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Abstract

ML is two languages in one: there is the core, with types and expressions, and there are modules,
with signatures, structures and functors. Modules form a separate, higher-order functional language
on top of the core. There are both practical and technical reasons for this stratification; yet, it
creates substantial duplication in syntax and semantics, and it imposes seemingly unnecessary limits
on expressiveness because it makes modules second-class citizens of the language. For example,
selecting one among several possible modules implementing a given interface cannot be made a
dynamic decision. Language extensions allowing modules to be packaged up as first-class values
have been proposed and implemented in different variations. However, they remedy expressiveness
only to some extent and tend to be even more syntactically heavyweight than using second-class
modules alone.

We propose a redesign of ML in which modules are truly first-class values, and core and module
layer are unified into one language. In this “1ML”, functions, functors, and even type constructors
are one and the same construct; likewise, no distinction is needed between structures, records, or
tuples. Or viewed the other way round, everything is just (“a mode of use of”) modules. Yet, 1ML
does not require dependent types: its type structure is expressible in terms of plain System Fω , in a
minor variation of our F-ing modules approach.

We introduce both an explicitly typed version of 1ML, and an extension with Damas/Milner-
style implicit quantification. Type inference for this language is not complete, but, we argue, not
substantially worse than for Standard ML.

1 Introduction

The ML family of languages is defined by two splendid innovations: parametric polymor-
phism with Damas/Milner-style type inference (Milner, 1978; Damas & Milner, 1982), and
an advanced module system based on concepts from dependent type theory (MacQueen,
1986). Although both have contributed to the success of ML, they exist in almost entirely
distinct parts of the language. In particular, the convenience of type inference is available
only in ML’s so-called core language, whereas the module language has more expressive
types, but for the price of being painfully verbose. Modules form a separate language
layered on top of the core. Effectively, ML is two languages in one.

This stratification makes total sense from a historical perspective. Modules were intro-
duced for programming-in-the-large, when the core language already existed. The depen-
dently typed machinery that was the central innovation of the original module design was
alien to the core language, and could not have been integrated easily.
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However, we have since discovered that dependent types are not actually necessary to
explain modules. In particular, Russo demonstrated that ML-style module types can be
readily expressed using only System-F-style quantification (Russo, 1999; Russo, 2003).
The F-ing modules approach later showed that the entire ML module system can in fact be
understood as a form of syntactic sugar over System Fω (Rossberg et al., 2014).

Meanwhile, the second-class nature of modules is sometimes perceived as a practical
limitation. The standard example is the desire to select modules at runtime:

module Table = if size > threshold then HashMap else TreeMap

A definition like this, where the choice of an implementation is dependent on dynamics,
is entirely natural in object-oriented languages. Yet, it is not expressible with conventional
ML modules. Isn’t that a shame!

1.1 Packaged Modules

It comes as no surprise, then, that various proposals have been made (and implemented)
that enrich ML modules with the ability to package them up as first-class values (Russo,
2000; Dreyer et al., 2003; Rossberg, 2006; Rossberg & Dreyer, 2013; Garrigue & Frisch,
2010; Rossberg et al., 2014). Such packaged modules address the most imminent needs, but
they are not to be confused with truly first-class modules. They require explicit injection
into and projection from first-class core values, accompanied by heavy annotations. For
example, in OCaml 4, which implements a simple form of packaged modules, the above
example would have to be written as follows:

module Table = (val (if size > threshold
then (module HashMap)
else (module TreeMap)) : MAP)

which, arguably, is neither natural nor pretty. Less straightforward examples require even
more annotations, because package types cannot always be inferred from context.

But it is not just notation: packaged modules have limited expressiveness as well. One
problem is that the subtyping of the module language does not extend to package types,
because they are part of the ML core language which does not have subtyping. For ex-
ample, if HashMap and TreeMap had different signatures HASHMAP and TREEMAP,
respectively, both of which are extensions of MAP, then changing the above to

let hashmap = (module HashMap : HASHMAP)
let treemap = (module TreeMap : TREEMAP)
module Table = (val (if size > threshold then hashmap else treemap) : MAP)

would not type-check. The consumer of the packages would need to unpack and repack
them with their use-site types to allow subtyping to kick in, as in the following:

module Table = (val (if size > threshold
then (module (val hashmap))
else (module (val treemap))) : MAP)

A more delicate limitation of packaged modules is that sharing types with them is only
possible via a detour through core-level polymorphism. For example, with proper modules,
we can express the type of a functor that abstracts over two modules of a given signature
with the requirement that their types t are equivalent:
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signature S = {type t ...}
F : (X : S) → (Y : S with type t = X.t) → U

In the case of a core-level function abstracting over packaged modules the dependency on
a parameter is not possible, so it gets a bit more complicated. We need to introduce an
auxiliary polymorphic type variable (which is implicitly quantified):

f : (module S with type t = ’a) → (module S with type t = ’a) → u

Worse, because core-level polymorphism is first-order, this approach cannot express type
sharing between type constructors – a complaint that has come up several times on the
OCaml mailing list. For example, if one were to abstract over a monad:

val map : (module MONAD with type ’a t = ?) → (’a → ’b) → ? → ?

There is nothing that can be put in place of the ?’s to complete this function signature
– it would require a type variable of higher kind, which is not supported in ML. In some
cases the programmer may be able to work around this limitation resorting to weaker types.
But in the general case they are forced to drop the use of packaged modules and raise the
function (and potentially a lot of downstream code) to the functor level – which not only is
very inconvenient, it also severely restricts the possible computational behaviour of such
code, because all module-level computations are effectively “static”, i.e., cannot involve
dynamic constructs such as conditionals, let alone general recursion.

One could imagine addressing this particular limitation by introducing higher-kinded
polymorphism into the ML core. But with such an extension type inference would require
higher-order unification and hence become undecidable – unless accompanied by signifi-
cant restrictions that are likely to defeat this example (or others).

1.2 First-Class Modules

Why not true first-class modules, then? Can we overcome the segregation and make mod-
ules more equal citizens of the language? This idea has been explored, of course. The
answer from the literature so far has been: no, because first-class modules make type-
checking undecidable and type inference infeasible.

The most directly relevant work is the calculus of translucent sums of Harper & Lil-
libridge (1994) (a precursor of later work on singleton types (Stone & Harper, 2006)).
It can be viewed as an idealised functional language that allows types as components
of (dependent) records, so that they can express modules. In the type of such a record,
individual type members can occur as either transparent or opaque (hence, translucent),
which is the defining feature of ML module typing.

Harper & Lillibridge prove that type-checking this language is undecidable. Their result
applies to any language that (a) has contravariant functions, (b) has both transparent and
opaque types, and (c) allows opaque types to be subtyped by arbitrary transparent types.
The latter feature usually manifests in a subtyping rule like the following,

{D1[τ/t]} ≤ {D2[τ/t]}
{type t=τ;D1} ≤ {type t;D2}

FORGET

which is, in some variant, at the heart of every definition of signature matching. In the
premise the concrete type τ is substituted for the abstract t in the remaining declarations
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D1 and D2 of the signatures. Obviously, this rule is not inductive. And that is a real
problem: the substitution can arbitrarily grow the types, and thus potentially require infinite
derivations. A concrete example triggering non-termination is the following, adapted from
Harper & Lillibridge (1994):

type T = {type A; f : A → ()}
type U = {type A; f : (T where type A = A) → ()}
type V = T where type A = U
g (X : V) = X : U (* V ≤ U ? *)

Checking V ≤ U would match type A with type A=U, substituting U for A accordingly,
and then requires checking that the types of f are in a subtyping relation – which contravari-
antly requires checking that (T where type A = A)[U/A] ≤ A[U/A], but that is the same
as the V ≤ U we wanted to check in the first place.

In fewer words, signature matching is no longer decidable when module types can be
abstracted over, which is the case if module types are simply collapsed into ordinary types.
It also arises if “abstract signatures” are added to the language, as in OCaml, where the
same divergent example can be constructed on the module type level alone (Rossberg,
1999b).

Some readers may consider decidability a rather theoretical concern. However, there
also is the – quite practical – issue that the introduction of signature matching into the
core language makes ML-style type inference impossible. Milner’s algorithm W (Milner,
1978) is far too weak to handle higher-order types, let alone dependent types. Moreover,
modules introduce subtyping, which breaks unification as the basic algorithmic tool for
solving type constraints. And while inference algorithms for subtyping exist, they have
much less satisfactory properties than our beloved Hindley/Milner sweet spot.

Worse, module types do not even form a lattice under subtyping:

f1 : {type t a; x : t int} → int
f2 : {type t a; x : int} → int
g = if condition then f1 else f2

There are at least two possible types for g:

g : {type t a = int; x : int} → int
g : {type t a = a; x : int} → int

Neither is more specific than the other, so no least upper bound exists. Consequently,
annotations are necessary to regain principal types for constructs like conditionals, in order
to restore any hope for compositional type checking, let alone inference.

1.3 F-ing Modules

In the work on F-ing modules with Russo & Dreyer (Rossberg et al., 2014) we have
demonstrated that ML modules can be expressed and encoded entirely in vanilla System F
(or Fω , depending on the concrete core language and the desired semantics for functors).
Effectively, the F-ing semantics defines a type-directed desugaring of module syntax into
System F types and terms, and inversely, interprets a stylised subset of System F types as
module signatures.
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Interestingly, in that paper we assume that the core language on which modules sit is
simply System F (respectively, Fω ) itself. That leads to the seemingly paradoxical situation
that the core language has more expressive types than the module language. But that makes
sense when considering that the module translation rules manipulate the sublanguage of
module types in ways that would not generalise to arbitrary System F types. In particular,
the rules implicitly introduce and eliminate universal and existential quantifiers, which
is key to making modules a usable means of abstraction. But the process is guided by,
and only meaningful for, module syntax; likewise, the built-in subtyping relation is only
“complete” (and decidable) for the specific occurrences of quantifiers in module types.

Nevertheless, the observation that modules are just sugar for certain kinds of constructs
that the core language can already express (even if less concisely), raises the question: what
necessitates modules to be second-class in that system?

1.4 1ML

The answer to the previous question is: very little! And the present article is all about
explaining, exploring and exploiting that answer.

In essence, the F-ing modules semantics reveals that the syntactic stratification between
ML core and module language is merely a rather blunt approach to enforce predicativity for
module types: it prevents abstract types themselves from being instantiated with binders for
abstract types. But this blunt syntactic restriction can be replaced by a much more surgical
semantic restriction!

It is in fact enough to introduce a simple universe distinction between small and large
types – reminiscent of Harper & Mitchell’s XML (1993) – and limit the equivalent of
the FORGET rule shown earlier to allow only small types for substitution, which serves to
exclude problematic occurrences of quantifiers:

{D1[τ/t]} ≤ {D2[τ/t]} τ small
{type t=τ;D1} ≤ {type t;D2}

FORGET

A small type is one that does not itself contain any abstract type components or parameters.
In particular, a type like {type t;D} is not small. The side condition thus prevents the
substitution from introducing new occurrences of an opaque type specification, which
would necessitate further (potentially never-ending) substitutions. That’s all, really.

That would settle decidability, but what about type inference? Well, we can use the
same distinction! A quick inspection of the subtyping rules in the F-ing modules semantics
reveals that they, almost, degenerate to type equivalence when applied to small types.
If we limit instantiation of implicit polymorphic type variables (and thus inference and
unification) to small types then type inference works almost as usual. The only exception
to subtyping coinciding with equivalence on small types is width subtyping on structures.
We hence need to be willing to accept that inference is not going to be complete for records
– which it already isn’t in Standard ML, whereas OCaml does not support inferring types
of regular records in the first place.1

1 Even though it is well-known how to achieve complete inference with record polymor-
phism (Rémy, 1989; Ohori, 1995).
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In this spirit, this paper presents 1ML, an ML-dialect in which modules are truly first-
class values. The name is both short for “1st-class module language” and suggestive of the
fact that it unifies core and modules of ML into one language. Our contributions are as
follows:

• We present a decidable type system for a language of first-class modules that sub-
sumes conventional second-class ML modules.
• We give an elaboration of this language into plain System Fω .
• Conversely, we demonstrate that Fω can be embedded into this language.
• We show how Damas/Milner-style type inference can be integrated; it is incomplete,

but only in ways that are already present in existing ML implementations.
• Besides theoretic considerations, we develop the basis for a practical design of an

ML-like language in which the distinction between core and modules is eliminated.

This redesign has several benefits: it produces a language that is more expressive and
concise, and at the same time, more minimal and uniform. “Modules” become a natural
means of expressing all forms of polymorphism, both universal and existential. They can
be freely intermixed with “computational” code and data, that is, polymorphism is fully
first-class. Type inference integrates in a rather seamless manner, reducing the need for
explicit annotations to large types, module or not. Every programming concept is derived
from a small set of orthogonal constructs, over which general and uniform syntactic sugar
can be defined.

Relative to the conference version of this paper, this article adds more extensive expla-
nations of the design and various technicalities of the language, it tweaks some pieces of
the formalisation of type inference to make it easier to interpret as an algorithm, it includes
all meta-theory that was previously omitted for space reasons — such as the proof of
decidability of type checking —, and it devotes an entire new section to the expressiveness
of the language (Section 5), including a simple extension with impredicative “packages”
and a sound and complete embedding of System Fω .

2 1ML with Explicit Types

Despite the simplicity of the basic ideas, the dear reader will probably have guessed that
the complete story isn’t quite as trivial. To separate concerns a little, we will first introduce
1MLex, a sublanguage of 1ML proper that is explicitly typed. We hold off fancier features
like implicit typing and type inference until Sections 6 and 7.

The kernel syntax of 1MLex is given in Figure 1. This kernel language is intentionally
small, but features everything that is semantically relevant. In addition, Figure 2 defines a
rich set of syntactic sugar over this kernel that provides many of the syntactic forms familiar
from the ML family of languages.2 In both figures, as well as in other places throughout
this article, we use an overbar, phrase, to stand for an arbitrary number of repetitions of
phrase (including zero of them). We also conveniently write⇒→ to range over both forms
of arrows.

Let us take a little tour of 1MLex by way of examples.

2 We omit further sugar that is standard and not worth expanding on, such as tuples as records
{ 1 : T1 ; . . . ; n : Tn}, pattern matching, or multi-argument functions as functions over tuples.
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(identifiers) X
(types) T ::= E | bool | {D} | (X :T )⇒→T | type | =E | T where (.X :T )
(declarations) D ::= X :T | include T | D;D | ε
(expressions) E ::= X | true | false | if X then E else E:T |

{B} | E.X | fun (X :T )⇒E | X X | type T | X :>T
(bindings) B ::= X =E | include E | B;B | ε

Fig. 1. Kernel syntax of 1MLex

(types) let B in T := {B; X = type T}.X
T1
⇒→T2 := (X : T1)⇒→T2

T where (.X P : T = E) := T where (.X : P⇒(=E :T ))
T where (type .X P = T ′) := T where (.X : P⇒(=type T ′))

(declarations) local B in D := include (let B in {D})
X P : T := X : P⇒T
X P : T = E := X : P⇒(=E :T )
type X P := X : P⇒type
type X P = T := X : P⇒(=type T )

(expressions) let B in E := {B; X =E}.X
if E1 then E2 else E3 : T := let X =E1 in if X then E2 else E3 : T
E1 E2 := let X1 =E1; X2 =E2 in X1 X2
E T := E (typeT ) (if T unambiguous)
E :T := (fun(X :T )⇒X) E
E :>T := let X =E in X :>T
funP⇒ E := fun P⇒E

(bindings) local B in B′ := include (let B in {B′})

X P :T ′ :>T ′′ = E := X = fun P⇒ E :T ′ :>T ′′

type X P = T := X = fun P⇒ type T

where (parameter) P ::= (X :T ) with abbreviation (parameter) X := (X :type)

(Identifiers only occurring on the right-hand side are considered fresh)

Fig. 2. Syntactic abbreviations for 1MLex

Functional Core A major part of 1MLex consists of fairly conventional functional lan-
guage constructs. On the expression level, as a representative for a base type, we have
Booleans (true, false, if) – in examples that follow, we will often assume the presence of
an integer type and respective constructs as well. Then there are records {B}, which consist
of a sequence of bindings, and can be accessed via dot notation E.X . And of course, it
wouldn’t be a functional language without functions (fun) and their application (X1 X2).

In a first approximation, these constructs are mirrored on the type level as one would ex-
pect, except that for functions we allow two forms of arrows, distinguishing pure function
types (⇒) from impure ones (→) (discussed later).

Like with F-ing modules (Rossberg et al., 2014), most elimination forms in the kernel
syntax only allow variables as subexpressions. However, the general expression forms are
all definable as straightforward syntactic sugar, as given in Figure 2: because we can encode
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let-bindings with module projections, we can desugar all expressions into a kind of A-
normal form. For example, the application
(fun (n : int) ⇒ n + n) 3

desugars into
let f = fun (n : int) ⇒ n + n; x = 3 in f x

and further into
{f = fun (n : int) ⇒ n + n; x = 3; body = f x}.body

This works because records actually behave like ML structures, such that every bound
identifier is in scope for later bindings – which enables encoding let-expressions.

Also, notably, if-expressions require a type annotation in 1MLex. As we will see, the type
language subsumes module types, and as discussed in Section 1.2 there wouldn’t generally
be a unique least upper bound without a type annotation. However, once we advance to full
1ML with type inference this annotation can usually be omitted (Section 6).

Other abbreviations defined in Figure 2 are discussed further below.

Reified Types The core feature that makes 1MLex able to express modules is the ability to
embed types in a first-class manner: the expression type T reifies the type T as a value.3

Such an expression has type type, and thereby can be abstracted over. For example,
id = fun (a : type) ⇒ fun (x : a) ⇒ x

defines a polymorphic identity function, similar to how it would be written in dependent
type theories. Note in particular that a is a term variable, but it is used as a type in the
annotation for x. This is enabled by the “path” form E in the syntax of types, which
expresses the (implicit) projection of a type from a term, provided this term has type type.
Consequently, all variables are term variables in 1ML, and there is no separate notion of
type variable.

More interestingly, a function can return types, too. Consider
pair = fun (a : type) ⇒ fun (b : type) ⇒ type {fst : a; snd : b}

which takes two types and returns a type, and effectively defines a type constructor. Ap-
plied to a reified type it yields a reified type, as a first class value. Again, the implicit
projection from “path” expressions enables using this as a type:
second = fun (a : type) ⇒ fun (b : type) ⇒ fun (p : pair a b) ⇒ p.snd

In this example, the whole of “pair a b” is a term of type type.
Figure 2 also defines a bit of syntactic sugar for function and type definitions in “equa-

tional” form with parameters on the left, which makes them look more like in traditional
ML.4 For example, the previous functions could equivalently be written as

3 Ideally, “type T ” should be written just “T ”, like in various dependently typed languages.
However, that creates syntactic ambiguities, e.g. for phrases like “{}”, which we prefer to avoid.
The ambiguity could only be addressed by moving to a more artificial syntax for types themselves.
Nevertheless, we at least allow writing “E T ” for the application “E (typeT )” if T unambiguously
parses as a type.

4 Some binding forms in Figure 2 allow multiple consecutive type annotations, as in
“X : T : U = E”. I do not consider this useful, it is merely a shortcut to avoid introducing one-off
notation for optional phrases.



ZU064-05-FPR main 30 October 2018 15:52

1ML – Core and modules united 9

id a (x : a) = x
type pair a b = {fst : a; snd : b}
second a b (p : pair a b) = p.snd

For now, Figure 2 defaults an omitted type annotation on a parameter, as in the case of a

and b above, to type – a rule that we will refine somewhat when we introduce implicit
types in Section 6.

It may seem surprising that we can just reify types as first-class values. But reified types
(or “atomic type modules”) have been common in module calculi for a long time (Lillib-
ridge, 1997; Dreyer et al., 2003; Rossberg & Dreyer, 2013; Rossberg et al., 2014). We are
merely making them available in the source language directly. For the most part, this is just
a notational simplification over what first-class modules already offer: instead of having to
define a spurious module T = {type t = int} : {type t} and then refer to T.t, we allow
injecting types into modules (i.e., values in 1ML) anonymously, without wrapping them
into a structure; thus t = (type int) : type, which can be referred to as just t.

Declarations In the ML module system, bindings – i.e., definitions – in the module syntax
are mirrored by declarations – i.e., specifications – in the signature syntax. That is no
different in 1ML, where modules become records, such that bindings define record fields:
analogously, signatures become record types, and declarations specify record fields.

For example, the previous definitions could be collected in a record with a type as
follows:

type S =
{

id : (a : type) ⇒ a → a
pair : (a : type) ⇒ (b : type) ⇒ type
second : (a : type) ⇒ (b : type) ⇒ pair a b → b

}

This amounts to a module signature, since it contains the type (constructor) pair as a
component. And that is referred to in the type of second, which shows that record types
are seemingly “dependent”: like for terms, earlier components are in scope for later com-
ponents – the key insight of the F-ing approach is that this dependency is benign, however,
and can be translated away, as we will see in Section 4.

As for bindings, Figure 2 defines analogous syntactic sugar for declarations, which
enables writing the above declarations in a more familiar style:

id a : a → a;
type pair a b;
second a b : pair a b → b

In particular, we introduce the same kind of sugar that allows putting parameters on the
left of declarations as we do for bindings. And like before, type annotations on parameters
can be omitted, defaulting to type. This design not only reconstructs the way type speci-
fications are written in ML (as for pair).5 The left-hand side parameter syntax uniformly
also generalises to ordinary value specifications and allows us to rid ourselves of the brittle

5 Minus ML’s literally backwards type application syntax.
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implicit scoping rules that conventional ML defines for polymorphic type variables (as for
id and second).

Translucency The type type allows us to classify types opaquely: given a value of type
type, nothing is known about what type it is – it is abstract. But for modular program-
ming it is essential that types can selectively be specified transparently, with a concrete
definition. In particular, that enables expressing the vital concept of type sharing (Harper
& Lillibridge, 1994; Leroy, 1994; Harper & Pierce, 2005).

As a simple example, consider these type alias definitions:

type size = int
type pair a b = {fst : a; snd : b}

According to the idea of translucency, the variables defined by these definitions can be
classified in one of two ways in 1ML. Either opaquely:

size : type
pair : (a : type) ⇒ (b : type) ⇒ type

Or transparently:

size : (= type int)
pair : (a : type) ⇒ (b : type) ⇒ (= type {fst : a; snd : b})

The latter use a variant of singleton types (Stone & Harper, 2006; Dreyer et al., 2003)
to reveal the definitions: a type of the form “=E” is inhabited only by values that are
“structurally equivalent” to E, in particular, with respect to components of type type. It
allows the type system to infer, for example, that the application pair size size is equivalent
to the type {fst : int; snd : int}. A type (=E) is a subtype of the type of E itself, and
consequently, transparent classifications define subtypes of opaque ones, which is the crux
of ML signature matching.

Translucent types usually occur as declarations in signatures, where according to Fig-
ure 2 once more, they can be abbreviated to the more familiar

type size = int
type pair a b = {fst : a; snd : b}

i.e., as in ML, transparent declarations look just like the definitions given earlier. But the
former appear in types while the latter appear in values.

Singletons can be formed over arbitrary values. This gives the ability to express module
sharing and aliases. In the basic semantics described in this article, this is effectively a
shorthand for sharing all types contained in the module (including those defined inside
transparent functors, see below). For example, given a signature

type T = {type t a; A : {type u; x : u}; f : A.u → t bool}

and a module M : T, the signature

type S = {B = M : T}

with its transparent module component is equivalent to the more explicit formulation

type S = {B : {type t a = M.t a; A : {type u = M.A.u; x : u}; f : A.u → t bool}}
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which only makes the individual type components transparent, while not implying anything
about the identity of its values. This behaviour matches the meaning of structure sharing in
Standard ML ’97 (Milner et al., 1997).6

We leave the extension of 1ML to tracking full value equivalence, like in our F-ing
semantics for applicative functors (Rossberg et al., 2014), to future work.

Functors Returning to the 1ML grammar from Figure 1, the remaining constructs of the
language are typical for ML modules, although they are perhaps a bit more general than
what is usually seen. Let us explain them using an example that demonstrates that our
language can readily express “real” modules. Here is the unavoidable example of a functor
that defines a simple map ADT:

type EQ =
{

type t;
eq : t → t → bool

};

type MAP =
{

type key;
type map a;
empty a : map a;
add a : key → a → map a → map a;
lookup a : key → map a → opt a

};

Map (Key : EQ) :> MAP where (type .key = Key.t) =
{

type key = Key.t;
type map a = key → opt a;
empty a = fun (k : key) ⇒ none a;
lookup a (k : key) (m : map a) = m k;
add a (k : key) (v : a) (m : map a) =

fun (x : key) ⇒ if Key.eq x k then some a v else m x : opt a
}

The record type EQ amounts to a module signature with an abstract type component t.
Similarly, MAP defines a signature with abstract key and map types. The Map function is
a functor: it takes a value of type EQ, i.e., a module. From that it constructs a naive imple-
mentation of maps. “X :>T ” is the usual sealing operator that opaquely ascribes a type (i.e.,
signature) to a value (here, a module). The type refinement syntax “T where (type .X=T )”
should be familiar from ML, but here it actually is derived from a more general construct:
“T where (.X :U)” refines T ’s subcomponent at path .X to type U , which can be any
subtype of what’s declared by T . That form subsumes module sharing as well as other
forms of refinement, with some appropriate sugar defined in Figure 2.

6 But without disallowing transparent types in the signature of M, which is one of the more
controversial limitations of SML
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Applicative vs. Generative In this article, we stick to a relatively simple semantics for
functor-like functions, in which Map is generative (Russo, 2003; Dreyer, 2005; Rossberg
et al., 2014). That is, like in Standard ML, each application will yield a fresh map ADT,
because sealing occurs inside the functor:
M1 = Map IntEq;
M2 = Map IntEq;
m = M1.add int 7 M2.empty (* ill-typed: M1.map 6= M2.map *)

But as we saw earlier, type constructors like pair or map are essentially functors, too!
Sealing the body of the Map functor hence implies higher-order sealing of the nested map

“functor”, as if performing map :> type ⇒ type. It is vital that the so-sealed map functor
– which returns an abstract type – has applicative semantics (Leroy, 1995; Rossberg et al.,
2014), so that
type map a = M1.map a;
type t = map int;
type u = map int

yields t = u, as one would expect from a proper type constructor.
We hence need applicative functors as well.7 To keep things simple, we restrict ourselves

to the simplest possible semantics in this paper, in which we distinguish between pure (⇒,
i.e. applicative) and impure (→, i.e. generative) function types, but sealing is always impure
– or strong (Dreyer et al., 2003). That is, the use of sealing inside a functor makes it gen-
erative. The only way to produce an applicative functor is by sealing a (fully transparent)
functor as a whole, with applicative functor type, as for the map type constructor above.
Given:
F = (fun (a : type) ⇒ type {x : a}) :> type ⇒ type
G = (fun (a : type) ⇒ type {x : a}) :> type → type
H = fun (a : type) ⇒ (type {x : a} :> type)
J = F :> type → type
K = G :> type ⇒ type (* ill-typed! *)

F is an applicative functor, such that F int = F int. G and H on the other hand are generative
functors; the former because it is sealed with impure function type, the latter because
sealing occurs inside its body. Consequently, G int or H int are impure expressions and
invalid as type paths (though it is fine to bind their result to a name, e.g., “type w = G int”,
and use the constant w as a type). Applicative functor types are subtypes of generative ones,
so that J turns F into a generative functor. Lastly, K is ill-typed, because applicative functor
types are subtypes of generative ones, but not the other way round.

This semantics for applicative functors – which is very similar to the applicative func-
tors of Shao (1999) – is somewhat limited, but just enough to encode sealing over type
constructors and hence recover the ability to express type definitions as in conventional
ML. This choice is mainly to keep this article focussed on the novelties of 1ML. More
fully-featured applicative functors as with F-ing modules (Rossberg et al., 2014), where
sealing is pure, could easily be incorporated into 1ML, but complicate elaboration in ways
that are largely orthogonal to our present goals.

7 Not to be confused with the applicative functors later introduced in Haskell by McBride &
Paterson (2008).
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Effects The ability to distinguish pure from impure, for computations or functions, is mo-
tivated by dealing with type abstraction correctly. But even in a traditional “core language”
context this distinction is useful, for example, when we consider adding impure constructs
to the language, such as an ML-style type ref T of mutable references with the obvious
operators:

new : (a : type) ⇒ (x : a) → ref a
rd : (a : type) ⇒ (r : ref a) → a
wr : (a : type) ⇒ (r : ref a) ⇒ a → {}

Their types make explicit where effects can occur, by mixing pure and impure arrows. A
type parameter – expressing (explicit) polymorphism – is best considered a pure function:
“instantiating” a polymorphic type should not have any effect. Similarly, an impure func-
tion with curried value parameters (like wr) releases its effect only when the last argument
is provided.

Expressing effects in function types is not just useful documentation, it can also aid type
inference (see Section 6.1).

The simplistic effect system could naturally be refined to track relevant effects in a
manner more fine-grained than with just a black-and-white distinction. However, we do not
explore that space further here. Clearly, there is plenty of room for future work. We discuss
one interesting direction, effect polymorphism, in a spin-off paper (Rossberg, 2016), see
Section 8.

Transparent vs. Opaque Type Ascription Like Standard ML’s modules, our language
provides two ways of ascribing a type to an expression or definition:8

• opaquely (E :> T), which performs sealing as described above, that is, any type that
is specified abstractly in T will be opaque in the type of the expression;

• transparently (E : T), which implicitly refines all abstract specifications in T with
their actual definitions from E.

The latter form is convenient when an ascription is used simply to narrow a signature, i.e.,
limit what is visible to the outside of a module. In Standard ML it is its own primitive with
relatively complex semantics. But it turns out that it can simply be encoded as applying the
identity functor at type T, as shown in Figure 2.

Higher Polymorphism So far, we have focussed on how 1ML reconstructs features that
are well-known from ML. As a first example of something that cannot directly be expressed
in conventional ML, consider first-class polymorphic arguments:

f (id : (a : type) ⇒ a → a) = {x = id int 5; y = id bool true}

The function f takes a function id as argument that is (explicitly) polymorphic, and used
with different instantiations inside the body. That is not possible with the prenex polymor-
phism of core ML.

Similarly, existential types are directly expressible:

8 The semantics of OCaml’s module type ascription, despite being written M : T, is opaque, i.e.,
corresponds to M :> T in our notation.
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type SHAPE = {type t; area : t → float}
type shape = {S : SHAPE; v : S.t}
totalArea = List.foldLeft shape float (fun (a : float) (x : shape) ⇒ a + x.S.area x.v)

This example uses a two stage construction: SHAPE abstracts an ADT of shapes, which
can be implemented e.g. as a circle or rectangle:

Circ : SHAPE = {type t = {radius : float}; area c = pi * c.radius * c.radius}
Rect : SHAPE = {type t = {width : float; height : float}; area r = r.width * r.height}

The type shape pairs such an ADT with an actual value:

aCirc = {S = Circ; v = {radius = 2.0}} :> shape
aRect = {S = Rect; v = {width = 1.8; height = 1.2}} :> shape

The trick here is that the “:>” operator corresponds directly to an introduction form for
existential types. Because their concrete type is “forgotten” this way, shapes like these can
be collected in a heterogeneous list, for which the function totalArea is able to compute
the cumulative area:

totalArea [aCirc, aRect, aCirc]

This works because the computation inside the function is agnostic to the actual type of
each shape, and the 1ML typing rules implicitly “open” the existential package. The upshot
is that ADTs and existential types are one and the same thing in 1ML – driving home
Mitchell & Plotkin’s original point (Mitchell & Plotkin, 1988) not just as a theoretical
semantic observation, but as very concrete language design choice.

It turns out that the previous examples can still be expressed with packaged modules
(Section 1.1), even though they would become fairly verbose. But now consider:

type COLL c =
{
type key;
type val;
empty : c;
add : c → key → val → c;
lookup : c → key → opt val;
keys : c → list key

};

entries c (C : COLL c) (xs : c) : list (C.key × C.val) = ...

COLL amounts to a parameterised signature, and is akin to a Haskell-style type class (Wadler
& Blott, 1989). It contains two abstract type specifications, which are known as associated
types in the type class literature (or in the C++ universe). The function entries is parame-
terised over a corresponding module C – an (explicit) instance of the type class if you want.
Its result type depends directly on C’s definition of the associated types. Such a dependency
can be expressed in ML on the module level, but not at the core level.9

9 In OCaml 4, this example can be approximated only with heavy fibration:

module type COLL = sig type coll type key type val ... end
let entries (type c) (type k) (type v)

(module C : COLL with type coll = c and type key = k and type value = v)
(xs : c) : (k * v) list = ...
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Moving to higher kinds, things become even more interesting:

type MONAD (m : type ⇒ type) =
{

return a : a → m a;
bind a b : m a → (a → m b) → m b

};

map a b (m : type ⇒ type) (M : MONAD m) (f : a → b) (mx : m a) =
M.bind a b mx (fun (x : a) ⇒ M.return b (f x)) (* : m b *)

Here, MONAD is again akin to a constructor class, i.e., a type class over a type constructor.
As explained in Section 1.1, this kind of polymorphism cannot be expressed in ML, even
in dialects with packaged modules.

Computed Modules Just for completeness, we should mention that the motivating exam-
ple from Section 1 can of course be written (almost) as is in 1MLex:

Table = if size > threshold then HashMap else TreeMap : MAP

The only minor nuisance is the need to annotate the type of the conditional. As explained
earlier, the annotation is necessary in general to achieve unique types. But in most cases it
can usually be inferred once we add inference to the mix (Section 6).

Predicativity What is the restriction we employ to maintain decidability? It is simple:
during subtyping (also known as signature matching) the type type can only be matched
by small types, which are those that do not themselves contain the type type; or in other
words, monomorphic types. Small types thus exclude first-class abstract types, actual func-
tors (functions taking type parameters), and type constructors (which are just functors).

The primary place where the distinction between small and large types comes into play
is when applying a function that abstracts over a type, more precisely, over a value of type
type. The type of the actual argument value naturally has to be a subtype of the function’s
formal parameter type. If that parameter type includes a component of type type, i.e.,
an abstract type, then the argument must contain a corresponding “type value”. And the
crucial restriction is that this type value must denote a small type.

For example, consider these applications of the Map functor from earlier:

M1 = Map {type t = {a : int; b : int}; . . . }
M2 = Map {type t = {type u; v : u; f : u → int}; . . . }
M3 = Map {type t = (u : type) → u → u; . . . }

The first application is fine: it passes the type {a : int; b : int}, which is a regular small
type with only value components. The second application, however, defines t to be a type
that itself has an abstract type component u. Such a definition is a large type, and as such,
per the restriction mentioned in Section 1.4, not a subtype of the abstract declaration type t

in the functor’s parameter type EQ. Consequently, this application is rejected by the type
system. Similarly, the third line defines t to be a large type, because it is a function that
takes an abstract type as a parameter. This application is likewise rejected.
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Intuitively, small types characterise what would be “values” while large type characterise
what would be “modules” in conventional ML. In 1ML it is possible to abstract over
modules as any other first-class value, but it is not possible to abstract over module types –
at least not directly; in Section 5.1 we will lift this restriction with a minor addition to the
language. All of the following define large types:

type T1 = type;
type T2 = {type u};
type T3 = {type u = T2};

type T4 = (x : {}) → type;
type T5 = (a : type) ⇒ {};
type T6 = {type u a = bool};

None of these are expressible as type expressions in conventional ML, and vice versa, all
ML type expressions materialise as small types in 1ML, so nothing is lost in comparison.

The restriction on subtyping affects annotations, parameterisation over types, and the
formation of abstract types. For example, for all of the above Ti, none of the following
definitions are well-typed:

type U = pair Ti Ti; (* error *)
A = (type Ti) : type; (* error *)
B = {type u = Ti} :> {type u}; (* error *)
C = if b then Ti else int : type (* error *)

Notably, the case A with T1 literally implies type type 6 : type – although type type

itself is a well-formed expression, it is the value of T1 above! But its only type is the
transparent (= type type); it cannot be abstracted. Preventing a type:type situation is the
main challenge with first-class modules, and the separation into a small universe (denoted
by type) and a large one (for which no syntax exists) achieves that.

A transparent type specification is small as long as it reveals a small type. Consequently,
the following functor application is fine, because type u in t is transparent:

M4 = Map {type t = {type u = int; v : u; f : u → int}; . . . }

Likewise, the following bindings,

type T′1 = (= type int);
type T′2 = {type u = int}

are to small types and would hence not cause an error when inserted into the definitions of
U, A, B, and C above.

Recursion The 1MLex syntax we give in Figure 1 omits a couple of constructs that one
can rightfully expect from any serious ML contender: in particular, there is no form of
recursion, neither for terms nor for types. It turns out that those are largely orthogonal to
the overall design of 1ML, so we only sketch them here.

Recursive functions can be added simply by throwing in a primitive polymorphic fix-
point operator

fix a b : ((a → b) → (a → b)) → (a → b)

On top of that, it is only a matter of defining suitable syntactic sugar:

rec X Y (Z :T ) :U =E := X = fun Y ⇒ fix T U (fun(X : (Z:T )→U)⇒ fun(Z:T )⇒ E)

Given an appropriate fixpoint operator, this generalises further to mutually recursive func-
tions in the usual manner. Note how the need to specify the result type b (respectively, U
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(kinds) κ ::= Ω | κ → κ

(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | τ τ

(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ | pack 〈τ,e〉τ | unpack 〈α,x〉=e in e
(environ’s) Γ ::= · | Γ,α:κ | Γ,x:τ

Fig. 3. Syntax of Fω

for the sugared form) prevents using the operator to construct transparent recursive types,
because U has no way of referring to the result of the fixpoint. (In this simple definition, U
is not even allowed to refer to the argument Z, although that could be relaxed with a more
powerful fixpoint operator.) Moreover, fix yields an impure function, so even an attempt to
define an abstract type recursively, as in

rec stream (a : type) : type = type {head : a; tail : stream a}

won’t type-check, because stream wouldn’t be an applicative functor, and so the term
stream a on the right-hand side is not a valid type — fortunately, because there would be
no way to translate such a definition into System Fω with a conventional fixpoint operator.

Recursive (data)types have to be added separately. One approach, that has been used by
Harper & Stone’s type-theoretic account of Standard ML (Harper & Stone, 2000), is to
interpret a recursive datatype like

datatype t = A | B of T

as a module defining a primitive ADT with the signature

{type t; A : t; B : T ⇒ t; expose a : ({} → a) ⇒ (T → a) ⇒ t → a}

where expose is a case-operator accessed by pattern matching compilation. We refer to
Harper & Stone (2000) for more details on this approach. There is one caveat, though:
datatypes expressed as ADTs require sealing. With the simple system presented in this
article alone they hence could not be defined inside applicative functors. This limitation
is removed by pure sealing, which, as mentioned before, is an obvious extension from the
F-ing modules paper (Rossberg et al., 2014) that is applicable to 1ML.

3 System Fω

Before diving deep into the semantics of 1ML in Section 4, a brief detour is in order. Fol-
lowing the F-ing modules approach (Rossberg et al., 2014), 1ML’s semantics is defined by
translation into System Fω , the higher-order polymorphic λ -calculus (Barendregt, 1992).

Readers who know Fω inside out should feel free to skip over this section.

Syntax Figure 3 gives the syntax of (impredicative) System Fω as we will use it here.
It includes simple record types {l : τ} (where we assume that labels are always disjoint),
but is otherwise completely standard. In the grammar, and elsewhere, we liberally use the
meta-notation A to stand for zero or more repetitions of an object or formula A, sometimes
writing ε explicitly for the empty sequence. We also sometimes abuse the notation A to
actually denote the unordered set {A}.
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To differentiate the external language (1ML) from the internal one (Fω ) later in the
paper, we consistently use uppercase letters to range over phrases of the former (X , T , E,
etc.), and lowercase for the latter (α , x, τ , e).

Static Semantics The full typing rules of Fω are given in Figure 4. The judgements are as
usual, with Γ ` 2 denoting well-formedness of typing environments. Type equivalence is
defined as full βη-equivalence.

The only point of note is that, unlike in many presentations, environments Γ permit
term variables x (but not type variables α) to be shadowed without α-renaming, which is
convenient for translating 1MLex-bindings later. Thus, we take the notation Γ(x) to index
the rightmost binding of x in Γ. Finally, dom(Γ) denotes the set of bound variables in Γ,
while fv(τ) and fv(e) are the free type and term variables of τ and e, respectively.

Dynamic Semantics We assume a standard left-to-right call-by-value operational seman-
tics, which is defined in Figure 5 via small-step reduction rules and evaluation contexts.

There is nothing unusual about the semantics, so we can move on immediately to the
meta-theory.

Properties The calculus as defined enjoys the standard soundness properties:

Theorem 3.1 (Preservation)
If · ` e : τ and e ↪→ e′, then · ` e′ : τ .

Theorem 3.2 (Progress)
If · ` e : τ and e 6= v for any v, then e ↪→ e′ for some e′.

The proofs are entirely standard.
The calculus also has the usual technical properties. The most relevant ones for our

purposes are the following:

Lemma 3.3 (Validity)
1. If Γ ` τ : Ω, then Γ `2.
2. If Γ ` e : τ , then Γ ` τ : Ω.

Lemma 3.4 (Weakening)
Let Γ′ ⊇ Γ with Γ′ `2.

1. If Γ ` τ : κ , then Γ′ ` τ : κ .
2. If Γ ` e : τ , then Γ′ ` e : τ .

Lemma 3.5 (Strengthening)
Let Γ′ ⊆ Γ with Γ′ `2 and D = dom(Γ)\dom(Γ′).

1. If Γ ` τ : κ and fv(τ)∩D = /0, then Γ′ ` τ : κ .
2. If Γ ` e : τ and fv(e)∩D = /0, then Γ′ ` e : τ .

Theorem 3.6 (Uniqueness of types and kinds)
1. If Γ ` τ : κ1 and Γ ` τ : κ2, then κ1 = κ2.
2. If Γ ` e : τ1 and Γ ` e : τ2, then τ1 ≡ τ2.
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Environments Γ `2

· `2
Γ `2 α /∈ dom(Γ)

Γ,α:κ `2
Γ ` τ : Ω

Γ,x:τ `2

Types Γ ` τ : κ

Γ ` τ1 : Ω Γ ` τ2 : Ω

Γ ` τ1→ τ2 : Ω

Γ ` τ : Ω Γ `2
Γ ` {l:τ} : Ω

Γ `2
Γ ` α : Γ(α)

Γ,α:κ ` τ : Ω

Γ ` ∀α:κ.τ : Ω

Γ,α:κ ` τ : Ω

Γ ` ∃α:κ.τ : Ω

Γ,α:κ ` τ : κ ′

Γ ` λα:κ.τ : κ → κ ′
Γ ` τ1 : κ ′→ κ Γ ` τ2 : κ ′

Γ ` τ1 τ2 : κ

Terms Γ ` e : τ

Γ `2
Γ ` x : Γ(x)

Γ ` e : τ ′ τ ′ ≡ τ Γ ` τ : Ω

Γ ` e : τ

Γ,x:τ ` e : τ ′

Γ ` λx:τ.e : τ → τ ′
Γ ` e1 : τ ′→ τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e : τ Γ `2
Γ ` {l=e} : {l:τ}

Γ ` e : {l:τ, l′:τ ′}
Γ ` e.l : τ

Γ,α:κ ` e : τ

Γ ` λα:κ.e : ∀α:κ.τ
Γ ` e : ∀α:κ.τ ′ Γ ` τ : κ

Γ ` e τ : τ ′[τ/α]

Γ ` τ : κ Γ ` e : τ ′[τ/α] Γ ` ∃α:κ.τ ′ : Ω

Γ ` pack 〈τ,e〉∃α:κ.τ ′ : ∃α:κ.τ ′

Γ ` e1 : ∃α:κ.τ ′ Γ,α:κ,x:τ ′ ` e2 : τ Γ ` τ : Ω

Γ ` unpack 〈α,x〉=e1 in e2 : τ

Type Equivalence τ ≡ τ ′

τ ≡ τ

τ ′ ≡ τ

τ ≡ τ ′
τ ≡ τ ′ τ ′ ≡ τ ′′

τ ≡ τ ′′

τ1 ≡ τ ′1 τ2 ≡ τ ′2
τ1→ τ2 ≡ τ ′1→ τ ′2

τ ≡ τ ′

{l:τ} ≡ {l:τ ′}

τ ≡ τ ′

∀α:κ.τ ≡ ∀α:κ.τ ′
τ ≡ τ ′

∃α:κ.τ ≡ ∃α:κ.τ ′

τ ≡ τ ′

λα:κ.τ ≡ λα:κ.τ ′
τ1 ≡ τ ′1 τ2 ≡ τ ′2

τ1 τ2 ≡ τ ′1 τ ′2

(λα:κ.τ1) τ2 ≡ τ1[τ2/α]

α /∈ fv(τ)
(λα:κ.τ α)≡ τ

Fig. 4. Typing rules for Fω
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Reduction e ↪→ e′

(λx:τ.e) v ↪→ e[v/x]
{l1=v1, l=v, l2=v2}.l ↪→ v

(λα:κ.e) τ ↪→ e[τ/α]
unpack 〈α,x〉= pack 〈τ,v〉τ ′ in e ↪→ e[τ/α][v/x]

e ↪→ e′

C[e] ↪→C[e′]

where:

(values) v ::= λx:τ.e | {l=v} | λα:κ.e | pack 〈τ,v〉τ
(contexts) C ::= [] |C e | v C | {l1=v, l=C, l2=e} |C.l |C τ | pack 〈τ,C〉τ | unpack 〈α,x〉=C in e

Fig. 5. Reduction rules for Fω

Finally, all judgments of the Fω type system are decidable:

Theorem 3.7 (Decidability)
1. It is decidable whether Γ `2.
2. It is decidable whether Γ ` τ : κ .
3. It is decidable whether Γ ` e : τ .
4. If Γ ` τ1 : κ and Γ ` τ2 : κ , it is decidable whether τ1 ≡ τ2.

Notational Shorthands The rest of this article often deals with quantification over whole
sequences α of type variables, and some other forms of lists of binders. The following
(fairly standard) definitions for shortened n-ary notation will come in handy:

∀ε.τ := τ ∃ε.τ := τ λε .τ := τ τ0 ε := τ0

∀α.τ := ∀α1.∀α ′.τ ∃α.τ := ∃α1.∃α ′.τ λα.τ := λα1.λα
′.τ τ0 τ := τ0 τ1 τ

′

λε.e := e
λα.e := λα1.λα

′.e
e ε := e
e τ := e τ1 τ

′

pack 〈ε,e〉∃ε.τ0 := e
pack 〈τ,e〉∃α.τ0 := pack 〈τ1,pack 〈τ ′,e〉∃α ′.τ0[τ1/α1]

〉∃α.τ0

unpack 〈ε,x:τ〉= e1 in e2 := let x:τ = e1 in e2

unpack 〈α,x:τ〉= e1 in e2 := unpack 〈α1,x1〉= e1 in unpack 〈α ′,x:τ〉= x1 in e2

let x:τ = e1 in e2 := (λx:τ.e2)e1

(where α = α1α
′ and τ = τ1τ

′)
To ease notation, we often drop type annotations from let, pack, and unpack where clear

from context.

Substitution Our semantics will also make considerable use of parallel type substitutions.
We write them as [τ/α], assuming that both vectors have the same arity. Sometimes we
use δ to range over such substitutions.

The following definitions and lemmas are relevant:

Definition 3.8 (Typing of Type Substitutions)
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(abstracted) Ξ ::= ∃α.Σ

(large) Σ ::= π | bool | [= Ξ] | {l:Σ} | ∀α.Σ→η Ξ

(small) σ ::= π | bool | [= σ ] | {l:σ} | σ →I σ

(paths) π ::= α | π σ

(purity) η ::= P | I

Desugarings into Fω :

(types)
[= τ] := {type : τ →{}}
τ1→l τ2 := τ1→{l : τ2}

(terms)
[τ] := {type = λx:τ.{}}
λlx:τ.e := λx:τ.{l : e}

Notation:

head(α) := α

head(π σ) := head(π)

η ≤ η η ∨ η := η η(Σ) := P

P ≤ I P ∨ I := I∨P := I η(∃αα.Σ) := I

τ.l := τ

{l:τ, ...}.l := τ.l′
τ[.l=τ2] := τ2

{l:τ, ...}[.l=τ2] := {l:τ[.l′=τ2], ...}
(l = ε)

(l = l.l′)

Fig. 6. Semantic Types

Let δ = [τ/α]. We write Γ′ ` δ : Γ if and only if

1. Γ′ `2,
2. α ⊆ dom(Γ),
3. for all α ∈ dom(Γ), Γ′ ` δα : Γ(α),
4. for all x ∈ dom(Γ), Γ′ ` x : δ (Γ(x)).

Lemma 3.9 (Type Substitutions)
Let Γ′ ` δ : Γ. Then:

1. If Γ ` τ : κ , then Γ′ ` δτ : κ .
2. If Γ ` e : τ , then Γ′ ` δe : δτ .

4 Type System and Elaboration

The general recipe for 1MLex is simple: take the semantics from F-ing modules (Rossberg
et al., 2014), collapse the levels of modules and core, and impose the predicativity restric-
tion needed to maintain decidability. This requires surprisingly few changes to the whole
system.

4.1 Semantic Types

The entire semantics is defined by elaborating 1MLex types and terms directly into “equiv-
alent” types and terms of System Fω as given in the previous section. However, 1ML types
do not translate to arbitrary Fω types – instead, they map to types of very specific shape.
The grammar of these semantic types is given in Figure 6 (“semantic” as opposed to the
“syntactic” types of the surface language which they model). To avoid clutter, we omit all
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kind annotations on type variable binders. Where needed, we use the notation κα to refer
to the kind implicitly associated with α .

Semantic types are the essence of the F-ing elaboration. To understand them, it is prob-
ably best to walk through a few explanatory examples that elaborate a concrete 1ML type
T into a System Fω type τ , a relation we write T  τ .

• {x : bool, y : int}  {x : bool, y : int}

Elaboration will translate this syntactic type into the semantic type of the same shape.
So records map to records, which should be no surprise. We assume an implicit injection
from 1ML identifiers X into Fω labels l (and variables x), so we can conveniently treat any
X as a label (or variable).

• {t : (= type bool); u : (= type t); x : t, y : u}  
{t : [= bool], u : [= bool], x : bool, y : bool}

Structurally, the elaborated type still looks almost like the original, except that all refer-
ences to the transparent type specifications are replaced with their definitions.

Of course, one may (and should!) wonder what this “[= τ]” is that represents transparent
types. Because we keep saying that semantic types are just System F types, but this does not
look like one. The answer can be found in Figure 6: it is simply a notational abbreviation
that is encoded into bare System F. Its expansion does not actually matter much, it is merely
a coding trick. All that matters is that it is a form of type that (1) uniquely determines τ ,
and (2) is inhabited by a term that also uniquely determines τ . A function fits the bill.10

To make the encoding unambiguous, it is wrapped into a record type with a unique label
“type” that we assume to be a reserved name disjoint from all valid 1ML identifiers.

• {t : type; u : (= type t); x : t; y : u}  
∃α.{t : [= α], u : [= α], x : α, y : α}

This type is almost the same as before except that t now is an abstract type. The example
demonstrates the main trick of elaboration: it inserts appropriate quantifiers to bind abstract
types. Following Mitchell & Plotkin (1988), abstract types are represented by existentials.
The type variable α provides a “semantic” name for t, and all references to t are replaced
by α . This includes the specification of t itself, which can now be viewed as being trans-
parently equal to α . The upshot is that all reified types, whether transparent or opaque, are
represented in a uniform manner. It also removes any dependency between fields of the
record type – key to elaborating into bare System F without dependent types.

• {A : {t : type}; B : {u : type; x : A.t}; y : B.u}  
∃αβ .{A : {t : [= α]}, B : {u : [= β ], x : α}, y : β}

This one shows the handling of nested abstract types: inner quantifiers are collectively
hoisted out of records. In particular, this makes them scope over the remainder of any
enclosing record, which allows us to reference the type variable across subcomponents –

10 Because all type constructors are separately represented as “functors” in 1ML, we have no need
for types of higher kind in this notation, as opposed to Rossberg et al. (2014).
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such as A.t and B.u in the example. A type may have arbitrarily many abstract components,
which all accumulate in an outermost quantifier.

Accordingly, the grammar of semantic types defines an abstracted type Ξ = ∃α.Σ that
quantifies over all the abstract types (i.e., components of type type) from the underlying
concretised type Σ, by naming them α . Σ itself contains no existential quantifiers – except
as part of function types. So let us move to functions then.

• (t : type) → {u : type; x : t, y : u}  
∀α.[= α]→I ∃β .{u : [= β ], x : α, y : β}

Conceptually, all function types map to polymorphic functions in Fω . Being in negative
position, the quantifier for the abstract types from the parameter (here α) turns into a
universal quantifier. It scopes over the whole arrow type and thereby allows the codomain
to refer to it. Like for nested records, this hoisting avoids the need for dependent types.

For an impure function type like the above, the abstract types in the result are encapsu-
lated by a local existential quantifier. It binds all those types that will be “generated” when
applying the function. This representation of generative functor types as System F types of
the form ∀α.Σ1→ ∃β .Σ2 is due to Russo (1999; 2003), and another central ingredient of
the F-ing modules semantics.

Arrow types are further annotated by a simple effect η , which distinguishes impure (→I)
from pure (→P) function types. Again, this syntax is encoded into bare Fω types with a little
record trick, see Figure 6 (we assume that record labels used with this form do not overlap
with other labels).

• (t : type) ⇒ {u : type; x : t; y : u}  
∃β .∀α.[= α]→P {u : [= β α], x : α, y : β α}

This example shows the pure variant of the previous function type. Because it does not
generate types at applications time, the existential quantifier changes position in the Fω

translation: pure function types encode applicative semantics for the abstract types they
return by having their existential quantifiers (here for β ) “lifted” over their parameters.
Their general form is ∃β .∀α.Σ1→ Σ2. Conceptually, the abstract types are generated when
the function is defined, not when it is applied. We impose the syntactic invariant that a pure
function type (→P) never has an existential quantifier immediately right of the arrow, i.e.,
always has shape Σ1→P Σ2.

However, the representation of an abstract type returned by a function may depend on
the function’s parameters. To capture any potential dependencies, the β in a pure function
type are skolemised over α (Biswas, 1995; Russo, 2003; Rossberg et al., 2014). That is,
the kinds of β are of the form κα → κ , which is where higher kinds come into play. In
return, all their occurrences are applied to α . In the concrete example, the kind of the
type variable β for u hence is Ω→ Ω, and all its references are of the form β α , thereby
saturating any use of a type constructor and making sure that they all yield kind Ω. Once
the function is applied to a concrete type, say τ , the parameter variable α is substituted,
and all occurrences will have the form β τ .

• {t : type ⇒ type; x : t int; y : t bool}  
∃β .{t : ∀α.[= α]→P [= β α], x : β int, y : β bool}
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Pure functions over type type readily subsume abstract type constructors. As we will
see in a short while, elaborating the application (t int) in the above example substitutes int

for α in β α and results in a value of semantic type [= β int] – which is the representation
of the syntactic type (= type t int). Hence, the types of x and y in the example have the
desired meaning.

We call the general form of abstract type variables applied to parameters semantic
paths,11 ranged over by π . Parameters are (only) introduced through pure function ab-
straction and the aforementioned kind raising that goes with it. In general, an abstract type
that is the result of an application of a pure function F to a value M is represented by the
application of the higher-kinded type variable representing the constructor to the concrete
types σM from the argument, like the type β int in the example.

Because we enforce predicativity, these argument types have to be small. Figure 6
defines small types as a subgrammar σ of the general semantic types Σ. The central
difference is that small types cannot contain quantifiers. Moreover, small function types
are required to be impure, which will simplify type inference (Section 7).

A summary of the mapping between syntactic types T and semantic types Ξ is as
follows:

T  ∃α.Σ

(= type T1)  [= ∃α1.Σ1]

type  ∃α.[= α]

{X1:T1;X2:T2}  ∃α1α2.{X1:Σ1,X2:Σ2}
(X :T1) → T2  ∀α1.Σ1→I ∃α2.Σ2

(X :T1) ⇒ T2  ∃α2.∀α1.Σ1→P Σ2

A.t  αA.t
F(M)  αF( ) σM

Here, we assume that each constituent type Ti on the left-hand side is recursively mapped
to a corresponding ∃α i.Σi appearing on the right-hand side.

Note that all semantic types are Fω types of kind Ω, even those that are the equivalent of
higher kinds, such as type ⇒ type. This type will elaborate into the polymorphic function
∃α2.∀α1.[= α1]→ [= α2 α1], where the higher-kindedness is manifest only in the kind of
the “output” type variable α2.

4.2 Elaboration

The elaboration rules for 1MLex are collected in Figures 7 and 8. There is one judgement
for each syntactic class with the following regular structure:

Γ ` T  Ξ Γ ` E :η Ξ e
Γ ` D Ξ Γ ` B :η Ξ e

11 Because they are the semantic analog to syntactic paths like F(M).t that appear in some previous
type systems for higher-order modules (Leroy, 1995)
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Types Γ ` T  Ξ
Γ ` E :P [= Ξ] e

Γ ` E Ξ
TPATH

κα = Ω

Γ ` type ∃α.[= α]
TTYPE

Γ ` bool bool
TBOOL

Γ ` D Ξ

Γ ` {D} Ξ
TSTR

Γ ` T1 ∃α1.Σ1
Γ,α1,X :Σ1 ` T2 ∃α2.Σ2

Γ ` (X :T1)→T2 ∀α1.Σ1→I ∃α2.Σ2
TFUN

Γ ` T1 ∃α1.Σ1
Γ,α1,X :Σ1 ` T2 ∃α2.Σ2 κα ′2

= κα1→ κα2

Γ ` (X :T1)⇒T2 ∃α ′2.∀α1.Σ1→P Σ2[α
′
2 α1/α2]

TPFUN

Γ ` E :P Σ e E = E ′:>T ∨E = E ′:T ∨E = type T
Γ ` (=E) Σ

TSING

Γ ` T1 ∃α1.Σ1 α1 = α11]α12
Γ ` T2 ∃α2.Σ2 Γ,α11,α2 ` Σ2 ≤α12 Σ1.X  δ ; f

Γ ` T1 where (.X :T2) ∃α11α2.δΣ1[.X=Σ2]
TWHERE

Declarations Γ ` D Ξ

Γ ` T  ∃α.Σ

Γ ` X :T  ∃α.{X :Σ}
DVAR

Γ ` T  ∃α.{X :Σ}
Γ ` include T  ∃α.{X :Σ}

DINCL

Γ ` D1 ∃α1.{X1:Σ1}
Γ,α1,X1:Σ1 ` D2 ∃α2.{X2:Σ2} X1∩X2 = /0

Γ ` D1;D2 ∃α1α2.{X1:Σ1,X2:Σ2}
DSEQ

Γ ` ε  {}
DEMPTY

Subtyping Γ ` Ξ′ ≤π Ξ δ ; f
Γ ` Ξ≤ Ξ′ f := Γ ` Ξ≤ε Ξ′ id; f

Γ ` π ≤ π  λx.x
SPATH

Γ ` bool≤ bool λx.x
SBOOL

Γ ` Ξ′ ≤ Ξ f Γ ` Ξ≤ Ξ′ f ′

Γ ` [= Ξ′]≤ [= Ξ] λx.[Ξ]
STYPE

π = α α
′

Γ ` [= σ ]≤π [= π] [λα
′.σ/α];λx.x

SFORGET

Γ ` {l:Σ′} ≤ {} λx.{}
SEMPTY

Γ ` Σ′1 ≤π1 Σ1 δ1; f1
Γ ` {l′:Σ′} ≤π2 {l:δ1Σ} δ2; f2 δ2Σ1 = Σ1

Γ ` {l1:Σ′1, l
′:Σ′} ≤π1π2 {l1:Σ1, l:Σ} δ1δ2;λx.{l1= f1(x.l1), l=( f2 x).l}

SSTR

Γ,α ` Σ≤α
′ Σ′ δ1; f1 η ′ ≤ η

Γ,α ` δ1Ξ′ ≤
πα

Ξ δ2; f2 δ2Σ = Σ

Γ ` (∀α ′.Σ′→η ′ Ξ′)≤π (∀α.Σ→η Ξ) δ2;λx.λα.λη y:Σ. f2 ((x(δ1α
′)( f1 y)).η ′)

SFUN

Γ,α ′ ` Σ′ ≤α Σ δ ; f α
′
α 6= ε

Γ ` ∃α ′.Σ′ ≤ ∃α.Σ λx.unpack 〈α ′,y〉= x in pack 〈δα, f y〉
SABS

Fig. 7. Elaboration of 1MLex types
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Expressions Γ ` E :η Ξ e

Γ(X) = Σ

Γ ` X :P Σ X
EVAR

Γ ` T  Ξ

Γ ` type T :P [= Ξ] [Ξ]
ETYPE

Γ ` true :P bool true
ETRUE

Γ ` false :P bool false
EFALSE

Γ ` X :P bool e Γ ` E1 :η1 Ξ1 e1 Γ ` Ξ1 ≤ Ξ f1
Γ ` T  Ξ Γ ` E2 :η2 Ξ2 e2 Γ ` Ξ2 ≤ Ξ f2

Γ ` if X then E1 else E2 :T :η1∨η2∨η(Ξ) Ξ if e then f1 e1 else f2 e2
EIF

Γ ` B :η Ξ e
Γ ` {B} :η Ξ e

ESTR
Γ ` E :η ∃α.{X ′:Σ′} e X :Σ ∈ X ′:Σ′

Γ ` E.X :η ∃α.Σ unpack 〈α,y〉= e in pack 〈α,y.X〉
EDOT

Γ ` T  ∃α.Σ Γ,α,X :Σ ` E :η Ξ e
Γ ` fun(X :T )⇒E :P ∀α.Σ→η Ξ λα.λη X :Σ.e

EFUN

Γ ` X1 :P ∀α.Σ1→η Ξ e1
Γ ` X2 :P Σ2 e2 Γ ` Σ2 ≤α Σ1 δ ; f

Γ ` X1 X2 :η δΞ (e1 (δα)( f e2)).η
EAPP

Γ ` X :P Σ1 e Γ ` T  ∃α.Σ2 Γ ` Σ1 ≤α Σ2 δ ; f
Γ ` X :>T :η(∃α.Σ2) ∃α.Σ2 pack 〈δα, f e〉

ESEAL

Bindings Γ ` B :η Ξ e

Γ ` E :η ∃α.Σ e
Γ ` X=E :η ∃α.{X :Σ} unpack 〈α,x〉= e in pack 〈α,{X=x}〉

BVAR

Γ ` E :η ∃α.{X :Σ} e
Γ ` include E :η ∃α.{X :Σ} e

BINCL
Γ ` ε :P {} {}

BEMPTY

Γ ` B1 :η1 ∃α1.{X1:Σ1} e1 X ′1 = X1−X2
Γ,α1,X1:Σ1 ` B2 :η2 ∃α2.{X2:Σ2} e2 X ′1:Σ′1 ⊆ X1:Σ1

Γ ` B1;B2 :η1∨η2 ∃α1α2.{X ′1:Σ′1,X2:Σ2} unpack 〈α1,y1〉= e1 in let X1 = y1.X1 in
unpack 〈α2,y2〉= e2 in

pack 〈α1α2,{X ′1 = y1.X ′1,X2 = y2.X2}〉

BSEQ

Fig. 8. Elaboration of 1MLex expressions

In addition, there is an additional judgement defining subtyping over semantic types:

Γ ` Ξ1 ≤π Ξ2 δ ; f

The rules may seem a bit intimidating at first, especially those for expressions and sub-
typing. But do not despair: that is only because elaboration defines both static semantics
(typing) and dynamic semantics (operational meaning) at the same time. The latter is
encapsulated in the greyed parts like “ e”, and defines what System F term a construct
translates to. A reader who is merely interested in typing 1ML can completely ignore those
grey parts in all rules – just squint and make them disappear.

Types and Declarations The elaboration rules for types implement the translation scheme
we laid out in the previous section. Their main job is to name all abstract type components
with type variables, collect them, and bind them hoisted to an outermost existential (or



ZU064-05-FPR main 30 October 2018 15:52

1ML – Core and modules united 27

universal, in the case of functions) quantifier. The rules are mostly identical to F-ing
modules, except that type is a free-standing construct instead of being tied to the syntax
of bindings, and 1ML’s “where” construct is slightly more general. Most notable are the
following rules.

Using an expression E as a type path requires that E is pure and has a type of the form
[= Ξ]. It denotes the very type Ξ – which may be anything from an abstract type variable
to a large type (rule TPATH).

Function types have separate rules for impure (generative) functions (TFUN) and pure
(applicative) ones (TPFUN). As explained above, pure function types have the existential
quantifier for the α2 from the codomain lifted over the parameters, skolemising them
accordingly.

Rule TSING handles “singleton” types. It corresponds to rule S-LIKE in Rossberg et al. (2014),
except that we restrict it to expressions with explicit types, in order to mesh well with type
inference later (where it would not otherwise denote a unique type). In return, we can drop
the former side condition requiring Σ to be explicit. The rule simply infers the (unique) type
Σ of the pure expression E. Note that this type is not allowed to have existential quantifiers,
i.e., E may not introduce local abstract types. All types occurring in Σ thus are transparent.

The most complex rule is TWHERE. Unlike in conventional ML, where the where

construct simply concretises one (or several) types via substitution, we allow it to specialise
an arbitrary subcomponent of T1 to an arbitrary subtype. The original semantic type of that
subcomponent, denoted by Σ1.X in the rule, is replaced by the semantic interpretation of
T2, written Σ1[.X = Σ2] (both these notations are defined in Figure 6). If T2 defines its
own abstract types α2 then they are added to the list. At the same time, it may remove
some of the abstract types α1 from the original type. To this end, α1 is partitioned into
types α11 that remain abstract and α12 that are made concrete by the refinement (or just
replaced by some of the α2). The last premise checks that Σ2 indeed matches Σ1.X , using
the subtyping judgement explained below. This yields a substitution δ for eliminating the
previously abstract types α12. The remaining α11 are left abstract, so their quantifiers are
kept.

As a rule of thumb, any 1MLex type with an occurrence of type type will elaborate to a
large type, unless this abstact type is refined to something concrete using the where form.
Any type without the use of type type and no reference to another large type will denote a
small type.

Expressions and Bindings The elaboration of expressions closely follows the rules from
the first part of Rossberg et al. (2014), but adds the tracking of purity as in Section 7 of that
paper. However, to keep the current article simple, we left out the ability to perform pure
sealing, or to create pure functions around it – that avoids some of the notational contortions
necessary for a relaxed applicative functor semantics. The only other non-editorial change
over F-ing modules – apart from the addition of Boolean expression forms – is that as for
types, “type T ” is now handled as a first-class value, no longer tied to bindings.

The rules assign effects η and semantic types Ξ to 1ML expressions or bindings, and
at the same time translate them to corresponding terms e of System Fω that define the
operational semantics of 1ML. It is an invariant of the judgement that e has type Ξ in
System Fω .
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As we saw before, the main trick in interpreting 1ML’s module-like types is introducing
quantifiers for abstract types. That is reflected in the typing of expressions: an expression
that defines new abstract types will have an “abstracted” semantic type Ξ with existential
quantifiers, one quantifier for each new type. When such an expression is nested into
a larger expression then the rules have to propagate these quantifiers accordingly. For
example, for a projection E.x to be well-typed, E obviously needs to have a type of
the form {x : Σ, . . .}; the resulting type would be Σ then. However, if E creates abstract
types locally, then its type will be of the form ∃α.{x : Σ, . . .} instead. The central idea
taken from F-ing modules is to handle such types implicitly by extruding the existential
quantifier automatically: that is, the projection E.x is well-typed and assigned type ∃α.Σ,
with the same sequence of quantifiers. And so on for other constructs. On the term level,
that corresponds to repeated unpacking and repacking of the respective existentials.

Moreover, the sequencing rule BSEQ combines two (n-ary) existentials into one – and is
the only rule that does so, because the kernel syntax allows only variables in most places;
the derived forms from Figure 1 all desugar into uses of sequencing.

For the categorically inclined, the existential quantifiers in an expression’s type Ξ act
like an implicit monad of “abstraction effects”. There is no way to “escape” this monad:
the sequencing rule BSEQ acts like its bind operator, and the only construct to suspend it
is functional abstraction (rule EFUN). The only rules that effectively “run” such a monad
are the type formation rules TPATH and TSING, and they require the abstraction effects to
be encapsulated in the expression (i.e., no abstract types escape).12

It is another invariant of the expression elaboration judgement that η = I in all cases
where Ξ does not degenerate into a concrete type Σ with empty (i.e., no) quantifier – in
other words, abstract type “generation” is indeed impure. Without this invariant, rule EFUN

might form an invalid function type that is marked pure but yet has an inner existential
quantifier (i.e., is “generative”).

To maintain the invariant, both sealing (rule ESEAL) and conditionals (rule EIF) have to
be deemed impure if they generate abstract types – enforced by the notation η(Ξ) defined
in Figure 6. In that sense, our notion of purity actually corresponds to the stronger property
of valuability in the parlance of Dreyer (2005), which also implies phase separation, i.e.,
the ability to separate static type information from dynamic computation, key to avoiding
the need for dependent types.

Subtyping In two places expression typing uses subtyping: for function application (rule
EAPP) and for sealing (rule ESEAL). Subtyping is like signature matching for ML modules:
it allows not only for width subtyping on records, it can also substitute concrete definitions
for abstract types. It is through that property, that the two occurrences of subtyping sub-
sume universal elimination and existential introduction.

The subtyping judgement is defined on semantic types. It computes a substitution δ for
the matched abstract types from the right-hand side, and it generates a coercion function f
as computational evidence of the subtyping relation. The domain of that function always

12 More precisely, we actually have an infinite family of monads – one for each possible sequence of
variable kinds – and the bind operator is heterogeneous, yielding the composition of two monads
with composition being just nesting. See Rossberg (2016) for a more extensive discussion.
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is the left-hand type Ξ′; to avoid clutter, we omit its explicit annotation from the λ -terms
produced by the rules. The rules mostly follow the structure from F-ing modules, merely
adding a straightforward rule for abstract type paths π (rule SPATH), because those can
now occur as “module types”.

However, we make one structural change: instead of guessing the substitution δ non-
deterministically in a separate rule (rule U-MATCH in Rossberg et al. (2014)), the current
formulation looks them up algorithmically as it goes, using the new rule SFORGET to match
an individual abstract type. The reason for this change is merely a technical one: it elim-
inates the need for any significant meta-theory about decidability, which was somewhat
non-trivial with the non-determinism before, at least with applicative functors.

To this end, the judgement is indexed by a vector π of abstract paths that correspond to
the abstract types from the right-hand Ξ. The counterparts of those types have to be looked
up in the left-hand Ξ′, which happens one at a time in the rule SFORGET. Those lookups
incrementally produce the substitution δ whose domain corresponds to the (root variables
of) the abstract paths π . Substitutions are combined in rule SSTR, where the vector of type
paths is partitioned over the record components as needed.

Let us look at a couple of examples. When matching {type t = bool; v : t} against
{type t; v : t} then first, these types elaborate into {t : [= bool], v : bool} and ∃α.{t :
[= α], v : α}, respectively. The subtyping judgement then is invoked with an empty path
at first, i.e., checking {t : [= bool], v : bool} ≤ε ∃α.{t : [= α], v : α}. Rule SABS would
first eliminate the quantifier and move the variable to the list of paths, thereby invoking
{t : [= bool], v : bool} ≤α {t : [= α], v : α}. After applying rule SSTR this would arrive at
matching the structure component t via [= bool] ≤α [= α]. That is where rule SFORGET

fires, because the path matches the right-hand side. It produces the substitution [bool/α],
under which the remainder of the structure can be matched successfully.13

When matching a type with multiple abstract type components, e.g., ∃α1α2.{t : [=
α1], u : [=α2], v : α2→α1}, then it proceeds similarly, but with a list of paths α1,α2 that is
then split up by rule SSTR. Individual applications of SFORGET yield separate substitutions
for each type component which SSTR composes on the way back.

Hence, normally, each path in π is just a plain abstract type variable that occurs free in
Ξ. But as we saw in the formation rule TPFUN for pure function types, lifting produces
more complex paths. So when subtyping goes inside a pure functor in rule SFUN, the same
abstract paths with skolem parameters have to be formed for lookup, so that rule SFORGET

can match them accordingly. For example, matching (a : type) ⇒ (= type a) against
(a : type) ⇒ type translates to ∀α ′.[= α ′]→P [= α ′] ≤ ∃β .∀α.[= α]→P [= β α] with
κβ = Ω→ Ω. Via rule SABS, this would try to match ∀α ′.[= α ′]→P [= α ′] ≤β ∀α.[=

α] →P [= β α], which involves looking up the higher-kinded β . After contra-variantly
matching the function parameters, the second premise of rule SFUN then traverses into the
functions’ codomains with path β α , trying to match [= α] ≤(β α) [= β α]. And indeed,
that is the only way for SFORGET to “find” the path and yield δ = [λα.α/β ].

13 Unlike the more declarative formulation in F-ing modules (2014), but similar to the subtyping
algorithm of Leroy (1996), these rules rely on the invariant that semantic signatures {l:Σ} are
ordered, such that the label that is “binding” an abstract type always appears before any of the
type’s uses. This is sufficient for 1ML, but would not scale to recursive modules, for example.
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We assume that applying substitutions implicitly performs βη-normalisation. Because
all type applications in semantic paths are saturated, no type lambdas remain in a semantic
type after applying a substitution.

No types can actually be looked up from under an(other) abstracted type Ξ with non-
empty quantifier – because π is required to be empty when entering rule SABS. Hence, for
any subtyping derivation Ξ′ ≤π Ξ, it is either the vector π that is empty, or the quantifiers
of both Ξ and Ξ′. Either case can actually occur when invoking the second premise of rule
SFUN, depending on whether the function types are pure or not.

The side conditions of the form δΣ=Σ in rules SSTR and SFUN enforce that no variables
in the domain of δ occur in Σ (under the usual freshness assumptions for bound variables).
That in turn ensures that all abstract variables are properly scoped, i.e., do not occur before
a “definitional” occurrence in a type of the form [= π] that allows us to look them up.

Finally, we note that rule SFORGET is the single place in the whole set of 1ML typing
rules where the predicativity restriction materialises: the rule allows only a small type σ

on the left, so that only small types can end up in the image of the substitution δ .

4.3 Meta-Theory

It is relatively straightforward to verify by induction that elaboration is correct, i.e., pro-
duces only well-formed Fω -objects:

Proposition 4.1 (Correctness of 1MLex Elaboration)
Let Γ `2.

1. If Γ ` T/D Ξ, then Γ ` Ξ : Ω.
2. If Γ ` E/B :η Ξ e, then Γ ` e : Ξ, and if η=P then Ξ=Σ.
3. If Γ ` Ξ′ ≤

αα
′ Ξ δ ; f and Γ ` Ξ′ : Ω and Γ,α ` Ξ : Ω, then dom(δ ) = α and

Γ ` δ : Γ,α and Γ ` f : Ξ′→ δΞ.

Together with the standard soundness result for System Fω we can tell that 1MLex is sound,
i.e., a well-typed 1MLex program will either diverge or terminate with a value of the right
type. With the bare definition of 1MLex we have given divergence cannot even arise, but a
more complete ML-like language will surely have it.

Theorem 4.2 (Soundness of 1MLex)
If · ` E : Ξ e, then either e ↑ or e ↪→∗ v such that · ` v : Ξ.

More interestingly, the 1MLex type system is also decidable:

Theorem 4.3 (Decidablity of 1MLex Elaboration)
All 1MLex elaboration judgements are decidable.

This is immediate for all but the subtyping judgement, since they are syntax-directed
and inductive, with no complicated side conditions. The rules can be read directly as an
inductive algorithm. The one odd case is rule TWHERE, where it seems necessary to find a
partitioning α1 = α11 ]α12, but it is not hard to see that the subtyping premise can only
possibly succeed when picking α12 = fv(Σ1.X)∩α1.
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The only tricky judgement is subtyping. Although it is syntax-directed as well, the rules
are not actually inductive: some of their premises apply a substitution δ to the inspected
types. Alas, that is exactly what can cause undecidability (see Section 1.2).

The restriction to substituting small types saves the day. With that, we can define a
weight metric over semantic types such that a quantified type variable has more weight
than any possible substitution of that variable with a small type. Because the subtyping
rules always remove quantifiers before applying a substituion, the overall weight of types
involved decreases in all subtyping rules.

One suitable choice of weight functions is mapping to ordered pairs as follows:

W [[Ξ]] = 〈Q[[Ξ]],S[[Ξ]]〉

Q[[bool]] = 0
Q[[α]] = 0
Q[[π σ ]] = 0
Q[[λα.σ ]] = 0
Q[[[= Ξ]]] = 2 ·Q[[Ξ]]

Q[[{}]] = 0
Q[[{l0:Σ0, l:Σ}]] = Q[[Σ0]]+Q[[{l:Σ}]]
Q[[∀α.Σ→η Ξ]] = |α|+Q[[Σ]]+Q[[Ξ]]

Q[[∃α.Σ]] = |α|+Q[[Σ]]

S[[bool]] = 1
S[[α]] = 1
S[[π σ ]] = S[[π]]+S[[σ ]]+1
S[[λα.σ ]] = S[[σ ]]+1
S[[[= Ξ]]] = S[[Ξ]]+1
S[[{}]] = 1
S[[{l0:Σ0, l:Σ}]] = S[[Σ0]]+S[[{l:Σ}]]+1
S[[∀α.Σ→η Ξ]] = S[[Σ]]+S[[Ξ]]+1
S[[∃α.Σ]] = S[[Σ]]

The definitions assume βη-normal form; in the case of paths and structures, they are
inductive over the vector of arguments and components, respectively.

Intuitively, the first component of a weight pair, Q[[]], measures the number of quantifiers
– or more precisely, the number of quantifiers that need to be eliminated in the subtyping
rules, thus the seemingly odd definition for the case Q[[[=Ξ]]]. The second component, S[[]],
is the actual syntactic size of the type expression. We apply addition point-wise to weights
W [[]], and impose a lexicographic ordering on them:

〈q,s〉+ 〈q′,s′〉 := 〈q+q′,s+ s′〉
〈q,s〉< 〈q′,s′〉 :⇔ q < q′∨ (q = q′∧ s < s′)

The most important property of this definition of weights is that Q[[σ ]] = 0 for all small
types σ , because small types do not contain quantifiers. Consequently, any large type will
have more weight then even the biggest small type. We extend the notion of small type to
(higher-order) type constructors and substitutions: a type constructor is small if it is of the
form λα.σ ; a substitution δ is small if δ (α) is small for all α . Then:

Lemma 4.4 (Weight Reduction under Small Substitution)
Let δ be a small substitution.

1. Q[[δΞ]] = Q[[Ξ]].
2. W [[δΞ]]<W [[Ξ]]+ 〈1,0〉.
3. W [[δΞ]]≤W [[Ξ]]+ 〈|dom(δ )|,0〉.

In more prose, the first property shows that substitution does not change the number of
quantifiers; consequently, the second says that eliminating a quantifier is a strictly larger
weight reduction then performing a substitution; and the third says that eliminating a
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Syntax (types) T ::= . . . | wrap T
(expressions) E ::= . . . | wrap X :T | unwrap X :T

Abbreviations: wrap E :T := let X=E in wrap X :T
unwrap E :T := let X=E in unwrap X :T

Semantic Types (large) Σ ::= . . . | [Ξ]
(small) σ ::= . . . | [Ξ]

Desugarings: (types)
[Ξ] := {val : Ξ}

(terms)
[e] := {val = e}

Types Γ ` T  Ξ
Γ ` T  Ξ

Γ `wrap T  [Ξ]
TWRAP

Expressions Γ ` E :η Ξ e

Γ ` X :P Σ e Γ ` T  [Ξ] Γ ` Σ≤ Ξ f
Γ `wrap X :T :P [Ξ] [ f e]

EWRAP

Γ ` X :P [Ξ′] e Γ ` T  [Ξ] Γ ` Ξ′ ≤ Ξ f
Γ ` unwrap X :T :η(Ξ) Ξ f (e.val)

EUNWRAP

Subtyping Γ ` Ξ′ ≤ Ξ δ ; f

Γ ` [Ξ]≤ [Ξ] λx:[Ξ].x
SWRAP

Fig. 9. Extending 1MLex with Impredicativity

sequence of quantifiers via substitution is a weight reduction or at least keeps the weight
unchanged. Note how this lemma crucially relies on δ being small. The properties are
essential in proving the case of rule SFUN for the termination lemma:

Lemma 4.5 (Termination of Algorithmic Subtyping)
Let Γ ` Ξ′ : Ω and Γ,α ` Ξ : Ω and π = α α

′. Then Γ ` Ξ′ ≤π Ξ δ ; f terminates.

The proof is by case analysis on the algorithm. In each rule, the weight W [[Ξ′]]+W [[Ξ]]+

〈|π|,0〉 gets strictly smaller for each premise: either its Q component shrinks, because a
quantifier is peeled, or its S, because the structure is otherwise simplified. In particular, Q
shrinks in all cases where a substitution δ is applied in a premise and S increases.

5 Expressiveness

5.1 Impredicativity Reloaded

Some readers will think that predicativity is a rather severe restriction. And they are
right. So it is worth asking: Can we (re)enable impredicative type abstraction without
breaking decidability?
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Yes we can. One possibility is the common trick of piggy-backing datatypes: we could
allow their data constructors to have large parameters. Because datatypes are nominal
in ML, impredicativity is “hidden away” and does not interfere with subtyping, thereby
avoiding the issue described in Section 1.2.

Here, we suggest a more orthogonal solution, namely introducing structural impredica-
tive types. Figure 9 reveals how they can be defined as an easy extension to 1MLex and the
rules we have previously given.

The trick is that a large type has to be injected into the universe of small types explicitly,
by way of a special type “wrapT ” (not entirely dissimilar from the bracketted polytypes
that occur in the semi-explicit first-class polymorphism of Garrigue & Rémy (1999)).
Semantically, this type is represented by a new form “[Ξ]” (with the now familiar coding
trick of marking it through a special record) that may appear as a small type even when the
inner type is large. The new type comes with respective expression forms for introducing
and eliminating it.

The elaboration rules for wrapped types and expressions are straightforward. The crux
of this approach is that subtyping does not extend to wrapped types (rule SWRAP): a
wrapped type can only be matched by an equivalent type, not a subtype. This way, any
infinite recursion is avoided; the weight function for the termination proof (Section 4.3)
can trivially be extended to the new form of wrapped type as follows:

Q[[[Ξ]]] = 0 S[[[Ξ]]] = 1

That goes through because SWRAP is simply an axiom, i.e., always a leaf node in any
subtyping derivation.

The syntax we chose for wrapped types is reminiscent of packaged modules (Sec-
tion 1.1) and indeed the construct is practically identical to the packaged modules defined
for F-ing modules (Rossberg et al., 2014). However, it has far more specialised use cases in
1ML. In particular, wrapping is never needed if one merely wants to abstract over a value
that has a large type (as is the case with packaged modules). It is only needed in the rarer
case14 where one wants to abstract over something that is a large type – and thus has a type
that lies outside the universe of large types. Wrapping embeds the universe of large types
back into the universe of small types, for the price of losing subtyping.

As an example, consider a Church encoding of the option type:

type OPT =
{
type opt a
none a : opt a
some a : a → opt a
caseopt a b : opt a → b → (a → b) → b

}

Opt :> OPT =

14 From the module perspective, this case corresponds to what would be the use of an abstract module
type in OCaml, something that is virtually nonexistent in the wild. However, OCaml also allows
introducing impredicativity on the core level, e.g. by instantiating a polymorphic function to an
object type that has a polymorphic method.



ZU064-05-FPR main 30 October 2018 15:52

34 Andreas Rossberg

(kinds)
[[Ω]] = type
[[κ1→ κ2]] = [[κ1]]⇒ [[κ2]]

(types)
[[α]] = Xα

[[τ1→ τ2]] = type ([[τ1]] → [[τ2]])
[[τ1× τ2]] = type ([[τ1]] × [[τ2]])
[[∀α:κ.τ]] = type (wrap ((Xα : [[κ]]) ⇒ [[τ]]))
[[∃α:κ.τ]] = type (wrap ((Xα = [[κ]]) × [[τ]]))
[[λα:κ.τ]] = fun (Xα : [[κ]]) ⇒ [[τ]]
[[τ1 τ2]] = [[τ1]] [[τ2]]

(expressions)
[[x]] = Xx
[[λx:τ.e]] = fun (Xx : [[τ]]) ⇒ [[e]]
[[e1 e2]] = [[e1]] [[e2]]
[[〈e1,e2〉]] = ([[e1]], [[e2]])
[[e.i]] = [[e]].i
[[λα:κ.e]] = wrap (fun (Xα : [[κ]]) ⇒ [[e]]) : (Xα : [[κ]]) ⇒ [[τe]]
[[e1 τ2]] = (unwrap [[e1]] : [[τe1 ]]) [[τ2]]
[[〈τ1,e2〉τ ]] = wrap ([[τ1]], [[e2]]) : [[τ]]
[[unpack 〈α,x〉=e1 in e2]] = let (Xα , Xx) = unwrap [[e1]] : [[τe1 ]] in [[e2]]

where:

(X = T1) × T2 := { 1 : T1; 2 : letX = 1 in T2}
(E1, E2) := { 1 = E1; 2 = E2}
E.i := E. i
let (X1, X2) = E1 inE2 := letX = E1; X1 = X . 1; X2 = X . 2 inE2

Fig. 10. Embedding of Fω in 1ML

{
type opt a = wrap ((b : type) ⇒ b → (a → b) → b)
none a = wrap (fun b (n : b) (s : a → b) ⇒ n) : opt a
some a (x : a) = wrap (fun b (n : b) (s : a → b) ⇒ s x) : opt a
caseopt a b (o : opt a) = (unwrap o : opt a) b

}

The representation of opt is a large type, so it has to be wrapped in order to “make it small”
and allow matching its abstract declaration in the signature.

5.2 Embedding Fω

The elaboration of 1MLex embeds the language into System Fω , showing that it is no more
expressive than that calculus. We can also show that it is no less expressive, by doing the
inverse: embedding Fω into 1MLex.

Doing so is fairly straightforward: Figure 10 gives the canonical translation function
[[ ]] for Fω kinds, types, and terms. It assumes a syntactic injection of Fω type and term
variables α and x into 1ML identifiers Xα and Xx, respectively. Fω kinds are translated to
suitable 1ML types. Fω types are translated to 1ML expressions; in the case that the type
has ground kind Ω, the resulting expression will have a type of the form [= σ ], so that it
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can be used as a 1ML type; otherwise, it will be a function returning such a value. Finally,
Fω terms are translated into 1ML expressions, as is to be expected.

Notably, all translated Fω terms become 1ML expressions with a small type. And con-
sequently, ground types translate to small types as well. That is necessary to encompass
the impredicativity of Fω . To achieve that for quantified types, the translation wraps the
translation of every quantified type, using the extension from the previous Section 5.1.
Wrapped expressions require a type annotation; we simply assume that the types τe and τe1

used in the figure are determined by context – as usual, this could be made more precise via
a type-directed translation, but we gloss over this detail for the sake of simple exposition.

To state correctness of the embedding, we also need to define an embedding of Fω

environments. It modifies variable bindings in such a way that they match the requirements
of the 1ML typing rules:

[[ · ]] = ·
[[Γ,x:τ]] = [[Γ]],Xx:σ if [[Γ]] ` [[τ]] : [= σ ]

[[Γ,α:κ]] = [[Γ]],α:κ,Xα :Σ if [[Γ]] ` [[κ]] ∃α:κ.Σ

For each Fω term binding x:τ this embedding produces a respective 1ML binding Xx:σ ,
where the 1ML embedding [[τ]] of the type τ is an expression denoting a first-class type (or
function over it). This expression has a transparent type by construction. For each Fω type
binding α:κ the embedding produces an additional 1ML term binding Xα :Σ of the type as a
first-class value, where Σ is determined by the inverse elaboration of the embedding of the
kind κ . For example, the Fω kind Ω→Ω translates to the 1ML type type ⇒ type, which
by the elaboration rules from Figure 7 is represented by the Fω type ∃α:(Ω→Ω).∀β :Ω. [=

α β ]. Consequently, a binding α:(Ω→Ω) is twinned as α:(Ω→Ω), Xα :(∀β :Ω. [= α β ]),
thereby representing both the abstract type as well as a term carrying it. It is an invariant
of elaboration and embedding that the existential quantifiers produced by the elaboration
of [[κ]] always coincides with α:κ – the embedding of kinds is an inverse of the quantifier
elaboration of 1ML types.

With this, we can show that the embedding is sound, i.e., produces well-formed 1ML
programs from well-formed Fω terms:

Theorem 5.1 (Soundness of Embedding)
1. For all κ , · ` [[κ]] ∃α.Σ with κα = κ and · ` ∃α.Σ : Ω.
2. For all Γ, if Γ `2, then [[Γ]] `2.
3. For all τ , if Γ ` τ : κ , then [[Γ]] ` [[τ]] : Σ and [[Γ]] ` [[κ]] Ξ and [[Γ]] ` Σ≤ Ξ

(the latter implies that if κ = Ω then Σ = [= σ ]).
4. For all e, if Γ ` e : τ , then [[Γ]] ` [[e]] : σ and [[Γ]] ` [[τ]] : [= σ ].

The proof of (1) is by induction on the structure of κ , and the rest by (simultaneous)
induction on the first derivations, respectively.

For a complete proof of correctness we would also need to show that the embedding is
adequate, i.e., the produced 1MLex programs are computationally equivalent to the original
Fω terms. One way to achieve that would be through a suitable logical relation. But it would
be rather involved, requiring simultaneous reasoning about the embedding just defined and
the 1ML elaboration back into Fω . Given the informal “obviousness” of this result we take
the liberty of skipping over it.
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Although we will not show it here either, it is also worth noting that a predicative version
of System Fω can be embedded into plain 1MLex. All uses of wrap and unwrap in the
embedding of types and terms could simply be dropped – except in the case of existential
formation, where it is replaced by sealing, i.e., [[〈τ1,e2〉τ ]] = ([[τ1]], [[e2]]) :> [[τ]].

5.3 Compositionality

The takeaway from the last two sections is that 1MLex is no more and no less powerful than
System Fω . But if it is all just a matter of a fairly direct translation, why is it so much less
compelling to program in Fω directly? What is the fundamental advantage that a language
like 1ML provides, apart from just nifty type inference and a lot of syntactic sugar?

The answer is modular compositionality. The heart of modularity is the ability to group
types and values together into reusable units, typically called modules and signatures. But
also, that from these, larger units can be formed in a compositional manner.

Consider the following toy signatures for demonstration:

type A = {type t; v : t}
type B = {type u; w : u}

They can be freely composed into new types:

type S = {a : A; b : B; c : {v : a.t; w : b.u}}
type F = S → S

Similarly, values of these types can be constructed and composed, for example:

m1 :> A = {type t = int; v = 1}
m2 :> B = {type u = bool; w = true}
m3 : S = {a = m1; b = m2; c = {v = a.v; w = b.w}}

More interestingly, compound types can be abstracted over as they are:

g = fun (x : A) (y : B) (f : F) ⇒ f {a = x; b = y}
h = fun (p : S) (f : F) ⇒ (f p).a

With raw Fω such composition is not directly possible. It is not possible to group types
and values together into composable and reusable units like the signatures and structures
above. Type components must instead be represented by quantified types, whose form,
placement and scope is dependent on the circumstances.

For example, a naive attempt of translating A and B to Fω would be to define them as
the corresponding existential types, in direct adherence to Mitchell & Plotkin (1988):

A = ∃t.{v : t}
B = ∃u.{w : u}

But that’s no good! How can we define S in terms of these types? How about functions
corresponding to g and h? It is not possible.

The closest one can come to defining reusable named signatures in Fω is by λ -abstracting
the contained abstract types (Russo, 2003):

A = λ t.{v : t}
B = λu.{w : u}
S = λ t u.{a : A t, b : B u, c : {v : t, w : u}}
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Syntax (types) T ::= . . . | | ’(X :type)⇒T

Abbreviations: (expressions) if E1 then E2 else E3 := if E1 then E2 else E3 :
fun X⇒E := fun(X : )⇒E

(types) ’X ⇒ T := ’(X :type)⇒T
(declarations) X ’Y :T := X : ’(Y :type)⇒T

Fig. 11. Extension to Full 1ML

That way, they can be associated with the appropriate binders as needed, for example:

F = ∀t u.S t u→∃t′ u′.S t′ u′

g = λ t u.λx : A t.λy : B u.λ f : F. f t u {a = x,b = y}
h = λ t u.λ p : S t u.λ f : F.unpack 〈t′ u′,q〉= f t u p in pack 〈t′,q.a〉∃t ′.At ′

In general, composition in Fω requires systematically separating all “static” components
of a type (i.e., the types it contains) from its “dynamic” components (i.e., proper values),
a transformation known as phase-splitting in the module literature (Dreyer et al., 2003).
And if the latter definitions look awfully like the result of 1ML elaboration then that is
no coincidence! Behind the syntax distraction, 1ML elaboration is primarily a means of
automatically and systematically phase-splitting the input program.

Of course, the programmer could try to do that manually, following the sketch above.
However, from those simple examples it is already easy to extrapolate that this approach
gets very laborious very quickly. Let alone the managing of corresponding existentials on
the term level. Harper & Pierce (2005) in fact argue that modular programming based on
parameterised signatures (which is what the above is, essentially) leads to a combinatorial
explosion of parameters accumulating with each layer of abstraction.

That problem carries over to other proposals that suggest adding or emulating modular
structure via manual management of polymorphism or separating type components (such
as Shields & Peyton Jones (2002)). The fact that under such approaches it is simply not
possible to really build fully composable program units means that such approaches are not
really modular. 1ML avoids this problem because it does not treat modular composition as
an afterthought, but instead takes it as a starting point at the centre of its design.

6 Full 1ML

A language without type inference is unworthy of being named ML. This section therefore
extends 1MLex to full 1ML, which includes implicit typing and recovers ML-style implicit
polymorphism. Figure 11 shows the minimal syntactic extension necessary.

6.1 Extensions

Syntactically, full 1ML merely adds two new forms of type expression to the kernel:
wildcards “ ” for types inferred from context, and implicit function types, distinguished
by a leading tick ’ (a choice that will become clear in a moment). Let us walk through a
number of examples, and also explain some of the new syntax sugar on the way.
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Inferred Types The wildcard “ ” stands for a type that is to be inferred from context –
similar to OCaml or dependently typed languages like Coq. The crucial restriction here is
that this can only be a small type. This fits nicely with the notion of a monotype in core
ML, and prevents the need to infer polymorphic types in an analogous manner.

For example, with this syntax, the precise argument type of a function or conditional can
be left out:

or (x : ) (y : ) = if x then true else y :

The type system will infer that all wildcards in this function are placeholders for bool.
As sugar on top of this new piece of kernel syntax we allow a type annotation “: ” on a
function parameter or conditional to be omitted entirely, thereby recovering the implicitly
typed expression syntax familiar from ML. So the above can be condensed to just

or x y = if x then true else y

At this point we drop the 1MLex interpretation of an unannotated parameter as a type; we
only keep that interpretation in those declaration or binding shorthands that are headed by
the type keyword, that is:

type t a b = a → b

still defaults a and b to have type type. But in all other places parameter types default to
“ ” in full 1ML, that is, they can be any small type.

Wildcards can also be used to give partial annotations:

projPlus1 b (p : {x : ; y : }) = (if b then p.x else p.y) + 1

In this example, the annotation specifies the outer shape of the parameter p (so that it
avoids running into inference problems with records, see below). But the component types
are inferred to be int.

Large types cannot be inferred. Consequently, type annotations still have to be given
when a parameter type is large (as, e.g., for polymorphic parameters) or when a condi-
tional’s type is large (as in the “computed modules” example given in Section 2) – that is,
in all cases that the core type system of conventional ML cannot express.

Polymorphic Inference The previous examples all were monomorphic. But of course,
the claim to fame of ML’s type inference (Damas & Milner, 1982) is that it can assign
polymorphic types to let-bindings. And of course, that ought to work in 1ML as well:

pick b x y = if b then x else y

Here, the instantiation of the (omitted) wildcards on the parameters x and y is arbitrary and
the type of pick thus polymorphic. This polymorphic type can be expressed syntactically
with the other new form of type expression, implicit function types:

pick : ’(a : type) ⇒ bool ⇒ a ⇒ a ⇒ a

This corresponds to an ML-style polymorphic type, but makes the binder explicit. For
obvious reasons, an implicit function has to be pure. The parameter has to be of type type,
whose being small fits nicely with the fact that ML can only abstract monotypes, and not
polymorphic types or type constructors. Because the type annotation must be type anyway,
we allow to omit it (per Figure 11) and just write the above type as:
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pick : ’a ⇒ bool ⇒ a ⇒ a ⇒ a

Or even moving the implicit parameter to the left-hand side, just like we already allow for
explicit parameters (cf. Figure 2):
pick ’a : bool ⇒ a ⇒ a ⇒ a

Now it is more apparent: the tick becomes a pun on ML’s type variable syntax, but without
relying on brittle implicit scoping rules.

As the name would suggest, there are no explicit introduction or elimination forms for
implicit functions. Instead, implicit parameters are introduced and eliminated implicitly.
So, as one would rightly expect from an ML, the previous function can be invoked without
worrying about its type argument:
x = pick false 2 3
y = pick true (pick false) (pick true)

Because implicit parameters always have type type, again only small types can be inferred
as arguments. So (pick (size > threshold) HashMap TreeMap) would not be well-typed,
but demands an explicitly polymorphic version of the pick function.

Implicit type generalisation applies to expressions, not just bindings. That is true in
some formulations of ML-style polymorphism as well, but usually the difference is not
observable. In 1ML it is, because we can have contexts that require a polymorphic value:
makeAB (g : ’(a : type) ⇒ a ⇒ a ⇒ a) = {a = g 1 2; b = g true false}

Given this, the argument function in the invocation
makeAB (fun x y ⇒ x)

is inferred to have polymorphic type. In fact, we could even apply makeAB (pick true), as
we show next.

Purity restriction Regular ML imposes the value restriction (Wright, 1995) as an ap-
proximation for ensuring the absence of side effects when applying type generalisation,
which is needed for soundness. Sine 1ML already tracks purity, it can (once more) replace
a syntactic restriction with a more precise semantic one and reuse a concept that we already
have introduced. Simply, any pure expression can have its type generalised. For example:
pickFst = pick true

has polymorphic type
pickFst : ’(a : type) ⇒ a ⇒ a ⇒ a

because the fat arrow in (the first explicit argument of) the type of pick indicates that its
application has no side effects. Compare that to
pickImp1 b x y = if !b then x else y
pickImp2 b = if !b then fun x y ⇒ x else fun x y ⇒ y

Assuming (!) : ’(a : type) ⇒ ref a → a, as the implicitly polymorphic version of the rd

operator from Section 2, the previous functions have types as follows:
pickImp1 : ’(a : type) ⇒ ref bool ⇒ a ⇒ a → a
pickImp2 : ’(a : type) ⇒ ref bool → a ⇒ a ⇒ a

Respectively, given a reference r, (pickImp1 r) could still be generalised, but (pickImp2 r)

could not.
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Subtyping The definition and use of expressions is just one way to introduce or eliminate
implicit functions. The other is through subtyping: an implicit function type is a subtype
of any possible application of this function. If you consider the two types

type T1 = int → bool
type T2 = ’a ⇒ ’b ⇒ a → b

then T2 is a subtype of T1. This is another generalisation of a notion that already exists in
traditional ML: when matching signatures, a value component can be matched by a more
polymorphic value component. Here, it becomes an independent notion.

Example With these few extensions, the Map functor from Section 2 can now be written
in 1ML very much like it would be in traditional ML:

type MAP =
{
type key;
type map a;
empty ’a : map a;
lookup ’a : key → map a → opt a;
add ’a : key → a → map a → map a

};

Map (Key : EQ) :> MAP where (type .key = Key.t) =
{
type key = Key.t;
type map a = key → opt a;
empty = fun x ⇒ none;
lookup x m = m x;
add x y m = fun z ⇒ if Key.eq z x then some y else m z

}

6.2 Semantics

The semantics for the extension of 1MLex to Full 1ML can be seen in Figure 12. As
is typical for type systems with inference, the formulation of the semantics is purely
declarative: the typing rules are non-deterministic, they simply “guess” the right types
and quantifiers in various places. We defer the discussion of an actual algorithm that
implements type inference for this system to Section 7.

Semantic Types Wildcards do not induce any extension to semantic types, since they just
stand for a suitable small type σ . But obviously, we have to extend our semantic types with
a representation for implicit function types.

The semantic representation of the syntactic type ’(a : type) ⇒ {...} is ∀α.{}→A {. . .}.
We write these types with an arrow→A (“A” for automatic), in order to reuse the notational
encoding we already introduced for effects. However, it is a distinct form from→η , i.e., A
is not an effect, and not included in η . All implicit functions are pure.

The semantic denotation of an explicitly written, syntactic implicit function type always
has exactly one quantified type variable. However, inferred implicit functions can quantify
multiple type variables at once. For example, the polymorphic function
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Semantic Types (large signatures) Σ ::= . . . | ∀α.{}→A Σ

Types Γ ` T  Ξ

Γ ` σ : Ω

Γ `  σ
TINFER

Γ,α,X :[= α] ` T  Σ κα = Ω

Γ ` ’(X :type)⇒ T  ∀α.{}→A Σ
TIMPL

Expressions Γ ` E :η Ξ e
Γ,α ` E :P Σ e κα = Ω

Γ ` E :P ∀α.{}→A Σ λα.λAx:{}.e
EGEN

Γ ` E :η ∃α.∀α ′.{}→A Σ e Γ,α ` σ : κα ′

Γ ` E :η ∃α.Σ[σ/α
′] unpack 〈α,x〉= e in pack 〈α,(xσ {}).A〉

EINST

Subtyping Γ ` Ξ′ ≤π Ξ δ ; f

Γ ` σ : κα ′ Γ ` Σ′[σ/α
′]≤π Σ δ ; f

Γ ` ∀α ′.{}→A Σ′ ≤π Σ δ ;λx. f ((xσ {}).A)
SIMPLL

Γ,α ` Σ′ ≤π Σ δ ; f fv(δπ) 6 ∩ α

Γ ` Σ′ ≤π ∀α.{}→A Σ δ ;λx.λα.λAy:{}. f x
SIMPLR

Fig. 12. New elaboration rules for full 1ML

f x y = {a = x; b = y}

can conveniently be typed ∀αβ .{} →A α →P β →P {a : α,b : β}. As we will see, this
type is interchangeable (via subtyping in both directions) with ∀α.{}→A ∀β .{}→A α→P

β →P {a : α,b : β}, because all arguments are implicit either way. So this is simply a
technical convenience.

The term argument to an implicit function is always {}, a.k.a. unit. That is so because the
function’s parameters are simply a sequence of types α , and there is little value in reifying
them as terms [= α], since they are implicit anyway.15

Typing Rules With regard to elaboration, we first need the formation rules for the new
pieces of type syntax. The rule for wildcards simply guesses a (well-formed) small type
non-deterministically. The one for implicit functions mirrors the one for regular function
types, but with a fixed parameter type. Moreover, implicit functions may not produce
abstract types – a restriction that wouldn’t strictly be necessary, but precludes questionable
examples like the following, where each use of weird could denote a completely different
type:16

f (weird : ’a ⇒ type) (x : weird) (y : weird) = ...

15 We could have dropped the term argument entirely, representing implicit function types simply
as ∀Aα.Σ, but we opted for keeping the shape of all function types uniform and reusing the →x
notation. In part, because we foresee nice generalisations of implicit functions.

16 Our type system still allows definitions like “type weird = ” to be polymorphic with type
∀α.{} →A [= α]. Those could be ruled out by removing [= σ ] from the syntax of small types.
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Next, the new typing rules for introducing and eliminating implicit functions, EGEN and
EINST, match common formulations of ML-style polymorphism (Damas & Milner, 1982).
The former rule simply introduces (non-deterministically) a sequence of fresh type vari-
ables into the context that can be used to type an expression – which must behave nicely by
being pure, however. In the conclusion, the rule turns these variables into implicit function
parameters. Conversely, the latter rule can take any expression with implicit function type
and replaces its type parameters with arbitrary (small) types. The only difference from
plain Damas/Milner is that the rule must allow for abstract types α being generated by the
(possibly impure) expression; as usual, their quantifiers are just hoisted.

Finally, subtyping allows the implicit introduction and elimination of implicit functions
as well, via instantiation of the parameter types on the left, or skolemisation on the right
(rules SIMPLL and SIMPLR). As mentioned earlier, this closely corresponds to ML’s signa-
ture matching rules. In combination, the two rules also implement reflexivity for implicit
function types. For example, ∀α.{} →A [= α] can be derived to be a subtype of itself by
first applying SIMPLR in reverse, moving the right-hand side α from the quantifier to the
context, and then applying SIMPLL to derive ∀α ′.{} →A [= α ′] ≤ [= α] via instantiation
[α/α ′].

6.3 Meta-Theory Revisited

The additional semantics of 1ML does not introduce any difficulty for the soundness proof
from Section 4.3. The following properties extend easily to the new rules:

Proposition 6.1 (Correctness of Full 1ML Elaboration)
Let Γ `2.

1. If Γ ` T/D Ξ, then Γ ` Ξ : Ω.
2. If Γ ` E/B :η Ξ e, then Γ ` e : Ξ, and if η=P then Ξ=Σ.
3. If Γ ` Ξ′ ≤

αα
′ Ξ δ ; f and Γ ` Ξ′ : Ω and Γ,α ` Ξ : Ω, then dom(δ ) = α and

Γ ` δ : Γ,α and Γ ` f : Ξ′→ δΞ.

Like before, soundness is still a direct corollary:

Theorem 6.2 (Soundness of Full 1ML)
If · ` E : Ξ e, then either e ↑ or e ↪→∗ v such that · ` v : Ξ.

What breaks, though, is our previous proof for decidability, because several of the new
rules are “guessing”. The next section is dedicated to coping with that problem.

7 Type Inference

With the additions from Figure 12 we have turned the deterministic typing and elaboration
judgements of 1MLex non-deterministic. In a derivation, one has to guess types (in rules
TINFER, EINST, SIMPLL) and quantifiers (in rule EGEN). Moreover, one has to decide
when to apply rules EGEN and EINST. Clearly, an algorithm is needed.

However, that is a more substantial restriction. More practical experience with the language is
probably needed to figure out the most pragmatic trade-off.
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Types Γ `θ T  Ξ

Γ `[=·]
θ

E :P [= Ξ]

Γ `θ E Ξ
ITPATH

υ fresh ∆υ = dom(Γ)

Γ `[]  υ
ITINFER

κα = Ω

Γ `[] type ∃α.[= α]
ITTYPE

Γ `[] bool bool
ITBOOL

Γ `θ D Ξ

Γ `θ {D} Ξ
ITSTR

Γ `θ1 T1 ∃α1.Σ1
Γ;α1,X :Σ1 θ1`θ2 T2 ∃α2.Σ2

Γ `θ2 (X :T1)→T2 ∀α1.Σ1→I ∃α2.Σ2
ITFUN

Γ `θ1 T1 ∃α1.Σ1
Γ;α1,X :Σ1 θ1`θ2 T2 ∃α2.Σ2 κα ′2

= κα1 →κα2

Γ `θ2 (X :T1)⇒T2 ∃α ′2.∀α1.Σ1→P Σ2[α
′
2 α1/α2]

ITPFUN

Γ;α,X :[= α] `θ T  Σ κα = Ω

Γ `θ ’(X :type)⇒ T  ∀α.{}→A Σ
ITIMPL

Γ `θ T  Ξ

Γ `θ wrap T  [Ξ]
ITWRAP

Γ `θ E :P Σ E = E ′:>T ∨E = E ′:T ∨E = type T
Γ `θ (=E) Σ

ITSING

Γ `θ1 T1 ∃α1.Σ1 α1 = α11]α12
Γ θ1`θ2 T2 ∃α2.Σ2 Γ,α11,α2 θ2`θ Σ2 ≤α12 Σ1.X  δ

Γ `θ T1 where (.X :T2) ∃α11α2.δΣ′1[.X=Σ2]
ITWHERE

Declarations Γ `θ D Ξ

Γ `θ T  ∃α.Σ

Γ `θ X :T  ∃α.{X :Σ}
IDVAR

Γ `θ T  ∃α.{X :Σ}
Γ `θ include T  ∃α.{X :Σ}

IDINCL

Γ `θ1 D1 ∃α1.{X1:Σ1}
Γ;α1,X1:Σ1 θ1`θ2 D2 ∃α2.{X2:Σ2} X1∩X2 = /0

Γ `θ2 D1;D2 ∃α1α2.{X1:Σ1,X2:Σ2}
IDSEQ

Γ `[] ε  {}
IDEMPTY

Fig. 13. Inference for Types

Fortunately, what’s going on is not fundamentally different from conventional (core)
ML. Where core ML would require type equivalence (and type inference would use unifi-
cation), the 1ML rules require subtyping.

Subtyping sneaking into inference may seem scary at first. But closer inspection of the
subtyping rules reveals that, when applied to small types, they almost degenerate to type
equivalence! The only exception is width subtyping on records, which we will get back
to in Section 7.2. The 1ML type system only promises to infer small types, so we are not
far away from conventional ML. That is, we can still formulate an algorithm based on
inference variables – place holders for small types – and a variation on unification.
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Expressions Γ `θ E :η Ξ

Γ(X) = Σ

Γ `[] X :P Σ
IEVAR

Γ `θ T  Ξ

Γ `θ type T :P [= Ξ]
IETYPE

Γ `[] true :P bool
IETRUE

Γ `[] false :P bool
IEFALSE

Γ `bool
θ0

X :P bool Γ θ0`
∀
θ1 E1 :η1 Ξ1 Γ θ3`θ4 Ξ1 ≤ Ξ

Γ θ2`θ3 T  Ξ Γ θ1`
∀
θ2 E2 :η2 Ξ2 Γ θ4`θ5 Ξ2 ≤ Ξ

Γ `θ5 if X then E1 else E2 :T :η1∨η2∨η(Ξ) Ξ
IEIF

Γ `θ B :η Ξ

Γ `θ {B} :η Ξ
IESTR

Γ `{·}
θ

E :η ∃α.{X :Σ,X ′:Σ′}
Γ `θ E.X :η ∃α.Σ

IEDOT

Γ `θ1 T  ∃α.Σ Γ;α,X :Σ θ1`θ2 E :η Ξ

Γ `θ2 fun(X :T )⇒E :P ∀α.Σ→η Ξ
IEFUN

Γ `·→·
θ1

X1 :P ∀α.Σ1→η Ξ

Γ θ1`θ2 X2 :P Σ2 Γ θ2`θ3 Σ2 ≤α Σ1 δ

Γ `θ3 X1 X2 :η δΞ
IEAPP

Γ `θ1 X :P Σ1 Γ θ1`θ2 T  ∃α.Σ2 Γ θ2`θ3 Σ1 ≤α Σ2 δ

Γ `θ3 X :>T :η(∃α.Σ2) ∃α.Σ2
IESEAL

Γ `θ1 X :P Σ

Γ θ1`θ2 T  [Ξ] Γ θ2`θ3 Σ≤ Ξ

Γ `θ3 wrap X :T :P [Ξ]
IEWRAP

Γ `[·]
θ1

X :P [Ξ′]
Γ θ1`θ2 T  [Ξ] Γ θ2`θ3 Ξ′ ≤ Ξ

Γ `θ3 unwrap X :T :η(Ξ) Ξ
IEUNWRAP

Bindings Γ `θ B :η Ξ

Γ `∀
θ

E :η ∃α.Σ

Γ `θ X=E :η ∃α.{X :Σ}
IBVAR

Γ `{·}
θ

E :η ∃α.{X :Σ}
Γ `θ include E :η ∃α.{X :Σ}

IBINCL

Γ `θ1 B1 :η1 ∃α1.{X1:Σ1} X ′1 = X1−X2
Γ;α1,X1:Σ1 θ1`θ2 B2 :η2 ∃α2.{X2:Σ2} X ′1:Σ′1 ⊆ X1:Σ1

Γ `θ2 B1;B2 :η1∨η2 ∃α1α2.{X ′1:Σ′1,X2:Σ2}
IBSEQ

Γ `[] ε :P {}
IBEMPTY

Fig. 14. Inference for Expressions

7.1 Algorithm

Figures 13-15 show how the elaboration rules from the previous sections (including the
rules for impredicative types) can be turned into an inference algorithm. Because we are
just interested in typing, witness terms (i.e., the bits that were previously greyed out) are
omitted from the rules this time.
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Subtyping Γ `θ Ξ′ ≤π Ξ δΓ `θ Ξ≤ Ξ
′ := Γ `θ Ξ≤ε Ξ

′ id

Γ `[] υ ≤ υ
ISREFL

Γ `!
θ

υ ≈ Σ Γ θ`θ ′ υ ≤ Σ

Γ `θ ′ υ ≤ Σ
ISRESL

Γ `!
θ

υ ≈ Σ′ Γ θ`θ ′ Σ
′ ≤ υ

Γ `θ ′ Σ′ ≤ υ
ISRESR

Γ `θ π ′ = π

Γ `θ π ′ ≤ π
ISPATH

Γ `[] bool≤ bool
ISBOOL

Γ `θ Ξ′ ≤ Ξ Γ θ`θ ′ Ξ≤ Ξ′

Γ `θ ′ [= Ξ′]≤ [= Ξ] []
ISTYPE

Γ `[] [= σ ]≤α0 α [= α0 α] [λα.σ/α0]
ISFORGET

Γ `θ Ξ′ = Ξ

Γ `θ [Ξ′]≤ [Ξ]
ISWRAP

Γ `[] {l:Σ′} ≤ {}
ISEMPTY

Γ `θ1 Σ′1 ≤π1 Σ1 δ1 head(π1)⊆ fv(Σ1)

Γ θ1`θ2 {l′:Σ′} ≤π2 {l:δ1Σ} δ2 head(π2) 6 ∩ fv(Σ1) θ2δ2Σ1 = θ2Σ1

Γ `θ2 {l1:Σ′1, l
′:Σ′} ≤π1π2 {l1:Σ1, l:Σ} δ1δ2

ISSTR

Γ,α `θ1 Σ≤α
′ Σ′ δ1 η ′ ≤ η

Γ;α θ1`θ2 δ1Ξ′ ≤
πα

Ξ δ2 θ2δ2Σ = θ2Σ

Γ `θ2 (∀α
′.Σ′→η ′ Ξ′)≤π (∀α.Σ→η Ξ) δ2

ISFUN

Γ;α `θ Σ′ ≤α Σ δ α
′
α 6= ε

Γ `θ ∃α ′.Σ′ ≤ ∃α.Σ
ISABS

Σ◦ = S υ fresh ∆υ = dom(Γ) Γ `θ Σ′[υ/α
′]≤π Σ δ

Γ `θ ∀α ′.{}→A Σ′ ≤π Σ δ
ISIMPLL

Γ;α `θ Σ′ ≤π Σ δ fv(θδπ) 6 ∩ α

Γ `θ Σ′ ≤π ∀α.{}→A Σ δ
ISIMPLR

Fig. 15. Inference for Subtyping

In order to treat these rules as a definition of a recursive algorithm, we need to interpret
the relational judgements as functions. Therefore, we have to be explicit about what are
“inputs” and what are “outputs” to these relations. We mark all outputs with a shaded
background in the rule schemata given in the figures, i.e., everything right of a colon “:” or
squiggly arrow “ ”. The θ index on the turnstile (explained in a minute) is an additional
output in every judgement. All other meta variables occurring in the schemata are inputs.

The basic idea of these algorithmic rules is to introduce a (free) inference variable υ

wherever the original declarative rules have to guess a (small) type – for example, in rule
ITINFER. Furthermore, the rules are augmented by outputting a substitution θ for resolved
inference variables: all judgements have the form Γ `θ J, which, roughly, implies the
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Generalisation Γ `∀
θ

E :η Ξ

Γ `θ E :I Ξ

Γ `∀
θ

E :I Ξ
IGIMPURE

Γ `θ E :P Σ υ = undet(θΣ)−undet(θΓ) κα = Ω

Γ `∀
θ

E :P ∀α.{}→A Σ[α/υ ]
IGPURE

Instantiation Γ `S
θ

E :η ΞS ::= υ | α · | bool | [=·] | [·] | {·} | · → ·

Γ `θ E :η Ξ

Γ `S
θ

E :η Ξ
INREFL

Γ `S
θ

E :η ∃α ′.∀α.{}→A Σ υ fresh ∆υ = dom(Γ)

Γ `S
θ

E :η ∃α ′.Σ[υ/α]
INIMPL

Γ `θ E :η ∃α.υ Γ θ`θ ′ υ ≈ S
Γ `S

θ ′ E :η ∃α.υ
INRES

Resolution Γ `θ υ ≈ SΓ `!
θ υ ≈ Σ := υ /∈ undet(Σ)∧Γ `θ υ ≈ Σ

◦

υ ′′ fresh ∆υ ′′ = ∆υ ∩∆υ ′

Γ `[υ ′′/υ ,υ ′′/υ ′] υ ≈ υ ′
IRINFER

κα = Ω→Ω α ∈ ∆υ υ ′ fresh ∆υ ′ = ∆υ

Γ `[α υ
′/υ ] υ ≈ α ·

IRPATH

Γ `[bool/υ ] υ ≈ bool
IRBOOL

υ ′ fresh ∆υ ′ = ∆υ

Γ `[[=υ ′]/υ ] υ ≈ [=·]
IRTYPE

υ ′ fresh ∆υ ′ = ∆υ

Γ `[[υ ′]/υ ] υ ≈ [·]
IRWRAP

υ1,υ2 fresh ∆υ1 = ∆υ2 = ∆υ

Γ `[(υ1→Iυ2)/υ ] υ ≈ ·→ ·
IRFUN

Unification Γ `θ Ξ = Ξ′

Γ `[] υ = υ
IUREFL

Γ `θ Ξ′ = Ξ

Γ `θ Ξ = Ξ′
IUSYMM

υ
′ = undet(σ) υ /∈ υ

′
∆υ ⊇ fv(σ) υ ′′ fresh ∆υ ′′ = ∆υ ′ ∩∆υ

Γ `[υ ′′/υ
′]◦[σ/υ ] υ = σ

IUBIND

Γ `θ Ξ = Ξ′

Γ `θ ′ [= Ξ] = [= Ξ′]
IUTYPE

Γ `θ Ξ = Ξ′

Γ `θ [Ξ] = [Ξ′]
IUWRAP

Γ `θ σ = σ
′

Γ `θ α σ = α σ
′ IUPATH

Γ `θ Σ = Σ
′

Γ `θ {l:Σ}= {l:Σ′}
IUSTR

Γ;α `θ1 Σ = Σ′ Γ;α θ1`θ2 Ξ = Ξ′

Γ `θ2 ∀α.Σ→η Ξ = ∀α.Σ′→η Ξ′
IUFUN

Γ;α `θ Σ = Σ′

Γ `θ ∃α.Σ = ∃α.Σ′
IUABS

Γ;α `θ Σ = Σ′

Γ `θ ∀α.{}→A Σ = ∀α.{}→A Σ′
IUIMPL

Fig. 16. Generalisation, Instantiation, Resolution, and Unification
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respective υ ,θΓ ` θJ declaratively, where υ in the context binds the unresolved inference
variables that still appear free in θΓ or θJ (as if they were regular type variables).

In rules with multiple premises, the output substitution of one premise needs to be
applied to the inputs of the next, and all output substitutions must be composed. We avoid
too much notational awkwardness with abbreviations of the form

Γ θ`θ ′ J := θΓ `θ ′′
θJ ∧θ ′ = θ ′′ ◦θ

for all inference judgement forms J, where the θ left of the turnstile is effectively an extra
input and θJ is meant to apply θ to J’s inputs, as defined above. This notation is used to
consistently thread and compose substitutions through all rules that have multiple premises.
The desugared form Γ `θ J with just an output substitution is equivalent to the degenerate
case Γ id`θ J, i.e., where the input substitution is the identity.

Other than the systematic threading of θ there are fairly few changes relative to the
declarative rules. In Figures 13-15, all those other differences are highlighted in red for
easier reference.

The basics of the inference algorithm are not that unusual, focussing around generalisa-
tion, instantiation, and resolution of inference variables.

Generalisation The declarative typing rules allow generalising the type of an expression
at any point. However, there are only two situations under which generalisation actually
needs to happen: (1) when a value is bound to a variable, because then it could potentially
be used at multiple different types, and (2) when an expression’s type needs to match an
explicit annotation (directly or indirectly), because that annotation may demand polymor-
phism.

The first case corresponds to the classical let-rule of Damas/Milner, and occurs in the
rule IBVAR: this invokes the auxiliary Generalisation judgement (Figure 16). For pure
expressions, it finds all inference variables υ in the expression’s type that do not also occur
in the context (we write undet(A) to denote the free inference variables of a semantic object
A) and quantifies over them – in our case, by introducing an implicit function abstraction.

In fact, this rule already covers almost all cases of the second kind as well, because our
kernel grammar is a sort of normal form which requires named variables in most places
(Figure 1). In particular, this is the case for function arguments. Consider this example:

(fun (id : ’a ⇒ a → a) ⇒ {x = id 3; y = id true}) (fun x ⇒ x)

Desugaring rewrites this application into an expression that has an explicit binding for
the argument (fun x ⇒ x), such that rule IBVAR kicks in. The same observation applies to
other places where an expression’s type must match an annotation: rules IESEAL, IEWRAP

and IEUNWRAP. Similarly, it extends to sugar such as transparent type ascriptions E:T as
defined in Figure 2.

The only exception is conditionals, because their arms are not variables, yet the type
annotation may require them to be polymorphic. Rule IEIF hence also has to invoke the
Generalisation judgement.

Instantiation Instantiation is the inverse of generalisation. It takes place in a slightly
different location than with Damas/Milner. Since implicit functions are first-class in 1ML,
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it is not just variables that can have “polymorphic” type. For example, the result of a
projection m.f or of an application g v might have a polymorphic type, too, that potentially
requires instantiation.

For that reason, the rules delay instantiation as much as possible, and only perform it in
the typing rules of elimination forms (e.g. rules IEIF, IEDOT, IEAPP, but also ITPATH).
They do so with the help of the auxiliary Instantiation judgement, shown in Figure 16.

Instantiation can also happen implicitly as part of subtyping (rule ISIMPLL), which
covers the case where a polymorphic value is matched against a monomorphic (or other
polymorphic) parameter. For example, ∀α1α2.{}→A α1→I α2 ≤ ∀β .{}→A β →I β will
be checked by first applying ISIMPLR, turning the right type monomorphic, and then
instantiating the left with ISIMPLL, so that the check is down to υ1 →I υ2 ≤ β →I β ,
resolving easily.

The instantiation judgement may seem non-deterministic because rule INIMPL may or
may not be applied after INREFL returns an implicit function type. However, all invoking
rules require an output type of a certain shape, so that it is always enforced by context
that all implicit functions are actually eliminated, i.e., rule INIMPL is always applied
exhaustively. Therefore, the judgement should be read as iterating over the inferred type
until all implicit abstractions are eliminated. What is left, modulo possible existential
quantifiers, is either an already determined, non-implicit type or an undetermined type
signified by an inference variable. Because implicit types are large and inference variables
only stand for small types, there is no ambiguity between the three cases.

In the case where the result is an inference variable, rule INRES has to resolve it. What to
resolve it to depends on the context. Instantiation is always invoked for elimination forms,
and each elimination expects a corresponding type of a specific shape. This information is
passed to the Instantiation judgement in the form of an additional index S that specifies the
“shape” in the form of its head constructor. The rule INRES uses this shape to invoke the
resolution judgement, which fabricates a fresh type of the expected shape.

Resolution The judgement Γ `θ υ ≈ S (Figure 16) is responsible for resolving an in-
ference variable to a more specific small type. There is one main complication to this
which necessitates turning this step into its own judgement as opposed to simply using
substitution. The reason is that, unlike good old ML, our 1ML allows small types to be
intermixed with large ones.

For one, it is necessary to be able to infer small types from large ones via subtyping. For
example, we might encounter the inequality

∀α.[= α]→P [= α] ≤ υ

which can be solved just fine with υ = [= σ ]→I [= σ ] for any σ . Through contravariance,
similar situations can arise with an inference variable on the left, e.g.:

υ ≤ (∀α.[= α]→P [= α])→I bool

which can be solved with υ = ([= σ ]→I [= σ ])→I bool.
Because of this, it is not enough to just consider the cases υ ≤ σ or σ ≤ υ for resolving

υ . Instead, when the subtyping algorithm hits υ ≤ Σ or Σ≤ υ (rules ISRESL and ISRESR,
where Σ may or may not be small) it invokes the Resolution judgement, which only resolves
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υ so far as to match the outermost constructor of Σ and inserts fresh inference variables for
its subcomponents. For this purpose we define the auxiliary notation Σ◦ that extracts the
shape from a type. Its obvious definition is:

υ◦ = υ

(α σ)◦ = α ·
bool◦ = bool

[= Ξ]◦ = [=·]
[Ξ]◦ = [·]
{l:Σ}◦ = {·}

(∀α1.Σ1→η ∃α2.Σ2)
◦ = · → ·

(∃α.Σ)◦ = Σ◦

With that knowledge, resolution can create a fresh type of the necessary shape. After
refining υ that way in the first premise of ISRESL or ISRESR, the rules “try again” in
their second premise, and are guaranteed to proceed at least one step further. The occurs
check encoded in the shorthand Γ `!

θ
υ ≈ S prevents this process from looping.

There intentionally is no definition of shape for implicit functions, because they must
always be eliminated first. We piggyback on this in the first side condition of the subtyping
rule ISIMPLL, which enforces that a shape exists for the right-hand side, and thus, all im-
plicit function abstractions on the right are eliminated (by rule ISIMPLR) before applying
this rule.

Variable Scoping The second complication to 1ML inference is that an inference variable
υ can be introduced within the scope of arbitrary abstract types (i.e., regular type variables
α). It would be incorrect to resolve υ to a type containing type variables that are not in
scope for all occurrences of υ in a derivation.

To prevent that, each υ is associated with a set ∆υ of type variables that are known to be
in scope for all uses of υ . The set is verified when resolving υ (see resolution rule IRPATH

in particular). The set also is propagated to any other υ ′ that the original υ is unified with,
by intersecting ∆υ ′ with ∆υ – or more precisely, by introducing a new variable υ ′′ with
the intersected ∆υ ′′ , and replacing both υ and υ ′ with it (see e.g. rule IRINFER); that way,
we can treat ∆υ as a globally fixed set for each υ , and do not need to maintain those sets
separately. For example, consider type-checking the following program:

f = fun x ⇒ fun (type t) ⇒ fun (g : t → int) ⇒ g x

The body of this function is type-checked under some context Γ,x:υ ,α, t:[=α],g:(α→α)

where α /∈ ∆υ , because υ was created before α was in scope. Because of that, resolving
υ with α to make the application type-check will be rejected – which is correct, because
otherwise f would be given a malformed type like α → ∀α.[= α]→ (α → int)→ int,
where α escapes its scope.

Inference variables also have to be updated when regular type variables go out of scope.
Consider this example:

(fun (t : type) ⇒ fun x ⇒ x) (type bool)

As a representation for t, type checking will introduce a type variable, say α , into the
context. For the inner fun, the parameter x will be assigned a fresh inference variable υ ,
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with α ∈∆υ . But υ is not resolved within the scope of α . Once the typing algorithm returns
from the outer function, α goes out of scope, and hence can no longer be allowed to occur
in any solution for υ – otherwise the type of the overall expression could, e.g., be resolved
to α → α with no α in scope. Consequently, α has to be removed from ∆υ at this point.
That is achieved by employing the following notation (note the semicolon!) in all rules that
locally extend Γ with type variables:

Γ;Γ′ θ`θ ′ J := Γ,Γ′ θ`θ ′′ J ∧θ ′ = [υ ′/υ ]◦θ ′′

where υ = undet(θ ′′J) and υ
′ fresh with ∆υ ′ = ∆υ ∩dom(Γ)

The net effect is that all local α’s in the domain of Γ′ are stripped from all ∆-sets of
inference variable υ (renamed to υ

′ in the process) that remain after executing Γ,Γ′ ` J,
thereby disallowing any later resolution with types that would contain those α’s. We omit
θ in this notation when it is the identity.

Unification Finally, our algorithm also includes a separate, old-fashioned unification al-
gorithm (Figure 16). However, unification is only needed by two rules: the rule ISPATH

for paths and the rule ISWRAP for the wrapped types of the impredicative extension –
because those are the only rule where subtyping does not recurse into subcomponents.
In their declarative formulation (Figure 12), the respective rules simply require the types
on both sides of the relation to be syntactically equivalent (modulo αβ -conversion, as
noted). The presence of inference variables in the algorithmic rules makes that formulation
insufficient, of course, and necessitates traversing the structure of the two types to unify
possible inference variables embedded in them.

This algorithm is much stricter than (mutual) subtyping: there is no quantifier elimi-
nation or substitution, all quantifiers, as well as implicit function types, must match up
one-to-one. That makes this algorithm trivially decidable even for arbitrary large types.

7.2 Incompleteness

Unfortunately, there are a couple of sources of incompleteness in this algorithm:

Width Subtyping Subtyping constraints like υ ≤ {l:σ} do not determine the shape of the
record type υ : the set of its labels can still vary over all possible subsets of l. Consequently,
the Resolution judgement in Figure 16 has no rule for structures – instead a structure type
must be determined by the previous context. For example.

fun x ⇒ x.a

cannot be handled by the algorithm, because there are infinitely many solutions, and none
is principal. The type of x must be annotated explicitly.

This is, in fact, similar to Standard ML (Milner et al., 1997), where record types cannot
be inferred either, and require type annotations. However, SML implementations typically
ensure that type inference is still order-independent, i.e., the information may be supplied
after the point of use, so that the equivalent of

(fun x ⇒ x.a) {a = 1; b = 2}
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still type-checks, even if that is not guaranteed by the language specification. They do so by
employing a simple form of row inference internally. A similar approach would be possible
for 1ML, but subtyping would still make more programs fail to type-check. For the sake
of presentation, we decided to err on the side of simplicity in this article and leave out this
possible improvement.

The real solution of course would be to incorporate not just row inference but row
polymorphism (Rémy, 1989; Ohori, 1995), so that width subtyping on structures can be
recast as universal and existential quantification over row variables. We leave investigating
such an extension for future work. We only note here that it would not solve the problem
completely, because of include: that extends the current scope with bindings that are deter-
mined by a structure type; to handle the case where the structure type is row-polymorphic
we somehow would have to allow environments Γ to be row-polymorphic, too, or restrict
include in a suitable manner.

Type Scoping Tracking of the sets ∆υ is conservative: after leaving the scope of a type
variable α , we exclude any solution for υ that would still involve α , even if υ only appears
inside a type binder for α . Consider the following example, adapted from Example (c) in
Dreyer & Blume (2007):

G (x : int) = {M = {type t = int; v = x} :> {type t; v : t}; f = id id};
C = G 3;
y = C.f (C.M.v);

Assume id : ’a ⇒ a → a. Because id is impure, the definition of f is impure, and its type
cannot be generalised; consequently, G is impure, too, and hence generative. The algorithm
will infer G’s type as

int→I ∃β .{M : {t : [= β ],v : β}, f : υ →I υ}

with β /∈ ∆υ – because β goes out of scope the moment we bind it with a local quantifier,
while all υ are treated as “global”. It then generalises to

G : ∀α.{}→A int→∃β .{M : {t : [= β ],v : β}, f : α →I α}

But it’s too late: the solution υ = β , which would make y well-typed, is already precluded.
When typing C, instantiating α with β is not possible either, because β can only come into
scope again (by opening the existential) after having applied an argument for α already.

Although not well-known, this very problem is already present in conventional ML, as
Dreyer & Blume (2007) pointed out: all existing type inference implementations for ML
are incomplete, because combinations of functors and the value restriction (like above) do
not have principal types. Interestingly, a variation of the solution suggested by Dreyer &
Blume – implicitly generalising the types of functors – is implied by the 1ML typing rules:
since functors are just functions, their types can already be generalised (as for G above).
However, generalisation happens outside the abstraction, which is more rigid than what
they propose (but which is not expressible in System Fω ). Consequently, 1ML can type
some examples from their paper – such as Example (b):

F (t : type) = {f = id id};
A = F int; B = F bool;
x = A.f 10; y = B.f ”dude”;
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This works because F is polymorphic in 1ML (with type ∀α.{}→A ∀β .[= β ]→P {f : α→I

α}). But it is not enough to handle other examples, like G above.
In other words, our algorithm can infer the types of some programs that regular ML

inference unexpectedly can’t handle. At the same time, the liberal mixture of modules and
core programming in 1ML introduces more of these cases, and some remain incomplete.

Purity Annotations Due to effect subtyping, a function type as an upper bound does
not determine the purity of a smaller type. Technically, that does not affect completeness,
because we defined small types to include only impure functions: the resolution rule IRFUN

can always pick I. But arguably, that is cheating a little by side-stepping the issue. In
particular, it makes an extension of the notion of (im)purity to other effects, as suggested
in Section 2, somewhat inconvenient, because pure function types could not be inferred in
parameter positions.

Again, the solution would be more polymorphism, in this case a simple form of effect
polymorphism (Talpin & Jouvelot, 1992): if effects could be quantified over, they could
also be inferred in a complete manner. We explored this solution in a separate paper that
extends 1ML with effect polymorphism (Rossberg, 2016), which – interestingly – induces
a novel notion of generativity polymorphism for functors.

Despite these limitiations, we found 1ML inference quite usable. In practice, MLs have
long given up on complete type inference: various limitations exist in both SML and
OCaml (and the extended language family including Haskell), necessitating type annota-
tions or declarations. In our limited experience with a prototype, 1ML is not substantially
worse, at least not when used in the same manner as traditional ML.

In fact, we conjecture that any portable17 SML program in the fragment of the language
covered by 1ML – i.e., ignoring features such as references, exceptions, or the likes, but
including both modules and Damas/Milner polymorphism – can be directly transliterated
into valid 1ML without adding a single type annotation.

7.3 Correctness

Algorithmic Soundness The inference algorithm may not be complete, but at least it is
sound. That is, we can show the following result:

Theorem 7.1 (Soundness of 1ML Inference)
Let υ ,Γ be a well-formed Fω environment.

1. If Γ `θ T/D Ξ, then υ
′,θΓ ` T/D θΞ for some υ

′.
2. If Γ `θ E/B :η Ξ e, then υ

′,θΓ ` E/B :η θΞ θe for some υ
′.

3. If Γ `θ Ξ′≤π Ξ δ ; f and υ ,Γ ` Ξ′ : Ω and υ ,Γ,α ` Ξ : Ω, then υ
′,θΓ ` θΞ′ ≤π

θΞ θδ ;θ f for some υ
′.

17 That is, not depending on more liberal type inference than strictly required by the language
definition (Milner et al., 1997). Unfortunately, that is a somewhat fuzzy notion, because the
incompleteness of SML type inference is not handled in any precise manner in the standard, see
Rossberg (1999a).
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In order to prove this result, we need to refine the statement a little bit. In particular,
instead of just bundling together υ ,Γ as an environment, we want to construct an environ-
ment that respects the scoping constraints on the free inference variables υ relative to the
regular type variables in their ∆-sets.

To that end, we define a little auxiliary judgement υ ` Γ Γ′ that intersperses Γ with υ

such that for each υ the type variables ∆υ are in scope:

ε ` · ·
υ ∈ υ υ−υ ` Γ Γ′ ∆υ ⊆ dom(Γ)

υ ` Γ Γ′,υ

υ ` Γ Γ′ α /∈ dom(Γ′)

υ ` Γ,α  Γ′,α

υ ` Γ Γ′ Γ′ ` Σ : Ω

υ ` Γ,X :Σ Γ′,X :Σ
This assumes that dom(Γ) 6 ∩ υ initially. Γ′ is an extension of Γ that includes bindings
for υ , treated as ordinary type variables, and placed such that they adhere to the scoping
constraints encoded in ∆. Note that this is a relation: there may be many possible Γ′ for a
given pair of Γ and υ (although they are all equivalent in the sense that they all admit the
same set of Fω typing judgments).

With that, for any Fω or 1ML typing judgement J, we define

υ ;Γ ` J :⇔ υ ` Γ Γ
′∧Γ

′ ` J (for some Γ′)

Furthermore, define well-formedness of resolution substitutions:

υ
′;Γ
′ ` θ : υ ;Γ :⇔ υ ` Γ Γ′′∧υ

′;Γ′ ` θ : Γ′′∧
θ small∧dom(θ) 6 ∩ υ

′∧
∀υ ∈ υ ,∀υ ′′ ∈ undet(θυ),∆υ ′′ ⊆ ∆υ

Well-typed substitutions can be composed:

Lemma 7.2 (Composition of Substitutions)
If υ

′;Γ′ ` θ : υ ;Γ and υ
′′;Γ′′ ` θ ′ : υ

′;Γ′ and dom(θ) 6 ∩ υ
′′, then υ

′′;Γ′′ ` θ ′ ◦θ : υ ;Γ.

The refined soundness theorem in its full glory is then stated as follows:

Theorem 7.3 (Soundness of 1ML Inference Refined)
Let dom(Γ) 6 ∩ υ and υ ` Γ Γ′. Let J range over the 1ML inference judgements.

1. Γ′ `2 and υ ⊆ dom(Γ′).
2. If θΓ `θ ′

θJ, then θΓ `θ ′ θJ.
3. If Γ `θ J, then υ

′;θΓ ` θ : υ ;Γ with υ
′−υ fresh.

4. If Γ θ`θ ′ J and υ
′;θΓ ` θ : υ ;Γ, then υ

′′;θ ′Γ ` θ ′ : υ ;Γ with υ
′′−υ

′−υ fresh.
5. If Γ1;Γ2 θ`θ ′ J and υ

′;θΓ ` θ : υ ;Γ with Γ = Γ1,Γ2,
then υ

′′;θ ′Γ ` θ ′ : υ ;Γ with υ
′′−υ

′−υ fresh and ∆
υ
′′ ⊆ dom(Γ1).

6. If Γ `θ T/D Ξ, then υ
′;θΓ ` T/D θΞ.

7. If Γ `θ E/B :η Ξ, then υ
′;θΓ ` E/B :η θΞ θe.

8. If Γ `θ Ξ≤π Ξ′ δ , and υ ;Γ ` Ξ : Ω and υ ;Γ ` Ξ′ : Ω,
then υ

′;θΓ ` θΞ≤π θΞ′ θδ ;θ f .
9. If Γ `∀

θ
E :η Ξ, then υ

′;θΓ ` E :η θΞ θe.
10. If Γ `S

θ
E :η Ξ, then υ

′;θΓ ` E :η θΞ θe and Ξ◦ = S.
11. If Γ `θ υ ≈ S, then (θυ)◦ = S.
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12. If Γ `θ Ξ = Ξ′, and υ ;Γ ` Ξ : Ω and υ ;Γ ` Ξ′ : Ω, then θΞ = θΞ′.

The proof of the first part is by induction on the derivation of υ ` Γ Γ′, for the others by
simultaneous induction on the (first) derivation.

Termination We can also show that – despite its incompleteness – the inference algorithm
at least does not go astray by diverging:

Theorem 7.4 (Termination of 1ML Inference)
All 1ML type inference judgements terminate.

As for the 1MLex typing rules, termination is obvious for most the 1ML inference
judgements: the main ones are inductive on the syntactic structure of the language; for
the auxiliary Unification judgement, termination can be proved in the usual manner, In-
stantiation is inductive on the right-hand side type, and Resolution is not even recursive.
Again, only subtyping remains as the problem child.

We can prove its termination by extending the proof from Section 4.3. First, we trivially
extend the weight function to handle inference variables:

Q[[υ ]] = 0 S[[υ ]] = 1

The Weight Reduction lemma still holds for δ -substitutions on type variables, but we can
formulate it analogously for θ -substitutions on inference variables, which are always small
as well:

Lemma 7.5 (Weight Reduction under Small Resolution)
1. Q[[θΞ]] = Q[[Ξ]].
2. W [[θΞ]]<W [[Ξ]]+ 〈1,0〉.
3. W [[θΞ]]≤W [[Ξ]]+ 〈|dom(θ)|,0〉.

The following key lemma postulates that a subtyping derivation either resolves more
inference variables than it introduces, or the number of excess variables (which will come
from rule ISIMPLL) is bounded by the number of quantifiers in the types involved.

Lemma 7.6 (Resolution Progress in Subtyping Inference)
Let Γ `θ J an inference derivation and Y the set of fresh inference variables it generates.

1. If J is Ξ′ = Ξ, then either |Y |= |θ |= 0 or |Y |< |θ |.
2. If J is Ξ′ ≤π Ξ δ ; f , then either |Y |= |θ |= 0 or |Y |< |θ | or |Y |− |θ | ≤ Q[[Ξ′]]+

Q[[Ξ]]. Furthermore, if Ξ 6= Ξ′ and either Ξ = υ or Ξ′ = υ , then υ ∈ dom(θ). Else if
Ξ = υ 6= Ξ′ = υ ′, then |{υ ,υ ′}∩dom(θ)|= 1.

With this, the termination proof can proceed similarly to before, except that we have to
take θ into account.

Lemma 7.7 (Termination of Subtyping Inference)
Let υ ` Γ Γ′ and Γ′ ` Ξ′ : Ω and Γ′,α ` Ξ : Ω and π = α α

′. Then Γ `θ Ξ′ ≤π Ξ δ ; f
terminates.

The proof is again by case analysis on the algorithm, mostly as before, but this time using
the weight W [[Ξ′]]+W [[Ξ]]+ 〈|π|+ |υ ′|,0〉, with υ

′ = undet(Ξ′)∪undet(Ξ). In each rule,
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this weight gets smaller for all premises. The only exceptions are the rules ISRESL and
ISRESR, which invoke the Resolution judgment that may introduce additional temporary
inference variables. That locally increases the weight of the judgement, but we can show
by a simple case analysis of the Σ in these rules that the temporary variables are resolved
immediately and weight will decrease again in the recursive invocation of the subtyping
judgement.

8 Related Work

Packaged Modules The first concrete proposal for extending ML with packaged modules
was by Russo (2000), and is implemented in Moscow ML. Later work on type systems for
modules routinely included them (Dreyer et al., 2003; Dreyer, 2005; Rossberg & Dreyer,
2013; Rossberg et al., 2014), and variations have been implemented in other ML dialects,
such as Alice ML (Rossberg, 2006) and OCaml (Garrigue & Frisch, 2010).

To avoid soundness issues in the combination with applicative functors, Russo’s original
proposal conservatively allowed unpacking a module only local to core-level expressions,
but this restriction has been lifted in later systems, which forbid only the occurrence of
unpacking inside applicative functors.

First-Class Modules The first to unify ML’s stratified type system into one language was
Harper & Mitchell’s XML calculus (Harper & Mitchell, 1993). It is a dependent type
theory modeling modules as terms of Martin-Löf-style Σ and Π types, closely following
MacQueen’s original ideas (MacQueen, 1986). The system enforces predicativity through
the introduction of two universes U1 and U2, which correspond directly to our notion of
small and large type. XML allows both U1 : U2 and U1 ⊆ U2, which is similar in 1ML.
However, XML lacks any account of either sealing or translucency, which makes it fall
short as a foundation for contemporary ML modules.

That gap was closed by Harper & Lillibridge’s calculus of translucent sums (Harper
& Lillibridge, 1994; Lillibridge, 1997), which also was a dependently typed language
of first-class modules. Its main novelty were records with both opaque and transparent
type components, directly modeling ML structures. However, unlike XML, the calculus is
impredicative, which renders it undecidable.

Translucent sums were later deconstructed into the notion of singleton types (Stone &
Harper, 2006); they formed the foundation of Dreyer et al.’s type theory for higher-order
modules (Dreyer et al., 2003). However, to avoid undecidability, this system went back to
second-class modules (though it provides packaged modules).

One central concern in dependently typed theories is phase separation: to enable compile-
time checking without requiring core-level computation, such theories must be sufficiently
restricted. For example, Harper et al. (1990) investigate phase separation for the XML
calculus. The beauty of the F-ing approach underlying 1ML is that it enforces phase
separation by construction, since it avoids dependent types altogether.

There are previous accounts of ML with modules that involve a limited kind of unifi-
cation between core and module language by modelling core-level polymorphic functions
as functors (Harper & Stone, 2000; Dreyer et al., 2007). Furthermore, the latter work on
modular type classes also introduces a notion of functors with implicit arguments.
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Shields & Peyton Jones (Shields & Peyton Jones, 2002) proposed first-class modules for
Haskell. However, these do not provide modular compositionality in the sense discussed in
Section 5.3, because they cannot contain type components (only module types can), there
is no sealing, and type abstraction is manual through raw existential types.

Applicative Functors Leroy proposed applicative semantics for functors (Leroy, 1995), as
implemented in OCaml. Russo later combined both generative and applicative functors in
one language (Russo, 2003) and implemented them in Moscow ML; others followed (Shao,
1999; Dreyer et al., 2003; Dreyer, 2005; Rossberg et al., 2014).

A system like Leroy’s, where all functors are applicative, would be incompatible with
first-class modules even in a pure language, because the application in type paths like
F(A).t needs to be phase-separable to enable type checking, but not all functions are.
Russo’s system has similar problems, because it allows converting all generative func-
tors into applicative ones. Like Dreyer (Dreyer, 2005) or F-ing modules (Rossberg et al.,
2014), 1ML hence combines applicative (pure) and generative (impure) functors such that
applicative semantics is only allowed for functors whose body is both pure and separable.

In F-ing modules, applicativity is even inferred from purity, and sealing itself not consid-
ered impure. The Technical Appendix of the conference version of this article (Rossberg,
2015) sketches a similar extension to 1ML.

In the basic language introduced in the present article, an applicative functor can only
be created by sealing a fully transparent functor with pure function type, very much like in
Shao’s system (Shao, 1999).

Type Inference There has been little work that has considered type inference for modules.
Russo examined the interplay between core-level inference and modules (Russo, 2003),
elegantly dealing with variable scoping via unification under a mixed prefix (which might
also form a more elegant basis for 1ML inference than our ∆-sets do).

Dreyer & Blume (2007) investigated how functors interfere with the value restriction.
They show that – contrary to popular belief – Damas/Milner type inference (Damas &
Milner, 1982) with a value restriction (Wright, 1995), as employed in core ML, is no longer
complete when combined with ML-style functors. They propose a way to fix this problem
by allowing functors to become (implicitly) polymorphic as well. However, their solution
requires a destination-passing style semantics for type abstraction – inspired by work on
recursive modules (Dreyer, 2007) – that is well beyond the realms of what System Fω can
express. Consequently, although 1ML can implicitly generalise functors as well and thus
is able to handle some of the examples from Dreyer & Blume’s paper, it cannot deal with
the more interesting ones.

At the same time, there have been ambitious extensions of ML-style type inference with
higher-rank or impredicative types (Garrigue & Rémy, 1999; Le Botlan & Rémy, 2003;
Vytiniotis et al., 2008; Russo & Vytiniotis, 2009). Unlike those systems, 1ML never tries
to infer a polymorphic type annotation: all guessed types are monomorphic; polymorphic
parameters always require annotations. The impredicative extension from Section 5.1 is
similar to Garrigue & Rémy’s semi-explicit polymorphism (Garrigue & Rémy, 1999), but
also allows unboxed polytypes.
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On the other hand, 1ML allows bundling types and terms together into structures. While
it is necessary to explicitly annotate terms that contain types, associated type quantifiers
(both universal and existential) and their actual introduction and elimination always remain
implicit and are effectively inferred as part of the elaboration process.

9 Conclusion and Future Work

1ML is a coherent, unified redesign of ML in a single language that subsumes both the ML
core and the ML module language. It is no more and no less powerful than System Fω (the
higher-order polymorphic lambda calculus), but unlike the latter, supports type inference
and modular composition. At the same time, modelling 1ML’s type structure in terms of
mere System Fω types trivially establishes phase separation between type checking and
execution, a property that requires extra effort in approaches based on dependently typed
calculi (Harper et al., 1990).

But 1ML, as shown here, is but a first step. There are many possible improvements and
extensions that are worth investigating.

Mechanisation Elaboration of 1MLex is fairly straightforward and merely a small mod-
ification to F-ing modules, which has been mechanised in Coq (Rossberg et al., 2014).
It should be relatively easy to extend this work to 1ML. The full language and its type
inference is far more intricate, however. While we have done the essential parts of the
proofs on paper, their details are tedious enough to be almost guaranteed to be wrong. It
would be very valuable to mechanise this part of the formalisation and machine-verify the
stated properties.

Implementation We have implemented a simple prototype interpreter for 1ML (mpi-

sws.org/˜rossberg/1ml/) that allows running smallish examples. But it would be great
to gather more experience with a “real” implementation, especially regarding the viability
and user-friendliness of 1ML type inference.

Usability Pragmatics While 1ML achieves a nice unification of core and module lan-
guage, it isn’t necessarily clear whether this is the most desirable design in practice. A
clearer syntactic separation of module-level features might be a valuable aid to program-
mers. It might also help to tame more obscure cases of subtyping and type inference
semantics and avoid confusing the programmer with the full generality of the system in
all places.

Applicative Functors To keep the present paper simple, it adopts a rather basic notion of
applicative functor. It is not hard to extend it to pure sealing in the style of F-ing modules
– as mentioned earlier, a sketch can be found in the Technical Appendix of the conference
version of this article (Rossberg, 2015). A greater challenge would be to go a step further
and make it properly abstraction-safe, by tracking value identities as described in Section 8
of Rossberg et al. (2014). This is because the omni-present quantification over value paths
in that extension likely interferes badly with the small type restriction in 1ML.
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Implicits The domain of implicit functions in 1ML is limited to type type. Allowing
richer types would be a natural extension, and might provide functionality like Haskell-
style type classes (Wadler & Blott, 1989; Dreyer et al., 2007) or Coq-style canonical
structures (Mahboubi & Tassi, 2013). In particular, generalised implicit functions could
be a semantic foundation for modular implicits (White et al., 2014).

Type Inference Despite the ability to express first-class and higher-order polymorphism,
inference in 1ML is rather simple. Perhaps it is possible to combine 1ML with some of
the more advanced approaches to inference described in literature, some of which we
mentioned in Section 8. However, it is non-obvious how well these methods will interact
with the implicit quantifier pushing in 1ML’s elaboration.

Row Polymorphism Replacing subtyping with a more potent form of polymorphism
might increase expressiveness and lead to better inference: in particular, row polymor-
phism (Rémy, 1989; Ohori, 1995) could express width subtyping without compromising
completeness of inference. The main issue with such an extension probably is its effect on
the small/large type universe distinction, since many current uses of subtyping on small
types will require large types once they involve quantification over row variables.

Effect Polymorphism Similarly, the utility of 1MLs effect system and its pure func-
tion types could be greatly increased if higher-order functions could vary their effect by
employing effect polymorphism (Talpin & Jouvelot, 1992). We have recently explored
this direction in a separate paper (Rossberg, 2016). Its most interesting implication is
that it enables “functors” to be polymorphic over their generativity, i.e., whether they
behave applicatively or generatively. Incidentally, this ability finally allows expressing the
motivating examples of MacQueen’s “truly higher-order modules” (MacQueen & Tofte,
1994; Kuan & MacQueen, 2009), which previously have eluded a nice type-theoretic
explanation, and were not supported by any other module type system.

Recursive Modules Recursive modules would add a whole new dimension of expressive-
ness – and complexity! – to 1ML. With MixML (Rossberg & Dreyer, 2013) we gave a fully
general design for recursive modules, elaborating into an extension of System F. It would
be interesting (but complicated) to redo it 1ML-style, in order to achieve a more uniform
treatment of recursion than 1ML has. The result of such a cross-breed would presumably
share some similarities with Scala (Odersky & Zenger, 2005), but with a more expressive
semantics for type equivalences.

Dependent Types Finally, 1ML goes to great lengths to push the boundaries of non-
dependent typing. It’s a legitimate question to ask, what for? Why not go fully depen-
dent? Well, even then sealing necessitates some equivalent of weak sums (a.k.a. existential
types). Incorporating them, along with the quantifier pushing of our elaboration, into a
dependent type system poses a thrilling challenge.
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