Non-Parametric

Georg Neis

MPI-SWS
neis@mpi-sws.org

Abstract

Type abstraction and intensional type analysis are fesitsgem-
ingly at odds—type abstraction is intended to guarante@-par
metricity and representation independence, while typéyaisais
inherently non-parametric. Recently, however, severs¢aechers
have proposed and implemented “dynamic type generatiord as
way to reconcile these features. The idea is that, when diirgede
an abstract type, one should also be able to generate atmerati
fresh type name, which may be used as a dynamic representativ
of the abstract type for purposes of type analysis. The oprest
remains: in a language with non-parametric polymorphisogsd
dynamic type generation provide us with the same kinds of ab-
straction guarantees that we get from parametric polynmsmgh

Our goal is to provide a rigorous answer to this question. We
define a step-indexed Kripke logical relation, with a nowehi of
“possible world”, for a language with both non-parametratyp
morphism and dynamic type generation. Our logical relagon
ables us to establish parametricity and representati@pemtence
results, even in a non-parametric setting, by attachingrarp rela-
tional interpretations to dynamically-generated type esnin ad-
dition, we explore how programs that are provably equiviailea
more traditional parametric logical relation may be “wragpsys-
tematically to produce terms that are related by our noaspatric
relation, and vice versa. This leads us to a novel polaripegh f
of our logical relation, which distinguishes between pesitand
negative notions of parametricity.

1. Introduction

When we say that a language suppgésametric polymorphisin
we mean that “abstract” types in that language are reallyadis—
that is, no client of an abstract type can guess or dependson it
underlying implementation [18]. Traditionally, the paretmc na-
ture of polymorphism is guaranteed statically by the laiggisa
type system, thus enabling the so-caligole-erasurenterpretation

of polymorphism by which type abstractions and instardisiare
erased during compilation.

However, some modern programming languages include a use-

ful feature that appears to be in direct conflict with paraiogioly-
morphism, namely the ability to perforintensional type analy-
sis[11]. Probably the simplest and most common instance of in-
tensional type analysis is found in the implementation n§leages
supporting a typ®ynamic [1]. In such languages, any valuenay

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Derek Dreyer

MPI-SWS
dreyer@mpi-sws.org

Parametricity

Andreas Rossberg

MPI-SWS
rossberg@mpi-sws.org

be cast to typ®ynamic, but the castromtypeDynamic to any type

T requires a runtime check to ensure thatactual type equals.
Other languages such as Acute [23] and Alice ML [21], whioh ar
designed to support dynamic loading of modules, requiraltile

ity to check dynamically whether a module implements an etque
interface, which in turn involves runtime inspection of thedule’s

type components. There have also been a number of more experi
mental proposals for languages that emplaypecase construct

to facilitatepolytypicprogramming €.9.,[30, 27]).

There is a fundamental tension between type analysis ard typ
abstraction. If one can inspect the identity of an unknowgetgt
run time, then the type is not really abstract, so any invasiaon-
cerning values of that type may be broken [30]. Consequdatly
guages with a typBynamic sometimes prohibit programmers from
casting toDynamic any values whose types mention user-defined
abstract types. However, this is a rather severe restmictitich
effectively penalizes programmers for using type abstact

Thus, a number of researchers have proposed that languages
with type analysis facilities should also suppdynamic type gen-
eration[22, 19, 27, 20]. That is, when one defines an abstract type,
one should also be able to generate at run time a “fresh” tgpeen
which may be used as a dynamic representative of the abitpact
for purposes of type analysis. (We will see a concrete exaropl
this in Section 2.) The idea is that the freshness of namergtoe
will ensure that user-defined abstract types are viewedrdigadly
in the same way that they are viewed staticallye-as distinct
from all other types.

The question remains: how do we know that dynamic type
generationworks? In a language with intensional type analysis—
i.e., non-parametrigpolymorphism—does dynamic type genera-
tion provably provide us with the same kinds of abstractioarg
antees that we get from traditional parametric polymonpfis

Our goal is to provide a rigorous answer to this question. We
study an extension of System F, supporting (1) a type-safe ca
operator, which is essentially a variant of Girard’s J opmr{8],
and (2) a facility for dynamic generation of fresh type nantes
brevity, we will call this languag&. As a practical language mech-
anism, the cast operator is somewhat crude in comparisameto t
more expressiveypecase-Style constructs proposed in the liter-
ature! but it nonetheless renders polymorphision-parametric
Our main technical result is that, in a language with norapeatric
polymorphism, parametricity may be provably regained wvidi-j
cious use of dynamic type generation.

The rest of the paper is structured as follows. In Section 2,
we present our language under consideration, G, and al€o giv
an example to illustrate how dynamic type generation isulsef
In Section 3, we explain informally the approach that we have
developed for reasoning about G. Our approach employte
indexed Kripke logical relatiowith a novel form of possible world.

1That said, the implementation of dynamic modules in Alice ,Mbr
instance, employs a very similar construct [21].

2009/3/2

This section is intended to be broadly accessible to readeosare

generally familiar with the basic idea of relational pararicity but I/éﬁfess Tu=alb] ;\' —T|TxT| VO/{'T | HO"Tk
not with the details of (advanced) logical relations tegiues. vi=a|c|Azre] (v, v2) | Aave | pack {r,v) as 7
Terms ex=wv|ee| (e, e2)|el]|e2]|eT]|

In Section 4, we formalize our logical relation for G and show
how it may be used to reason about parametricity and represen
tation independence. A particularly appealing feature wf for-
malization is that th@onparametricity of G is encapsulated in the
notion of what it means for twtypesto be logically related to each
other when viewed adata The definition of this type-level log-
ical relation is a one-liner, which can easily be replacethwin
alternative “parametric” version. In Sections 5-7, we er@lhow
terms related by the parametric version of our logical refatnay

be “wrapped” systematically to produce terms related bynthe-

parametric version, and vice versa, thus clarifying howayit

pack (7, ¢e) as 7 | unpack («, z)=ein ¢ |
cast 7 T | newarT in e

Stores o =€ |0, arT

Config's¢ ::==o;e

Type ContextsA :=¢ | A, a | A, axT
Value ContextsI" ::= ¢ | ', z:7

type generation enables parametric reasoning. This lesds a (EcasT) AFm AFT
novel polarized form of our logical relation, which distiighes AjlFcast i 12 i 71 — T2 — T2
between positive and negative notions of parametricity. , ,
Finally, in Section 8, we discuss related work, includingenet (ENEW)A k7 Aamnlle:r AT
work on the relevant concepts of dynamic sealing [25] andtimul A;T'EnewamTine: 1/
language interoperation [12]. c ATke:r AF 7t
(Econv) AThRe:T
2. The Language G AT
Figure 1 defines our non-parametric language G. For the naot p " A
G is a standard call-by-valug-calculus, consisting of the usual (TNAME)&
types and terms from System F [8], including pairs and emxi&ie AFa
types. We also assume an unspecified set of base bypmg with
suitable constantsof those types.
Two additional, non-standard constructs isolate the ¢isden (QNAME)M
aspects of the class of languages we are interested in: Ata=T
e cast 71 T2 v1 V2 convertsv; from typer; to 7. It checks that T
those two types are the same at the time of evaluation. If so, Fo ocebe:T -
the operatorsucceedsand returnsy;. Otherwise, itfails and (ConF) ;_ .
. o;e: T
defaults tovs, which acts as asalse clause of the target type.
® new a~T ine generates a fresh abstract type namev/alues o;(Ar:Te)v — oe[v/x]
of type a can be formed using itepresentation type. Both o;{vi,v2).8 — o
types are deemecbmpatible but not equivalent. That is, they o;(Aae)T — ojelr/al
are considered equal efsissifiers but not aglata In particular, o;unpack (o, z)=(pack (1,v)) ine — oje[r/allv/x]
cast a7 v v’ will not succeedi(e., it will return v"). (o ¢ dom(o)) oinewa~Tine — o0,axTe
(7-1 — 7-2) o;cast Ty T2 — U;)\$1:T1.)\$227'2.$1
Our cast operator is essentially the same as Harper and Mitchell's (7, £ 7,) oicast 1 T2 < 0 ATLITLAT2:T2. T2
TypeCondoperator [10], which was itself a variant of the non- .)
parametric J operator that Girard studied in his thesisJ8}.new (.- plus standard “search” rules)
construct is similar to previously proposed constructsdfgramic
type generation [19, 27, 20]. However, we do not reqeixplicit Figure 1. Syntax and Type System of G (excerpt)

term-level type coercions to witness the isomorphism beman
abstract type name and its representation. Instead, our type
system is simple enough that we perform this conversigiicitly.
For convenience, we will occasionally use expressions ef th

form let z=e1 in e2, which abbreviate the terfAz:71.e2) e1 (with

71 being an appropriate type feri). We omit the type annotation
for existential packages where clear from context. Morgowe
take the liberty to generalize binary tupleseary ones where
necessary and to use pattern matching notation to decortyyes

in the obvious manner.

the default value returned in the case of failure. The ruleeiye
requires that the two types be well-formed.

For an expressiomew a7 ine, which binds« in e, Rule
ENEW checks that the body is well-typed under the assumption
that « is implemented by the representation typeFor that pur-
pose, we enrich type contexts with entries of the fornna7 that
keep track of the representation types tied to abstract gpees.
Note thatr may not mention.

Syntactically, type names are just type variables. Whewete
as data, i(e., when inspected by theast operator), types are con-
sidered equivalent iff they are syntactically equal. Intcast, when
The typing rules for the System F fragment of G are completely viewed as classifiers for terms, knowledge about the reptaten
standard and thus omitted from Figure 1. We focus on the non- of type names may be taken into account. RuteoEvV says that

2.1 Typing Rules

standard rules related to casting and dynamic type geosrdiull if a terme has a typer’, it may be assigned any other type that is

formal details of the type system appear in the technicatagix. compatiblewith 7’. Type compatibility, in turn, is defined by the
Typing of casts is straightforward (RulecEsT): cast 7 72 is judgmentA + 71 &~ 7. We only show the rule QaME, which

simply treated as a function of typg — 7= — 7. Its first discharges a compatibility assumptionzr from the context; the

argument is the value to be converted, and its second ardumen other rules implement the congruence closure of this axibne.

2 2009/3/2

important point here is that equivalent types are compatibut
compatible types are not necessarily equivalent.

Finally, Rule ENEWw also requires that the typée of the bodye
does not contain (i.e., 7 must be well formed im\ alone). A type
of this form can always be derived by applying &\v to convert
7' to7'[T/al.

2.2 Dynamic Semantics

The operational semantics has to deal with generation sfi fiype
names. To that end, we introducéype stores to record generated
type names. Hence, reduction is definedconfigurations(c; e)
instead of plain terms. Figure 1 shows the main reductioastul
We omit the standard “search” rules for descending intoesutm
according to call-by-value, left-to-right evaluation erd

Because reduction afnpack simply substitutes the representation
type int for «, the consecutive cast succeeds, and the whole ex-
pression evaluates torue, true)—although the second component
should have toggled and thus be different from the first.

The way to prevent this in G is to create a fresh type name as
witness of the abstract type:

esem1 := newa’ & intin
pack (o, (1, Az:int.(1 — x), Az:int.(z # 0))) as Tsem

After replacing the initial semaphore implementation viitts one,
eciient Will evaluate to(true, false) as desired—theast expression
will no longer succeed, becausewill be substituted by the dy-
namic type namey, anda’ # int. (Moreover, sincey’ is only
visible statically in the scope of theaw expression, the client has

The reduction rules for the F fragment are as usual and do not N0 access ta’, and thus cannatonvertfrom int to o’ either.)

actually touch the store. However, types occurring in F tots
can contain type names bound in the store.
Reducing the expressiarew a7 in ¢ creates a new entry for

Now, while it is clear thahew ensures proper type abstraction
in the client programegien;, We want to prove that it does so for
any client program. A standard way of doing so is by showing a

o in the type store. We rely on the usual hygiene convention for More general property, namelgpresentation independengs]:

bound variables to ensure thats fresh with respect to the current W€ show that the modul@em: is contextually equivalerto another
store (which can always be achieveddyenaming)? module of the same type, meaning that no G program can observe
The two remaining rules are for casts. A cast takes two types a0y difference between the two modules. By choosing thatroth

and checks that they are equivalene.(syntactically equal). In
either case, the expression reduces to a function thatetiltm the

appropriate one of the additional value argumeings,the value to
be converted in case of success, and the default value asieew

the former case, type preservation is ensured becauseesandc
target types are known to be equivalent.

Type preservation can be expressed using the typing raterC
for configurations. We formulate this rule by treating thpeystore
as a type context, which is possible because type stores are
syntactic subclass of type contexts. (In a similar mannercan
write - o for well-formedness of store, by viewing it as a type
context.) Itis worth noting that the representation typethe store
are actually never inspected by the dynamic semantics. ahey
only needed for specifying well-formedness of configunagiand
proving type soundness.

2.3 Motivating Example

Consider the following attempt to write a simple functioftzihary
semaphore” ADT [15] in G. Following Mitchell and Plotkin [1.4
we use an existential type, as we would in System F:

Ja.a x (¢ — a) x (a — bool)
esem 1= pack (int, (1, Az:int.(1 — z), Az:int.(z # 0))) as Tsem

A semaphore essentially is a flag that can be in two statdgereit
lockedor unlocked The state can be toggled using the first function
of the ADT, and it can be polled using the second. Our littlelme
uses an integer value for representing the state, takfoglocked
ando for unlocked. Itis an invariant of the implementation thas t
integer never takes any other value—otherwise, the toggletion
would no longer operate correctly.

In System F, the implementation invariant would be protécte
by the fact that existential types are parametric: ther@iway to
inspect the witness af after opening the package, and hence no
client could produce values of typeother than those returned by
the module (nor could she apply integer operations to them).

Not so in G. The following program usesst to forge a value
s of the abstract semaphore type

Tsem =

:= unpack {(a, (so, toggle, poll)) = esemin
let s = cast int a 666 sg in
(poll s, poll (toggle s))

CEclient

2 A well-known alternative approach would omit the type storévour of
using scope extrusion rules foew binders, as in Rossberg [19].

module to be a suitable reference implementation of the ADT i
question, we can conclude that the “real” one behaves gsoper
under all circumstances.

The obvious candidate for a reference implementation of the
semaphore ADT is the following:

esem2 1= newa’ & bool in
pack (', (true, Az: bool .=z, Az: bool .x)) as Tsem

d—|ere, the semaphore state is represented directly by a &otiky

and does not rely on any additional invariant. If we can shioat t
esem1iS contextually equivalent tesemz then we can conclude that
esem1S type representation is truly being held abstract.

2.4 Contextual Equivalence

In order to be able to reason about representation indepeadee
need to make precise the notion of contextual equivalence.

A context C' is an expression with a single hold, defined
in the usual manner. Typing of contexts is defined by a judgmen
formt C : (A;T;7) ~ (A';T;7'), where the tripleA; T; 1)
indicates the type of the hole. The judgment implies thatafoy
expressiore with A;T' = e : 7 we haveA’;T' + Cle] : 7'. The
rules are straightforward, the key rule being the one foestol

ACA rcr’
F L (AT 7))~ (AT 7)
We can now define contextual approximation and contextual
equivalence as follows:

Definition 2.1 (Contextual Approximation and Equivalence)
LetA;TFer:TandA;TFes: 7.

ATkFe <ex:T & vC, 7', 0.

FoAEC: (A7)~ (0567) A
0;Cled] | = 0:Cle2] |
A;Ther <ex:TA

A;THey<ep: 7

de
<~

A;ThHer~ea: T

That is, contextual approximatiofy; " + e; < ez : 7 means that
for any well-typed program context’ with a hole of appropriate
type, the termination of”'[e;] implies the termination ofZ'[e:].
Contextual equivalencd; T F e; ~ eo : 7 is just approximation
in both directions.

Considering that G does not explicitly contain any recursiv
looping constructs, the reader may wonder why terminasarsed

2009/3/2

as the notion of “distinguishing observation” in our defimit of
contextual equivalence. The reason is that ¢hst operator, to-
gether with impredicative polymorphism, makes it possiblerite
well-typed non-terminating programs. (This was Girarddnp in
studying the J operator in the first place [8].) Moreover, caa
encode arbitrary recursive function definitions. Othenfsiof ob-
servation may thus be encoded in terms of (non-)termination

3. A Logical Relation for G: Main Ideas

Following Reynolds [18] and Mitchell [13], our general apach
to reasoning about parametricity and representation evignce
is to define dogical relation Essentially, logical relations give us a
tractable way of proving that two terms are contextuallyieajent,
which in turn gives us a way of proving that abstract typeseady
abstract. Of course, since polymorphism in G is non-pardacet
the definition of our logical relation in the cases of uniedrand
existential types is somewhat unusual. To place our appraac
context, we first review the traditional approach to defidogjcal
relations for languages with parametric polymorphism,hsas
System F.

3.1 Logical Relations for Parametric Polymorphism

Although the technical meaning of “logical relation” is at
woolly, the basic idea is to define an equivalence (or appraxi
tion) relation on programs inductively, following the stture of
their types. To take the canonical example of arrow typesyaudd
say that two functions are logically related at the type— 2 if,
when passed arguments that are logically related ,atither they
both diverge or they both converge to values that are ldgicat
lated atr,. Thefundamental theorerof logical relations states that
the logical relation is a congruence with respect to the troots of
the language. Together with what Pitts [15] caldequacy-i.e.,
the fact that logically related terms have equivalent teation
behavior—the fundamental theorem implies that logicadijated
terms are contextually equivalent, since contextual edeice is
defined precisely to be the largest adequate congruence.

Traditionally, the parametric nature of polymorphism isdma
clear by the definition of the logical relation for universedd ex-
istential types. Intuitively, two type abstractiongy.c; and\a.ez,
are logically related at typ&a.7 if they map relatedype argu-
ments to related results. But what does it mean for two tyga-ar
ments to be related? Moreover, once we settle on two relgfes t
arguments| andr;, at what type do we relate the resuligr| /o]
andes[5/a]?

One approach would be to restrict “related type argumeiats” t
be thesametype 7’. Thus, Aa.e; and Aa.ea would be logically
related atva.r iff, for any (closed) typer’, it is the case that
e1[r’/a] and e2[7’ /] are logically related at the type[r’/a].
A key problem with this definition, however, is that, due t@ th
quantification overany argument typer’, the typer[r’/a] may
in fact be larger than the typéx.7, and thus the definition of the
logical relation is no longer inductive in the structure loé ttype.
Another problem is that this definition does not tell us amgh
about the parametric nature of polymorphism.

Reynolds’ alternative approach is a generalization of @isa
“candidates” method for proving strong normalization feis@m
F [8]. The idea is simple: instead of defining two type argutsen
to be related only if they are the same, allany two different
type arguments to be related by an (almost) arbitrary oeiati
interpretation (subject to certaadmissibilityconstraints). That is,
we parameterize the logical relation at typdy an interpretation
function p, which maps each free type variable ofto a pair
of typest{, 75 together with some (admissible) relation between
values of those types. Then, we say that.e; and \a.ex are
logically related at typé/a.7 under interpretation iff, for any

closed types | andr; and any relatiom? between values of those
types, itis the case that[r{/a] andes[r3 /] are logically related
at typer under interpretatiop, a — (71, 73, R).

The miracle of Reynolds/Girard’s method is that it simuétan
ously (1) renders the logical relation inductively wellfided in
the structure of the type, and (2) demonstrates the pareihetr
of polymorphism: logically related type abstractions mshave
the same even when passed completely different type argamen
so their behavior may not analyze the type argument and kehav
in different ways for different arguments. Dually, we caowithat
two ADTS pack (71, v1) as Ja.7 andpack (72, v2) as Ja.T are
logically related (and thus contextually equivalent) byiexing
somerelational interpretatior for the abstract type;, even if the
underlying type representatioms and - are different. This is the
essence of what is meant by “representation independence”.

Unfortunately, in the setting of G, Reynolds/Girard’s nueth
is not directly applicable, precisely because polymonphiis G is
not parametric! This essentially forces us back to the fpppt@ach
suggested above, namely to only consider type arguments to b
logically related if they are equal. Moreover, it makes sertke
cast operator views types as data, so types may only be logically
related if they are indistinguishable as data.

The natural questions, then, are: (1) what metric do we use to
define the logical relation inductively, since the struetaf the
type no longer suffices, and (2) how do we establish that dimam
type generation regains a form of parametricity? We addresse
questions in the next two sections, respectively.

3.2 Step-Indexed Logical Relations for Non-Parametricity

First, in order to provide a metric for inductively defininget
logical relation, we employstep-indexing Step-indexed logical
relations were proposed originally by Appel and McAllesfgy

as a way of giving a simple operational-semantics-basedemod
for general recursive types in the context of foundationalof
carrying code. In subsequent work by Ahmed and others [3, 6],
the method has been adapted to support relational reasoming
variety of settings, including untyped and imperative laages.

The key idea of step-indexed logical relations is to index th
definition of the logical relation not only by the type of theop
grams being related, but also by a natural numbeepresenting
(intuitively) “the number of steps left in the computatioThat is,
if two termse; andes are logically related at type for n steps,
then if we place them in any program conte&xtand run the re-
sulting programs for steps of computation, we should not be able
to produce observably different resulsd.,Cle1] evaluating to 5
andC|ez] evaluating to 7). To show that ande, are contextually
equivalent, then, it suffices to show that they are logicedhated
for n steps, for any..

To see how step-indexing helps us, consider how we might
define a step-indexed logical relation for G in the case ofansal
types: two type abstractionsy.e; and\a.e2 are logically related
atVea.r for n steps iff, for any type argument, it is the case that
e1[r’/a] andes[r’ /] are logically related at[r'/a] for n — 1
steps. This reasoning is sound because the only way a program
context can distinguish betweex.e; and \a.ez in n steps is
by first applying them to a type argumerft—which incurs a step
of computation for the3-reduction(Aa.e;) 7’ — e;[r'/a]—and
then distinguishing between [’ /a] andez |7’ /a] within the next
n — 1 steps. Moreover, although the typér’/a] may be larger
thanVa.7, the step index: — 1 is smaller, so the logical relation is
inductively well-defined.

3.3 Kripke Logical Relations for Dynamic Parametricity

Second, in order to establish the parametricity propexfedy-
namic type generation, we empld§ripke logical relations i.e.,

2009/3/2

logical relations that are indexed Ippssible worlds Kripke log-
ical relations are appropriate when reasoning about ptiegehat
are true only under certain conditions, such as equivaleficed-
ules with local mutable state. For instance, an imperatiET A
might only behave according to its specification if its lodalka
structures obey certain invariants. Possible worlds atipe/to cod-
ify suchlocal invariantson the machine store [15].

In our setting, the local invariant we want to establish isatvh
a dynamically generated type nameans That is, we will use
possible worlds to assign relational interpretations toatgically
generated type names. For example, consider the programs
andesemz2from Section 2. We want to show they are logically related
atJa. a X (¢ — a) x (o — bool) in an empty initial world
wo (i.e.,under empty type stores). The proof proceeds roughly as
follows. First, we evaluate the two programs. This will hake
effect of generating a fresh type namég with o’ ~ int extending
the type store of the first program and ~ bool extending the
type store of the second program. At this point, we corredjpaty
extend the initial worlduo with a mapping fromn’ to the relation
R = {(1,true), (0, false)}, thus forming a new worldv that
specifies the semantic meaningddf

We now must show that the values

pack {a’, (1, Az:int.(1 — x), Az:int.(z # 0))) as Tsem
and

pack (a, (true, A\z: bool .=z, Az: bool .x)) as Tsem

are logically related in the world). Since G's logical relation for
existential types is non-parametric, the two packages haa the
sametype representation, but of course the whole point of using
new was to ensure that they do (namely, itd§. The remainder
of the proof is showing that the value components of the pgeka
are related at the type’ x (o’ — a’) x (o’ — bool) under the
interpretationp = o’ +— (int, bool, R) derived from the worldw.
This last part is completely analogous to what one would sincav
standard representation independence proof.

In short, the possible worlds in our Kripke logical relaton
bring back the ability to assign arbitrary relational iptertations
R to abstract types, an ability that was seemingly lost when we
moved to a non-parametric logical relation. The only cagthat
we can only assign arbitrary interpretationsiymamictype names,
not tostatic, universally/existentially quantified type variables.

There is one minor technical matter that we glossed overan th
above proof sketch but is worth mentioning. Due to nondeiterm
ism of type name allocation, the evaluationegfmi and esemz may
result ina’ being replaced byy; in the former andy, in the lat-
ter (for some fresh; # o4). Moreover, we are also interested in
proving equivalence of programs that do not necessaritcate
exactly the same number of type names in the same order.

Consequently, we also include in our possible worlds a a@larti
bijectionn between the type names of the first program and the type
names of the second program, which specifies how each dynami-
cally generated abstract type is concretely representéistores
of the two programs. We require them to be in 1-1 corresporelen
because theast construct permits the program context to observe
equality on type names, as follows:

equal? : Va.Vg3. bool oef
Aa.AB. cast ((v — o) — bool) ((8 — B) — bool)
(Az:(a —). true)(Az:(8 — B3). false)(Ax:[.x)

We then consider types to be logically related if they arestrae
up tothis bijection. For instance, in our running example, when

3In fact, step-indexed logical relations may already be tstded as a
special case of Kripke logical relations, in which the stegex serves as
the notion of possible world, and whetés a future world ofm iff n < m.

extendingwo to w, we would not only extend its relational in-
terpretation witha’ — (int, bool, R) but also extend it with

o' — (af, ah). Thus, the type representations of the two existen-
tial packagesq andab, though syntactically distinct, would still
be logically related undew.

4. A Logical Relation for G: Formal Details

Figure 2 displays our step-indexed Kripke logical relatfon G

in full gory detail. It is easiest to understand this defonitiby
making two passes over it. First, as the step indices haveya wa
of infecting the whole definition in a superficially compledout
really very straightforward—way, we will first walk throughe
whole definitionignoring all occurrences of’s andk’s (as well as
auxiliary functions like the - | ,, operator). Second, we will pinpoint
the few places where step indices actually play an importdeatin
ensuring that the logical relation is inductively well-faled.

4.1 Highlights of the Logical Relation

The first section of Figure 2 defines the kinds of semanticatbje
that are used in the construction of the logical relationafans
R are sets ohtoms which are pairs of terms;; andes, indexed
by a possible worldv. The definition ofAtom|[r, 72] requires that
e1 andes have the types; and: under the type stores.o; and
w.o2, respectively. (We use the dot notatiety; to denote thé-th
type store component af, and analogous notation for projecting
out the other components of worlds.)

Rel[r1, 2] defines the set oAdmissiblerelations, which are
permitted to be used as the semantic interpretations ofaalbst
types. For our purposes, admissibility is simpignotonicity—i.e.,
closure under world extension. That is, if a relatiorRial relates
two valuesv; andv, under a worldw, then the relation must relate
those values in any future world af. (We discuss the definition of
world extension below.) Monotonicity is needed in orderiswe
that we can extend worlds with interpretations of new dytaype
names, without interfering somehow with the interpretagiof the
old ones.

Worlds w are 4-tuples(o1, 02,7, p), which describe a set of
assumptions under which pairs of terms are related. Harend
o9 are the type stores under which the terms are typechecked and
evaluated. The finite mappingsand p share a common domain,
which can be understood as the set of abstract type names that
have been generated dynamically. These “semantic” typeesam
do not exist in either store; or 02.* Rather, they provide a way
of referring to an abstract type that is representedsdyetype
namec; in o1 andsometype namex; in o2. Thus, for each name
a € dom(n) = dom(p), theconcretizatiory maps the “semantic”
namec to a pair of “concrete” names from the storesandos,
respectively. (See the end of Section 3.3 for an example @i su
ann.) As the definition ofConc makes clear, distinct semantic
type names must have distinct concretizations; conselguent
represents partial bijectionbetweerns; andos.

The last component of the worla is p, which assigns rela-
tional interpretations to the aforementioned semantie tyames.
Formally, p maps eaclu to a tripler = (71, 72, R), whereR is a
monotone relation between values of typesand .. (Again, see
the end of Section 3.3 for an example of such.@The final con-
dition in the definition ofWorld stipulates that the closed syntactic
types in the range g# and the concrete type names in the range of
n are compatible. As a matter of notation, we will wrifeand p
to denote the type substitutiofs — «; | n(a) = (a1, a2)} and
{a — 7i | p(a) = (11,72, R)}, respectively.

“4In fact, technically speaking, we considéom(n)
bound variables of the world.

dom(p) to be

2009/3/2

Atom,, [’7'1 , TQ]

{(k,w,e1,e2) | k <nAwe Worldy A Fw.oq;e1 :

71 AN w.oger T2}
w') 3d (k,w). (K,w v1,v2) € R}

AP (a) #n?(a/)}

Rel,,[71, 72] = {R C Atom?[r1,] | V(k,w,v1,v2) € R.V(K',

SomeRel,, def {r= (7'177'27 R) | tv(ri,72) =0 A R € Rely[11, 2]}

Interp,, o {p € TVar L = SomeRel, }

Conc o {n € TVar ™ TVar x TVar |Va, o’ € dom(n). a # o = n'(a) #n* ()
World,, def {w = (o1,02,m,p) | Fo1 A o2 An

Yo € dom(p). o1 F p'(a) =

n'(a) Aozt p?(a) =

€ Conc A p € Interp,, Adom(n) =

()}

dom(p) A

L(o—lvazvnvp”n (017027777 LpJn)

def

D

(K ,w") 3 (k,w) & Kk <kAw € Worldy, A
lp]n gef {a—|r]n | pla) =1} w.n JwnAw.p 3 |w.ply A
(1,72 R)n & (71,72, [R]) e i S wen
def rng(w’.n") — rng(w.
Rlo # {(kwer,e2) € BRIk <n) dom(u) - dom(o)
’ ef
>R & {(k,w,e1,e2) | w € Worldy, A 77/277 ZZ va € dom(n). n'(a) = n(a)
(k—1,|[w]k_1,e1,e2) € R} p'dp & Vaedom(p). p'(a) = p(a)
[adp = p(a).R]n
Vi [b]p L' {(k,w,c,c) € Atomy,[b, b]}
Valr x7'lp & {(k,w, (v1,v]), (v2, v4)) € Atomn [p" (7 x), p2 (1 x)] |
(ky,w,v1,v2) € Vi[7]p A (k,w,v1,v5) € Vo [r']p}
Volr' — 7lp & {(k,w, \z:T1.e1, \v:T2.e2) € Atomy,[p' (7" — 7), p*(7/ — 7)] |
V(K w' v, v2) € V[]p. (K, w") 3 (k,w) =
(K, w', ervr/z], ez[va/a]) € Enlr]p}
Va[Va.7]p &f {(k,w, Aa.e1, Aaez) € Atomy,[p' (Va.T), p*(VaT)] |
V(K w') 3 (k,w). V(71,72,7) € T [Q".
(K',w',ex[r1/a], e2[r2/a]) € bEL[7]p, cv—r}
Vo [Ba.]p oef {(k, w, pack (11, v1), pack (12, v2)) € Atom,[p* (3e.T), p?(3e.7)] |
Ir. (11, 72,7) € TR[Qw A (k, w,v1,v2) € BVy[7]p, cv—1}
Enlr]o £k w,en,e2) € Atomao! (1), (7)) |
Vj < k.Voi,v1. (w.or;e1 =7 o1;01) =
' ve. (k — j,w') D (k,w) Aw'.o1 = o1 A (w.o2;e0 =" w'.o2;v2) A (k — j,w ,v1,v2) € Vi [T]p}
T [0w = {wn (1), w (7). (w.pt (), w.p (7). ValrJw.p)) | fv(r) € dom(w.p)}
Gnle]lp o {(k,w,0,0) | k <nAwe Worldy }
Gallozrlp £ {(k,w, (1, 201), (32, 702) |
(k7w771772) € G”[[F]]p A (kvwvvlva) € Vn[[T]]p}
Dy [e]w = {(0,0,0)}
DulA,adw E {((61, m1), (82, a=72), (p, 7)) |

(01,02, p) € Dy[A]w A (11, 72,7) € TR [Qw}

o
iy

Dn HA7 O‘%T]]w {((517 O"_’ﬂl)7 (627 Od—>ﬁz)7 (p7 O"_’T)) |
(51,52, p) € Dp[AJw A
3o/ wp)(o/)—r/\wn(a') = (b1, B2) A

w.o1(41) = 61(1) Aw.o2(B2) = 02(T) Ar.R = Vi []p}

def

AThHer Zex:7 & Ther:TANATHes:

A;
Vn
(k,w) 3 (n, wo) =

TN

> 0. Ywo € World,. VY(01, 62, p) € Dp[A]wo. V(k, w,v1,7v2) € Gn[I]p.
(k,w,d171(e1), d272(e2)) € En[7]p

Figure 2. Logical Relation for G

The second section of Figure 2 displays the definition of &vorl
extension. In order fotw’ to extendw (writtenw’ 3 w), it must
be the case that (1" specifies semantic interpretations for a
superset of the type names thainterprets, (2) for the names that
w interpretsaw’ must interpret them in the same way, and (3) any
new semantic type names that interprets may only correspond

to new concrete type names that did not exist in the stores of
w. Although the third condition is not strictly necessary, have
found it to be useful when proving certain exampleg(the “order
independence” example in Section 4.4).

The last section of Figure 2 defines the logical relationlfitse
V[r]p is the logical relation for valueg;[] p is the one for terms,

2009/3/2

andT'[Q]w is the one fottypes as dataas described in Section 3
(here Q2 represents thkind of types).

V[r]p relates values at the type where the free type variables
of 7 are given relational interpretations ky Ignoring the step
indices, V[r]p is mostly very standard. For instance, at certain
points (namely, in the— andV cases), when we quantify over
logically related (value or type) arguments, we must alltvnb
to come from an arbitrary future world’ in order to ensure
monotonicity. This kind of quantification over future waslds
commonplace in Kripke logical relations.

The only really interesting bit in the definition &f[7]p is the
use of I'[Q2]w to characterize when the twigpearguments (resp.
components) of a universal (resp. existential) are lobjicelated.
As explained in Section 3.3, we consider two types to be hilyic
related in worldw iff they are the same up to the partial bijection
w.n. Formally, we defin€’[Q]w as a relation on triple§ri, 72, 1),
wherer; andr are the two logically related types ands a rela-
tion telling us how to relate values of those types. To bedalty
related means that andr, are the concretizations (according to
w.n) of some “semantic” type’. Correspondinglyy is the logi-
cal relationV[r'Jw.p at that semantic type. Thus, when we write
E[7]p, a — rinthe definition ofV [Va.7]p, this is roughly equiv-
alent to writing E[r[r" /a]] p (which our discussion in Section 3.2
might have led the reader to expect to see here instead)cékem
for our present formulation is tha[r[r’/a]]p is not quite right:
the free variables of are interpreted by, but the free variables of
7' aredynamictype names whose interpretations are givenuhy.
Itis possible to merge andw.p into a unified interpretatiop’, but
we feel our present approach is cleaner.

Another point of note: since is uniquely determined from
71 and 72, it is not really necessary to include it in tHe[Q]w
relation. However, as we shall see in Section 6, formulatireg
logical relation in this way has the benefit of isolating difftee non-
parametricity of our logical relation in the definition 6] w.

The term relatior® [] p is very similar to that in previous step-
indexed Kripke logical relations [6]. Briefly, it says thatd terms
are related in an initial worla if whenever the first evaluates to a
value undem.o, the second evaluates to a value under., and
the resulting stores and values are related in some futuriel wo.

The remainder of the definitions in Figure 2 serve to forngaliz
a logical relation foopenterms.G[I']p is the logical relation on
value substitutions, which asserts that relateds must map vari-
ables indom(T") to related valuesD[A]w is the logical relation on
type substitutions. It asserts that relatésimust map variables in
dom(A) to types that are related in. For type variables: bound
asa =~ 7, thed’s must mapx to a type hame whose semantic in-
terpretation inw is precisely the logical relation at Analogously
to T'[Q]w, the relationD[A]w also includes a relational interpre-
tation p, which may be uniquely determined from tfis.

Finally, the open logical relation; T" - e1 = eq : 7 is defined
in a fairly standard way. It says that for any starting warlgl and
any type substitutiong; andd, related in that world, if we are
given related value substitutions and~ in any future worldw,
thendiyie; anddzyze2 are related inv as well.

4.2 Why and Where the Steps Matter

As we explained in Section 3.2, step indices play a critiod in
making the logical relation well-founded. Essentially,emlever we
run into an apparent circularity, we “go down a step” by deiini
ann-level property in terms of am(—1)-level one. Of course, this
trick only works if, at all such “stepping points”, the onlyay that
an adversarial program context could possibly tell whethem-
level property holds or not is by taking one step of compatatind
then checking whether the underlying-{1)-level property holds.
Fortunately, this is the case.

Since worlds contain relations, and relations contain séts
tuples that include worlds, a naive construction of thelsieats
would have an inconsistent cardinality. We thus stratifghiweorlds
and relations by a step index:level worldsw € World,, contain
n-level interpretation € Interp,,, which map type variables to
n-level relations;n-level relationsRk € Rel,[r1, 2] only contain
atoms indexed by a step levelk< n and a worldw € World. Al-
though our possible worlds have a different structure thasrévi-
ous work, the technique of mutual world and relation stictfon
is similar to that used in Ahmed’s thesis [2], as well as rée@rk
by Ahmed, Dreyer and Rossberg [6].

Intuitively, the reason this works in our setting is as falf
Viewed as a judgment, our logical relation asserts that evms
e1 andes are logically related fok steps in a worldw at a type
7 under an interpretatiop (whose domain contains the free type
variables ofr). Clearly, in order to handle the case wheris just a
type variablen, the relations: in the range op must include atoms
at step index (i.e.,ther’s must be infSomeRelj+1).

But what about the relations in the rangewp? Those relations
only come into play in the universal and existential casek@®fog-
ical relation for values. Consider the existential case (thiversal
one is analogous). There, p pops up in the definition of the rela-
tion r that comes fron¥ ;. [Q2]w. However, that is only needed in
defining the relatedness of the valugsandwv, at step levek—1
(note the definition of R in the second section of Figure 2). Con-
sequently, we only needto include atoms at stefp—1 and lower
(i.e., must be inSomeRelg), so the worldw from which r is
derived need only be ifWorldy.

As this discussion suggests, itimperativethat we “go down
a step” in the universal and existential cases of the logedation.
For the other cases, it is not necessary to go down a stepuglth
we have the option of doing so. For example, we could define
k-level relatedness at pair type x 72 in terms of ¢—1)-level
relatedness at; andr,. But since the type gets smaller, there is no
need to. For clarity, we have only gone down a step in the #&gic
relation at the points where it is absolutely necessaryventiave
used the> notation to underscore those points.

4.3 Key Properties
The main results concerning our logical relation are agfest

Theorem 4.1 (Fundamental Property for 3)
If A;THe:7,thenA;THe Ze:T.

Theorem 4.2 (Soundness of wrt. Contextual Approximation)
IfFA;THer Zex:m,thenA;THep <ep:T.

These theorems establish that our logical relation previae
sound technique for proving contextual equivalence of @rnms.
The proofs of these theorems rely on many technical lemmast m
of which are standard and straightforward to prove. We Iugihla
few of them here, and refer the reader to the technical ajpéord
full details of the proofs.

One key lemma we have mentioned already istiomotonicity
lemma, which states that the logical relation for valueslised
under world extension, and therefore belongs toRleé class of
relations. Another key lemma teansitivity of world extensian

There are also a group of lemmas—~Pitts terms tlvempati-
bility lemmas [15]—which show that the logical relation is a pre-
congruence with respect to the constructs of the G language.
particular note among these are the oneséset andnew.

For cast, we must show thatast 71 7> is logically related to
itself under a type contexfA assuming that and . are well-
formed inA. This boils down to showing that, for logically related
type substitutions); and d2, it is the case thab, 7 = 17 if

2009/3/2

and only if 02 = d272. This follows easily from the fact that
01 andd, by virtue of being logically related, map the variables
in dom(A) to types that are syntactically identical up to some
bijection on type names.

For new, we must show that, i\, a~7";T F e1 = e @ T,
thenA;T + newam7’ in e 2 newam7’ in ez : 7 (@ssuming
A + T"and A + 7). The proof involves extending the and
p components of some given initial world, with bindings for
the fresh dynamically-generated type nameThen is extended
with & — (a1, a2), wherea; and az are the concrete fresh
names that are chosen when evaluating the left and right
expressions. Theg is extended so that the relational interpretation
of « is simply the logical relation at type’. The proof of this
lemma is highly reminiscent of the proof of compatibilityr fieef
(reference allocation) in a language with mutable refezeri6].

Finally, another important compatibility property tigpe com-
patibility,i.e.,thatif A - 71 ~ 7 and(d1, 2, p) € D, [AJw, then
Valmilp = Valm]p and En[m1]p = En[72]p. The interesting
case is whem is a variablex bound inA asa ~ 72, and the result
in this case follows easily from the definition 6f[A, a ~ 7]w.

4.4 Examples

Semaphore. We now return to our semaphore example from Sec-
tion 2 and show how to prove representation independence for
the two different implementations,em1 and esemz Recall that the
former usesint, the latterbool. To show that they are contextu-
ally equivalent, it suffices by Soundness to show that eagh lo
cally approximates the other. We prove only one directiamely
F esem1 2 esem2: Tsem the other is proven analogously.

Expanding the definitions, we need to sh@ww, esem1, €sem2) €
E,[rsem]0. Note how each term generates a fresh type namia
one step, resulting in a package value. Hence all we need i® do
come up with a worldy’ satisfying

o (k—1,w") 3 (k,w),
e w'.o1 = w.o1, ar~int andw’ .02 = w.o2, as~bool,
o (k—1,w', pack{ai,v1), pack{asz,v2)) € V,[Tsen] 0.
wherev; is the term component ofsem’s implementation. We
constructw’ by extendingw with mappings that establish the
relation between the new type names:
R = {(K",w", Vint, Uboo!) € Atom}>"; [int, bool] |
(Vint; Ubool) = (1,true) V (Vint, Voot) = (0, false) }
r := (int, bool, R)
w' = |w|r_1 W (ar=int, azxbool, v (a1, az), av—r)
The first two conditions above are satisfied by constructian.
show that the packages are related we need to show the exis
tence of anr’ with (a1, az,r’) € Tu_1[w’ such that(k —
2, |w'k—2,v1,v2) € Valrden]p, 7', Where e = o x
(¢ — a) x (a — bool). Sincea; = w'.n'(a), " must be
(int, bool, Vi1 [a]w’.p) by definition of T'[2]. Of course, we
definedw’ the way we did so that thig is exactlyr.
The proof of (k — 2, [w' |k—2,v1,v2) € Vi [Téem]p, =1 de-
composes into three parts, following the structuregf;
1. (k—2,|w k2,1, true) € Vi[a]p, arsr
This holds becausk, [a] p, a—r = R.
2. (k—2,|w'|k—2, Az:int.(1 — z), Az:bool.—x)
€ Vala — o]p, a—r
e Suppose we are given related arguments in a future world:
(k//7 w//7 U17 Ué) € V’lﬂa]]pa a—r = R.
¢ Hence eithe(v], v5) = (1, true) or (v, vy) = (0, false).

e Consequentlyl — v} and —v5 will evaluate in one step,
without effects, to values again related By

e In other words(k"”, w"”, 1 — v}, —wy) € Ey[a]p, a—r.

3. (k—2,|w' k=2, Az.(x # 0), A\x.2) € Voo — bool]p, a—r
Like in the previous part, the argument$ and v5 will be
related byR in some future(k”, w"). Thereforev; # 0 will
reduce in one step without effects tg, which already is a

value. Because of the definition of the logical relation gqety
bool, this implies(k”, w”,vi # 0,v3) € Ey[bool]p, c—r.

Benign Effects. When side effects are introduced into a pure lan-

guage, they often falsify various equational laws conceyie-

peatability and order independence of computations. rstbétion,

we offer some evidence that the effect of dynamic type géioera

is fairly benignin that it does not falsify such equational laws.
First, consider the following functions:

v1 = Az:(unit — 7). letz’ =z () in z ()

v = Az:(unit — 7). 2 ()

The only difference between andwv; is whether the argumentis
applied once or twice. Intuitively, either() diverges, in which case
both programs diverge, or else the first application ¢drminates,
in which case so should the second.

Second, consider the following functions:

vy := Az:(unit — 7). Ay:(unit — 7). lety’ =y () in (z (),y")
v5 == Az:(unit — 7). Ay:(unit — 7). (2),y ()

The only difference betwees; andwv is the order in which they
call their argument callbacks andy. Those calls may both result
in the generation of fresh type names, but the order in whieh t
names are generated should not matter.

Using our logical relation, we can prove thatandv, are con-
textually equivalent, and so atg andwv5. Due to space consider-
ations, we refer the interested reader to the technicalratipéor
full proof details.

5. Wrapping

We have seen that parametricity can be re-established in G by
introducing name generation in the right place. But whathis t
“right place” in general? That is, given an arbritrary exgmiene
with polymorphic typer., how can wesystematicallyransform it
into an expression’ of the same type. that is parametric?

One obvious—but unfortunately bogus—idea is the following
transforme such that every existentiaitroductionand every uni-
versaleliminationcreates a fresh name for the respective witness

or instance type. Formally, apply the following rewriteasittoe:

pack (T,e) as 7’ ~» new a=T in pack {a,e) as 7’
eT ~ New aRT ine

Obviously, this would make every quantified type abstrazthst
any cast that tries to inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To sgg wh
consider the following expressions of tyfign.7’) x (Ja.7’):

let x = pack (T,v) in (x,)
(pack (T, v), pack (T, v))

€1
€2

They are clearly equivalent in a parametric language (arfddan
they are even equivalent in G). Yet rewriting yields:

let x = new a7 in pack (o, v) in (x, z)
(new a~T in pack (o, v), new a7 in pack (o, v))

el
eh :

2009/3/2

WrE(e) = letz=e in WrE(z)
Wr (v) E
Wri (v) i
WrE () E (Wi (0.1), Wi, (0.2))
Wi . (0) & Aziim . WiE (v Wi (21))
wrd _(v) & Xa. new™ o in Wit (v @)
Wi (v) & unpack (o, z)=v in
new™ a in pack (o, Wr () as Ja.7
new" aine & newa/~ain ela’/al

new «aine = e

Figure 3. Wrapping

The resulting expressions aret equivalent anymore, because they
perform different effects. Here is one distinguishing eot

letp =[] inunpack (@1, z1) = p.1in
unpack (a2, z2) = p.2 in equal? aq as

Although the representation typés not disclosed as sucsharing
between the two abstract typesdhis. In a parametric language,
that would not be possible.

In order to introduce effects uniformly, and to hide intdrna
sharing, the transformation we are looking for needs to haeid
on the structure of types, not terms. Roughly, for each djiemt
occurring in7. we need to generate one fresh type name. That
is, instead of transforming itself, we simplywrap it with some
expression that introduces the necessary names at thedrguby
induction on the type-.

In fact, we can refine the problem further. When looking at a G
expressiore, what do we actually mean by “making it parametric”?
We can mean two different things: either ensuring thaehaves
parametrically, or dually, that any conteixéats e parametrically.

In the former case, we are protecting ttmntextagainste, in the
latter we protect against malicious contexts. The latter is what is
sometimes referred to abstraction safety

Figure 3 defines a pair of wrapping operators that correspond
to these two dual requirement@r protects an expressian: 7.
from beingusedin a non-parametric way, by inserting fresh names
for each existential quantifier. Duallyyr ~ forcese to behavepara-
metrically by creating a fresh name for each polymorphitans-
ation. The definitions extend to other types in the usualtne
manner. Both definitions are interdependent, because soliésh
for function arguments.

Given these operators, we can go back to our semaphore ex-

ample:esemi can now be obtained a&r, (esem) (Modulo some
harmless)-expansions). This generalises to any ADT: wrapping its
implementation positively will guarantee abstraction bgking it
parametric. We prove that in the next section.

Positive wrapping is reminiscent afodule sealindor opaque
signature ascription) in ML-style module languages. If ieawe as
a module and its type. as a signature, theWr;" (e) corresponds
to the sealing operatioa :> 7.. While module sealing typically
only performs static abstraction, wrapping describes theuohic
equivalent [20]. In fact, positive wrapping is preciselyhsealing
is implemented in Alice ML [21], where the module language is
non-parametric otherwise.

6. Parametric Reasoning

The logical relation developed in Section 4 enables us toa®o
parametric reasoning about equivalence of G programs. It also

enables us to dparametricreasoning, but only indirectly: we have
to explicitly deal with the effects ofiew and to define worlds
containing relations between type names. It would be pabfer

if we were able to do parametric reasoning directly. For gxdem
given two expressions;, ez that do not use casts, and assuming
that the context does not do so either, we should be able somea
about equivalence af; andes in @ manner similar to what we do
when reasoning about System F.

6.1 A Parametric Logical Relation

Thanks to the modular formulation of our logical relationHiy-
ure 2, it is easy to modify it so that it becomes parametrit wa
need to do is swap out the definition Bf2]w, which relates types
as data. Figure 4 gives an alternative definition that allolaos-
ing an arbitrary relation between arbitrary types. Evanghelse
stays exactly the same. We decorate the sg@aodmetric logical
relations thus obtained with® (i.e., V°, E°, etc.) to distinguish
them from the original ones. Likewise, we writg for the notion
of parametric logical approximatiomlefined as in Figure 2 but in
terms of the parametric relations. For clarity, we will refe the
original definition as th@roperlogical relation.

This modification gives us a seemingly parametric definition
of logical approximation for G terms. But what does that aftju
mear? What is the relation between parametric and proper logical
approximation and, ultimately)contextualapproximation? Since
the language is not parametric, clearly, parametricallyivadent
terms generally are not contextually equivalent.

The answer is given by the wrapping functions we defined in the
previous section. The following theorem connects the twione
of logical relation and approximation that we have introsfiic

Theorem 6.1 (Wrapping for 3°)
1. Ife; 2° ey : 7, thenk Wr:.r(el) = Wr:.r(eg) DT,

2. IfF e Z ez : 7, thenk Wr; (e1) 2° Wr; (ez2) : 7.

~

This theorem justifies the definition of the parametric lagie-
lation. At the same time it can be read as a correctness ffesult
the wrapping operators: it says that whenever we can rehaie t
terms using parametric reasoning, then the positive wrayspof
the first term contextually approximates the positive wagmf
the second. Dually, once any properly related terms are pedhp
negatively, they can safely be passed to any term that depmmd
its context behaving parametrically.

What can we say about the content of the parametric relation?
Obviously, it cannot contain arbitrary G terme-g., cast 71 72
will generally not be related to anything (including it9eili E°.
However, for all constructs besidesst, we obtain the following:

Theorem 6.2 (Fundamental Property for<°)
If A;T F e: 7 ande does not useast, thenA;T' Fe X% e: 7.

In particular, this implies that any well-typed System Fnieis
parametrically related to itself. The relation will alsatain terms
with cast, but only if the cast is “harmlessg.g.,does not inspect
types received from the context.

6.2 Examples

Semaphore. Consider our running example of the semaphore
module again. Using the parametric relation, we can proatettte
two implementations are related without actually reasprihout
type generation. That aspect is covered once and for all &y th
Wrapping Theorem.

Recall the two implementations, here given in unwrappeohfor

esem1 = pack (int, (1, Az:int.(1 — z), Az:int .(x # 0))) as Tsem
€sem2 = pack (o, (true, Az: bool .—x, A\x: bool .z)) as Tsem

2009/3/2

TeQw ¥

{(7—177—27 (TllvTév

R)| b7 N w.oib1i~7, A RERel,[r, 3]}

(everything else as in Figure 2)

Figure 4. Parametric Logical Relation

We can prove- etemi =° elemz : Tsem USiNg conventional para-
metric reasoning about polymorphic terms. Now defigg.1 =
Wi, (esemp) @Ndesemo= Wri_ (elema), Which is morally equiva-
lent to the original definitions. The Wrapping Theorem thamie-
diately tells us that esem1 = esem2: Tsem

A Free Theorem. We can use the parametric relation for proving
free theorems [28] in G. For example, for any : Ya.aco — ain

G it holds thatWr™ (g) either diverges for all possible arguments
Tandk v : 7, or it returnsv in all cases. We first apply the
Fundamental Property fof to relateg to itself in F, then transfer
this to E° for Wr™ (g¢) using the Wrapping Theorem. From there
the proof proceeds in the usual way.

6.3 Full Abstraction

The definition of the parametric relatidfi® is largely very similar
to that of a typical (step-indexed) logical relatid’y for System
F plus nontermination (see.g.[3]). The main difference is the
presence of worlds, but they are not actually used in a peatiy
interesting way inE°. Consequently, one might expect that any two
terms related by the hypotheticAlr would also be related by°
and vice versd,e.,all logical equivalence results carry over from F
to G. However, this is not obvious: G is more expressive thae F
even terms in the parametric relation can contain nonalrivses of
casts, and there is no evident way to back-translate thess teto
F, as would be needed in the function case. That invalidapesct
approach like the one taken by Ahmed and Blume [5].
Ultimately, the property we would like to be able to shoviub
abstractionfor the translation of F terms into G by wrapping:

F el — FWri(er) ~g Wri(e2): 7

We conjecture that this holds, but are not aware of any deitab
technique to prove it. This equivalence is even strongem tha
one about logical relatedness iy and E° because our logical
relation is only sound w.r.t. contextual equivalence, rahplete.

~pey:T

7. Polarized Logical Relation

The parametric relation is useful for proving parametyigitoper-
ties about (the positive wrappings of) G terms. Howevels ili-
or-nothing: it can only be used to prove parametricity fonts that
aretreatedparametricallyand alsobehaveparametrically—cf. the
two dual aspects of parametricity described in Section & itad-
equate for proving representation independence for F teximsre
we want the context to behave parametrically and the tewmif its
parametric by construction (because it has no casts). Bumigiat
also be interested in proving representation independencerms
that do not behave parametrically themselves. One situatiere
this might show up is if we want to show representation indepe
dence for generic modulese-g.,in the form of ML functors—that
have specialized behavior for particular argument types.

Here is a somewhat contrived example to illustrate the point
Consider the following two polymorphic functions of tyjfer.7,:

Ta::35~(a—>5)x(ﬂ—>a)

f1 1= Ao cast Tint To (pack (int, (Az:int.z+1, Az:int.x)) as Tint)
(pack (o, (A\z:av.w, Az:cv.x)) as Ta)

f2 1= Aav. cast Tint To (pack (int, (Az:int.z, Az:int.x+1)) as Tint)
(pack (o, (A\z:av.x, Az:cv.z)) as Ta)

These functions can be understood as simplistic functotis avi
type argumendv. Both functors implement a simple ADT. Values

10

of typea can be injected int@, and projected out again. However,
both functors specialize the behavior of this ADT for type—for
integers, injecting: and projecting again will not give baek but

n + 1. This is true for both functors, but they implement it in a
different way.

We want to prove that both implementations are equivalent un
der wrapping using a form of parametric reasoning. Howewer,
cannot do that using the parametric relation from the previo
section—since the functors do fmhaveparametricallyi(e.,they
return different packages for different types), they wibk e re-
lated inE°.

To support that kind of reasoning, we need a more refined-treat
ment of parametricity in the logical relation. The idea iséparate
the two aforementioned aspects of parametricity. Consetyieve
are going to have a pair of separate relatioRs, and E~. The
former enforces parametric usage, the latter paramethiavier.

Figure 5 gives the definition of these relations. We call them
polarized because they are mutually dependent and the polarity
(+ or —) switches for contravariant positionse., for function
arguments and for universal quantifiers. Intuitively, ingh places,
term and context switch roles.

Except for the consistent addition of polarities, the dé&fini of
the polarized relations again only represents a minor noadifin
of the original one. We merely refine the definition of the type re-
lationT'[Q]w to distinguish polarity: in the positive case it behaves
parametricallyi(e.,allowing an arbitrary relation) and in the nega-
tive case non-parametricalli €., demanding- be thelogical rela-
tion at some type). Thus, existential types behave pararaliyrin
E™ but non-parametrically iz ~, and vice versa for universals.

7.1 Key Properties

The way in which polarities switch in the polarized relagamnir-
rors what is going on in the definition of wrapping. That of zmiis
no accident, and we can show the following theorem thatesldite
polarized relations with the proper and the parametric tmesigh
uses of wrapping:

Theorem 7.1 (Wrapping for <%)

L IfFer 21 e 7, then Wri(e1) 3 Wrf(e2) : 7
2. IfFer Zex:7, thenk Wry(e1) 37 Wry(e2): 7
3. IfFer 21 ex: 7, thenk Wy (e1) 3° Wiy (e2) : 7
4. 1fep 3° es: 7, then- Wrt(er) 37 Wrf(e) i 7

Moreover, we can show that the inverse directions of thegdiim
cations require no wrapping at all:

Theorem 7.2 (Inclusion for <)
1. |f|‘61j€2:7’0”‘61j 62:T,then|—61 j+6227'.
2. IfFe1 27 ex:7,thenke; Sex:Tandker 3% es: 7.
This theorem can equivalently be stated as the chainsC E C
ETandE~ C E° C ET

Note that Theorem 6 1 follows directly from Theorems 7.1 and
7.2. Similarly, the following property follows from Theare7.2
together with Theorem 4.1:
51n fact, all four relations can easily be formulated in a &ngnified

definition indexed by ::= ¢|o|+ | —. We refrained from doing so here
for the sake of clarity; see the technical appendix for tketai

2009/3/2

ViE[edp = |p(a).R]n
VE[blp = {(k,w,c,c) € Atom,[b,b]}
ViElr < 7Tp & {(kw, (01, 01), (v2,v4)) € Atomy, [p" (7 x 7/

(k,w,v1,v2) € Vi [rlp A (k, w,v1,v5) €

), p*(r x 7')] |
Vit [r'le}

VE — 7lp & {(k,w, \x:T1.e1, A\x:T0.€2) € Atomy, [p' (7" — 7), p* (7" — 7)] |
V(K w' v1,v2) € Vi [7']p. (K, w") 3 (k,w) =
(K',w',ervr /], e2lva/2]) € Ex[7]p}
ViE[Va.]p gef {(k,w, Aa.e1, Aa.ea) € Atomy,[p (Va.T), p?(Va.1)] |
V(K',w') 3 (k,w).V(r1,72,7) € TF[Qw’.
(K',w',e1[m1/a), e2[r2/a]) € bEX[T]p, a1}
ViE[Bar]p o {(k,w, pack {11, v1), pack (12, v2)) € Atom,[p' (3e.7), p?(3e.7)] |
Ir. (11, 72,7) € TE[Qw A (k,w,v1,v2) € BV, E[7]p, o7}
Exlrlp £ {(kw,e1,2) € Atomn o (), (1) |
v.] < k. VO’1,1}1. (w.0'1; e1 - 0'1;'[)1) =
3w’ va. (k — j,w') D (k,w) Aw'.o1 = o1 A (w.02; e2 = w'.o2;v2) A (k — j,w',v1,v2) € ViE[r]p}
T [Qw £ T Q)w Df[Alw £ Dy[A]w
Ty [Qw C T Qw Dy[Alw £ D.[AJw

def

A;Fl—eljieng@

A;ThFer:TAA T Hea:TA

Vn > 0,Ywo € World,, . V(81, 82, p) € DF [AJwo.V(k, w,y1,72) € G [T]p.
(kyw) 3 (n,w0) = (k,w, 0171 (e1), 6272(e2)) € B [r]p

Figure 5. Polarized

Wr~ Wr*

Wr*

VW\ /
Wr =Wr*-Wr~

Figure 6. Relating the Relations

E-

Theorem 7.3 (Fundamental Property for <)
If AT Fe: 7, thenA;T e 2t e:T.

Interestingly, compatibility does not hold fgg* (consider the
polarities in the rule for application), which has the cansence
that we cannot show Theorem 7.3 directly. For a similar rease
cannot show any such property for at all.

Figure 6 depicts all of the above properties in a single @iagr
Plain arrows denote simple inclusion, while annotatedvesre-
quire respective wrapping to go from one relation to the fhiee
€-operators show the fundamental properties for the reispeet-
lations,i.e.,which class of terms are included (G terms or F terms).

7.2 Example

Getting back to our motivating example from the beginninghef
section, it is essentially straightforward to prove thatf; <7

f2 : Ya.7o. The proof proceeds as usual, except that we have to
make a case distinction where we want to show that the functor
bodies are related i2*. At that point, we are given a triple
(11, 72,7) € T [Quw.

11

Logical Relation

If 71 = int, then we know from the definition df"~ that
T2 = int, to0. We hence know that both sides will evaluate to the
specialized version of the ADT. Since we arefift, we get to pick
some(r{,5,7") € TT[Qw as the interpretation of, where the
choice ofr’ is up to us. The natural choice is to use= 75 = int
with the relationr’ = (int,int, {(k,w,n + 1,n) | n € N}). The
rest of the proof is then straightforward.

If 71 # int we similarly know that # int from the definition
of T~. Hence, both sides use the default implementations, which
are trivially related in&™, thanks to Theorem 7.3.

Finally, applying the Wrapping Theorem 7.1, we can conclude
that- Wr'(f1) 2 Wr'(f2) : Va.7a, and hence by Soundness,
FWrt(f1) < Wit (f2) : VauTa.

Note how we relied on the knowledge thatand > can only
be int at the same time. This holds for types relatedlin but
not in 7" or T°. If we had tried to do this proof it£°, the types
would have been related By only, which would give us too little
information to proceed with the necessary case distinction

8. Related Work

Type Generation vs. Other Forms of Data Abstraction. Tradi-
tionally, authors have distinguished between two complearg
forms of data abstraction, sometimes dubbedstaéicand thedy-
namic approach [12]. The former is tied to the type system and
relies on parametricity (especially for existential typeshide an
ADT's representation from clients [14]. The latter appro&ctypi-
cally employed in untyped languages, which do not have thigab
to place static restrictions on clients. Consequentha dating has
to be enforced on the level of individual values. For thatglzages
provide means for generating unique names and using th&eyas
for dynamically sealingalues. A value sealed by a given key can
only be inspected by principals that have access to the gy [2
Dynamic type generation as we employ it [19, 27, 20] can be
seen as a middle ground, because it bears resemblance tagoth
proaches. As in the dynamic approach, we cannot rely on para-
metricity and instead generate dynamic names to protettagbs
tions. However, these are type-level names, not term-leamies,

2009/3/2

and they only ‘seal’ type information. In particular, in@iual val-
ues of abstract type are still directly represented by thierying
representation type, so that crossing abstraction boigsdhas no
runtime cost. In that sense, we are closer to the static appro
Another approach to reconciling type abstraction and tyd-a
ysis has been proposed by Washburn and Weirich [29]. They in-
troduce a type system that tracks information flow for termd a
types-as-data. By distinguishing security levels, theetggstem
can statically prevent unauthorized inspection of typeslignts.

Multi-Language Interoperation. The closest work to ours is that
of Matthews and Ahmed [12]. They describe a pair of mutuahy r
cursive logical relations that deal with the interopenati@tween a
typed language (“ML") and an untyped language (“Schemet}. U
like in G, parametric behavior is hard-wired into their Mldsi
polymorphic instantiation unconditionally performs arfoof dy-
namic sealing to protect against the non-parametric Sclsidee
(In contrast, we treatew as its own language construct, orthog-
onal to universal types.) Dynamic sealing can then be defimed
terms of the primitive coercion operators that bridge betwthe
ML and Scheme sides. These coercions are similar to our {meta
level) wrapping operators, but ours perform type-levelisganot
term-level sealing.

The logical relations in Matthews and Ahmed’s formalism are
somewhat reminiscent df° and E, although theirs are distinct
logical relations for two languages, while ours are for agkn
language and differ only in the definition @f[Q]w. In order to
prove the fundamental property for their relations, thegvpra
“bridge lemma” transferring relatedness in one languagéhéo
other via coercions. This is analogous to our Wrapping Téror
for <°, but the latter is an independent theorem, not a lemma. Also,
they do not propose anything like our polarized logicaltielss.

A fundamental technical difference is that their formwatiof
the logical relations does not use possible worlds to cephe type
store (which is also left implicit in their operational semtias).
Unfortunately, this resulted in a somewhat significant flavthieir
technical development [4]. We believe that a reformulatibtheir
relation along the lines of ours would fix this problem.

Proof Methods. Logical relations in various forms are routinely
used to reason about program equivalence and type absirfts,
13, 15, 3]. In particular, Ahmed, Dreyer and Rossberg régemm:-
plied step-indexed logical relations with possible wotidseason
about type abstraction for a language with higher-ordee 8.
State in G is comparatively benign, but still requires awdac def-
inition of worlds that we stratify using steps.

Pitts and Stark used logical relations to reason about progr
equivalence in a language with (term-level) name generdfi6]
and subsequently generalized their technique to handlabieut
references [17]. Sumii and Pierce use them for proving sgcre
results for a language with dynamic sealing [24], where geed
names are used as keys. In another line of work, Sumii anddier
have usedisimulationsto establish abstraction results for both
untyped and polymorphic languages [25, 26]. However, ndne o
the languages they investigate mixes the two paradigms.

Grossman, Morrisett and Zdancewic have proposed the use o
abstraction bracketdor syntactically tracing abstraction bound-
aries [9] during program execution. However, this is a compa
tively weak method that does not seem to help in proving para-
metricity or representation independence results.

References

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and BidiRémy.
Dynamic typing in polymorphic languagedfFP, 5(1), 1995.

[2] Amal Ahmed. Semantics of Types for Mutable StatehD thesis,
Princeton University, 2004.

12

[3] Amal Ahmed. Step-indexed syntactic logical relations fecursive
and quantified types. IESOPR 2006.

[4] Amal Ahmed. Personal communication, 2009.

[5] Amal Ahmed and Matthias Blume. Typed closure conversion
preserves observational equivalencelGfP, 2008.

[6] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. Stapedent
representation independence.F@®PL, 2009.

[7] Andrew W. Appel and David McAllester. An indexed model of
recursive types for foundational proof-carrying codeansactions
on Programming Languages and Systeg8(5):657-683, 2001.

[8] Jean-Yves Girard.Interprétation fonctionelle et élimination des
coupures de I'arithmétique d’ordre supéried?hD thesis, Université
Paris VII, 1972.

[9] Dan Grossman, Greg Morrisett, and Steve Zdancewic. &yicttype
abstraction. TOPLAS 22(6), 2000.

[10] Robert Harper and John Mitchell. Parametricity andargs of
Girard’s J operatorinformation Processing Letterd999.

[11] Robert Harper and Greg Morrisett. Compiling polymagph using
intensional type analysis. IROPL, 1995.

[12] Jacob Matthews and Amal Ahmed. Parametric polymorpligough
run-time sealing, or, theorems for low, low prices!ESOR 2008.

[13] John C. Mitchell. Representation independence aral alastraction.
In POPL, 1986.

[14] John C. Mitchell and Gordon D. Plotkin. Abstract typesvé
existential type TOPLAS 10(3), 1988.

[15] Andrew Pitts. Typed operational reasoning. In Benja@i Pierce,
editor, Advanced Topics in Types and Programming Languages
chapter 7. MIT Press, 2005.

[16] Andrew Pitts and lan Stark. Observable properties ghér order
functions that dynamically create local names, or: What'wh In
MFCS volume 711 oLNCS 1993.

[17] Andrew Pitts and lan Stark. Operational reasoning @imcfions with
local state. IHOOTS 1998.

[18] John C. Reynolds. Types, abstraction and paramettigymphism.
In Information Processingl983.

[19] Andreas Rossberg. Generativity and dynamic opacityafistract
types. InPPDP, 2003.

[20] Andreas Rossberg. Dynamic translucency with abstnadtinds and
higher-order coercions. IMFPS 2008.

[21] Andreas Rossberg, Didier Le Botlan, Guido Tack, ThemsBrunk-
laus, and Gert Smolka. Alice ML through the looking glassTRP,
volume 5, 2004.

[22] Peter Sewell. Modules, abstract types, and distributrsioning. In
POPL, 2001.

[23] Peter Sewell, James Leifer, Keith Wansbrough, Frac&appa
Nardelli, Mair Allen-Williams, Pierre Habouzit, and Vikt&/afeiadis.
Acute: high-level programming language design for disiihl
computation.JFP, 17(4&5):547-612, 2007.

[24] Eijiro Sumii and Benjamin Pierce. Logical relationg fencryption.
JCS 11(4):521-554, 2003.

f[25] Eijiro Sumii and Benjamin Pierce. A bisimulation for mgmic

sealing. TCS 375(1-3), 2007.

[26] Eijiro Sumii and Benjamin Pierce. A bisimulation forpg abstraction
and recursionJACM, 54(5), 2007.

[27] Dimitrios Vytiniotis, Geoffrey Washburn, and StepliVeirich. An
open and shut typecase. TiuDI, 2005.

[28] Philip Wadler. Theorems for free! IRPCA 1989.

[29] Geoffrey Washburn and Stephanie Weirich. Generaiparametric-
ity using information flow. InLICS, 2005.

[30] Stephanie Weirich. Type-safe ca3EP, 14(6), 2004.

2009/3/2

