexp]
val rea = NEWREA(¢, sigezp)
val sigid$ =
Sig.realise([sigezp], rea)
in SEAL(strid, sigid, €, sigexp) end
[fet strid:sigexp = strezp] = fn strid$ = [strezp]
[strezp, strexp,] = [strezp,] [strezp,]
[let dec in strezp end] = let [dec] in [strezp] end
[unpack exp : sigexp] = let val (strid$, sigid$) = [exp]
in if Sig.matches(sigid$, [sigexp])
then strid$ else raise Unpack
end

[strexp > sigexp]

= let val strid$ = [streap]

val rea = SELFREA strid$, ¢, sigexp)
in (strid$, Sig.realise([sigezp], rea)) end
Huvid(Fstrid,$( - - - (strid1$)--+))

[pack strezp : sigexp]

[stridy. - - - .stridy,.vid] =

Figure 4. Module and package translation

should only contain the individual functiong andrev, but none of
the other definitions from thieist module (and other modules tran-
sitively referenced by these!). Semantically, this can loelefied
by trimming closure environments during pickling apprepely.

To achieve the same effect in the implementation, the setect
resulting from the translation of long identifiers deistedto the
binding point of the structure itself. For the above examfiiés
would yield

val List_hd = #hd List$
val List_rev = #rev List$

fun last xs = List_hd(List_rev xs)

with the auxiliary declarations appearing at the bindingpof the
List structure.

8. Components

Componentform the topmost language layer in Alice ML [25], be-
ing the unit of compilation, linking and deployment. In a shell,

a component represents an “unlinked, unevaluated moduteth
may contain free references to modules from other compenémt
import declarations. Components can be linked dynamically and
acquired from remote locations denoted by a URL.

Components are first-class, they can be dynamically cordpute
and exported from a running process. In its most general,farm
component is a value of abstract typ@emponent created by the
expression form

comp import™® in spec with dec end
whereimport* is a sequence of import declarations of the form

import spec from url

As explained in [25], components can be defined as a derived

concept within the language itself. They can be represeated
simple higher-order functions over packages:

SFor historical reasons, the actual representation in thee/gystem is
slightly different, but with mostly equivalent effect.

NARROW( X, p, sig spec end)
NARROW(X, p, fct Y:sig, — sig,)

= {NARROW(X, p, spec)}
=fmY$=

let val Z$ = X .p$(Y'$)

in NARROW(Z, €, sig,) end
=z=X.pzx
=1$=X.p.t$
= Y$=NARROW(X, p.Y, sig)

NARROW(X, p,val x : ty)
NARROW(X, p, type @ t (= ly))
NARROW( X, p, structure Y : sig)

NARROW(X, p, signature S = sig) = S$=X.p.S$
NARROW(X, p, spec, ;specs) = NARROW(X, p, spec, ),
NARROW(X, p, spec2)

SEAL(X, S, p, sig spec end) = {SEAL(X, S, p, spec)}
SEAL(X, S, p, fct Yisig, — sig,) =fY$ =

let val Z$ = X .p$(Y'$)

in NARROW(Z, ¢, sig,) end

SEAL(X, S, p,val x : ty) =z=X.pzx
SEAL(X, S,p, type @ t (= ty)) = t$=valOf
(Sig.findTyp(S$, STR(p.1)))
SEAL(X, S, p,structure Y : sig) =Y $=
let val 7'$ =

Sig.findStr(S$, STR(p.Y))
in SEAL(X, T, p.Y, sig) end
= S$=Sig.findSig(S$, STR(p.T))
= SEAL(X, S, p, specy),
SEAL(X, S, p, spec,)

SEAL(X, S, p, signature T' = sig)
SEAL(X, S, p, spec,;spec,)

NEWREA(p, sig spec end)
NEWREA(p, fct Y:sig; — sigs)

( = NEWREA(p, spec)
(
NEWREA(p, val x : ty)
(
(

=1l
=]
=1l
= let val t$ = Type.new |@|
in [(STR(p.t), Type.tycon t$)] end
= NEWREA(p.Y, sig)
=1l
= NEWREA(p, spec, )
@ NEWREA(p, spec,)

NEWREA(p, type @ t = ty)
NEWREA(p, type @ t)

NEWREA(p, structure Y : sig)
NEWREA(p, signature S = sig)
NEWREA(p, spec,;spec,)

SELFREA( X, p, sig spec end) = SELFREA X, p, spec)

SELFREAX, p, fct Yisig, — sig,) = ||

SELFREAX, p,val z : ty) =1l

SELFREA X, p,type @ t = ty) =1l

SELFREA X, p, type @ t) = [(STR(p-.t), X.p.t$)]

SELFREAX, p,structure Y : sig) = SELFREAX,p.Y, sig)

SELFREA(X, p, signature S = sig) =[]

SELFREAX, p, spec,;spec,) = SELFREA X, p, spec, )
@ SELFREA X, p, specy)

STR(z1. -+ .2n) =[x, T

Figure 5. Auxiliary definitions for translation

type component = (url — package) — package

Figure 6 recaps the respective decomposition of the compo-
nent syntax. Given that decomposition, all functionality @om-
ponents can be implemented in a library. In particudiamponent
managersresponsible for controlling dynamic linking and realis-
ing sandboxing, can fully be programmed in the source laggua
More details of this can be found elsewhere [25, 27].

The net effect is that components require basically no extpa
port from the runtime system. A component is simply represgn
by its underlying function representation. A component fite-
duced by the compiler simply is a pickle of that function. &ie
VM must be capable of is loading an initial pickle ab@ot com-
ponent and applying it to a rudimentary component manager.



comp import* in spec with dec end  ~~

fn link = let import™ in pack (dec) : (spec) end
import spec from url  ~~

open (unpack link url : sig spec end)

Figure 6. Components decomposed

8.1 Persistence

In fact, the inverse is also true: all Alice ML pickle files aetually
full-fledged components, interchangeable with other camepts.
That is, the core library primitives for accessing pickles a

Component.save : string X component — unit
Component.load : string — component

The pickling functions previously presented in Sectione’raerely
implemented as

fun save(f, p) = Component.save(f, Component.fromPackage p)
fun load f = DummyComponentManager.link(Component.load f)

where thefromPackage function has the straightforward definition
fun fromPackage p = fn _ = p

according to the above decomposition of components. Thaileod
DummyComponentManager Simply iS a component manager that
allows no imports, i.e. whernénk is defined as follows:

fun link ¢ = ¢ (fn _ = raise Error)

This prevents accidental linking of untrusted componentsrn
insecure manner.

9. Compilation

Since a component file is simply a pickle of a value of type
component, it follows that code generation reduces to dynamically
creating an appropriate closure corresponding to this. fJpehis
end, the compiler must have access to the lower level alisinac
such that it can create the respective data structuressesgifeg
the code of the function.

9.1 Dynamic Separate Compilation
On the outside, the compiler is just a function

val compile : string — component

This function is provided as part of the library, thus givitite
programmer a first-class interface to compilation.

On top of this function, functionality similar to Lispessal can
easily be realised. The Alice ML library does so in form of enfly
of functions, whose simplest member is

val eval : string — package = ComponentManager.link o compile

Here,ComponentManager is the explicit interface to the “current”
component manager, which is responsible for linking [25].

More elaborate variants of thempile andeval functions allow
threading an environment. For example:

val evalWith : env X string — env X package

The abstract typenv encapsulates a compilation environment con-
sisting of a static part mapping identifiers to types, kirads] sig-
natures, and a dynamic part mapping the same identifiergualac
values, runtime types, and modules, respectively. Thraogisec-
utive uses okvalwith, incremental compilation and evaluation can
be performed. The environment sensitive compilation fiomct

val compileWith : env X string — component

can be used with environments resulting from previous dalls
evalWith. Where the compiled program refers to the environment,
the respectivedynamicvalues will simply be embedded in the
produced code as immediates (Section 5.4). This impliesthiga
produced component can still directly be pickled as a safftained
stand-alone object, despite its dependency on dynamiesalio
our knowledge, such a dynamic form of compilation into sefmr
binary components is not available in any other system excep
Oz/Mozart [11], where it is untyped.

9.2 Program Transformations

The semantics of pickling is very sensitive to code transftions.
Consider the following program:

fun f x = (print; x)
fun g x = if true then x else print "dead”

In conventional terms, the uses @fnt in these definitions are re-
dundant or dead code, and the compiler would be free to remove
them. Howeverprint is a sited value, it cannot be pickled. Hence,
the functionsf andg, referencing this value, should become sited
as well. Partial evaluation, dead code elimination andeél&rans-
formations change this semantics.

In other words, through pickling, the extent of a transitiVe-
sure of a value becomes observable where it contains siled va
ues (which cause failure) or futures (which cause blockany)
can trigger other computations). To maintain precise séicgnhe
compiler would have to be very careful and restrictive alumsir-
able optimisations. Obviously, this would be unforturtate.

The alternative is to consciously under-specify the lageuse-
mantics in this respect. That is, allow any semantics thabis
servativewith respect to the canonical one, in the sense that it can
only make more pickling operations succeed. This is thecghaie
adopted for Alice ML® For cases where the programmer wants to
deliberately enforce sitedness — e.g. to protect certaitrattions
— the Alice ML library offers an abstract type sited that can be
wrapped around respective data structures.

10. Distribution

One important aspect of open programming is the ability tm-co
municate over a network. To this end, Alice ML offers a highdl
approach based on pickling and dynamic components, which we
will briefly describe in this section. More details can berfdun
other sources [27, 26].

10.1 Proxies

Alice ML adoptsremote function callsas the most natural way
to generalise a functional language to a distributed laggu@he
Alice library provides a single primitive for that:

proxy : (@ — B) — (o — f)

This function takes a local function and creatgwaxy for it. The
proxy is a mobile wrapper for the local, stationary funcéioRrox-
ies can be pickled and thus passed to other processes. Wledap
remotely, the call is forwarded to the original site by pinglargu-
ment and result.

In a sense, proxies represent (logical) connections betweae
cesses. By representing connections as functions, inteeps
communication directly inherits a number of useful projesrttin
particular:

1. Connections are first-class and mobile (i.e., can be gkl

4Note that tracking sitedness in types would avoid this bl

5There is no complete operational semantics of Alice ML, Inutabvious
intuition” can be synthesised from given partial formdiisas [25, 19, 24].



2. Communication is statically typed.
3. Communication is two-way and synchronous.

Using proxies first-class, arbitrary communication paisecan be
formed by passing proxies back and forth as higher-ordeu-arg
ments to other proxies. Note that asynchronous commuaitatn
be achieved trivially but orthogonally by wrapping remagdi€into
futures [27]. Futures also enable programming of time-outs

Under the hood, proxies can easily be implemented as closure
that transfer pickles over some TCP connection. The mostdat-
ing aspect here is that a proxy idypedconnection, i.e. commu-
nication is well-typed by construction. Consequently, gaekles
are sufficient for passing arguments and results, they doewet to
carry any runtime type information information themsel(esless
verification is desired, cf. Section 12).

10.2 Establishing connections

With proxies representing connections between proceskess
is the question of how such connections astablishedi.e. how
proxies are initially transferred between processes. Tiee ML
library offers two ways, corresponding to two differentisagos:

e Client/server a server process caoffer a component on a
network. The library functiomffer : component — url generates
a temporary URL under which a client process can retrieve the
component as a pickle.

e Master/slavea master process can spawn computations by cre-
ating slave processes on accessible machines using th@func
run : host X component — package.

In both scenarios, a dynamically computed component can be
passed between the processes, achieving four goals:

1. Arbitrary functionality can be transmitted between the-p

cesses.

. Dynamic data from the original process can be capturgu-es
cially proxies.

. Functionality available on the target site can be abkicaover
as imports, especially resources.

. Dynamic linking will check all type assumptions, espégiaf
contained proxy connections.

The implementation of this functionality again is usingkpiicg.
It largely consists of straightforward utilisation of appriate oper-
ating system services, such as ports, sockets, and SSHeuBgye
building on pickling and dynamic components, distributleence
is made simple and type-safe, yet expressive. Note agairdyha
namic type checking is only necessary @&stablishinga connec-
tion, lateruseof it for communication is statically type-safe.

Note also that due to pickling — which means copying — no dis-
tributed garbage collection is necessary. The only intecgss ref-
erences are proxies. Currently, the Alice system does keep f
tions for which proxies have been created live for the reghef
process’s life time. In principle, this can lead to spac&deahen
dynamic communication patterns are implemented. It resiaibe
seen whether this is a problem in practice.

10.3 Example

As a simple example for a client/server architecture with bi
directional communication, consider a minimal chat roonm-co
sisting of a chat server to which multiple clients can comnmsing
the generated URL. For simplicity, we omit error handling.

This example does not require the full power of dynamic com-
ponents, because it does little more than communications Tie
connection is established by offering merely a packageausof
a full component — no imports are required on the target Bitéh

sides need to agree on a signature for the exchanged pad&age.
sically, it describes the server interface:

signature SERVER =

sig
val register : (string — unit) — unit
val broadcast : string — unit

end

Clients that register with the server will receive all megsasent
by other clients, and they can broadcast messages themselve
Here is the full code for the server:

val clients = ref nil
fun register client = clients := client :: Iclients
fun broadcast message =
List.app (fn receive = spawn receive message) (!clients)

structure Server = (val register = proxy (mutex () register)
val broadcast = proxy broadcast)

val url = offer (pack Server : SERVER)

do TextlO.print (url ~ "\n")

The server simply keeps a list of registered clients (repres
by their receive functions); broadcasting iterates over this list and
forwards the message to each. In order to avoid having to wait
for each client in turn to receive the message, forwardirgpbas
asynchronously, using a future created withwn. Moreover, since
the client list is stateful, we have to avoid race conditiovisen
several clients try to register at the same time. The exgesgster
function is hence synchronised on a fresh mutex lock.

The code for a client is even simpler:

val [url, name] = CommandLine.arguments ()

structure Server = unpack take url : SERVER
do Server.register (proxy TextlO.print)

fun loop () = case TextlO.inputLine TextlO.stdIn of
| NONE = OS.Process.exit OS.Process.success
| SOME line =
(Server.broadcast (name ~ ": " ~ line); loop ())
do loop ()

It expects a server URL and a user name on the command line,
registers with the server, and simply forwards everythiyyetl

by the user to the server. Note that the calkdgister is a proxy

call, passing another proxy as argument, thereby estaigithe
bi-directional connection.

11. Futures and Concurrency

An important feature of Alice ML we have ignored so far &we
tures[27, 19]. Futures are place-holders for undetermined galue
A thread encountering a future blocks implicitly until thelwe is
available. This is known agata flow synchronisatigrand requires
that futures aréransparentmeaning that they do not form a special
type, and any value can potentially be a future. This givéisoor
onal support for asynchronicity and enables elegant faatran of
a wide range of concurrency abstractions.

Efficiently integrating futures requires extension of thstaact
store model. We have to throw in one additional kind of node:

e Future represents a future in the data graph. Depending on the
kind of future [27], future nodes may have at most one child
node, e.g. a closure in the case of a lazy future.

A future node willmorphinto another kind when the value is de-
termined. It may also morph into another future, enablirgjming.
Internal to the abstract store, morphing is realised by mgrthe
future node as &orward to the actual node, similar to techniques
found in the implementation of logic languages [2]. Forveaade



transparently followed by the store abstraction, and ggelzallec-
tion performs path compression by removing forwards.

In order to maintain the closedness property — and avoid the

significant complications of distributed state at systeuelle- fu-
tures are never pickled. Instead, whenever futures areiate®d,

the picklertouchesthem, i.e., synchronises and does not proceed
before all futures have been determined.

Apart from the store level, no fundamental changes are neces

sary to the described system architecture to reconcildipgchvith
futures. However, to maximise module-level laziness — gqedti-
ically, to support lazy linking — we have to insert lazy susgiens
in three places of the previously described design:

e Type representationare computed lazily, by wrapping every
reified declaration into a lazy future. That is, we change the
translation scheme from Figure 3 to

[type @ tycon = ty]
[signature sigid = sigexp]

val tycon$
val sigid$

lazy [\a.ty]
lazy [sigezp]

e Structure acces¢cf. Section 7.3) have to be treated as lazy
projections, i.e., an identifiex.B.C maps to (a hoisted instance
of) lazy #C(#B A). An open declaration is considered sugar for
a sequence of projecting declarations, and thus likewikzys

e Importsshould be performed lazily, which is achieved by wrap-
ping theunpack into a lazy future:

import spec from url
open (lazy unpack link url : sig spec end)

~>

Care also has to be taken to make all layers thread-saferdn pa
ticular, a stateful representation of runtime types rezgigaution:
because types are implemented in ML land, atomicity caneot b
assumed for type checks, and at the same time, the type graphs
potentially be shared between different ML threads. Consety,
algorithms that mutate parts of a type graph for optimisapar-
poses have to make sure that no other thread can ever se&cibin i
sistent state. In the Alice system, we strategically intartporary
futures in the graph to achieve fine-grained locking of sapbs
during mutation.

11.1 Modules and Types
Futures in Alice ML may not only occur on the level of terms,

but also on the level of modules. Since runtime types may be

computed from types stemming from modules that are futtines,
also induces a notion diype futures In particular, Alice ML's
lazy linking strategy gives rise to a notion laizy typeq18] as a
pervasive phenomenon. Lazy types are touched only by éxptic
implicit uses ofunpack or by pickling, but may, through modules,
trigger arbitrary term-level computations.

Here is a simple example of a lazy computation that is trigder
through a dynamic type check:

structure M = lazy struct do print "Now.” type t = int end
val p = pack (val it = 5) : (val it : int)
structure X = unpack p : (val it : M.t)

The structureM is constructed lazily. However, the dynamic type
check performed bynpack has to matchnt againstM.t, which re-
quires the representation df.t. The type checker hence touches
the lazy future representing, thereby forcing evaluation. In prac-
tice, such cases primarily arise in conjunction with lazyking
(as defined by the modifieichport expansion above), where type
checking one import may require loading of a seemingly ateel
one, because some type information is imported transjtivel
Since pickling forces futures, performing it can be anotiarse
for triggering lazy computations through type futures. Toleow-
ing variation of the above example demonstrates this:

structure M = lazy struct do print "Now.” type t = int end
val p = pack (val it = 5) : (val it : M.t)
do Pickle.save("five”, p)

Pickling the package involves pickling the typem.t from its
signature, and will hence triggef.

Thanks to the implementation of runtime types as regular ML
values, realising lazy type semantics requires no extoateff all —
it is simply reflected by the appearance of term-level fugunethe
type data structures.

11.2 Thread Collection and Thunkification

Naturally, every thread possesses its own stack. Like @viery
else in the Alice runtime, stacks and thread objects areatial in
the store. This allows the Alice VM to garbage collect thieettht
block on futures that are not reachable anymore and thusesat n
be determined.

In principle, this set-up would also allow us to support due
thunkification To do so, it would suffice to provide an operation
that delivers the current continuation of a thread, daticc. The
representation of a captured continuation would conta@fexence
to the stack, and consequently, pickling it would amounhtoki-
fying the thread and enable passing it to another processetts,
we have not pursued this possibility, because we are coadern
about the risk of (silently) breaking stateful abstracsievith such
a feature, especially locks.

12. Pickle Verification

We argue that the design we have presented so far ensures type
safety for pickles in the sense that there is no way to corttupt
runtime system fronwithin the language: for any pickle written
by the system, unpickling is always safe, regardless of tyjze
matches. However, there remains the obvious possibilély/ick-
les are forgeautsidethe control of the system (this may include
the use of the library’s low-level /0O subsystem). For thoases,
the mechanisms presented so far are insufficient to maitypan
safety. In other words, we protect against accident, buagatnst
malice. To distinguish these cases, we also speahtefnal vs.
externaltype safety.

To achieve external safety, we not only have to check type-
correct usage of pickles, we also have to check their inherent
consistencyln analogy to Java bytecode verification, we call such
a check pickleverification

So far, the Alice system implements only a very limited antoun
of verification: the raw unpickler checks that the pickle eds a
valid description of a store data graph. This is sufficiertapture
most practical cases of erroneous pickles, but obviousés dwt
protect against malicious attackers who craft bogus pickihat
form a valid store graph description, but where that grapfsdwt
comply to the higher-level type system.

Verification of Alice ML pickles is non-trivial. In particaalr,
it is more difficult than the byte code verification performied
languages like Java for at least two reasons:

1. Java semantics includes dynamic checks at individuahoaet
calls, so that much pressure is taken from verification and in
stead shifted to runtime errors. For Alice ML, full statiqgy
safety would have to be established.

2. Pickles do not only include compiler generated code tad al
dynamically computed data. In effect, verification mustdeen
be able to type-check arbitrary portions of the heap.

Despite these difficulties, we believe that the architectle-
scribed in this paper can be reconciled with verification.sée
why, let us first make three observations:



1. The raw pickling service ensures that a pickle can be trans
formed into a valid data graph. Hence, verification can be per
formed by a higher layer inspecting the resulting graph.

2. Verification amounts to typeheckinga data graph; the outer-
most type to check against is always known, henceecon-
structionis necessary.

3. Because pickles are closed, type checking always ispeefd
against an empty environment.

These points imply that checking can be performed by a dicect
algorithm that propagates type information inwards in orte
check subgraphs. Consequently, in most cases, no additigrea
annotations are needed in the data graph itself. We idetitdy
following exceptions:

e Functions. Obviously, type checking would require a typed
code format and thug/ped compilation(i.e., the translations
given in Sections 6-7 had to be refined). The internal type
system would have to be sufficiently expressive to embrace ou
compilation of modules. While not straightforward, we see n
principal problem in achieving this. The code typing alseegi
the types of respective closure environments.

e Abstract TypesTo check values of abstract type, type names

higher-order, platform-independent pickles, a comporsgstem,
and a first-class compiler. As Oz is a dynamically checked lan
guage however, no type safety can be guaranteed. No vedficat
is performed either, such that bogus pickles can crash ttersy
despite dynamic checking. On the other hand, pickling in &bz
is more expressive than in Alice ML, providing distributedifres.
The price is a significantly more complex semantics and laggu
implementation with multiple modes of pickling and a stravegd
for distributed garbage collection, which we wanted to evoi

Erlang. Erlang [5] is a dynamically checked distributed lan-
guage for embedded telecommunications systems. Procemsses
be spawned on different nodes in a network and communicate
through channels, using copying like proxies. Althougtraid is a
higher-order language, functions cannot directly be comnaied.
Erlang primarily targets embedded systems, consequerifynot
concerned with security or inhomogeneous networks.

ML. In the world of typed functional programming, both Stan-
dard ML of New Jersey as well as Objective Caml feature pick-
ling mechanisms. In SML/NJ, pickling is used in separate itan
tion [4] and reuses the garbage collection infrastructOfgective
Caml provides a library moduléarshal [15], which allows pick-
ling of arbitrary values (except objects). In neither sgstEckling

must be mapped to their representation types. This requiresis safe, portable, or higher-order, although Objective Camables

maintaining a type heap [23], either explicitly, or moreibas
implicitly by embedding it pointwise into the representatiof
abstract type names with constructetw : int x ty — tycon.

Exception ConstructorsSimilarly to abstract types, the con-
structor heap has to be represented in typed form, in order to
derive the argument type of constructed values. Again, th&t m
obvious way to do this is pointwise, i.e. by hooking the type
information into the representation of individual constars.

Note thatpackagesalready contain the necessary type information
for the embedded module.

Looking at the list, we are positive that verification woulot n
require substantial changes to our set-up. The only majangé
is the requirement for a typed code format. The remaining difit
additional runtime type information seem easy and cheapeto g
We leave exploration of these ideas for future work.

13. Related Work

Many of the individual techniques we build upon are influehbg
previous work. We only mention the most prominent systems,he
more comprehensive comparisons of existing mechanisnpsdior
ling and distribution can be found in [14] and [26].Unforately,
surprisingly little has been published on the actual imm@atation
of pickling services, so that most of the discussion is kmlito what
can be gathered from system documentation and experirentat

CLU, Modula-3and Java. The first pickling mechansim in a pro-
gramming system was developed in the context of CLU [12]yOnl
“transmissible” types could be pickled and no type inforiomat
was included. Programmers had to provide transformatiow-fu
tions to make abstract types transmissible. CLU later regisimi-
lar mechanisms for the object-oriented languages Mod{ifg-énd
Java [22]. Neither of these mechanisms meets all the regaines
stated in Section 1.2. In particular, they remain limitethwespect
to higher-orderness, type safety and portability. OnlyaJansures
the latter, and it performs verification on class files. Cldes can
be transmitted separately to simulate higher-ordernaesdome by
Java’s remote method invocation (RMI) [33], but that is flagnd
significantly weakens static guarantees.

Oz/Mozart. The closest relative to Alice ML with respect to its
focus on pickling is the Oz/Mozart system [11], also featgri

pickling of functions as pointers into the address spacéefro-
gram, which limits portability to the exact same program.

HashCaml [6] wraps Ocaml’s marshaller with abstractioie-sa
runtime type checking. Unlike our design, it requires typsging
polymorphism. Types are represented as simple hashesatyer
hence subtyping is not supported.

ML derivatives. Acute [29] is an ML-based language for dis-
tributed programming that is closest to Alice ML and prowde
similar generic pickling mechanism. Unlike in Alice ML, fding

is not separated from dynamic typing, and all inter-process-
munication hence dynamically typed. Also, Acute suppantglicit
rebinding of resources, which we exclude for security reasés
in the current Alice system, no pickle verification is pogsib

Facile [32] extended Standard ML with facilities for concur
rency and distributed programming inspired by thealculus. To
achieve dynamic connectivity, Facile requires taking alirection
through a centradtructure serverwhich allows making ML struc-
tures persistent. A structure is retrieved from the seryaehuest-
ing a module with a suitable signature, which naturally iegpl
a form of dynamic signature check. If several structurescmat
given signature, the last one stored is returned.

JoCaml [9] takes a similar stake as Facile, but extending Ob-
jective Caml and with concurrency being based on the ricbigr J
Calculus. Communication is type-safe but limited to mongsha
values and no longer higher-order in the most recent version

Ohori developed a typed translation of high-level intergass
communication operations into low-level primitives in ar.Nke
language [20].

Clean. The only functional language with a type-safe form of per-
sistence is Clean, which features high-level /O based oraiuhy
ics [21]. However, pickles are neither higher-order nortalle.

Pickler combinators. Kennedy implements a limited form of
pickling in form of a combinator library written in ML [13]. A
though surprisingly flexible, a library approach is boundatibon
most of our requirements: combinators are neither univVéesae-
cially, they cannot support higher-orderness), nor cay tjuaran-
tee properties like transparency or closedness. Efficiaimyis a
major concern: maintaining sharing requires extra effad aan
only be achieved for a statically bounded number of typesabise
it needs an explicit environment per type.



14. Conclusion module discipline with separate compilation, dynamic iligk and

Alice ML and the Alice Programming System have been designed ggzsk "Sna?é”;ﬁgzgCféégpg:égggr/a/?ﬂn}?ssﬁtie_nsf ':iaet}’}vkz;‘lrf

with a universal pickling service in mind, from ground upcliing i T ) U ) '

in this system is higher-order and typed, it embraces persis [12] M. Herlihy and B. Liskov. A value transmission method &bstract

code mobility and dynamic modularity in a type-safe manner. data types.Transactions on Programming Languages and Systems
We have shown how such a pickling service can be implemented 4(4):527-551, Oct. 1982.

in a modular architecture based on layered abstractioreslaier- [13] A. Kennedy. Pickler combinatorslournal of Functional Program-
ing enables separation of concerns, each layer is smallanga: ming 14(6):727-739, Nov. 2004.

rably easy to implement. The main innovations lie in (1) thhacs [14] L. Kornstaedt. Design and Implementation of a Programmable
ture of code with function granularity and embedded highreler Middleware Doctoral dissertation, Saarland University, 2006.
values, which dynamic separate compilation takes advarutg2) [15] X. Leroy. The Objective Caml SystemINRIA, 2003. http:
the higher-order representation of components, and (3xthil- //pauillac.inria.fr/ocaml/htmlman/.

ance of type passing polymorphism. The approach has beeedro

7 2P . . . 16] R. Milner, M. Tofte, and R. HarperThe Definition of Standard ML
practical in the existing implementation of the Alice systavhich (6] The MIT Press, 1990. P

has been ported to x86, AMD-64 and PowerPC architecturel, wi
full interoperability.
Both language and implementation considerably benefit from

[17] C. Muller. Run-time byte code compilation, optimizat, and
interpretation for Alice. Diploma thesis, Saarland Unsigr, 2006.

the expressiveness of pickling and the modular architeainder- [18] G. Neis. A semantics for lazy types. Bachelor's thesisiversitat
lying it. Alice ML provides a level of dynamicity that — to theest des Saarlandes, Saarbricken, Germany, Sept. 2006.

of our knowledge — is not available in any other compiledf-sta  [19] J. Niehren, J. Schwinghammer, and G. Smolka. A conatiteenbda
ically typed programming language system, including theoih calculus with futures.Theoretical Computer Sciencg64(3):338-
much more lax type systems. 356, Nov. 2006.

The main direction for future work is the integration of full [20] A. Ohori and K. Kato. Semantics for communication ptives
scale pickle verification. While verification may not be rigqd in in a polymorphic language. 180th Symposium on Principles of
most cases dbcal distributed programming, it seems a necessity Programming Languagepages 99-112. ACM Press, 1993.
if we want to truly embrace the idea openprogramming, where [21] M. Pil. First class file I/0. In W. Kluge, editosth International
we have to deal with untrusted principals. Workshop on Implementation of Functional Languagesume 1268

Another interesting direction would be to extend the piugli of Lecture Notes in Computer Scien&pringer-Verlag, 1996.
service to Supponhcrement.alor lazy pickling and unplckllng, S0 [22] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Picklisate in the
that it could be used to realise large structured persisi@iabases java systemComputing System8(4):291-312, 1996.

with incremental updates to selected subgraphs. Howehisrfear

from obvious how this could be achieved [23] A. Rossberg. Generativity and dynamic opacity for edugttypes.

In Principles and Practice of Declarative Programmindppsala,
Sweden, Aug. 2003.
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