
1ML — core and modules as one
or: F-ing first-class modules

Andreas Rossberg

rossberg@mpi-sws.org

1. Introduction
ML is two languages in one: there is the core, with types and ex-
pressions, and there are modules, with signatures, structures and
functors. ML modules form a separate, higher-order functional lan-
guage on top of the ML core language. Both practical and theoreti-
cal reasons led to this stratification (as well as historical ones). Yet,
it creates substantial duplication in syntax and semantics, and it
limits the expressiveness of the language; for example, selecting a
module for a given signature cannot be made a dynamic decision.

Language extensions allowing modules to be packaged up as
first-class values have been proposed and implemented in different
variations [9, 2, 8, 3]. However, that approach arguably is a kludge.
It remedies the expressiveness issue only to some extent, does
not alleviate the redundancy in the language, and is even more
syntactically heavyweight than using second-class modules alone.

In this presentation, we propose a redesign of ML in which
modules are truly first-class values. We call it 1ML, because it
combines the core and the module layer into one unified language
(and also because it is a “1st-class module language”). In 1ML,
functions, functors, and even type constructors are one and the
same construct. Likewise, no distinction is made between struc-
tures, records, or tuples, including tuples over types. Or viewed the
other way round, everything is just (“a mode of use of”) modules.

Yet, 1ML does not required dependent types, and its type struc-
ture is expressible as sugar for plain System Fω , in a minor variation
of our F-ing modules approach [8]. How is that possible? Hasn’t the
module literature taught us that first-class modules cause the dis-
ease of undecidable type-checking [5]? And wouldn’t we loose any
hope for ever providing the super-convenient Hindley/Milner-style
type inference feature that we love so much about ML?

As it turns out, neither has to be true. We first show how decid-
able type-checking can be maintained in an explicitly typed version
of 1ML. All that is necessary is a surgical restriction on the defini-
tion of signature matching, which amounts to a simple universe dis-
tinction into small and large types. We then introduce a relatively
simple extension to support Hindley/Milner-style type inference.
Reusing the aforementioned universe distinction, only small types
can be inferred. This inference is necessarily incomplete, but, we
argue, no more so than in existing practical MLs.

A prototype of a toy 1ML interpreter is available on request.

2. 1ML with Explicit Types
We start out by introducing a version of 1ML that is explicitly typed
– let’s call it 1MLex. The kernel syntax of this language is given
in Figure 1. It mostly consists of fairly conventional functional
language constructs: as a representative for a base type we have
Booleans, there are records, which consist of a sequence of bind-
ings, and of course, functions. These forms are mirrored on the type
level as one would expect, except that for functions we distinguish
two forms of arrow type, pure functions (⇒) and impure ones (→),

with purity being inferred for terms. Like with F-ing modules, most
other interesting constructs are definable as syntactic sugar [8].

What makes this language able to express modules is the ability
to embed types in a first-class manner: the expression type T
denotes the type T as a value. Such an expression has type type,
and thereby can be abstracted over. For example,

id = fun (a : type) ⇒ fun (x : a) ⇒ x;
pair = fun (a : type) ⇒ type {fst : a; snd : a};
second = fun (a : type) ⇒ fun (p : pair a) ⇒ p.snd

defines a polymorphic identity function id, very similar to how it
would be written in System Fω (or in dependent type theories); a
“type constructor” pair, which, when applied to a type, yields an-
other type as a first-class value; this type can be implicitly projected
from the value using the path form E as a type, as demonstrated
with the type pair a for parameter p of the function second. We
can easily define a bit of syntactic sugar to make function and type
definitions look more like traditional ML (taking a function param-
eter x with no annotation to be shorthand for (x : type)):

id a (x : a) = x;
type pair a = {fst : a; snd : a};
second a (p : pair a) = p.snd

More interestingly, our language can also express real modules.
Here is a function (i.e., a “functor”) that defines a simple set type:

type EQ =
{
type t; (* short for t : type *)
eq : t → t → bool

};
Set (Elem : EQ) =
{
type elem = Elem.t;
type set = elem → bool;
empty = fun (x : elem) ⇒ false;
mem (x : elem) (s : set) = s x;
add (x : elem) (s : set) =
if mem x s then s
else (fun (y : elem) ⇒ Elem.eq x y or mem y s) : set

}

The record type EQ amounts to a signature, since it contains a
nested abstract type component t. Further, note how the if-construct
requires a type annotation in 1MLex, so that the type system does
not need to find a least upper bound for the types of both branches
(which is not always unique for module types).

Following the F-ing modules elaboration semantics, we define
the 1ML type system using semantic types, a subset of System Fω

types with the following shape:

Σ ::= α σ | bool | [= Σ] | {X:Σ} | ∀α1.Σ1 → ∃α2.Σ2

where [= Σ] is notation for a known first-class type (and defined as
syntactic sugar over Fω types). Unlike in the original F-ing modules

(types) T ::= E | bool | {D} | (X:T)→⇒T | type | T where (X=E)
(declarations) D ::= X :T |D;D | ε | include T
(expressions) E ::= X | true | false | if E then E else E:T | {B} | E.X | fun (X:T)⇒E | E E | type T | E:>T
(bindings) B ::= X=E | B;B | ε | include E

Figure 1. 1MLexsyntax

semantics, there is no distinction between values and modules,
hence type variables can now represent abstract “signatures”.

But we have to be careful – losing the syntactic distinction be-
tween types and signatures is where we would run into a decidabil-
ity issue akin to the one identified by Harper & Lillibridge [5]. We
avoid the type:type sort of situation underlying this problem by se-
mantically restricting what is substitutable for a type variable. To
that end, we define the subset of small semantic types:

σ ::= α σ | bool | [= σ] | {X:σ} | σ1 →I σ2

It contains all Σ that are free of quantifiers. This distinction is
reminiscent of the universes of XML [6]. Given this definition, the
only tweak necessary to keep the F-ing rules decidable is to restrict
the one rule deriving substitutions: signature matching, such that
abstract types can only be matched by small types.

So far so good. However, with this alone, we would limit our-
selves to predicative polymorphism. That is, we would not be able
to type-abstract over general “signatures” (i.e., types with abstract
type components), or other forms of polymorphic types. To ad-
dress this limitation, we add package types to the system, that allow
wrapping up (values of) large types as (values of) small types:

(types) T ::= . . . | pack T
(expressions) E ::= . . . | pack E | unpack E:T

Σ ::= . . . | [Σ] σ ::= . . . | [Σ]

This looks very similar to existing modules-as-first-class-values,
and in ways it is. But in 1ML, these packages play a different,
more fringe role: packaging is only necessary to type-abstract over
a signature, not to use a module with a known signature in a first-
class manner. In that sense, 1ML packages are more reminiscent of
various approaches to “boxed” polymorphism [4, 11, 10].

3. 1ML with Type Inference
To support type inference, we add two pieces of type syntax:

T ::= . . . | | ’X ⇒ E

An underbar is a type expression whose denotation is to be inferred
by the type system; in addition, as MLish syntax sugar, we redefine
omitted type annotations to be “: ” (except in type bindings).

The second production is a new type of implicit functions. It
abstracts over values of type type, and application is always im-
plicit. Moreover, such types can be introduced implicitly at (pure)
bindings, by generalising over free variables of type type. In other
words, we are reintroducing ML-style implicit polymorphism.

With additional syntax sugar, we can now write, for example:

type MAP =
{
type key;
type map a; (* map : (a : type) ⇒ type *)
empty ’a : map a; (* empty : ’a ⇒ map a *)
lookup ’a : key → map a → opt a;
add ’a : key → a → map a → map a

};
Map (Key : EQ) :> MAP where (type key = Key.t) =
{
type key = Key.t;
type map a = key → opt a;
empty = fun x ⇒ None;
lookup x m = m x;

add x y m = fun z ⇒ if Key.eq x z then Some y else lookup a y m
}

The crucial restriction we impose in this system is that an under-
bar can only denote a small type. The trick is, then, that for small
types, subtyping – i.e., “signature matching” – (almost) degenerates
to type equivalence. We can hence overlay the usual matching algo-
rithm for large types with type unification on undetermined small
types. The overall type system, when specialised to small types,
will then largely resemble Hindley/Milner. Yet, it seamlessly ex-
tends to (explicit) large types, and all the quantifier introduction
and elimination machinery involved in the F-ing semantics.

There are only three rules in the system for which small type
inference will be incomplete: width subtyping on records, the
include form, and one rather obscure problem with the value re-
striction and principality of “functors” [1]. This is, of course, un-
fortunate. However, interestingly, all of these limitations already
exist in a language like Standard ML (or OCaml): record typing is
not principal and generally requires type annotations, an equivalent
to include does not even exist for records, and the principality is-
sue with functors is exactly the same. In fact, we conjecture that
the 1ML type inference algorithm could actually type all programs
that conventional SML implementations can handle (under a 1-to-1
mapping of the syntax, with no type annotations added).

Nevertheless, we would like to extend the type system with row
polymorphism [7] to overcome at least the first of the aforemen-
tioned sources of incompleteness (and perhaps the second). It might
also be worth investigating how 1ML could be integrated with var-
ious approaches to type inference for first-class polymorphism, in
order to allow omitting annotations in cases where traditional ML
modules would not. Finally, extending implicit functions to richer
domains could provide some of the convenience of type classes.

References
[1] Derek Dreyer and Matthias Blume. Principal type schemes for mod-

ular programs. In ESOP, 2007.

[2] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In POPL, 2003.

[3] Jacques Garrigue and Alain Frisch. First-class modules and compos-
able signatures in Objective Caml 3.12. In ML, 2010.

[4] Jacques Garrigue and Didier Rémy. Semi-explicit first-class polymor-
phism for ML. Information and Computation, 155(1-2), 1999.

[5] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL, 1994.

[6] Robert Harper and John C. Mitchell. On the type structure of Standard
ML. In TOPLAS, volume 15(2), 1993.

[7] Didier Rémy. Records and variants as a natural extension of ML. In
POPL, 1989.

[8] Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules.
In TLDI, 2010. Extended version: mpi-sws.org/˜rossberg/f-ing/.

[9] Claudio Russo. First-class structures for Standard ML. In ESOP,
2000.

[10] Claudio Russo and Dimitrios Vytiniotis. QML: explicit first-class
polymorphism for ML. In ML, 2009.

[11] Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich.
FPH: First-class polymorphism for Haskell. In ICFP, 2008.

