1ML — core and modules as one
or: F-ing first-class modules

Andreas Rossberg
rossberg@mpi-sws.org

1. Introduction
ML is two languages in one: there is the core, with types and expressions, and there are modules, with signatures, structures and functors. ML modules form a separate, higher-order functional language on top of the ML core language. Both practical and theoretical reasons led to this stratification (as well as historical ones). Yet, it creates substantial duplication in syntax and semantics, and it limits the expressiveness of the language; for example, selecting a module for a given signature cannot be made a dynamic decision.

Language extensions allowing modules to be packaged up as first-class values have been proposed and implemented in different variations [9, 2, 8, 3]. However, that approach arguably is a kludge. It remedies the expressiveness issue only to some extent, does not alleviate the redundancy in the language, and is even more syntactically heavyweight than using second-class modules alone.

In this presentation, we propose a redesign of ML in which modules are truly first-class values. We call it 1ML, because it combines the core and the module layer into one unified language (and also because it is a “1st-class module language”). In 1ML, functions, functors, and even type constructors are one and the same construct. Likewise, no distinction is made between structures, records, or tuples, including tuples over types. Or viewed the other way round, everything is just (“a mode of use of”) modules.

Yet, 1ML does not required dependent types, and its type structure is expressible as sugar for plain System F_\omega, in a minor variation of our F-ing modules approach [8]. How is that possible? Hasn’t the module literature taught us that first-class modules cause the disease of undecidable type-checking [5]? And wouldn’t we loose any hope for ever providing the super-convenient Hindley/Milner-style type inference feature that we love so much about ML?

As it turns out, neither has to be true. We first show how decidable type-checking can be maintained in an explicitly typed version of 1ML. All that is necessary is a surgical restriction on the definition of signature matching, which amounts to a simple universe distinction into small and large types. We then introduce a relatively simple extension to support Hindley/Milner-style type inference. Reusing the aforementioned universe distinction, only small types can be inferred. This inference is necessarily incomplete, but, we argue, no more so than in existing practical MLs.

A prototype of a toy 1ML interpreter is available on request.

2. 1ML with Explicit Types
We start out by introducing a version of 1ML that is explicitly typed – let’s call it 1ML_{ex}. The kernel syntax of this language is given in Figure 1. It mostly consists of fairly conventional functional language constructs: as a representative for a base type we have Booleans, there are records, which consist of a sequence of bindings, and of course, functions. These forms are mirrored on the type level as one would expect, except that for functions we distinguish two forms of arrow type, pure functions (⇒) and impure ones (→), with purity being inferred for terms. Like with F-ing modules, most other interesting constructs are definable as syntactic sugar [8].

What makes this language able to express modules is the ability to embed types in a first-class manner: the expression type T denotes the type T as a value. Such an expression has type type, and thereby can be abstracted over. For example,

\[
\begin{align*}
\text{id} &= \text{fun} \ (a : \text{type}) \Rightarrow \text{fun} \ (x : a) \Rightarrow x; \\
\text{pair} &= \text{fun} \ (a : \text{type}) \Rightarrow \text{type} \ {\text{fst} : a; \text{snd} : a}; \\
\text{second} &= \text{fun} \ (a : \text{type}) \Rightarrow \text{fun} \ (p : \text{pair} a) \Rightarrow p.\text{snd}
\end{align*}
\]

defines a polymorphic identity function id, very similar to how it would be written in System F_\omega (or in dependent type theories); a “type constructor” pair, which, when applied to a type, yields another type as a first-class value; this type can be implicitly projected from the value using the path form E as a type, as demonstrated with the type pair a for parameter p of the function second. We can easily define a bit of syntactic sugar to make function and type definitions look more like traditional ML (taking a function parameter x with no annotation to be shorthand for \(x : \text{type}\)):

\[
\begin{align*}
\text{id} \ (a : x) &= x; \\
\text{type} \ p a &= \{ \text{fst} : a; \text{snd} : a\}; \\
\text{second} \ (p : \text{pair} a) &= p.\text{snd}
\end{align*}
\]

More interestingly, our language can also express real modules. Here is a function (i.e., a “functor”) that defines a simple set type:

\[
\text{type} \ \text{EQ} = \\
\{ \\
\text{type} \ t; \ (* \ short \ for \ t : \text{type} *) \\
\text{eq} : t \to t \to \text{bool} \\
\}; \\
\text{Set} \ (\text{Elem} : \text{EQ}) = \\
\{ \\
\text{type} \ \text{elem} = \text{Elem}.t; \\
\text{type} \ \text{set} = \text{elem} \to \text{bool}; \\
\text{empty} = \text{fun} \ (x : \text{elem}) \Rightarrow \text{false}; \\
\text{mem} \ (x : \text{elem}) \ (s : \text{set}) = s x; \\
\text{add} \ (x : \text{elem}) \ (s : \text{set}) = \\
\text{if} \ \text{mem} \ x \ s \ \text{then} \ s \\
\text{else} \ (\text{fun} \ (y : \text{elem}) \Rightarrow \text{Elem}.eq \ x \ y \ \text{or} \ \text{mem} \ y \ s) : \text{set}
\}
\]

The record type EQ amounts to a signature, since it contains a nested abstract type component t. Further, note how the if-construct requires a type annotation in 1ML_{ex}, so that the type system does not need to find a least upper bound for the types of both branches (which is not always unique for module types).

Following the F-ing modules elaboration semantics, we define the 1ML type system using semantic types, a subset of System F_\omega types with the following shape:

\[
\Sigma ::= \alpha \ | \ \sigma \ | \ | \Sigma \ | \ \{X : \Sigma\} \ | \ \forall x : \Sigma_1 \ \Sigma_2 \to \Sigma_2 \ | \ \exists x : \Sigma_2
\]

where \([= \Sigma]\) is notation for a known first-class type (and defined as syntactic sugar over F_\omega types). Unlike in the original F-ing modules
The crucial restriction we impose in this system is that an under-
bar can only denote a small type. The trick is, then, that for small
types, subtyping – i.e., “signature matching” – (almost) degenerates
to type equivalence. We can hence overlay the usual matching algo-

rithm for large types with type unification on undetermined small
types. The overall type system, when specialised to small types,
will then largely resemble Hindley/Milner. Yet, it seamlessly ex-
tends to (explicit) large types, and all the quantifier introduction
and elimination machinery involved in the F-ing semantics.

There are only three rules in the system for which small type
inference will be incomplete: width subtyping on records, the
include form, and one rather obscure problem with the value re-
striction and principality of “functions” [1]. This is, of course, un-
fortunate. However, interestingly, all of these limitations already
exist in a language like Standard ML (or OCaml): record typing is
not principal and generally requires type annotations, an equiva-

lent to include does not even exist for records, and the principality is-
sue with functors is exactly the same. In fact, we conjecture that
the 1ML type inference algorithm could actually type all programs
that conventional SML implementations can handle (under a 1-to-
1 mapping of the syntax, with no type annotations added).

Nevertheless, we would like to extend the type system with row
polymorphism [7] to overcome at least the first of the aforemen-
tioned sources of incompleteness (and perhaps the second). It might
also be worth investigating how 1ML could be integrated with vari-

ous approaches to type inference for first-class polymorphism, in
order to allow omitting annotations in cases where traditional ML
modules would not. Finally, extending implicit functions to richer
domains could provide some of the convenience of type classes.

References
[1] Derek Dreyer and Matthias Blume. Principal type schemes for mod-
[3] Jacques Garrigue and Alain Frisch. First-class modules and compos-
[4] Jacques Garrigue and Didier Rémy. Semi-explicit first-class polymor-

type inference for first-class polymorphism, in order to allow omitted
annotations in cases where traditional ML modules would not. Finally, extending implicit functions to richer
domains could provide some of the convenience of type classes.

3. 1ML with Type Inference
To support type inference, we add two pieces of type syntax:

An underbar is a type expression whose denotation is to be inferred
by the type system; in addition, as MLish syntax sugar, we redefine
 omitted type annotations to be “_” (except in type bindings).

The second production is a new type of implicit functions. It
abstracts over values of type type, and application is always
implicit. Moreover, such types can be introduced implicitly at (pure)
bindings, by generalising over free variables of type type. In other
words, we are reintroducing ML-style implicit polymorphism.

With additional syntax sugar, we can now write, for example:

```plaintext
(type MAP =
| type key;
| type map a : (* map : a : type *) => type *
| empty 'a : map a : (* empty : 'a => map a *)
| lookup 'a : key => map a => opt a;
| add 'a : key => a => map a => map a
|
Map (Key : EQ) ::= MAP where (type key = Key.t) =
| type key = Key.t;
| type map a = key => map a;
| empty = fun x => None;
| lookup x m = m x;
```

```plaintext
add x y m = fun z => if Key.eq x z then Some y else lookup a y m
```