
Chapter 1

Alice Through the
Looking Glass

Andreas Rossberg1 Didier Le Botlan1 Guido Tack1

Thorsten Brunklaus1 Gert Smolka1

Abstract. We present Alice, a functional programming language that has been
designed with strong support for typed open programming. It incorporates concur-
rency with data flow synchronisation, higher-order modularity, dynamic modules,
and type-safe pickling as a minimal and generic set of simple, orthogonal features
providing that support. Based on these mechanisms Alice offers a flexible notion
of component, and high-level facilities for distributed programming.

1.1 INTRODUCTION

Software is decreasingly delivered as a closed, monolithic whole. As its com-
plexity and the need for integration grows it becomes more and more important to
allow flexible dynamic acquisition of additional functionality. Program execution
is no longer restricted to one local machine only: with net-oriented applications
being omni-present, programs are increasingly distributed across local or global
networks. As a result, programs need to exchange more data with more structure.
In particular, they need to exchange behaviour, that is, data may include code.

We refer to development for the described scenario as open programming. Our
understanding of open programming includes the following main characteristics:

� Modularity, to flexibly combine software blocks that were created separately.
� Dynamicity, to import and export software blocks in running programs.
� Security, to safely deal with unknown or untrusted software blocks.
� Distribution, to communicate data and software blocks over networks.
� Concurrency, to deal with asynchronous events and non-sequential tasks.

1Programming Systems Lab, Saarland University, Saarbrücken, Germany;
Email: rossberg,botlan,tack,brunklaus,smolka@ps.uni-sb.de

1

Dynamic software blocks are usually called components.
Most practical programming languages today have not been designed with

open programming in mind. Even the few that have been – primarily Java [9]
– do not adequately address all of the above points. For example, Java is not
statically type-safe, has only weak support for import/export, and rather clunky
distribution and concurrency mechanisms.

Our claim is that only a few simple, orthogonal concepts are necessary to pro-
vide a flexible, strongly typed framework supporting all aspects of open program-
ming. Components are a central notion in this framework, but instead of being
primitive they can be derived from the following simpler, orthogonal concepts:

� Futures, which allow for light-weight concurrency and laziness.
� Higher-order modules, to provide genericity and encapsulation.
� Packages, to wrap modules into self-describing, dynamically typed entities.
� Pickling, to enable generic persistence and distribution.
� Proxy functions, to enable remote calls into other processes.

To substantiate our claim, we developed the programming language Alice ML, a
conservative extension of Standard ML [13]. It is largely inspired by Oz [26, 14,
28], a relational language with advanced support for open programming, but lack-
ing any notion of static typing. The aim of the Alice project is to systematically
reconstruct the essential functionality of Oz on top of a typed functional language.

Alice has been implemented in the Alice Programming System [2], a full-
featured programming environment based on a VM with just-in-time compilation,
support for platform-independent persistence and platform-independent mobile
code, and a rich library for constraint programming.

Organisation of the paper. This paper describes the design of the open pro-
gramming features of Alice. Futures provide for concurrency (Section 1.2). Higher-
order modules enhance modularity (Section 1.3). Type-safe marshalling is en-
abled by packages (Section 1.4). Components (Section 1.5) are built on top of
these mechanism (Section 1.6). Distribution is based on components and RPCs
(Section 1.7). We briefly discuss the implementation (Section 1.8), compare to
some related work (Section 1.9), and conclude with a short outlook (Section 1.10).

1.2 FUTURES

Programs communicating with the outside world usually have to deal with non-
deterministic, asynchronous events. Purely sequential programming cannot ade-
quately handle such scenarios. Support for concurrency hence is vital.

Concurrency in Alice is based uniformly on the concept of futures, which
has been mostly adapted from Multilisp [10]. A future is a transparent place-
holder for a yet undetermined value that allows for implicit synchronisation based
on data flow. There are different kinds of futures, which we will describe in
the following sections. A formal semantics can be found in [16]. Futures are a
generic mechanism for communication and synchronisation. As such, they are

2

comparatively simple, but expressive enough to enable formulation of a broad
range of concurrency abstractions.

1.2.1 Concurrency

Future-based concurrency is very light-weight: any expression can be evaluated
in its own thread, a simple keyword allows forking off a concurrent computation:

spawn exp

This phrase immediately evaluates to a fresh concurrent future, standing for the
yet unknown result of exp. Simultaneously, evaluation of exp is initiated in a new
thread. As soon as the thread terminates, the result globally replaces the future.

A thread is said to touch a future [7] when it performs an operation that re-
quires the actual value the future stands for. A thread that touches a future is
suspended automatically until the actual value is determined. This is known as
data flow synchronisation.

If a concurrent thread terminates with an exception, the respective future is
said to be failed. Any operation touching a failed future will cause the respective
exception to be synchronously re-raised in the current thread.

Thanks to futures, threads give results, and concurrency can be orthogonally
introduced for arbitrary parts of an expression. We hence speak of functional
threads. For example, to evaluate all constituents of the application e1(e2,e3)
concurrently, it is sufficient to annotate the application as follows:

(spawn e1) (spawn e2, spawn e3)

Functional threads allow turning a synchronous function call to a function f into
an asynchronous one by simply prefixing the application with spawn:

val result = spawn f (x, y, z)

The ease of making asynchronous calls even where a result is required is important
in combination with distributed programming (Section 1.7), because it allows for
lag tolerance: the caller can continue its computation while waiting for the result
to be delivered. Data flow synchronisation ensures that it will wait if necessary,
but at the latest possible time, thus maximising concurrency.

Futures already provide for complex communication and synchronisation. Con-
sider the following example:

val offset = spawn (sleep(Time.fromSeconds 120); 20)
val table = Vector.tabulate (40, fn i) spawn fib(i + offset))

The first declaration starts a thread that takes two minutes to deliver the value
20. The computation for the table entries in the second declaration depends on
that value, but since the entries are computed concurrently, construction of the
table can proceed without delay. However, the spawned threads will all block
until offset is determined. Consecutive code can already access the table, but if it
touches an entry that is not yet determined, it will automatically block.

Besides implicit synchronisation, Alice offers primitives for explicit synchro-
nisation, including non-deterministic choice. They are sufficient to encode com-
plex synchronisation with multiple events or timeouts [22].

3

1.2.2 Laziness

It has become a common desire to marry eager and lazy evaluation, and the future
mechanism provides an elegant way to do so. While keeping eager application
semantics, full support for laziness is available through lazy futures: the phrase

lazy exp

will not evaluate exp, but instead returns a fresh lazy future, standing for the yet
unknown result of exp. Evaluation of exp is triggered by a thread first touch-
ing the future. At that moment, the lazy future becomes a concurrent future and
evaluation proceeds as for concurrent futures.

In other words, lazy evaluation can be selected for individual expressions.
For example, the expression (fn x) 5) (lazy raise E) will not raise E. A fully lazy
evaluation regime can be emulated by prefixing every subexpression with lazy.

1.2.3 Promises and Locking

Functional threads and lazy evaluation offer convenient means to introduce and
eliminate futures. However, the direct coupling between a future and the compu-
tation delivering its value often is too inflexible. Promises are a more fine-grained
mechanism that allows for creation and elimination of futures in separate opera-
tions, based on three basic primitives:

type α promise
val promise : unit ! α promise
val future : α promise ! α

val fulfill : α promise � α ! unit

A promise is an explicit handle for a future. Creating one by calling promise vir-
tually states the assurance that a suitable value determining that promised future
will be made available at some later point in time, fulfilling the promise. The fu-
ture itself is obtained by applying the future function to the promise. A promised
future is not replaced automatically, but has to be eliminated by explicitly apply-
ing the fulfill function to its promise. A promise may only be fulfilled once, any
further attempt will raise the exception Promise.

Promises allow for partial and top-down construction of data structures with
holes, e.g. a tail-recursive formulation of the append function [22]. However, they
are particularly important for concurrent programming: for example, they can be
used to implement streams and channels as lists with a promised tail. They also
provide an important primitive for programming synchronisation.

For instance, Alice requires no primitive locking mechanisms, they can be
fully bootstrapped from promises plus atomic exchange on references, a variant
of the fundamental test-and-set operation [10]:

val exchange : α ref � α ! α

As a demonstrating example, Figure 1.1 presents a function implementing mutex
locks for synchronising an arbitrary number of argument functions.2 The follow-

2Alice defines exp1 finally exp2 as syntactic sugar for executing a finaliser exp2 after
evaluation of exp1 regardless of any exceptional termination.

4

(* mutex : unit ! (α ! β) ! (α ! β) *)
fun mutex () = let

val r = ref () (* create lock *)
in

fn f) fn x) let
val p = promise ()

in
await (exchange (r, future p)); (* take lock *)
f x
finally fulfill (p, ()) (* release lock *)

end
end

FIGURE 1.1. Mutexes for synchronised functions

ing snippet illustrates its use to ensure non-interleaved concurrent output:
val sync = mutex ()
val f = sync (fn x) (print ”x = ”; print x; print ”nn”))
val g = sync (fn y) (print y; print ”nn”))
spawn f ”A”; spawn g ”B”

1.2.4 Modules and Types

Futures are not restricted to the core language, entire modules can be futures, too:
module expressions can be evaluated lazily or concurrently by explicitly prefixing
them with the corresponding keywords lazy or spawn. In Section 1.5 we will
see that lazy module futures are ubiquitous as a consequence of the lazy linking
mechanism for components.

The combination of module futures and dynamic types (Section 1.4) also im-
plies the existence of type futures. They are touched only by the unpack operation
(Section 1.4.1) and by pickling (Section 1.4.2). Touching a type generally can
trigger arbitrary computations, e.g. by loading a component (Section 1.5).

1.3 HIGHER-ORDER MODULES

For open programming, good language support for modularity is essential. The
SML module system is quite advanced, but still limited. Adopting a long line of
work [5, 11, 12, 23], Alice extends it with higher-order functors and local modules
(for dealing with packages, Section 1.4).

Less standard is the support for nested and abstract signatures: as in Objective
Caml, signatures can be put into structures and even be specified abstractly in
other signatures. Abstract signatures have received little attention previously, but
they are interesting because they enable the definition of polymorphic functors,
exemplified by a generic application functor:

functor Apply (signature S signature T) (F: S ! T) (X: S) = F X

Polymorphic functors are used in the Alice library to provide certain functionality
at the module level (see e.g. Section 1.7.3). More importantly, nested signatures

5

turn structures into a general container for all language entities, which is crucial
for the design of the component system (Section 1.5). The presence of abstract
signatures renders module type checking undecidable [12], but this has not turned
out to be a problem in practice.

1.4 PACKAGES

When a program is able to import and export functionality dynamically, from
statically unknown sources, a certain amount of runtime checking is inevitable to
ensure the integrity of the program and the runtime system. In particular, it must
be ensured that dynamic imports cannot undermine the type system.

Dynamics [15, 1] complement static typing with isolated dynamic type check-
ing. They provide a universal type dyn of ‘dynamic values’ that carry runtime type
information. Values of every type can be injected, projection is a complex type-
case operation that dispatches on the runtime type found in the dynamic value.
Dynamics adequately solve the problem of typed open programming by demand-
ing external values to uniformly have type dyn. We see several hurdles that never-
theless prevented the wide-spread adoption of dynamics in practice: (1) their too
fine level of granularity, (2) the complexity of the type-case construct, (3) the lack
of flexibility with matching types.

We modified the concept of dynamics slightly: dynamics in Alice, called pack-
ages, contain modules. Projection simply matches the runtime package signature
against a static one – with full respect for subtyping. Reusing module subtyp-
ing has several advantages: (1) it keeps the language simple, (2) it is flexible
and sufficiently robust against interface evolution, and (3) it allows the program-
mer to naturally adopt idioms already known from modular programming. More-
over, packages allow modules to be passed as first-class values, a capability that
is sometimes being missed from ML, and becomes increasingly important with
open programming. A formal semantics for packages can be found in [21].

1.4.1 Basics

A package is a value of the abstract type package. Intuitively, it contains a mod-
ule, along with a dynamic description of its signature. A package is created by
injecting a module, expressed by a structure expressions strexp in SML:3

pack strexp : sigexp

The signature expression sigexp defines the package signature. The inverse oper-
ation is projection, eliminating a package. The module expression

unpack exp : sigexp

takes a package computed by exp and extracts the contained module, provided that
the package signature matches the target signature denoted by sigexp. Statically,

3Since Alice supports higher-order modules, strexp includes functor expressions.

6

the expression has the signature sigexp. If the dynamic check fails, the pre-defined
exception Unpack is raised.

A package can be understood as a statically typed first-class module as pro-
posed by Russo [24, 23], wrapped into a conventional dynamic. However, cou-
pling both mechanisms enables unpack to exploit subtype polymorphism, which
is not possible otherwise, due to the lack of subtyping in the ML core language.

1.4.2 Pickling

The primary purpose of packages is to type dynamic import and export of high-
level language objects. At the core of this functionality lies a service called
pickling. Pickling takes a value and produces a transitively closed, platform-
independent representation of it, such that an equivalent copy can be constructed
in other processes. Since ML is a language with first-class functions, a pickle can
naturally include code. Thanks to packages, even entire modules can be pickled.

One obvious application of pickling is persistence, available through two prim-
itives in the library structure Pickle:

val save : string � package ! unit
val load : string ! package

The save operation writes a package to a file of a given name. Any future occur-
ring in the package (including lazy ones) will be touched (Section 1.2.1). If the
package contains a local resource, i.e. a value that is private to a process, then the
exception Sited is raised (we return to the issue of resources in Section 1.5.3). The
inverse operation load retrieves a package from a file.

For example, we can write the library structure Array to disk:

Pickle.save (”array.alc”, pack Array : ARRAY)

It can be retrieved again with the inverse sequence of operations:

structure Array1 = unpack Pickle.load ”array.alc” : ARRAY

Any attempt to unpack it with an incompatible signature will fail with an Unpack
exception. All subsequent accesses to Array1 or members of it are statically type-
safe, the only possible point of type failure is the unpack operation.

Note that the type Array1.array will be statically incompatible with the original
type Array.array, since there is no way to know statically what type identities are
found in a package, and all types in the target signature must hence be considered
abstract. If compatibility is required, it can be enforced in the usual ML way,
namely by putting sharing constraints on the target signature:

structure Array1 = unpack Pickle.load ”/tmp/array.alc”
: ARRAY where type array = Array.array

1.4.3 Parametricity, Abstraction Safety and Generativity

By utilising dynamic type sharing it is possible to dynamically test for type equiv-
alences. In other words, evaluation is no longer parametric [19]. For example,

7

functor F (type t) = unpack load file : (val it : t)

is a functor that behaves differently depending on what type t it is passed.4

Parametricity is important because it induces strong static invariants about
polymorphic types, that particularly guarantee abstraction [19] and enable effi-
cient type erasing compilation. On the other hand, packages enforce the presence
of non-parametric behaviour. Alice thus has been designed such that the core
language, where polymorphism is ubiquitous, maintains parametricity. Only the
module level employs dynamic type information – module evaluation can be type-
dependent. This design reduces the costs for dynamic types and provides a clear
model for the programmer: only explicit types can affect the dynamic semantics.

The absence of parametricity on the module level still raises the question of
how dynamic typing interferes with type abstraction. Can we sneak through an
abstraction barrier by dynamically discovering an abstract type’s representation?
For instance:

signature S = (type t; val x : t)
structure M = (type t = int; val x = 37) :> S
structure N = unpack (pack M : S) : (S where type t = int)
val y = N.x + 1

Fortunately, the unpack operation will fail at runtime, due to a dynamically gen-
erative interpretation of type abstraction: with every abstraction operator :> eval-
uated, fresh type names are generated dynamically [20]. Abstraction safety is
always maintained, even when whole modules cross process boundaries, because
type names are globally unique.

Note that when fully dynamic type generativity is too strong to achieve proper
type sharing between processes, the implementation of an abstract type can simply
be exported as a pre-evaluated component (Section 1.5.4).

1.5 COMPONENTS

Software of non-trivial complexity has to be split into functional building blocks
that can be created separately and configured dynamically. Such blocks are called
components. We distinguish components from modules: while modules provide
name spacing, genericity, and encapsulation, components provide physical sepa-
ration and dynamic composition. Both mechanisms complement each other.

Alice incorporates a powerful notion of component that is a refinement and
extension of the component system found in the Oz language [6], which in turn
was partially inspired by Java [9]. It provides all of the following:

� Separate compilation. Components are physically separate program units.
� Lazy dynamic linking. Loading is performed automatically when needed.
� Static linking. Components can be bundled into larger components off-line.
� Dynamic creation. Components can be computed and exported at runtime.

4Alice allows abbreviating signatures sig . . . end with (. . .), likewise for structures.

8

� Type safety. Components carry type information and linking checks it.
� Flexibility. Type checking is tolerant against interface changes.
� Sandboxing. Custom component managers enable selective import policies.

1.5.1 Introduction

A program consists of a – potentially open – set of components that are created
separately and loaded dynamically. Static linking allows both to be performed on
a different level of granularity by bundling given components to form larger ones.
Every component defines a module – its export, and accesses an arbitrary number
of modules from other components – its imports. Import and export interfaces are
fully typed by ML signatures.

Each Alice source file defines a component. Syntactically, it is a sequence
of SML declarations that is interpreted as a structure body, forming the export
module. The respective export signature is inferred by the compiler. A component
can access other components through a prologue of import declarations:

import spec from string

The SML signature specification spec in an import declaration describes the en-
tities used from the imported structure, along with their type. Because of Alice’s
higher-order modules (Section 1.3), these entities can include functors and even
signatures. The string contains the URL under which the component is to be ac-
quired at runtime. The exact interpretation of the URL is up to the component
manager (Section 1.5.3), but usually it is either a local file, an HTTP web address,
or a virtual URL denoting local library components. For instance:

import structure Server : sig val run : (α!β) ! (α!β) end
from ”http://domain.org/server”

For convenience, Alice allows the type annotations in import specifications to
be dropped. In that case, the imported component must be accessible (in compiled
form) during compilation, so that the compiler can insert the respective types.

1.5.2 Program Execution and Dynamic Linking

A designated root is the main component of a program. To execute a program,
its root component is evaluated. Loading of imported components is performed
lazily, and every component is loaded and evaluated only once. This is achieved
by treating every cross-component reference as a lazy future (Section 1.2.2). The
process of loading a component requested as import by another one is referred to
as dynamic linking. It involves several steps:

1. Resolution. The import URL is normalised to a canonical form.
2. Acquisition. If the component is being requested for the first time, it is loaded.
3. Evaluation. If the component has been loaded afresh, its body is evaluated.
4. Type Checking. The component’s export signature is matched against the re-

spective import signature.

9

Each of the steps can fail: the component might be inaccessible or malformed,
evaluation may terminate with an exception, or type checking may discover a
mismatch. Under each of these circumstances, the respective future is failed with
a standard exception that carries a description of the precise cause of the failure.

1.5.3 Component Managers and Sandboxing

Linking is performed with the help of a component manager, which is a module
of the runtime library, similar to a class loader in Java [9]. It is responsible for
locating and loading components, and keeping a table of loaded components.

In an open setting it is important to be able to deal with untrusted components.
For example, they should not be given write access to the local file system. Like
Java, Alice can execute components in a sandbox. Sandboxing relies on two fac-
tors: (1) all resources and capabilities a component needs for execution are sited
and have to be acquired via import through a component manager (in particular,
they cannot be stored in a pickle); (2) it is possible to create custom managers and
link components through them. A custom manager can never grant more access
than it has itself. A custom manager hence represents a proper sandbox.

1.5.4 Dynamic Creation of Components

The external representation of a component is a pickle. It is hence possible to
create a component not only statically by compilation, but also dynamically, by
a running Alice program. In fact, a pickle created with the Pickle.save function
(Section 1.4.2) is a component and can be imported as such.

The ability to create components dynamically is particularly important for dis-
tribution (Section 1.7.3). Basically, it enables components to capture dynamically
obtained information, e.g. configuration data or connections to other processes.

1.6 DECOMPOSING COMPONENTS

What are components? The close relation to concepts presented in previous chap-
ters, like modules, packages and futures is obvious, so one might hope that there
exists a simple reduction from components to simpler concepts. And indeed, com-
ponents are merely syntactic sugar. Basically, a component defined by a sequence
of declarations dec is interpreted as a higher-order procedure:

fn link) pack struct dec end : sigexp

where link is a reserved identifier and sigexp is the component signature derived
by the compiler (the principal signature). In dec, every import declaration

import spec from s

is rewritten as5

structure strid = lazy unpack link s : sig spec end
open strid

5An open declaration merely affects scoping, it does not touch its argument.

10

val table = ref [] : (url � package) list ref

fun link parent url = let
val url’ = resolve (parent, url) (* get absolute URL *)
val p = promise ()
val table’ = exchange (table, future p) (* lock table *)

in
case List.find (fn (x,y)) x = url’) table’ of

SOME package) (* already loaded *)
(fulfill (p, table’); package) (* unlock, return *)

j NONE) let (* not loaded yet *)
val component = acquire url’ (* load component *)
val package = lazy component(link url’) (* evaluate *)

in
fulfill (p, (url’,package) :: table’); (* unlock *)
package

end
end

FIGURE 1.2. The essence of a component manager

where strid is a fresh identifier. The expansion makes laziness and dynamic type
checking of imports immediately obvious. Component acquisition is encapsulated
in the component manager represented by the link procedure. Every component
receives that procedure for acquiring its imports and evaluates to a package that
contains its own export. The link procedure has type string ! package, taking a
URL and returning a package representing the export of the respective component.
Imports are structure declarations that lazily unpack that package.

When a component is requested for the first time the link procedure loads it,
evaluates it and enters it into a table. Figure 1.2 contains a simple model imple-
mentation that assumes existence of two auxiliary procedures resolve, for normal-
ising URLs relative to the URL of the parent component, and acquire for loading
a component. The parent URL is required as an additional parameter to enable the
respective resolution. To achieve proper re-entrancy, the manager uses promises
to implement locking on the component table (Section 1.2.3), and unlocks it be-
fore evaluating the component (hence the lazy application).

Giving this reduction of components, execution of an Alice program can be
thought of as evaluation of the simple application

link ”.” root

where link is the initial component manager and root is the URL of the program’s
root component, resolved relative to the “current” location, which we indicate by
a dot here.

1.7 DISTRIBUTION

Distributed programming can be based on only a few high-level primitives that
suffice to hide all the embarrassing details of low-level communication.

11

1.7.1 Proxies

The central concept for distribution in Alice are proxies. A proxy is a mobile
wrapper for a stationary function: it can be pickled and transferred to other pro-
cesses without transferring the wrapped function itself. When a proxy function
is applied, the call is automatically forwarded to the original site as a remote in-
vocation, where argument and result are automatically transferred by means of
pickling.

Proxies are created using the primitive
val proxy : (α ! β) ! (α ! β)

For instance, the expression proxy (fn x) x+1) creates a simple proxy.
All invocations of a proxy are synchronous. In order to make an asynchronous

call, it suffices to wrap the application using spawn (Section 1.2.1). This im-
mediately returns a future that will be replaced by the result of the remote call
automatically once it terminates.

Note that all calls through proxies are statically typed.

1.7.2 Client/Server

To initiate a proxy connection, a pickle must be first transferred between pro-
cesses by other means. The Alice library supports two main scenarios. In the
client/server model a client establishes a connection to a known server. A service
offered by a server takes the form of a local component, which we refer to as
the mobile component. Mobile components can be made available in a network
through a simple transfer mechanism adapted from Mozart [14]. To employ it, a
component is first packaged (Section 1.4), and then made available for download:

val offer : package ! url

Given a package (Section 1.4), this function returns a URL, called a ticket, which
publicly identifies the package in the network. A ticket can be communicated
to the outside world by conventional means such as web pages, email, phone, or
pigeons. A client can use a ticket to retrieve the package from the server:

val take : url ! package

The package can then be opened using unpack, which dynamically checks that
the package signature matches the client’s expectations. Noticeably, this is the
only point where a dynamic type check is necessary.

In order to establish a permanent connection, the mobile component must con-
tain proxies. More complex communication patterns can be established by pass-
ing proxies back and forth via other proxies. They can even be forwarded to third
parties, for instance to enable different clients to communicate directly.

1.7.3 Master/Slave

In an alternative scenario a master initiates shifting computational tasks to a num-
ber of slave computers. The library functor Run performs most of the respective

12

procedure: it connects to a remote machine by using a low-level service (such as
ssh), and starts a slave process that immediately connects to the master. It evalu-
ates a component and sends back the result.

functor Run (val host : string
signature RESULT
functor F : COMPONENT˙MANAGER ! RESULT) : RESULT

Run is a polymorphic functor (Section 1.3) with two concrete arguments: the name
of the remote host, and a functor that basically defines a dynamic component
(Section 1.5.4). It takes a structure representing a component manager, which can
be used to access local libraries and resources on the remote host.

We illustrate a two-way connection by sketching the implementation of a dis-
tributed computation. A master process delegates computations to slaves that may
dynamically request data from the master, by calling the proxy getData. For sim-
plicity, we assume that the result of the computation is an integer.

(* Slaves use getData to acquire specific data. *)
val getData = proxy (fn key) return associated data)

(* Create a slave process on the given host. *)
fun computeOn (hostname, parameter) = let

functor Start (CM : COMPONENT˙MANAGER) = (val result = computation)
structure Slave = Run (val host = hostname

signature RESULT = (val result : int)
functor F = Start)

in
Slave.result

end

In the definition of result, the computation may use getData, which is a proxy to
the master. It can access local libraries through the component manager CM. Note
also that the computation is parameterised by the argument parameter. Then, the
following code suffices to perform distributed computations in parallel.

val res1 = spawn computeOn (”machine1”, parameter1)
val res2 = spawn computeOn (”machine2”, parameter2)

The extended version of this paper contains a more extensive example [22].

1.8 IMPLEMENTATION

An implementation of Alice must meet two key requirements: dealing efficiently
with the future-based concurrency model, and supporting open programming by
providing a truly platform-independent and generic pickling mechanism.

The appropriate technology to achieve platform independence is to use a vir-
tual machine (VM) together with just-in-time (JIT) compilation to native machine
code. Futures and light-weight threads are implemented at the core of the system,
making concurrency and data flow synchronisation efficient.

Pickling and unpickling are core VM services and available for all data in the
store. They preserve cycles and sharing, which is vital for efficient pickling. Alice

13

also features a minimisation mechanism that merges all equivalent subgraphs of a
pickled data graph [27].

Code is just heap-allocated data, it is subject to garbage collection and can be
pickled and unpickled. The VM allows different internal types of code – e.g. JIT
compiled native code and interpreted byte code – to coexist and cooperate. Dif-
ferent codes and interpreters can be selected on a per-procedure basis. Pickler and
unpickler automatically convert between these internal codes and a well-defined
external format. More details can be found in [22] and in a technical report [4].

Thanks to the pickling-based approach to distribution no complex distributed
garbage collection is required. The only inter-process references are proxies. Dis-
tributed collection of proxies will be implemented in a future version of Alice.

1.9 RELATED WORK

There is numerous work and languages concerned with some of the issues ad-
dressed by Alice. A more detailed and extensive comparison can be found in [22].

Java [9] was the first major language designed for open programming. It is
object-oriented and open programming is based on reflection, which allows other
components to exploit type information constructively. We feel that general re-
flection is expensive, invites abuse, and in practice demands a rather limited type
system, while packages avoid these issues. Concurrency and serialisation require
considerable support from the programmer, code cannot be serialised. No struc-
tural type checks are performed when a class is loaded, subsequent method calls
may cause a NoSuchMethodError, undermining the type system.

Scala [17] is a hybrid object-oriented/functional language on top of the Java
infrastructure. It has a very powerful static type system with expressive abstrac-
tion mechanisms. For example, bounded views can specify a lower bound as well
as an upper bound for an abstracted type. For comparison, a signature in Alice
is a lower bound of the abstracted component. Still, concurrency and distribution
are inherited from Java and suffer from the same shortcomings. In particular, the
expressiveness of the type system does not carry over to dynamic typing, because
Scala types are erased to Java types during compilation.

Oz/Mozart [26, 14, 28] inspired many of the concepts in Alice. Oz has very
similar high-level support for concurrency, pickling and components. The Mozart
distribution subsystem is more ambitious than Alice, supporting distributed state
and futures, for the price of considerably higher complexity. Unlike Alice, Oz is
based on a relational core language. It has no type system.

Acute [25] is probably closest in spirit to Alice. It is an experimental ML-
based language for typed open programming that guarantees safe interaction be-
tween distributed applications, although the details of distribution are left to the
programmer. Pickling allows resources to be dynamically rebound, no respective
safety mechanism is built in. Components support versioning, but look more ad-
hoc compared to Alice. Unlike in Alice, abstractions can be broken by explicit
means, for the sake of flexible versioning.

JoCaml [8] is an innovative distributed extension of OCaml based on the Join

14

calculus. Concurrency and distribution uses channels and is more high-level than
in Alice, allowing for complex declarative synchronisation patterns and thread
migration. However, JoCaml is not open: pickling is restricted to monomorphic
values stored on a global name server and there is no explicit component concept.

CML [18] is a mature concurrent extension of SML. It is based on first-class
channels and synchronisation events, where synchronization has to be fully ex-
plicit. CML does not address distribution or other aspects of open programming.

Erlang [3] is a language designed for embedded distributed applications, ap-
plied successfully for industrial telecommunication. It is purely functional with an
additional, impure process layer. Processes communicate over implicit, process-
global message channels. Erlang is untyped, but has a rich repertoire for dealing
with failure. It is not designed for open programming and does not directly sup-
port code mobility, but a distinctive feature is code update in active processes.

1.10 OUTLOOK

We presented Alice, a functional language for open programming. Alice pro-
vides a novel combination of coherent features to provide concurrency, modu-
larity, a flexible component model and high-level support for distribution. Alice
is strongly typed, incorporating a module-based variant of dynamics to embrace
openness. It is fully implemented with a rich programming environment [2], and
some small to medium-size demo applications have already been implemented
with it, including a distributed constraint solver, a multi-player network game,
and a simple framework for web scripting.

There is not yet a formal specification of the full language. Moreover, the
implementation does not yet provide extra-lingual safety and security on the level
of pickles. To that end, byte code and heap need to carry sufficient type informa-
tion to allow creation of verifiable pickles. It was a deliberate decision to defer
research on these issues to future work.

Acknowledgements We thank our former colleague Leif Kornstaedt, who co-
designed Alice and also invested invaluable amounts of work into making it fly.

REFERENCES

[1] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic typing in polymorphic
languages. Journal of Functional Programming, 5(1), 1995.

[2] The Alice Project. http://www.ps.uni-sb.de/alice, 2004. Homepage at the Program-
ming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.

[3] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming
in Erlang, Second Edition. Prentice-Hall, 1996.

[4] T. Brunklaus and L. Kornstaedt. A virtual machine for multi-language execution.
Technical report, Universität des Saarlandes, Saarbrücken, Germany, 2002.

[5] D. Dreyer, K. Crary, and R. Harper. A type system for higher-order modules. In
Principles of Programming Languages, New Orleans, USA, 2003.

15

[6] D. Duchier, L. Kornstaedt, C. Schulte, and G. Smolka. A higher-order module dis-
cipline with separate compilation, dynamic linking, and pickling. Technical report,
Universität des Saarlandes, Saarbrücken, Germany, 1998.

[7] C. Flanagan and M. Felleisen. The semantics of future and its use in program opti-
mizations. In Principled of Programming Languages, San Francisco, USA, 1995.

[8] C. Fournet, L. Maranget, and A. Schmitt. The JoCaml Language beta release. INRIA,
http://pauillac.inria.fr/jocaml/htmlman/, 2001.

[9] J. Gosling, B. Joy, and G. Steele. The Java Programming Language Specification.
Addison–Wesley, 1996.

[10] R. Halstead. Multilisp: A language for concurrent symbolic computation. TOPLAS,
7(4), 1985.

[11] X. Leroy. Applicative functors and fully transparent higher-order modules. In Prin-
ciples of Programming Languages, San Francisco, USA, 1995. ACM.

[12] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, USA, 1997.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen. Definition of Standard ML (Re-
vised). The MIT Press, 1997.

[14] Mozart Consortium. The Mozart programming system, 2004. www.mozart-oz.org.

[15] A. Mycroft. Dynamic types in ML, 1983. Draft article.

[16] J. Niehren, J. Schwinghammer, and G. Smolka. Concurrent computation in a lambda
calculus with futures. Technical report, Universität des Saarlandes, 2002.

[17] M. Odersky. Programming in Scala. École Polytechnique Féd. de Lausanne, 2005.

[18] J. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[19] J. Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-
cessing, Amsterdam, 1983. North Holland.

[20] A. Rossberg. Generativity and dynamic opacity for abstract types. In Principles and
Practice of Declarative Programming, Uppsala, Sweden, 2003.

[21] A. Rossberg. The definition of Standard ML with packages. Technical report, Univer-
sität des Saarlandes, Saarbrücken, Germany, 2005. http://www.ps.uni-sb.de/Papers/.

[22] A. Rossberg, D. Le Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice through
the looking glass (Extended mix). Technical report, Universität des Saarlandes,
Saarbrücken, Germany, 2004. http://www.ps.uni-sb.de/Papers/.

[23] C. Russo. Types for Modules. Dissertation, University of Edinburgh, 1998.

[24] C. Russo. First-class structures for Standard ML. In ESOP, Berlin, Germany, 2000.

[25] P. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams, F. Z. Nardelli, P. Habouzit,
and V. Vafeiadis. Acute: High-level programming language design for distributed
computation. Technical Report RR-5329, INRIA, 2004.

[26] G. Smolka. The Oz programming model. In Computer Science Today, volume 1000
of LNCS. Springer-Verlag, Berlin, Germany, 1995.

[27] G. Tack. Linearisation, minimisation and transformation of data graphs with tran-
sients. Diploma thesis, Programming Systems Lab, Universität des Saarlandes, 2003.

[28] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, 2004.

16

