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1 Introduction

HaMLet is an implementation of Standard ML (SML'97), as definn The Definition
of Standard MUMTHM97] — simply referred to as th®efinitionin the following text.
HaMLet mainly is an interactive interpreter but also pr@sdeveral alternative ways of
operation. Moreover, HaMLet can perform different phasesxecution — like parsing,
type checking, and evaluation — selectively. In particlitas possible to execute programs
in an untyped manner, thus exploring the space where “pnegjican go wrong”.

This special version of HaMLet is devoted$aiccessor MISMLO5], an envisioned evo-
lutionary, conservative successor to Standard ML. It ipoecates a number of preliminary
proposals made for Successor ML and represents a persaii of where SML could
go. Currently, it concentrates on the following features:

Extensible records.

More expressive pattern matching.
e Views.

Higher-order modules and nested signatures.
Local and first-class modules.

Miscellaneous fixes to known issues with SML and its spedifica

See Appendix B for a detailed description of all changedivedo Standard ML.

1.1 Goals

The primary purpose of HaMLet is not to provide yet anotherl Syistem. Its goal is to
provide a faithful model implementation and a test bed fgregimentation with the SML
language semantics as specified in the Definition. It alsdtsigrve educational purposes.
The main feature of HaMLet therefore is the design of its sewode: it follows the for-
malisation of the Definition as closely as possible, onlyialévg where it is unavoidable.
The idea has been to try to translate the Definition into artatable specification”. Much
care has been taken to resemble names, operations, andrugkee used in the Defini-
tion and theCommentaryMT91]. Moreover, the source code contains referenceseo th
corresponding sections in the Definition wherever avadabl

On the other hand, HaMLet tries hard to get even the obsctaédslef the Definition right.
There are some “features” of SML that are artefacts of iteyérspecification and are not
straight-forward to implement. See the conclusion in $&c8 for an overview.

Sometime ago, aloose for evolving SML has been started. éfitical reasons, the subject
of this effort has been nicknam&iiccessor MI(sML) [SMLO5]. This special version of

HaMLet is a testbed for potential changes and extensionsidered for Successor ML
and incorporates a number of simple proposals. Appendix8sgh complete list of these
proposals and their specification.

Efficiency was not a goal. Execution speed of HaMLet is notetitive in any way, since
it naively implements the interpretative evaluation rutesn the Definition. Comfort was
no priority either. The error messages given by HaMLet atalhgtaciturn as we tried to
avoid complicating the implementation.

HaMLet has of course been written entirely in SML'97 and iteab bootstrap itself (see
2.7).



1.2 Bugs in the Definition

The Definition is a complex formal piece of work, and so it ieuoidable that it contains
several mistakes, ambiguities, and omissions. Many oétassinherited from the previous
language version SML'90 [MTH90] and have been documentedrately by Kahrs [K93,
K96]. Those, which still seem to be present or are new to SM&fe listed in appendix
A.

Most of the problems have been fixed in this version as paheptoposals for Successor
ML, see especially Appendices B.1 and B.2. The general @gprave take for resolving
remaining ambiguities and fixing bugs is doing it in the ‘mieatural’ way. Mostly, this is
obvious, sometimes it is not. The appendix discusses tlicot we chose.

1.3 Related Work

HaMLet owes much of its existence to the first version of the KIL[BRTT93]. While the
original Kit shared a similar motivation and a lot of inspgice came from that work, more
recent versions moved the Kit into another direction. Weehtbyat HaMLet is suitable to
fill the resulting gap.

We also believe that HaMLet is considerably simpler anderiés the Definition. More-
over, unlike the ML Kit, it also implements the dynamic settienof SML directly. On
the other hand, HaMLet is probably less suited to serve dsai for real world projects,
since no part of it has been tuned for efficiency in any way.

1.4 Copyright

Copyright of the HaMLet sources 1999-2007 by Andreas Ragsbe

The HaMLet source package includes portions of the SML/bkaty, which is copyright
1989-1998 by Lucent Technologies.

SeeLICENSE.txt files for detailed copyright notices, licenses and discéasn

HaMLet is free, and we would be happy if others experimenhitit Feel free to modify
the sources in whatever way you want.
Please post any questions, bug reports, critiques, and@th@nents to

rossberg@ps.uni-sb.de

2 Usage

2.1 Download

HaMLet is available from the following web page:
http://www.ps.uni-sb.de/hamlet/

The distribution contains a tar ball of the SML sources anmsldlocumentation.


rossberg@ps.uni-sb.de
http://www.ps.uni-sb.de/hamlet/

2.2 Systems Supported

HaMLet can be readily built with the following SML systems:

e SML of New Jersey (110 or higher) [NJO7]
e Poly/ML (5.0 or higher) [M07]

e Moscow ML (2.0 or higher) [RRS00]

e Alice ML (1.4 or higher) [AT06]

e MLton (20010706 or higher) [CFJWO05]

e ML Kit (4.3.0 or higher} [K06]

e SML# (0.20 or highed [STO7]

You can produce an executable HaMLet standalone with alesys The first four also
allow you to use HaMLet from within their interactive toptdy This gives access to a
slightly richer interface (see Section 2.6).

Other SML systems have not been tested, but should of courde fime provided they
support the full language and a reasonable subset of thd&thBasis Library [GR04].

2.3 Libraries and Tools Used

HaMLet makes use of the Standard ML Basis Library [GR04h addition it uses two
functors from the SML/NJ library [NJ98], nameBinarySetFn  andBinaryMapFn
to implement finite sets and maps.

To generate lexer and parser, ML-Lex [AMT94] and ML-Yacc P&} have been used. The
distribution contains all generated files, though, so yoly biave to install those tools if
you plan to modify the grammar.

The SML/NJ library as well as ML-Lex and ML-Yacc are freelyadlable as part of the

SML of New Jersey distribution. However, the HaMLet distiion contains all necessary
files from the SML/NJ library and the ML-Yacc runtime librarjjhey can be found in the
sminj-lib subdirectory, respectivefy.

2.4 Installation

To build a stand-alone HaMLet program, go to the HaMLet seuticectory and invoke
one of the following command:

make with-sminj
make with-mlton

LUnfortunately, the ML Kit seems to hang itself compiling frerser module of the current version of HaMLet-
S.

2Hamlet on SML# currently works with some glitches only, ehg interactive prompt does appear out of
sync.

3Despite some incompatible changes between the two, HaMiugtss work with the latest specification of
the Basis [GR04] as well as the previously available verf&iR96].

4The sources of the SML/NJ library are copyright€®1989-1998 by Lucent Technologies. See
http://cm.bell-labs.com/cm/cs/what/sminj/license.ht ml for copyright notice, license and
disclaimer.

5Under DOS-based systems, Cygwin is required.


http://cm.bell-labs.com/cm/cs/what/smlnj/license.html

make with-poly
make with-mosml
make with-alice
make with-mlkit
make with-smisharp

depending on what SML system you want to compile with. Thisproduce an executable
namechamlet in the same directory, which can be used as described inoBe:%°

The abovenake targets use the fastest method to build HaMLet from scradtdst SML
systems allow for incremental compilation that, after afes) only rebuilds those parts of
the system that are affected. To perform an incrementdl os# the following commands,
respectively

make with-sminj+
make with-alice+
make with-mosml+
make with-mlkit+

For other SML systems that are not directly supported, thieefila offers a way to build a
single file containing all of the HaMLet modules:

make hamlet-monolith.sml

In principle, the resulting file should compile on all SML ss. In practice however,
some might require additional tweaks to work around omissiar bugs in the provided
implementation of the Standard Basis Library [GR84].

After HaMLet has been built, you should be able to executs dlescribed in 2.5. Under
Unixes, you have the option of installing HaMLet first:

make INSTALLDIR=mypath install

The default formypath is /usr/local/lhamlet . You should include your path in the
PATHenvironment variable, of course.

2.5 Using the HaMLet Stand-Alone

After building HaMLet successfully with one of the SML syste, you should be able to
start a HaMLet session by simply executing the command

hamlet [- modg [ file ..]

Themodeoption you can provide, controls how HaMLet processes jtsiinlt is one of

5Due to a bug in Moscow ML, which does not parse SMivkere type syntax correctly, you first have
to run “make mosmlize " to patch the sources appropriately. Unfortunately, Hamié no longer be able to
bootstrap from the patched sources, due to the languaggeltscribed in Appendix B.7. By runninghake
unmosmlize ”you can convert the sources back to their original form.

“Currently, this only matters for Moscow ML and Alice ML, whiemploy batch compilers. The other systems
either always build incrementally (SML/NJ, ML Kit), or do heupport separate compilation at all (MLton,
Poly/ML).

80f the systems supported, SML/NJ, Moscow ML and the ML Kituieed such work-arounds, which appear
as wrapper files for Standard Basis modules infithe directory of the HaMLet source.



e -p : parsing mode (only parse input)

e -| : elaboration mode (parse and elaborate input)

e -v : evaluation mode (parse and evaluate input)

e -X : execution mode (parse, elaborate, and evaluate input)

Execution mode is the default behaviour. Parsing mode wilpot the abstract syntax
tree of the program in an intuitive S-expression format #tettuld be suitable for further
processing by external tools. Elaboration mode only tyipecks the program, without
running it.

Evaluation mode does not perform static analysis, so it cauelly generate runtime type
errors. They will be properly handled and result in corregtiog error messages. Evalua-
tion mode also has an unavoidable minor glitch with regamvierioaded constants: since
no type information is available in evaluation mode, all stamts will be assigned the de-
fault type. This can cause different results for some catouis. To see this, consider the
following example:

Owl div (Ow2 +* 0w128) and
Owl div (Ow2 = 0w128) : Word8.word

Although both variants only differ in an added type annotatthe latter will have a com-
pletely different result — namely cause a division by zerd #irus aDiv exception (see
also appendix A.11). You can still force calculation to befpened in 8 bit words by
performing explicit conversions:

val word8 = Word8.fromLarge;
word8 Owl div (word8 0w2 * word8 0w128);

Note thatLargeWord.word =word in HaMLet.

If no file argument has been given you will enter an intera&ctession in the requested
mode, just like in other SML systems. Input may spread milgltipes and is terminated
by either an empty line, or a line whose last character is acgdam. Aborting the session
via Ctrl-D will exit HaMLet (end of file, Ctrl-Z on DOS-basegstems).

Otherwise, all files are processed in order of appearanddLigainterprets the Definition
very strictly and thus requires every source file to be teateid by a semicolon. A file
name may be prefixed b@in which case it is taken to be an indirection file containing a
white space separated list of other file names and expantiatdigt. Expansion is done
recursively, i.e. the file may conta@prefixed indirections on its own.

HaMLet currently provides a considerable part, but not retdomplete obligatory subset
of the Standard Basis Library [GR04]. In particular, supgor OS functionality still is
weak. Most basic types and corresponding operations dyaruyblemented, though.

There are several things to note about HaMLet’s output:
e Types and signatures are always fully expanded, in ordefosely resemble the
underlying semantic objects.
e Similarly, structure values are shown in full expansion.
e Signatures are annotated with the set of type names boumadc@ament).

e Similarly, the type name set of an inferred static basisiistpd, though only elabo-
ration mode.



2.6 Using HaMLet from within an SML System

You can also use HaMLet from within the interactive toplegél given SML system.
This allows you to access the various modules describeceifialfowing sections of this
document directly and experiment with them.

In most interactive SML systems — particularly HaMLet ifsske 2.7 — you should be able
to load the HaMLet modules by evaluating

use "hamlet.sml";

As this requires recompiling everything, there are morefecotable ways for some partic-
ular systems:

e Under SML of New Jersey, it suffices to start SML/NJ in the Hadltirectory and
evaluate

CM.make();

However, under newer versions of SML/NJ (110.20 and lagen), need to invoke
the function as follows:

CM.make "sources.cm";
e Under Moscow ML, first go to the HaMLet directory and invoke
make interactive-mosml
Then start Moscow ML and type

load "Sml";

Loading HaMLet into an SML session will create (besides mtha structure namesml,
providing the following signature:

signature SML =

sig
val parseString : string -> unit
val elabString : string -> unit
val evalString : string -> unit
val execString : string -> unit
val parseFile : string -> unit
val elabFile : string -> unit
val evalFile : string -> unit
val execFile : string -> unit
val parseFiles : string list -> unit
val elabFiles : string list -> unit
val evalFiles : string list -> unit
val execFiles : string list -> unit

val parseSession : unit -> unit
val elabSession : unit -> unit

10



val evalSession : unit -> unit
val execSession : unit -> unit
end

The functions here come in four obvious groups:

e XxString processes a program contained in the string given.
e xFile processes a program contained in a file whose name is given.
e xFiles processes a whole set of files in an incremental manner.

e xSession starts an interactive session, that can be exited by pge&tih-D (end
of file, Ctrl-Z on DOS-based systems).

Each call processes the program in the initial basis. Foemental processing, functions
from thexFiles or xSession group have to be used.

In each group there are four functions providing selectivages of execution:

e parse Xjust parses a program.
e elab X parses and elaborates a program.
e eval X parses and evaluates a program.

e exec X parses, elaborates, and evaluates a program.

These functions correspond to the different execution madd¢he stand-alone HaMLet
(see Section 2.5). They all print the resulting environreenistdOut , or a suitable
error message ostdErr  if processing does not succeed (parse functions just Ptian
success). During processing of a file list or an interactass®n, errors cause the current
input to be skipped, but not abortion of the session.

2.7 Bootstrapping

Since HaMLet has been written purely in strict SML'97, it ld@to bootstrap itself. The
file hamlet.sml  provided in the source directory allows bootstrapping aeractive
HaMLet session by starting the HaMLet stand-alone via

hamlet hamlet.sml wrap-hamlet.sml

Alternatively, the file can base 'd from within a HaMLet session. It will load all necessary
modules enabling interactive use as described in 2.6.

Beware that loading the full Basis Library in the bootstragpersion will require a huge

amount of virtual memory. If you are brave and hadots of memory and patience you

can even try a second bootstrapping iteration from withiess®n on the bootstrapped
HaMLet. Then, HaMLet not only type-checks itself but doesbadxecute the type checker
and evaluator itself. You should expect at least two ordensagnitude slowdown for each

bootstrapping iteration, due to the naive interpretatixsdueatior? (see Section 6).

9For example, on a 2 GHz processor with 512 MB memory the seiteradion may take about 4 hours.
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2.8 Limitations

In its current version, HaMLet is not completely accurat¢hwiespect to some aspects
of the SML language. The following list gives an overview bétissues remaining with
Successor ML:

e Exhaustiveness of Patterns: checking of patterns is nigtdaturate in the presence
of overloaded special constants. Sometimes a match is flagg@on-exhaustive,
although it is in the limited range of its actual type.

e Library: HaMLet does provide a significant portion of thei@tard Basis Library,
but it is not complete.

3 Overview of the Implementation

The implementation of HaMLet follows the Definition, ammeurddy the changes given in
Appendix B, as closely as possible. The idea was to come as a®wpossible to the ideal
of an executable version of the Definition. Where the soudestate, they usually do so
for one of the following reasons:

¢ the non-deterministic nature of some of the rules (e.g.gjngghe right types in the
static semantics of the core),

¢ the informal style of some parts (e.g. the restrictions i1 14

e bugs or omissions in the Definition (see appendix A)

We will explain non-trivial deviations from the Definitionhere appropriate.

The remainder of this document does not try to explain detfilthe Definition — the
Commentary [MT91] is much better suited for this purposespite being based on the
SML'90 Definition [MTH90]. Neither is this document a tutatito type inference. The
explanations given here merely describe the relation beivlee HaMLet source code and
the formalism of the Definition. The text assumes that youehiawth at hand side by
side. We use section numbers in brackets as above to refeditddual sections of the
Definition. Unbracketed section numbers are cross refesewdhin this document.

Note that most explanations given here a kept rather terdecaver only general ideas
without going into too much detail. The intention is that #weirce code speaks for itself
for most part.

3.1 Structure of the Definition

The Definition specifies four main aspects of the SML language

Syntax
Static semantics

Dynamic semantics

A 0N

Program Execution

12



Syntax is the most conventional part of a language definifidre process of recognizing
and checking program syntax is usually referred tgassing The static semantics is
mainly concerned with the typing rules. The process of cimeckalidity of a program
with respect to the static semantics is caldborationby the Definition. The dynamic
semantics specifies how the acteahluationof program phrases has to be performed.
The last aspect essentially describes how the interactplevtel of an SML system should
work, i.e. how parsing, elaboration, and evaluation arsected. The complete processing
of a program, performing all three aforementioned phasdgiéwn asexecution

The four aspects are covered in separate chapters of thatefirFurther destructuring
is done by distinguishing between core language and modaotguage. This factorisation
of the language specification is described in more detaliémtreface and the first chapter
of the Definition.

3.2 Modularisation

HaMLet resembles the structure of the Definition quite dlyecFor most chapters of
the Definition there is a corresponding module implementtirag aspect of the language,
namely these are:

Chapter2and 3 Lexer , Parser , SyntacticRestrictions

Chapter 4 ElabCore

Chapter 5 ElabModule

Chapter 6 EvalCore

Chapter 7 EvalModule

Chapter 8 Program

Appendix A DerivedForms

Appendix B Parser

Appendix C InitialStaticBasis

Appendix D InitialDynamicBasis

Appendix E OverloadingClass (roughly)

Most other modules implement objects and operations defihdte beginning of each of
the different chapters, which are used by the main modulbs. sburce of every module
cross-references the specific subsections of the Definitlemant for the types, operations,
or rule implementations contained in it.

Altogether, it should be quite simple to map particular Ha¥limodules to parts or en-
tities of the Definition and vice versa. To make the mappinglasous as possible, we
followed quite strict naming conventions (see 3.5). Eactheffollowing sections of this
document will cover implementation of one of the languageeats mentioned in 3.1. At
the beginning of each of those sections we will list all meduielevant to that part of the
implementation.

As a rule, each source file contains exactly one signatungstste, or functor. The only
exceptions are the fildds X, Grammars X, each containing a collection of simple functor
applications, and the files containing the mod#lddr , ExName Lab, Stamp, TyName,
TyVar , which also provide implementations of sets and maps ofdhesponding objects.

We tried to keep things simple, so the architecture of HaMd qtiite flat: it does not make
heavy use of functors. Functors only appear where the negerterate several instances
of an abstract type (e.¢ddFn ) or parameterised types arises. Enthusiasts of the closed
functor style may feel free to dislike this approgeh .

13



3.3 Mapping Syntactic and Semantic Objects

The sets representing the different phrase classes of thesgMax are defined inductively
through the BNF grammars in the Definition. These sets arepethto appropriate SML
datatypes in obvious ways, using fields of tygsion for optional phrases.

All sets defining semantic objects in the Definition have beepped to SML types as
directly as possible:

primitive objects (without structure) abstract types

products @ x B) tuple typesfA * B)
disjoint unions A U B) datatypeshA of A | B of B )
k-ary products(x>oA*) list types @A list )
finite sets (FifA)) instances of th&inSet functor
finite maps @ fin B) instances of th&inMap functor

In some places, we had to relax these conventions somewthatgrsome additional types
into datatypes to cope with mutual recursion between difirdét For example, environ-
ments are always rendered as datatypes.

Except for the primitive simple objects, no type definiti@ame abstract. To allow the most
direct implementation of rules operating on semantic dbjegpe definitions representing
structured sets are always kept transparent. Be warneakdieg this aspect, the HaMLet
sources should not serve as an example for good modularigatactice...

3.4 Mapping Inference Rules

Usually, each group of inference rules in the Definition ipiemented by one function.
For rules of the form

AF phrase = A’
the corresponding function has type
A *» phrase -> A’

Each individual rule corresponds to one function clause révipecifically, an inference
rule of the form:

Ay F phrase; = Aj e A, phrase,, = A, side condition
A& phrase = A’

(F)

maps to a function clause of the form:

elabPhraseClass args (A, phrase) =
(* [Rule k] =)
let
val A1’ = elabPhraseClass1(Al, phrasel)

CED
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val An’ = elabPhraseClassN(An, phraseN)

in
if side condition then
A
else
error("message")
end

Here,args denotes possible additional arguments that we sometinegstogoass around.
There are exceptions to this scheme for rules that are nefypsiructural, e.g. rules 34
and 35 of the static semantics [4.10] are represented byaseeanly. Moreover, we deal
slightly differently with the state and exception convens in the dynamic semantics (see
6.3).

If one of a rule’s premise is not met, an appropriate messagsually generated and an
exception is raised through tlgror module.

3.5 Naming Conventions

Structures and functors are named after the main type tHaedthe objects they generate,
or the aspects of the Definition they implement (with one pkoa: the structure contain-
ing typelnt is namednter to avoid conflicts with the structurat of the Standard
Basis Library). The corresponding signatures are nameardicagly.

Several structures come in groups, representing the sepaoécore and module language
(and even the program layer). Orthogonal grouping happenadpects similar in the
static and dynamic semantics. The structure names refies# tonnections in an obvious
way, by including the wordsCore- , -Module- , or-Program- , and-Static- or
-Dynamic-

Types representing sets defined in the Definition are alwaysed after that set even if
this conflicts with the usual SML conventions with respectapitalisation. Functions
are also named after the corresponding operation if it i;ddfin the Definition or the
Commentary [MT91]. Variables are named as in the Definitwith Greek letters spelled
out. Moreover, type definitions usually include a commedtidating how variables of that
type will be named.

On all other occasions obvious names have been chosenyifijjaonventions established
by the Standard Basis Library [GR04] or the SML/NJ library)@8] where possible.

3.6 Side Effects

SML is not purely functional, and neither is the HaMLet implentation. It uses state
whenever that is the most natural thing to do, or if it consitdy simplifies code. At the
following places state comes into play:

inside the lexer, to handle nested comments,

inside the parser, to maintain the infix environment,

to generate time stamps, e.g. for type and exception names,

in the representation of type terms, to allow destructiviication,

during elaboration, to collect unresolved overloaded amdiile types,
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e during evaluation, to maintain the program’s state,

¢ torealise inter-module recursion on one occasion (seedBesil 1).

And of course, the code generated by Lex and Yacc uses stetaaily.

Other side effects are the output of error and warning messiagthe Error structure.

3.7 Module-level Mutual Recursion

The addition of various module extensions (see Appendicg8-8.26) introduces be-
tween the implementation of the core and the module langusigee SML does not sup-
port recursive modules, we either have to merge many conakypteparate concepts into
a single module, or work around it. We chose the latter, usihgt can best be considered

a hack:

e To break up inter-module type recursion, we abuse the exaefype. In one struc-
ture, a the proper type is replaceddsyn , while the other structure defines the actual
type and an appropriate exception constructor wrapping it.

e On the value level inter-module recursion is always betwiaentions. We use ref-
erences to tie the recursive knot. One structure defineseerefe as a placeholder
for the actual function, and all calls are performed throtighreference. The corre-
sponding structure defining the proper function assigrssréference.

4 Abstract Syntax and Parsing

4.1 Files

The following modules are related to parsing and repretientaf the abstract syntax tree:

Source

IdFn
LongldFn
IdsCore
IdsModule
TyVar

Lab

SCon

GrammarCoreFn
GrammarModuleFn
GrammarProgramFn
Grammars

Lexer
LineAwareLexer
Parser

Infix

Parse
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representation of source regions
generic identifier representation
instantiated identifier classes
type variable representation
label representation

special constants

abstract syntax tree definition

AST instantiations

lexical analysis (via ML-Lex)

wrapper computing line/column information
syntactical analysis (via ML-Yacc)

infix parser

parser plugging



DerivedFormsCore derived forms transformation
DerivedFormsModule

DerivedFormsProgram

IdStatus identifier status
BindingObjectsCore objects for binding analysis
BindingObjectsModule

GenericEnvFn generic environment operations
BindingEnv operations on binding environment
BindingContext operations on binding context
BindingBasis operations on binding basis
ScopeTyVars scoping analysis for type variables
SyntacticRestrictionsCore verifying syntactic restrictions

SyntacticRestrictionsModule
SyntacticRestrictionsProgram

PPGrammar auxiliary functions for printing ASTs
PPCore printing of core AST

PPModule printing of module AST
PPProgram printing of program AST

4.2 Abstract Syntax Tree

The abstract syntax tree (AST) is split into three layers;ggponding to the SML core and
module language and the thin program toplevel, respegtiygbdulesGrammarXFn).

It represents the bare grammar, without derived forms. Qrabte exception has been
made for structure sharing constraints, which are incluglede they cannot be handled
as a purely syntactic derived form (see A.8). Infix stuff hasbremoved from the core
grammar, as it does not appear in the semantic rules of thaifdafi [2.6]. However, we
have to keep occurrences of the keyword in order to do infix resolution (see 4.5).

Each node carries a generic info field, and the grammar mesdu&functorised to allow
different instantiations of this field. However, they areremtly only instantiated once,
with the info field carrying position information mappingatanode to a region of the
source text and an optional file name (fdeammars).

Each identifier class is represented by its own abstract tyjpst of them — exceplyVar
andLab which require special operations — are generated frondffie andLongldFn
functors.

Special constants are represented as strings contairengstential part of their lexical
appearance — their actual values cannot be calculateddw@ferloading resolution.
4.3 Parsing and Lexing

Parser and lexer have been generated using ML-Yacc [TA@DVHRLex [AMT94] which
are part of the SML/NJ distribution [NJO7]. The parser bsidoh abstract syntax tree using
the grammar types described in Section 4.2.
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Most parts of the parser and lexer specifications (Rlasser.grm andLexer.lex )are
straightforward. In particular, we use a rather dumb aneladiway to recognize keywords
in the lexer. We have to take some care to handle all thosdapyeng lexical classes
correctly, which requires the introduction of some additibtoken classes (see comments
in Lexer.lex ). Nested comments are treated through a side-effectingtepfor nesting
depth.

A substantial number of grammar transformations is unahdi&lto deal with LALR con-
flicts in the original SML grammar (see 4.4 and commen®anser.grm ). Some hack-
ing is necessary to do infix resolution directly during pagsisee 4.5).

Semantic actions of the parser apply the appropriate agtsts of the grammar types or
a transformation function provided by the modules handiiegved forms (see 4.6).

4.4 Grammar Ambiguities and Parsing Problems

The SML grammar — even with the changes given in Appendix B:dntains several other
ambiguities on the declaration level (see A.1, A.2 and AWg.resolve them in the ‘most
natural’ ways. In particular, semicolons are simply pa@&declarations or specifications,
not as separators (cf. A.1), and several auxiliary phrasgsek have been introduced to
implement these disambiguations. Further grammar tramsftions are needed to cope
with datatype declaration vs. datatype replication.

4.5 Infix Resolution

Since ML-Yacc does not support attributes, and we did nottwaintroduce a separate
infix resolution pass, the parser maintains an infix envirentd which is initialised and
updated via side effects in the semantic actions of seveealgo productions. Applications
— infix or not — are first parsed as lists of atomic symbols amah tlhansformed by the
modulelnfix  which is invoked at the appropriate places in the semantioraz The
infix parser in that module is essentially a simple hand-ddd® Parser.

The parser is parameterised over its initial infix environmeAfter successful parsing it
returns the modified infix environment along with the AST.

4.6 Derived Forms

To translate derived forms, three modules corresponditiggdhree grammar layers pro-
vide transformation functions that rewrite the grammafiocans to their equivalent forms,
as specified in Appendix A of the Definition (modulBsrivedForms X). These func-
tions are named similar to the constructors in the AST typethat the parser itself does
not have to distinguish between constructors of bare syfotaxs and pseudo constructors
for derived forms.

The Definition describes th&albind derived form in a very inaccurate way. The change
described in Appendix B.1 makes it a bit more precise by thicing several additional
phrase classes (see A.9). Most of the parsing happens infitke module in this case,
though.

Note that the structure sharing syntax is not a proper defiven since it requires context
information about the involved structures (see A.8). Itéfiere has been moved to the bare
grammar.
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4.7 Syntactic Restrictions

The BNF grammar given in the Definition actually specifiespesget of all legal programs,
which is further restricted by a set of syntactic constsa[Section 2.9, 3.5]. The parser
accepts this precise superset, and the syntactic restrictire verified in a separate pass.

Unfortunately, not all of the restrictions given in the Défon are purely syntactic (see
A.1). In general, it requires full binding analysis to infdentifier status and type variable
scoping.

Checking of syntactic restrictions has hence been implésdeas a separate inference pass
over the whole program. The pass closely mirrors the statitasitics. It computes respec-
tive binding environments that record the identifier statiysmlue identifiers. For modules,

it has to include structures, functors and signatures ak etause the effect afpen
relies on the environments they produce. Likewise, typéenments are needed to reflect
the effect of datatype replication. In essence, bindingrenments are isomorphic to in-
terfaces in the dynamic semantics [Section 7.2]. As an sitena binding basis includes
signatures and functors. For the latter, we only need to taiaitthe result environment.
Last, a binding context includes a set of bound type vargable

5 Elaboration

5.1 Files

The following modules represent objects of the static seit@and implement elaboration:

StaticObjectsCore definition of semantic objects
StaticObjectsModule

TyVar type variables

TyName type names

Type operations on types

TypeFcn operations on type functions
TypeScheme operations on type schemes
OverloadingClass overloading classes

GenericEnvFn generic environment operations
StaticEnv environment instantiation

Sig operations on signatures

FunSig operations on functor signatures
StaticBasis operations on basis

ElabCore implementation of elaboration rules
ElabModule

Clos expansiveness check and closure
CheckPattern pattern redundancy and exhaustiveness checking
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5.2 Types and Unification

Types are represented according to the mapping explairged@ {moduleType ). However,
since type inference has to do unification (see 5.6), whicpngéer to do destructively for
simplicity, each type node actually is wrapped into a refeee A simple graph algorithm is
required to retain sharing when cloning types. All otheetgperations besides unification
have functional semantics.

In order to avoid confusion (cf. A.12) our type represeptatiistinguishes undetermined
types (introduced during type inference, see 5.6) fromiekpype variables. This requires
an additional kind of node in our type representation. Meegowe have another kind of
undetermined type node to deal with overloaded types (®)e Binally, we need a third
additional node that replaces undetermined types onceltbeyme determined, in order
to retain sharing.

All operations on types have been implemented in a verygiitiirward way. To keep
the sources simple and faithful to the Definition we choseamoise any optimisations like
variable levels or similar technigues often used in real piters.

5.3 Type Names

Type names (modulByName) are generated by a global stamp generator (mdsiaep ).
As described in the Definition, they carry attributes fotyasind equality.

To simplify the task of checking exhaustiveness of patterps names have been equipped
with an additional attribute denoting tispanof the type, i.e. the number of constructors
(see 5.12). For pretty printing purposes, we also remenhigestiginal type constructor of
each type name.

5.4 Environment Representation

In order to share as much code as possible between the rathikar €nvironments of the
static and the dynamic semantics, as well as the interfaitéa the dynamic semantics
of modules, we introduce a funct@enericEnvFn that defines the representation and
implements the common operations on environments.

Unfortunately, there exists a mutual recursion betweelremments and their range sets,
in the static semantics (via TyStr) as well as in the dynamantics (via Val and FcnClo-
sure). This precludes passing the environment range typksmator arguments. Instead,
we make all environment types polymorphic over the corredpagg range types. The in-
stantiating modulesStaticEnv , DynamicEnv , andinter ) tie the knot appropriately.

5.5 Elaboration Rules

Elaborationimplements the inference rules of sectioriand [5.7] (moduleElabCore
andElabModule ). It also checks the further restrictions in [4.11].

The inference rules have been mapped to SML functions agidedan 3.4. We only
need simple kinds of additional arguments: a flag indicatilgether we are currently
elaborating a toplevel declaration (in order to implemestriction 3 in [4.11] properly), a
list of unresolved types (for overloading resolution andifite records, see 5.8), and a list
of fn matches (to defer checking of exhaustiveness until after ovditgaresolution, see
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5.12 and 5.8). For modules, we pass down the equality attribiutype descriptions (see
5.10).

Note that most of the side conditions on type names couldro@égl since they are mostly
ensured by construction using stamps. We included them ayytey be consistent and to
have an additional sanity check. At some places these claeksot accurate, though,
since the types examined can still contain type inferendéeshwhich may be filled with
type names later. To be faithful, we hence employ time staomptype names and type
holes, such that violations of prior side conditions caniseaVered during type inference,
as we explain in the next section.

5.6 Type Inference

The inference rules for core elaboration are non-detestiiniFor example, when enter-
ing a new identifier representing a pattern variable intoghe@ronment, rule 34 [4.10]
essentially guesses its correct type. A deterministic @mantation of type inference is
the standard algorithm W by Damas/Milner [DM82]. Infornyalvhen it has to guess a
type non-deterministically it introduces a fresh type &hle as a placeholder. We pre-
fer to speak of undetermined types instead, since typehlasgalready exist in a slightly
different sense in the semantics of SML (cf. A.12).

Wherever an inference rule imposes an equality constraiivo types because the same
meta-variable appears in different premises, the algorities to unify the two types de-
rived. After a value declaration has been checked, one datygarn remaining unde-
termined types into type variables and universally qugnitié inferred type over them, if
they do not appear in the context. SML's value restrictioagl@strict this closure to non-
expansive declarations, however [4.7, 4.8]. Note thatl{eXptype variables can only be
unified with themselves.

We use an imperative variant of the algorithm where unificathappens destructively
[C87], so that we do not have to deal with substitutions, dvedform of the elabora-
tion functions is kept more in line with the inference rulesthe Definition (module
ElabCore ).

Undetermined types are identified by stamps. They carry wditianal attributes: an
equality constraint, telling whether the type has to adgitadity, and a time stamp, which
records the relative order in which undetermined types gpd hames have been intro-
duced. During unification with undetermined types we haveke care to properly enforce
and propagate these attributes.

When instantiating type variables to undetermined typeR)j4rule 2], the undetermined
type inherits the equality attribute from the variable. Ametermined equality type in-
duces equality on any type it is unified with. In particuldran undetermined equality
type is unified with an undetermined non-equality type, diguss induced on the latter
(functionType.unify ).

Likewise, when a type is unified with an undetermined type, lttter’s time stamp is
propagated to all subterms of the former. That is, neste@t@nchined types inherit the
time stamp if their own is not older already. Type names miusiys be older than the time
stamp — unification fails, when a type name is encountergdthawer. This mechanism is
used to prevent unification with types which contain type eathat have been introduced
afterthe undetermined type. For example, the snippet

let
val r = ref NONE
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datatype t = C
in

r .= SOME C
end

must not type-check — the typeoimay not mention (otherwise the freshness side condi-
tion on names for datatypes [4.10, rule 17] would be violptedwever, type inference can
only find out about this violation at the point of the assigmtrexpression. By comparing
the time stamp of the undetermined type introduced wheroedding the declaration af,
and the stamp of the type narmneour unification algorithm will discover the violation.

More importantly, the mechanism is sufficient to precludéication of undetermined
types withlocal type names, as in the following example:

val r = ref NONE
functor F(type t; val x : t) =
struct

val _ =r := SOME C
end

Obviously, allowing this example would be unsound.

Similarly, the time stamp mechanism is used to preventidvalification of monomorphic
undetermined types remaining due to the value restrictidth, type variables, see Section
5.7.

To cope with type inference for records, we have to repregariially determined rows.
The yet undetermined part of a row is represented by a spkicidlof type variable, a
row variable This variable has to carry the same attributes as an umdieted type, i.e. an
equality flag and a time stamp, both of which have to be prgmedpagated on unification.
See also Section 5.8.

5.7 Type Schemes

Type schemes represent polymorphic types, i.e. a type ptefiy a list of quantified type
variables. The only non-trivial operation on type schemeageineralisation [4.5].

We implement the generalisation test via unification: ineott test forva*) .7 = 7/, we
instantiaten*) with undetermined types*) and test whether[r(*) /a(¥)] can be unified
with /.

To test generalisation between type scherwes$?) .7 = Va(¥) 7/, we first skolemise the
variablesa*) on the right-hand side by substituting them with fresh typenast(*").
Then we proceed by testing fon () .7 7/[t(*) /o(*)] as described before.

Note thatr may contain undetermined types, stemming from expansidladdions. These
have to be kept monomorphic, but naive unification might iethem with one of the
skolem types(*") (or a type containing one) — and hence effectively turn thetm poly-
morphic types! For example, when checking the signaturggim in the following ex-
ample,

signature S = sig val f : 'a -> 'a option end
structure X : S =
struct

val r = ref NONE
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fun f x = Ir before r := SOME x
end

the type inferred for the functioh contains an undetermined type, the content type.of

It must be monomorphic, hence the typefofioes not generalise the polymorphic type
specified in the signaturf®. Comparison of the time stamps of the undetermined type and
the newer type name generated during skolemisatioa ahakes unification between the
two properly fail with our algorithm.

5.8 Overloading and Flexible Records

Overloading is the least formal part of the Definition (se&j. It is just described in an

appendix, as special case treatment for a handful of giveradgrs and constants. We try
to generalise the mechanism indicated in the Definition adepto have something a bit
less ad hoc that smoothly integrates with type inference.

To represent type schemes of overloaded identifiers we allpe variables to be con-
strained with overloading classes in a type scheme, i.@ Wgpiables can carry an over-
loading class as an additional optional attribute. Whetaint$ated, such variables are
substituted by overloaded type nodes, constrained by the saerloading class (construc-
tor Type.Overloaded ). When we unify an overloaded type with another, determined
type we have to check whether that other type is a type nantaiced in the given over-
loading class. If yes, overloading has been resolved, iteoet is a type error (function

Type.unify ).

When unifying two overloaded types, we have to calculatérttezsection of the two over-
loading classes. So far, everything is pretty obvious. Thakyg part is how to propagate
the default types associated with the classes when we penfibersection.

We formalise an overloading class as a pair of its type narmarskthe type name being
the designated default:

(T,t) € OverloadingClass- TyNameSetx TyName

Now when we have to intersect two overloading clagdést,) and(7Tz, t2), there may be
several cases. Lt =T, N Ts:

1. T = (. In this case, the constraints on the types are inconsiatehthe program in
guestion is ill-typed.

2. T # ( andt; =ty € T. The overloading has (possibly) been narrowed down and
the default types are consistent.

3. T # () andt; # t, and|{t1,t2}NT| = 1. The overloading has been narrowed down.
The default types differ but only one of them still applies.

4. T # @ and|{t1,t2} N T| # 1. The overloading could be narrowed down, but there
is no unambiguous default type.

Case (3) is a bit subtle. It occurs when checking the foll@ndaclaration:

fun f(x,y) = (x + y)y

10several SML implementations currently get this wrong, dpgr soundness hole in their type checkers.
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Both, + and/ are overloaded and default to different types, but in thislgimation only
real remains as a valid default so that the typd aghould default tareal x real —
real.l?

There are two ways to deal with case (4): either rule it out bfpesing suitable well-
formedness requirements on the overloading classes initie basis, or handle it by gen-
eralising overloading classes to contaetsof default values (an error would be flagged if
defaulting actually had to be applied for a non-singulax. 8&% settled for the former alter-
native as it seems to be more in spirit with the Definition dmarins out that the overloading
classes specified in the Definition satisfy the required-fegthedness constraints.

Consequently, we demand the following properties for altgaf overloading classes
(T,t), (T',t') appearing in a basis:

1.teT
2. EqT)=0 v tadmits equality

3.7TNT'=0 v Hu,t'}InTnT'| =1

where EQT') = {t € T' | t admits equality.

The reason for (1) is obvious. (2) guarantees that we do 1oselthe default by inducing
equality. (3) ensures a unique default whenever we haveitp two overloaded types. (2)
and (3) also allow the resulting set to become empty whichessmts a type error.

Defaulting is implemented by collecting a list of all unresaul types —this includes flexible
records — during elaboration of value declarations (aolditi argumetmutaus ). Before
closing an environment, we iterate over this list to defagithaining overloaded types or
discover unresolved flexible records. This implies thatebetext determining an over-
loaded type or flexible record type is the smallest enclosimg-level declaration of the
corresponding overloaded identifier, special constantiegible record, respectively (cf.
A.3and A.11).

Special constants have to be annotated with correspongiegiames by overloading res-
olution, in order to get the correct dynamic semantics (s8eahd enable proper checking
of match exhaustiveness (see 5.12). For this purpose stiaf linresolved types can carry
optional associated special constants. During defaultim@nnotate each constant, and do
range checking of the constant’s value with respect to thelved type at the same time.

5.9 Recursive Bindings and Datatype Declarations

Value bindings witlrec and datatype declarations are recursive. The inferenes (b,
17 and 19 after the change from Appendix B.4) use the sameocemuentVE or TE on
the left hand side of the turnstile that is to be inferred enight hand side.

To implement this we build a tentative environment in a fitstation that is not complete
but already contains enough information to perform theadnference in the second it-
eration. For recursive value bindings we insert undeteehigpes as placeholders for the
actual types (and unify later), for datatype bindings weéethe constructor environments
empty.

115ome SML implementations do not handle this case properly.

12p previous version of HaMLet used the latter alternativeallttws more liberal overloading but may lead to
typing errors due to ambiguous overloading, despite thaultefnechanism. Moreover, in full generality it raises
additional issues regarding monotonicity of overloadiegoiution when extending the library.
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Datatype declarations bring an additional complicatiocause of the side condition that
requiresTE to maximise equality. This is being dealt with by first assugrequality for all
type names introduced and later adjusting all invalid etyattributes in a fixpoint itera-
tion until all type structures respect equality (functiaticEnv.maximiseEquality ).

5.10 Module Elaboration

Like for the core language, the inference rules for modulesian-deterministic. In partic-
ular, several rules have to guess type names that have tobistamt with side conditions
enforced further down the inference tree. However, moshe$e side conditions just en-
sure that type names are unique, i.e. fresh type names aserchighere new types are
introduced. Since we create type names through a stamp msohanost of these side
conditions are trivially met. The remaining cases are dedh by performing suitable

renaming of bound type names with fresh ones, as the Defirgiceady suggests in the
corresponding comments (modi&abModule ).

The other remaining bits of non-determinism are guessiagitiht equality attribute for
type descriptions, which is dealt with by simply passingriguired attribute down as an
additional assumption (functidelabModule.elabTypDesc ), and for datatype speci-
fications, which require the same fixpoint iteration as g@@tleclarations in the core (see
5.9).

5.11 Signature Matching

Signature matching is the most complex operation in the Séfhantics. As the Definition
describes, it is a combination of realisation and enrichmen

To match a module®’ against a signaturE = (T, E) we first calculate an appropriate
realisationy by traversingt: for all flexible type specifications iV (i.e. those whose type
functions are equal to type names bound@’jrwe look up the corresponding type & and
extendp accordingly. Then we apply the resulting realisatioritavhich gives us the po-
tential £~ . For this we just have to check whether it is enrichedbyhich can be done by
another simple traversal @&~ (functionsSig.match andStaticEnv.enriches ).

The realisation calculated during matching is also useddpamate type information to the
result environment of functor applications (rule 54, medtiabModule ). A functor sig-
nature has forn@T,)(F1, (T7)E;). To obtain a suitable functor instantiatiof”, (7")E’)

for rule 54 we simply match the environmefitof the argument structure to the signature
(T1)E:1 which givesE” and a realisatiorp. We can applyp to the functor’s result signa-
ture (T7) B} to get — after renaming atl € T} to fresh name¢’ € 7" — the actual7”)E’
appearing in the rule.

So far, the description applies to modules as defined in tHaiden. The change in
appendix B.23 generalises matching to higher-order maduldat means that modules
M may appear instead of environmeiiitsn the above cases. Computing a realisation for
matching is not complicated, though, since functors cabmat any type names, so that
remains empty for functor signatures and only the dase- E has to be considered, as
before.
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5.12 Checking Patterns

Section [4.11], items 2 and 3 require checking exhaustis®ard irredundancy of patterns.
The algorithm for performing this check is based on [S96] dmle CheckPattern ).
The basic idea of the algorithm is to perfostatic matchingi.e. to traverse the decision
tree corresponding to a match and propagate informationtehe value to be matched
from the context of the current subtree. The knowledge albllon a particular subterm is
described by theescription type. Moreover, &ontext specifies the path from the
root to the current subtree.

The algorithm is loosely based on [S96], where more detaifsbe found. To enable this
algorithm, type names carry an additional attribute dergptheirspan i.e. the number
of constructors the type possesses (see 5.3). We extendedhe in the paper to cover
records (behave as non-positional tuples), exceptiontearers (have infinite span), and
constants (treated like constructors with appropriatesitdy infinite span). Note that we
have to defer checking of patterns until overloading retsmiufor contained constants has
been performed — otherwise we will not know their span.

A context description is not simply a list of constructor Apgttions to term descriptions
as in the paper, but separates constructor application femard aggregation and uses a
nested definition. Instead of lists of negative constriectand constants) we use sets for
descriptions. Record descriptions are maps from labelegorgptions.

During traversal we construct two sets that remembers tfieneof every match we en-
countered, and every match we reached. In the end we carvdisemlundant matches by
taking the difference of the sets. Non-exhaustivenesstectisd by remembering whether
we reached a failure leaf in the decision tree.

In the case of exception constructors, equality can onlyHeeked on a syntactic level.
Since there may be aliasing this is merely an approximatea @A.3).

There is a problem with the semantics of sharing agre constraints, which allow
inconsistent datatypes to be equalised (see A.3). In this, azo meaningful analysis is
possible, resulting warnings may not make sense. Theretlgngowe can do but ignore
this problem.

6 Evaluation

6.1 Files

Objects of the dynamic semantics and evaluation rules gokeimented by the following
modules:

DynamicObjectsCore definition of semantic objects
DynamicObjectsModule

Addr addresses

ExName exception names

BasVal basic values

Sval special values

Val operations on values

State operations on state
GenericEnvFn generic environment operations
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DynamicEnv operations on environments

Inter operations on interfaces
DynamicBasis operations on basis

EvalCore implementation of evaluation rules
EvalModule

6.2 Value Representation

Values are represented as defined in Section 6.3 of the DefirfinoduleVal ). Special
values are simply represented by the corresponding SMistgpeduleSVal ). Currently,
only the default types and/ord8.word are implemented, which represents the minimum
requirement of the Standard Basis.

Basic values are simply represented by strings (mod8a/al ). However, the only basic
value defined in the Definition is the polymorphic equatityeverything else is left to the
library. Consequently, the implementation of the APPLY dtion only handles=. For
all other basic values it dispatches to thiberary  module, which provides an extended,
library-specific version of the APPLY function (see Sect#)n

The special value FAIL, which denotes pattern match fajlisreot represented directly but
has rather been defined as an exception (see 6.3).

6.3 Evaluation Rules

The rules of the dynamic semantics have been translated tof@Mwing similar conven-
tions as for the static semantics (see 3.4). However, tadgeainfully expanding out all
occurrences of the state and exception conventions, wendtadtate and exceptions in an
imperative way. State is not passed around as a functiohs vt rather as a reference
to the actual state map (modukgate ) that gets updated on assignments. This avoids
threading the state back with the result values. Exceptmkages (modulBack) are not
passed back either, but are rather transferred by raidiark exception. Similarly, FAIL
has been implemented as an exception.

So state is implemented by state and exceptions by exceptinat really surprising. Con-
sequently, rules of the form

s, A& phrase = A’ /p, s

become functions of type
State ref * A * phrase -> A’

which may raise @ack exception — likewise for rules including FAIL results. We ibm
passing in the state where it is not needed. This way the aultbevé the form of rules
using the state and exception conventions as close as [@ogsibdulesEvalCore and
EvalModule ).

Failure with respect to a rule’s premise corresponds to #imentype error. This may
actually occur in evaluation mode and is flagged accordingly
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Evaluation of special constant behaves differently in akea and elaboration mode. In
the former, constants will have been annotated with a prigppername by overloading res-
olution (see 5.8). In evaluation mode this annotation issinggand the functiomalSCon
will assume the default type of the corresponding overlogdilass, respectively. This
implies that the semantics may change (see 2.5).

7 Toplevel

7.1 Files

The remaining modules implement program execution andantige toplevel:

Basis the combined basis
Program implementation of rules for programs
InitialinfixEnv initial environments

InitialStaticEnv
InitialStaticBasis
InitialDynamicEnv
InitialDynamicBasis

PrettyPrint pretty printing engine

PPMisc auxiliary pretty printing functions
PPType pretty printing of types

PPVal ... values

PPStaticEnv ... Static environment
PPStaticBasis ... static basis

PPDynamicEnv ... dynamic environment
PPDynamicBasis ... dynamic basis

PPBasis ... combined basis

Use theuse queue

Sml main HaMLet interface

Main wrapper for stand-alone version

7.2 Program Execution

The moduleProgram implements the rules in Chapter 8 of the Definition. It folkthe
same conventions as used for the evaluation rules (see 88.3n

In addition to the ‘proper’ implementation of the rules asegi in the Definition (func-
tion execProgram ) the module also features two straightforward variatitwas suppress
evaluation and elaboration, respectivedyapProgram andevalProgram ).

Note that a failing elaboration as appearing in rule 187asponds to a&rror exception.
However, in evaluation mode, &hror exception will originate from a runtime type error.

The remaining task after execution is pretty printing treates. We use an extended version
of a generic pretty printer proposed by Wadler [W98] whichtiees more sophisticated
grouping viaboxegmodulesPrettyPrint andPPxxx).
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7.3 Plugging

The Sml module sets up the standard library (see Section 8), doesedissary I/O inter-
action and invokes the parser and the appropriate funationaduleProgram , passing
the necessary environments.

After processing the input itself the functions in tBml module process all files that have
been entered into these queue during evaluation (see 8.5). That may add additional
entries to the queue.

The Main module is only needed for the stand-alone version of HaMlEeparses the
command line and either starts an appropriate sessionas neg¢he given files.

8 Library

8.1 Files

The library only consists of a hook module and the library lenpentation files written in
the target language:

Library primitive part of the library
Use use queue
basis/ the actual library modules

8.2 Language/Library Interaction

The Definition contains several hooks where it explicitlyedgates fleshing out stuff to the
library:

e the set BasVal of basic values and the APPLY function [6.4]

¢ the initial static basi€3; and infix status [Appendix C]

o the initial dynamic basi®3, [Appendix D]

¢ the basic overloading classes Int, Real, Word, String, (Faai

Realistically, it also would have to allow extending thessgVal [6.2] and Val [6.3], and
enable the APPLY function to modify the program state (cb)AHaMLet currently only
extends SVal, while other library types are mapped to whttdee already (see 8.4).

We encapsulate all library extensions into one single motildrary  that defines the
parts of these objects that are left open by the Definitionvél@r, we split up implemen-
tation of the library into two layers:

o theprimitive layer that contains everything that cannot be defined witthéntarget
language,

¢ thesurfacelayer which defines the actual library.
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By target languageve mean the language to be implemented. Many library estiie
definable within the target language itself, e.g. the stehddunction. There are basically
three reasons that can force us to make an entity primitive:

e its behaviour cannot be implemented out of nowhere (e.gop/€ations),
e itis dependent on system properties (e.g. numeric linots),
e it possesses a special type (e.g. overloaded identifiers).

ThelLibrary module defines everything that has to be primitive (see &Bile the rest
is implemented within the target language in the modulegé@thebasis directory (see
8.6). These modules have to make assumptions about whafinedl®dy theLibrary
module, so that both actually should be seen in conjunction.

8.3 Primitives

Primitive operations are implemented by means of the APRit¢fion. Most of them just
fall back to the corresponding operations of the host sydfeiwe only have to unpack
and repack the value representation and remap possiblptexte Overloaded primitives
have to perform a trivial type dispatch.

Despite implementing a large number of primitives, theict@nd dynamic basis exported
does only contain a few things:

e thevector type,

¢ all overloaded functions,

e the exceptions used by primitives,
e the functionuse.

Everything else can be obtained from these in the targetkzgpe. Primitive exceptions not
available on the toplevel are wrapped into their residugatsures.

To enable the target language to bind the basic values ddfinte library, we piggy-back
theuse function. Its dynamic semantics is overloaded and in thiicdbasis exported by
theLibrary moduleitis given typex — (. Applying it to a record of typgb : string}
will return the basic value denoted by the string of course, the library source code should
annotate the result type properly to be type-safe. Primdanstants of type are available
as functionsinit — 7.

Theuse function has been chosen for this purpose since its existeaenot be encapsu-
lated in the library anyway — the interpreter has to know afiqsee 8.5). Once all neces-
sary basic values have been bound, the library source cadédshide the additional, un-
safe functionality ofise by rebinding it with its properly restricted typering — unit.

8.4 Primitive Library Types

The dynamic semantics of the Definition do not really alloevaldldition of arbitrary library
types — in general this would require extending the set VAl][6Moreover, the APPLY
function might require access to the state (see A.5).

BBynfortunately, most SML implementations lack a lot of thdigdtory functionality of the Standard Basis
Library. To stay portable among systems we currently reisttirselves to the common subset.
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But we can at least encode vectors by abusing the recordseategion. Arrays can then
be implemented on top of vectors and references within tigetéanguage. However, this
has to make their implementation type transparent in oxeget the special equality for
arrays.

I/O stream types can only be implemented magically as isdit® a stateful table that is
not captured by the program state defined in [6.3].

8.5 Theuse Function

The ‘real’ behaviour ofise is implemented by putting all argument strings for whichash
been called into a queue managed by modide. The Sml module looks at this queue
after processing its main input (see 7.3).

The argument strings are interpreted as file paths, relpéttes being resolved with respect
to the current working directory before putting them inte tfueue. The function reading
source code from a fileSgml.fromFile ) always sets the working directory to the base
path of the corresponding file before processing it. This,wag automatically interprets
its argument relative to the location of the current file.

8.6 Library Implementation

The surface library is loaded on startup. The funcBonl.loadLib  just silently executes
the file basis/all.sml . This file is the hook for reading the rest of the library, it
contains a bunch of calls wse that execute all library modules in a suitable order. Note
that the library files always have to lke&ecutedeven if HaMLet is just running in parsing
or elaboration mode — otherwise the contained applications would not take effect.

The library modules themselves mostly contain straightésd implementations of the
structures specified in the Standard Basis Manual [GRO4E thie implementation of the
language, the library implementation is mostly an exedatapecification with no care
for efficiency. All operations not directly implementabledathus represented as primitive
basic values are bound via the secret functionality ol function (see 8.3).

9 Conclusion

HaMLet has been implemented with the idea of transformiegdhmalism of the Defini-
tion into SML source code as directly as possible. Not evéngtcan be translated 1-to-1,
though, because of the non-deterministic nature of somecsspf the rules and due to the
set of additional informal rules that describe parts of #regguage.

Still, much care has been taken to get even the obscuredet#ilese parts of the semantics
right. For example, HaMLet goes to some length to treat tHeviing correctly:

e checking syntactic restrictions separately,
o derived forms (e.gwithtype , definitional type specifications),
e distinction of type variables from undetermined types,

overloading resolution,
flexible records,

dynamic semantics.
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Some more issues present in SML'97 have been removed by #regeb described in
Appendix B.
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A Mistakes and Ambiguities in the Definition

This appendix lists all bugs, ambiguities and ‘grey areashe Definition that are known
to the author. Many of them were already present in the posv@ML' 90 version of the
Definition [MTH90] (besides quite a lot that have been carddn the revision) and are
covered by Kahrs [K93, K96] in detail. Bugs new to SML'97 otticovered by Kahrs are
marked with * and (*), respectively.

Where appropriate we give a short explanation and raticfdlew we fixed or resolved it
in HaMLet.

A.1 Issues in Chapter 2 (Syntax of the Core)

Section 2.4 (Identifiers):

e The treatment of as an identifier is extremely ad-hoc. The wording suggesis th
there are in fact two variants of the identifier class VId, areuding and the other
excluding=. The former is used in expressions, the latter everywheee el

Section 2.5 (Lexical analysis):

¢ In [2.2] the Definition includes only space, tab, newlined dormfeed into the set
of obligatory formatting characters that are allowed inrsewcode. However, some
major platforms require use of the carriage return charactext files. In order to
achieve portability of sources across platforms it shoelihigluded as well.

Fixed by change described in Appendix B.1.
Section 2.6 (Infixed Operators):

e The Definition says that “the only required useagf is in prefixing a non-infixed
occurrence of an identifier which has infix status”. This ifhea vague, since it is
not clear whether occurrences in constructor and excepiiwfings count as non-
infixed [K93].

Fixed by change described in Appendix B.1.
Section 2.8 (Grammar), Figure 4 (Expressions, Matcheslabst®ns and Bindings):

e (*) The syntax rules forec are highly ambiguous. The productions for empty dec-
larations and sequencing allow the derivation of arbitssguences of empty decla-
rations for any input.

HaMLet does not allow empty declarations as part of sequenitbout a separating
semicolon. On the other hand, every single semicolon ispiaas a sequence of two
empty declarations. This makes parsing of empty declarstimambiguous.

e Another ambiguity is that a sequence of the fafea; dec, decs can be reduced in
two ways todec: either viadecio decs or via dec; decas [K93]. See also A.2.
We choose left associative sequencing, i.e. the formeepars

Section 2.9 (Syntactic Restrictions):
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e * The restriction thabalbinds may not bind the same identifier twice (2nd bullet) is
not a syntactic restriction as it depends on the identifagustof thevids in the pat-
terns of avalbind. ldentifier status can be derived by inference rules oniwil&fly,
the restriction on type variable shadowing (last bulletiépendent on context and
computation of unguarded type variables [Section 4.6].

We implement checks for syntactic restrictions as a sepanégrence pass over the
complete program that closely mirrors the static semantldeally, all syntactic
restrictions rather should have been defined as appromiggeconditions in the
rules of the statianddynamic semantics by the Definition.

e * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of &pbind or datbind of the
form tyvarseq tycon = --- must occur intyvarseq.”

This restriction is analogous to the one given fgvars in type specifications [3.5,
item 4]. Without it the type system would be unsouffd.

Fixed by change described in Appendix B.2.

A.2 Issues in Chapter 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure aigd&ure Expressions):

e The syntax rules fostrdec contain the same ambiguities with respect to sequencing
and empty declarations as those fler (see A.1).

Consequently, we use equivalent disambiguation rules.

e Moreover, there are two different ways to reduce a sequéagedec, of core dec-
larations into astrdec: via strdecy strdecs and viadec [K93]. Both parses are not
equivalent since they provide different contexts for owading resolution [Appendix
E]. For example, appearing on structure level, the two datitans

fun

f X
val a

X = X +
=f1.0
may be valid if parsed adec, but do not type check if parsed agdec, strdecs

because overloading efgets defaulted tnt .
Fixed by change described in Appendix B.1.
e Similarly, it is possible to parse a structure-leledal  declaration containing only

core declarations in two ways: aslec or as astrdec [K93]. This produces the same
semantic ambiguity.

Fixed by change described in Appendix B.1.
Section 3.4 (Grammar for Modules), Figure 7 (Specificafions
e Similar as fordec andstrdec, there exist ambiguities in parsing empty and sequenced

specS.
We resolve them consistently.

Mnterestingly enough, in the SML'90 Definition the restioct was present, but the corresponding one for
specifications was missing [MT91, K93].
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e The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing type t = u

This snippet can be parsed in at least three ways, with théngheonstraint taking
scope over either both, or only one, or neither type spetificaSince only the first
alternative can be elaborated successfully, the validitthe program depends on
how ambiguity is resolved.

Fixed by change described in Appendix B.1.
Section 3.4 (Grammar for Modules), Figure 8 (Functors arti&vel Declarations):

e * Finally, another ambiguity exists for reducing a sequest@ec, strdecs t0 a
topdec: it can be done either by first reducingdtrdec, or to strdec; topdec,. The
latter is more restrictive with respect to free type vamahlbut see A.12 with regard
to this).

Fixed by change described in Appendix B.1.

Altogether, ignoring the infinite number of derivations dhwing empty declarations, the
grammar in the Definition allows three ambiguous ways to cedusequence of twidecs
to atopdec, as shown by the following diagram. All imply different semtias. The cor-
responding diagram for a sequence of three declarationtdwoerely fit on a page. A
further ambiguity arises at the program level (see A.7).

d601 d602

strdecl strdeca

strdec strdecl topdec,

topdec

All parsing ambiguities (except for ones involving empty@deations, which are harmless)
are fixed by the changes described in Appendix B.1.

A.3 Issues in Chapter 4 (Static Semantics for the Core)
Section 4.8 (Non-expansive Expressions):

e * The definition of non-expansiveness is purely syntactid does only consider
the right hand side of a binding. However, an exception maultdrom matching
against a non-exhaustive pattern on the left hand sideratli®r inconsistent to dis-
allow raise expressions in non-expansive bindings but allow impligiteptions
in the disguise of pattern match failure. More seriouslg, ssibility of exceptions
stemming from polymorphic bindings is incompatible witlpéypassing implemen-
tations.

Fixed by change described in Appendix B.3.
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Section 4.9 (Type Structures and Type Environments):

e The definition of the Abs operator demands introduction owindistinct” type
names. However, type names can only be new relative to axtorite be precise,
Abs would thus need an additional argumeéeniK96].

Avoided by the change makirabstype a derived form, as described in Appendix
B.5.

e Values inabstype declarations that are potentially polymorphic but reqegeal-
ity types have no principal type [K96]. For example, in theldeation

abstype t = T with
fun eq(xy) = x =y
end

the principal type okq insidethe scope ofbstype clearlyis”a * "a ->

bool . However, outside the scope this type is not principal beeda cannot
be instantiated by . Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforcesphesence of principal
typings in the revised Definition), this semantics is vergdta implement faithfully,
since type inference would have to deal with unresolved sghemes and to cascad-
ingly defer decisions about instantiation and generétinatntil the correct choice is
determined.

Avoided by the change makirapstype a derived form, as described in Appendix
B.5. Abstract types no longer hide equality.

e A related problem is the fact that the rules &ystype may infer type structures
that do not respect equality [K96]:

abstype t = T with
datatype u = U of t
end

Outside the scope of thabstype declaration types will still be an equality type.
Values of type can thus be compared through the backdoor:

fun eqT(x,y) = U x =Uy

Avoided by the change makirabstype a derived form, as described in Appendix
B.5. Abstract types no longer hide equality.

Section 4.10 (Inference Rules):

e * The comment to rule 26 states that a declaration like

datatype t = T
val rec T =

is legal sinceC + VE overwrites identifier status. However, this comment omits a
important point: in the corresponding rule 126 of the dyraseimantics recursion is
handled differently so that the identifier statusit overwritten. Consequently, the
second declaration will raiseBind exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dyitaaamantics, but fortunately
it does not violate soundness in this case. Most implemientatio not implement
the ‘correct’ dynamic semantics, though.

Removed by the change described in Appendix B.4.
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e *There is an unmatched left parenthesis in the consequentep8.
Fixed by change described in Appendix B.2.

Section 4.11 (Further Restrictions):

e (*) Under item 1 the Definition states that “the program catitenust determine
the exact type of flexible records, but it does not specify haynds on the size
of this context. Unlimited context is clearly infeasiblaese it is incompatible with
let polymorphism: at the point of generalisation the structfra type must be
determined precisely enough to know what we have to quaoigy!®

Fixed by change described in Appendix B.2.

Note that some SML systems implement a slightly more reésteiwariant, in which
the following program does not type-check:

fun f(r as {.. D=
[let fun g) = rinr end, r: {aiint  }]

while a minor variation of it does:

fun f(r as {.. D=
[r: A{aint }, let fun g() = r in r end]

The reason is that they simply check for existence of unvesialecord types in value
environments to be closed, without taking into account these types might stem
from the context (in which case we know that we cannot quaotier the unknown

bits anyway). As the above example shows, such an impleti@mizompromises

the compositionality of type inference. The Definition shibrule it out somehow.

A similar clarification is probably in order for overloadingsolution (see A.11).

e Under item 2 the Definition demands that a compiler must gigenimmgs whenever
a pattern is redundant or a match is non-exhaustive. Howgvisrrequirement is
inconsistent for two reasons:

1. * There is no requirement for consistency of datatype tan®rs in sharing
specifications or type realisations. For example,

datatype t = A | B
datatype u = C
sharing type t = u

is a legal specification. Likewise,
sig datatype t = A | B end where type t = bool

is valid. Actually, this may be considered a serious bug srvtn, although
the Definition argues that inconsistent signatures are Veog significant in

practice” [Section G.9]. If such an inconsistent signatgrased to specify a
functor argument it allows a mix of constructors to appeamatches in the
functor’s body, rendering the terms of irredundancy andaestiveness com-
pletely meaningless.

There is no simple fix for this. HaMLet makes no attempt to detieis situa-
tion, so generation of warnings is completely arbitraniis tase.

15Alternatively, there are extensions to Hindley/Milner ityg that allow quantification over the structure of
records, but polymorphic records are clearly not suppdstethe Definition.
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2. (*) ltis difficult in general to check equality of excepti@onstructors — they
may or may not be aliased. Inside a functor, constructorléguaight depend
on the actual argument structure the functor is applied is.possible to check
all this by performing abstract interpretation (such tremtundant matches are
detected at functor application), but this is clearly irsibée weighed against
the benefits, in particular in conjunction with separate pitation.

In HaMLet we only flag exception constructors as redundargmitiney are

denoted by the same syntacliewgvid. We do not try to derive additional
aliasing information.

A.4 Issues in Chapter 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

e *The rules 64 and 78 use the notatifh — 64,--- , ¢, — 60, } to specify realisa-
tions. However, this notation is not defined anywhere in tlediriition for infinite
maps like realisations — [4.2] only introduces it for finit@ps.

This is just a minor oversight, the intended meaning is olwio

e * More seriously, both rules lack side conditions to ensunesistent arities for do-
main and range of the constructed realisation. Becausan hence fail to be well-
formed [5.2], the applicatiop(E) is not well-defined. The necessary side conditions
are:

t € TyNamé® (64)

t; € TyNamé® i =1..n (78)
Fixed by change described in Appendix B.2.

e *The presence of functors provides a form of explicit polyptdasm which interferes
with principal typing in the core language. Consider théofelng example [DBO7]:

functor F(type t) =
struct val id = (fn x => x) (fn x => x) end
structure A = F(type t = int)
structure B = F(type t = bool)
val a = Aid 3
val b = B.id true

The declaration ofd cannot be polymorphic, due to the value restriction. Néagert
less, assigning ittype -> t  would make the program valid. However, finding this
type would require the type inference algorithm to skolexailt undetermined types
in a functor body’s result signature over the types appearirits argument signa-
ture, and then perform a form of higher-order unificationn&€uently, almost all
existing implementations reject the progra.

18|nterestingly, MLton [CFJWO5] accepts the program, thatkits defunctorization approach. However, it
likewise accepts similar programs that aat valid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end
structure A = F()

structure B = F()

val a = Aid 3

val b = B.id true
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HaMLet ignores this problem, rejecting the program due tailaife unifying types
int andbool .

¢ *The side conditions on free type variables in rules 87 and@8ot have the effect
that obviously was intended, see A.12.

HaMLet not only tests for free type variables, but also fodetermined types (see
5.6). This behaviour is not strictly conforming to tf@mal rules of the Defini-
tion (which define a more liberal regime), but meets the adhtantion explicitly
stated in [G.8] and is consistent with HaMLet's goal to ale@ayplement the most
restrictive reading.

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

e The APPLY function has no access to program state. This stgtet library prim-
itives may not be stateful, implying that a lot of interegtiorimitives could not be
added to the language without extending the Definitionfifge3].

On the other hand, any non-trivial library type (e.g. array$/O streams) requires
extension of the definition of values or state anyway (andalityutypes — consider
array ). The Definition should probably contain a comment in thigarel.

HaMLet implements stateful library types by either mapptimgm to references in
the target language (e.g. arrays) or by maintaining the ssarg state outside the
semantic objects (see 8.4).

A.6 Issues in Chapter 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

¢ * In the definition of the operato}: Env x Int — Env, the triple {(SI, TE, VI)"
should read (ST, TI, VI)".

Fixed by change given in Appendix B.2.
Section 7.3 (Inference Rules):

e * Rule 182 contains a typo: both occurrencedBfhave to be replaced hy.
Fixed by change described in Appendix B.2.

e *The rules for toplevel declarations are wrong: in the casins, the result right of
the arrow must b’ (+B"') instead ofB’ (') in all three rules.
Fixed by change described in Appendix B.2.

A.7 Issues in Chapter 8 (Programs)
e (*) The comment to rule 187 states that a failing elaboratias no effect. However,

it is not clear what infix status is in scope after a failingogleation of a program that
contains top-level infix directives.

HaMLet keeps the updated infix status.
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e * There is another syntactic ambiguity for programs. A nat¢3.4, Figure 8] re-
stricts the parsing ofopdecs:

“No topdec may contain, as an initial segmentsadec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel seftins unambiguous so
that they always terminate a program. As a consequence @iitsing ambiguities
for declaration sequences (see A.2) the rule is not suffickeowever: a sequence
decy; deco; Of core level declarations with a terminating semicolon barfirst
reduced todec; , then tostrdec; , and finally program. This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with exgo program execution.

Fixed by change described in Appendix B.1.

¢ (*) The negative premise in rule 187 has unfortunate imgitiees: interpreted strictly
it precludes any conforming implementation from providary sort of conservative
semantic extension to the language. Any extension thavaltteclarations to elab-
orate that would be illegal according to the Definition (eegnsider polymorphic
records) can be observed through this rule and change ttzeibeih of consecutive
declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that tase
program will printyes , otherwiseno.

This probably indicates that formalising an interactivelével is not worth the trou-
ble.

A.8 Issues in Appendix A (Derived Forms)

Text:

e (*) The paragraph explaining rewriting of thfealbind form rules out mixtures of
fvalbinds and ordinaryvalbinds. However, the way it is formulated it does not
rule out all combinations. It should rather say that all eahindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

HaMLet assumes this meaning.
Figure 15 (Derived forms of Expressions):

e The Definition is somewhat inaccurate about several of thvetk forms of ex-
pressions and patterns. It does not make a proper distinbgbwveen atomic and
non-atomic phrases. Some of the equivalent forms are nbeisame syntactic class
[MT91, K93].

We assume the necessary parentheses in the equivalent forms

Figure 17 (Derived forms of Function-value Bindings and Reations):

40



e The syntax offvalbinds as given in the Definition enforces that all type annotation
are syntactically equal, if given. This is unnecessaristrietive and almost impos-
sible to implement [K93].

Fixed by change described in Appendix B.1.
Figure 19 (Derived forms of Specifications and SignaturerEsgions):

e *The derived form that allows several definitional type dfieations to be connected
via and is defined in a way that makes its scoping rules inconsistéhtail other
occurences oénd in the language. In the example

type t = int
signature S =
sig
type t = bool
and u =t
end

typeu will be equal tobool , notint like in equivalent declarations.

Made consistent with the rest of the language by changeitblesdn Appendix B.6.

e * The Definition defines the phrase
spec sharing  longstrid, = --- = longstrid,,

as a derived form. However, this form technically is not aivaé&t form, since it
cannot be rewritten in a purely syntactic manner — its exijpandepends on the
static environment.

HaMLet thus treats this form as part of the bare grammar. timbately, it is sur-

prisingly difficult to formulate a proper inference rule debing the intended static
semantics of structure sharing constraints — probably étieeoreasons why it has
been laxly defined as a derived form in the first place. The émgintation simply

collects all expanded type equations and calculates abgriitaalisation incremen-
tally. At least there is no need for a corresponding rule lier dynamic semantics,
since sharing qualifications are omitted at that point.

e * The derived form for type realisations connecteddnd is not only completely
redundant and alien to the rest of the languag®l(is nowhere else followed by
a second reserved word), it also is extremely tedious taepaisce this part of the
grammar is LALR(2) as it stands. It can be turned into LALR¢h)y by a bunch
of really heavy transformations. Consequently, almost k& System seems to be
implementing it correctly. Even worse, several systemdemgnt it in a way that
leads to rejection of progranm®t using the derived form. For example,

signature A = S where type t = u where type v = w

or

1
c

signature A = S where type t
and B=T

Removed by change described in Appendix B.7.
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A9

Text:

* For complex type declarations thathtype  derived form is important. With the
introduction of equational type specifications in SML'9Tbuld have been natural
to introduce an equivalent derived form for signaturessTéian oversight that most
SML systems ‘correct’.

Added by the extension described in Appendix B.22.

Issues in Appendix B (Full Grammar)

(*) The first sentence is not true since there is a derived formprograms [Appendix
A, Figure 18]. Moreover, it is not obvious why the appendifraas from also
providing a full version of the module and program grammacohtains quite a lot
of derived forms as well, and the section title leads theeetalexpect it.

First issue fixed by change described in Appendix B.1.

The Definition gives precedence rules for disambiguatingressions, stating that
“the use of precedence does not increase the class of adlaiphrases”. However,
the rules are not sufficient to disambiguate all possiblagés. Moreover, for some
phrases they actually rule oahypossible parse, e.g.

a andalso if b then c else d orelse e
has no valid parse according to these rules. So the aboesrsat is rather incon-
sistent [K93].
Fixed by change described in Appendix B.1.
There is no comment on how to deal with the most annoying prokih the full

grammar, the infinite look-ahead required to parse comioinabf function clauses
andcase expressions, like in:

fun f x = case el of z => e2
| fy=e3

According to the grammar this ought to be legal. Howeversiparthis would ei-

ther require horrendous grammar transformations, baalitrg, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SMplémentation being
able to parse the above fragment.

Ruled out by change described in Appendix B.1.

Figure 21 (Grammar: Declarations and Bindings):

The syntax given forfvalbind is incomplete as pointed out by the corresponding
note. This is not really a bug but annoyingly sloppy enougtatase some divergence
among implementations.

Fixed by change described in Appendix B.1.

Figure 22 (Grammar: Patterns):

e While there are additional non-terminaigfexp andappezp to disambiguate parsing

of infix expressions, there is no such disambiguation faigpas. This implies that a
pattern likex:t ++ y can be parsed if+ is an appropriate infix constructor [K96].
Of course, this would result in heavy grammar conflicts.

Disambiguated by change described in Appendix B.1.
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A.10 Issues in Appendix D (The Initial Dynamic Basis)

e (*) The Definition does specify the minimal initial basis udloes not specify what
the initial state has to contain. Of course, it should attleastain the exception
namedMatch andBind .

Fixed by change described in Appendix B.2.

e The Definition does nowhere demand that the basis a libraiges has to be con-
sistent in any way. Nor does it require consistency betweiiali basis and initial
state.

The HaMLet library is consistent, of course.

A.11 Issues in Appendix E (Overloading)

Overloading is the most hand-waving part of the otherwisaghntly accurate Definition.
Due to the lack of formalism and specific rules, overloadegpiution does not work con-
sistently among SML systems. For example, type-checkint®following declaration
does not succeed on all systems:

fun f(x,y) = (x + y)ly

The existence of overloading destroys an important prgpsrthe language, namely the
independence of static and dynamic semantics, as is assmmbd main body of the
Definition. For example, the expressions

2 = 100 and 2 = 100 : Int8.int

will have very different dynamic behaviour, although theyyodiffer in an added type
annotation.

The Definition defines the overloading mechanism by enurimgratl overloaded entities
the library provides. This is rather unfortunate. It woutddesirable if the rules would be a
bit more generic, avoiding hardcoding overloading classekthe set of overloaded library
identifiers on one hand, and allowing libraries to extend gyistematic ways on the other.
More generic rules could also serve as a better guidancenfudementing overloading (see
5.8 for a suitable approach).

The canonical way to deal with overloaded constants ancevidentifiers is to uniform-
ingly assign an extended notion of type scheme that allovastification to be constrained
by an overloading class. Constraints would have to be vdfiénstantiation. This is more
or less what has been implemented in HaMLet (see 5.8 for aldaiapproach).

There are some more specific issues as well:

e * The Definition forgets to demand that any extension of adasgerloading class is
consistent with respect to equality.

Fixed by change described in Appendix B.2.
Our formalisation includes such a restriction (see 5.8).

e * That the Definition specifies anpperbound on the context a compiler may con-
sider to resolve overloading is quite odd — of course, imgletations cannot be
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prohibited to conservatively extend the language by makiioge programs elabo-
rate. On the other hand, much more important would have keepecify alower
bound on what implementatiofsve tosupport — it is clearly not feasible to force
the programmer to annotate every individual occurence ahvamnloaded identifier
or special constant.

Fixed by change described in Appendix B.2.
Figure 27 (Overloaded Identifiers):

e *Thetypes for the comparison operaters, <=, and>= must correctly baumtxt x
numtxt — bool.

Fixed by change described in Appendix B.2.

A.12 Issues in Appendix G (What's New?)

Section G.8 (Principal Environments):

* At the end of the section the authors explain that the intéttie restrictions on free type
variables at the toplevel (side-conditions in rules 87 adfb37]) is to avoid reporting free
type variables to the user. However, judging from the reshefparagraph, this reasoning
confuses two notions of type variable: type variables asasgimobjects, as appearing in
the formal rules of the Definition, and the yet undetermingaes during Hindley/Milner
type inference, which are also represented by type vadabléowever, both kinds are
variables on completely different levels: the former arg pathe formal framework of the
Definition, while the latter are an ‘implementation aspéle#t lies outside the scope of the
Definition’s formalism. Let us distinguish both by refemgito the former asemantic type
variablesand to the latter asndetermined typeghe HaMLet implementation makes the
same distinction, in order to avoid exactly this confusikeg 5.2).

The primary purpose of the aforementioned restrictionsasly is to avoid reportingn-
determined typew the user. However, they fail to achieve that. In fact, impossible to
enforce such behaviour within the formal framework of thdiligon, since it essentially
would require formalising type inference (the current fatism has no notion of undeter-
mined type). Consequently, the comment in Section G.8 atheupossibility of relaxing
the restrictions by substituting arbitrary monotypes edsthe point as well.

In fact, the formal rules of the Definition actually imply tleeact opposite, namely that
an implementation mageverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reaserpéicitly given in the same
section: “implementations should not reject programs forclv successful elaboration is
possible”. Consider the following program:

val r = ref nil;
r := [truel;

Rule 2 has to non-deterministically choose some tyfe st for the occurrence aifil

The choice ofr is not determined by the declaration itself: it is not useat, can it be
generalised, due to the value restriction. Howebegl is a perfectly valid choice for
7, and this choice will allow the entire program to elabora&® according to the quote
above, an implementation has to make exactly that choicev, Ndoth declarations are
entered separately into an interactive toplevel the impletation obviously has to defer
commitment to that choice until it has actually seen the sdateclaration. Consequently,
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it can do nothing else but reporting an undetermined typé&®first declaration. The only
effect the side conditions in rules 87 and 89 have on thisasttte types committed to later
may not contain free semantic type variables — but consigehie way such variables are
introduced during type inference (mainly by generaliggtithe only possibility for this is
through a toplevel exception declaration containing a tygréable!’

There are two possibilities of dealing with this matter: tdke the formal rules as they are
and ignore the comment in the appendix, or (2) view the contmean informal “further
restriction” and fix its actual formulation to match the atws$ intent. Since version 1.1.1
of HaMLet, we implement the intended meaning and disallodeatarmined types on the
toplevel, although this technically is a violation of therfal rules.

B Language Changes

In this appendix we describe all modifications and exterssitonthe Definition that are
implemented in this version of HaMLet. Most of them have athg been proposed for
Successor ML and are taken from the discussion Wiki [SMLO%jese can be put in two
groups:

Fixes and simplifications:

e Syntax fixes

Semantic fixes

Monomorphic non-exhaustive bindings

Simplified recursive value bindings

Abstype as derived form

Fixed manifest type specifications

Abolish sequenced type realisations
Extensions:

e Line comments

e Extended literal syntax
e Record punning

e Record extension

e Record update

e Conjunctive patterns

¢ Disjunctive patterns

e Nested matches

e Pattern guards

e Transformation patterns

17(*) Note that this observation gives rise to the question tiviethe claim about the existence of principal
environments in Section 4.12 of the SML'90 Definition [MTH@as valid in the first place. It most likely was
not: a declaration like the one ofhas no principal environment that would be expressibleiwithe formalism
of the Definition, despite allowing different choices ofdrenperative type variables. The reasoning that this
relaxation was sufficient to regain principality is basedtom same mix-up of semantic type variables and unde-
termined types as above. The relaxation does not solve ti¥epn with expansive declarations, since semantic
type variables are rather unrelated to it — choosing a secngpe variable for an undetermined type is no more
principal than choosing any particular monotype.

45



e Optional bars and semicolons
e Optional else branch

e Views

e Do declarations

e Withtype in signatures

e Higher-order functors

¢ Nested signatures

e Local modules

e First-class modules

Examples demonstrating some of the more involved exteasiodetail can be found in
thedoc/examples directory of the distribution.

B.1 Syntax Fixes

The syntax specification in the Definition is somewhat slogsving a number of ambi-
guities and minor issues. We provide the details to resbleedlevant ones. Mostly, these
just blesses existing practice in SML implementations. Sggendix A for a motivation
and detailed discussion of the issues.

Changes to the Definition
Section 2.2 (Special constants):

¢ In the paragraph defining formatting characters, add ageniaturn and vertical tab
to the list of non-printable characters included.

Section 2.6 (Infixed operators):

e In the 1st paragraph, extend the sentence starting with OFthe required use of
op...” by inserting the following before the semicolon:

[...] in an expression or pattern;
Section 3.4 (Grammar for Modules):

e In Figure 6, add the following note:

Restriction: A declaratiorec appearing in a structure declaration may
not be a sequential or local declaration.

e In Figure 7, add the following note:

Restriction: In a sequential specificatiopec, may not contain a sharing
specification.

¢ In Figure 8, extend the restriction with the following semte:

Furthermore, thetrdec may not be a sequential declaratigndec; (; ) strdecs.

Section 8 (Programs):
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e Extend the comment on rule 187:

[...], except for possible fixity directives contained i tfopdec.

Appendix A (Derived Forms):

e In Figure 17, add respective indicésm to the ty annotations appearing on both
sides of the definition of the function value binding form.

Appendix B (Full Grammar):

e Extend the first sentence as follows:
[...], together with the derived form of Figure 18 in Appexéi.
¢ Add the following to the third paragraph:

The same applies to patterns, where the extra classes App&amfPat
are introduced, yielding

AtPatC AppPatc InfPatc Pat

¢ Inthe third bullet, replace the paragraph starting with té&particularly that...” with:

Note that the use of precedence does not prevent a phrase ishan
instance of a form with higher precedence, having a conetituvhich
is an instance of a form with lower precendence, as long asdhe be
resolved unambiguously. Thus for example

if ... then while ... do ... else while ... do ...

is quite admissible and parses as

if ... then (while ... do ...) else (while ... do ..)

However, precedence rules out phrases which cannot be higaated
without violating precedence, such as

a andalso if b then ¢ else d orelse e

This change should allow the use of simple precedence ralpsogided by Yacc to
disambiguate parsing.

e In Figure 21, replace the production fbuibind with the following productions:

fvalbind = fmatch (and fvalbind)

fmatch == fmrule {| fmatch)

fmrule = fpat {: ty) = exp

fpat = (op)vid atpat, --- atpat, n>1

(‘atpat, vid atpaty) atpats --- atpat, n ; 3
atpat, vid atpat,

Furthermore, add the following note:
Restriction: The expression&p;, ..., exp,,_; in a fvalbind may not

terminate in a match.
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e In Figure 22, replace the productions for pat with the follogy

apppat = atpat

(op)longuid atpat constructed value
infpat = apppat

infpat, vid infpat, constructed value (infix)
pat = infpat

pat : ty typed

(opuid (: ty) as pat layered

Compatibility

These are merely fixes, they do not change the language besswlding ambiguities. The
only exception is the restriction on nesting matches foa@bind, which is what all SML
systems implement anyway.

B.2 Semantic Fixes

The Definition contains a number of bugs in inference rulesather parts of the formal
semantics. Some of them undermine soundness, some aréjugipos. The changes we
propose merely plug these holes and bless existing prattieg should not have any fur-
ther effect on the defined language. See Appendix A for miitimand detailed discussion
of the issues.

Note: Along with the changes described in the following e, the only known (non-
pedantic) issue remaining is the lack of a requirement foe sharing to be consistent with
respect to the involved constructor environments, whictkeaaxhaustiveness and irre-
dundancy of patterns an ill-defined concept. No straightfod fix seems to exist within
the Definition’s formal framework, short of introducing aobhl consistency requirement
similar to SML'90.

Changes to the Definition

Section 2.9 (Syntactic Restrictions):

e Add the following bullet:

Any tyvar occurring on the right side of@pbind or datbind of the form
“tyvarseq tycon = ...” MUSt OCCUr intyvarseq.

Section 4.10 (Inference Rules):
e Add a closing parenthesis to the conclusion of Rule 28.
Section 4.11 (Further Restrictions):
¢ Inthe first bullet, in the first sentence change “the prograntext” to

[...] the program context consisting of the smallest erinpdeclaration
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Section 5.7 (Inference Rules):

¢ Add the following side condition to rule 64:

t € TyNamé®

¢ Add the following side condition to rule 78:

t; € TyNamé® i =1.n
Section 7.2 (Compound Objects):

¢ Inthe definition of the operatdr EnvxInt — Env, replace the triple('SI, TE, VI)"
with “(SI, TI, VI)".

Section 7.3 (Inference Rules):

e Inrule 182, replace both occurenceddfwith B.

e In the conclusion of rules 184-186, replaBg’) with B’ (+B).
Appendix D (The Initial Dynamic Basis):

e Add the following paragraph:

Furthermore, the initial state is defined by

so = ({}, {Match,Bind})
Appendix E (Overloading):

¢ Inthe last paragraph of the introduction, change the lagesee to:

For this purpose, the surrounding text is the smallest sidodeclara-
tion.

Appendix E.1 (Overloaded special constants):

¢ Before the sentence starting with “Special constantmsgrt the following sentence:

The class Real may not contain type names that admit equality
Appendix E.2 (Overloaded value identifiers):

e In Figure 27, change the typesof>, <=, >=to:

numtxt * numtxt -> bool

Compatibility

These are merely fixes, they do not change the language belayging holes.
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B.3 Monomorphic Non-exhaustive Bindings

In order maintain to soundness of polymorphic typing in thespnce of effects, polymor-
phism is restricted to non-expansive bindings. Non-exiwansss is a syntactic condition
on expressions that is sufficient to guarantee absenceasftefincluding exceptions) dur-
ing their evaluation.

However, an exception may still occur if the pattern in thadiig is not exhaustive.
That behaviour is somewhat inconsistent, and more imptytfamnecessarily complicates
typed compilation schemes, like used by several SML compiee Appendix A.3).

Non-exhaustive patterns are ruled out in polymorphic liigdi That is, pathological pro-
grams like

val X:xs 1

but also

[NONE, NONE]

val Xx::xs

are no longer valid. Such declarations are rather useleds;an easily be rewritten.

Changes to the Definition
Section 4.8 (Non-expansive Expressions):

¢ Change the rules for obtainirg® to:

o) tyvarsr \ tyvarsC, if pat exhaustive andzp non-expansive ii’;
10, otherwise.

e Add the following sentence:

A pattern isexhaustivéf it matches all values (of the right type, cf. Sec-
tion 4.11).

Compatibility

This is not a conservative change, but very unlikely to braak practical program. It is
already implemented in SML/NJ and TILT.

B.4 Simplified Recursive Value Bindings

The current syntax for recursive value declarations allovesy phrases that are either
useless or confusing. For example,

val rec rec rec f = fn x => x
val f = fn x => x and rec g = fn x => f X

Note that in the latter declaration, the right-hand sidg afoes not refer to thé of the
same declaration.
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The syntax can be simplified by only allowingc directly after theval keyword.

Furthermore, the Definition currently allows recursivenatleclarations to overwrite iden-
tifier status. This is inconsistent with the rules of the dyimsemantics, and hence ar-
guably a bug (see Appendix A.5). It also is counter-inteitand a nuisance to implement
(no implementation does it "correctly”). This possibilityremoved. The change is sim-
plified by reversing the order of threc keyword and an eventual type variable sequence
in a value declaration.

Changes to the Definition
Section 2.8 (Grammar):

e In Figure 4, replace the production for value declaratioits:w

[dec ::=] val (rec) tyvarseq valbind value declaration
e Remove the second production farlbind.
Section 2.9 (Syntactic Restrictions):

¢ Inthe 4th bullet, replace the start of the sentence with:

For each value bindingat = exp in a value declaration witrec , [...]
Section 4.10 (Inference Rules):

e Change rule 15 to:

U = tyvargtyvarseq) (tynamesVE C T of C)

(Vvid € Dom VE, vid ¢ Dom C or is of C(vid) = v)

C + U(+VE) + valbind = VE VE' = Closc vaipina VE UntyvarsVE' =0
C - val (rec) tyvarseq valbind = VE'in Env

(15)

e Remove rule 26. Add the respective comment to the commentleri s, but replace
the last two sentences with the following:

The side condition on the value identifiersinensures that’ + VE does
not overwrite identifier status in the recursive case. Fange, the pro-
gram‘datatype t = f; val rec f = fn x => x; "is notle-
gal.

Section 6.6 (Function Closure):

¢ Inthe second paragraph, replace “recursive value bindihtpe formrec wvalbind”
with “recursive value declarations of the foral rec  wvalbind”.

Section 6.7 (Inference Rules):

e Change rule 114 to:

E + valbind = VE
E + val (rec) tyvarseq valbind = (Re¢ VE in Env

(114)
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e Remove rule 126.
Appendix A (Derived Forms):

¢ Inthe third paragraph, replacedl tyvarseqrec wvalbind” with“valrec tyvarseq

valbind”.
e In Figure 17, the box for declarations, replace the tramséat form of function dec-
larations with:
| fun tyvarseq fvalbind | val rec tyvarseq fvalbind |

Appendix B (Full Grammar):

e In Figure 21, replace the production for value declaratisitis:

[dec ::=] val (rec) tyvarseq valbind value declaration

e Remove the second production farlbind.

Compatibility

The change intentionally rules out some previously legagpams and reverses the order
in which therec keyword and the optional type variable sequence may appeavalue
declaration. However, at least one major SML implementatioamely SML/NJ - always
implemented the revised syntax, so the change is unlikedjfémt existing programs.

No current implementation follows the Definition with resp& overwriting of identifier
status (although they deviate in different ways). Consetiyethis part of the change is
even less likely to affect existing programs.

B.5 Abstype as Derived Form

Abstype is a leftover from SML's pre-module days and is nollyfsubsumed by structures
and sealing. Besides being redundant, the current spdigficaf abstype is incoherent
with respect to equality (see Appendix A.3), an issue foraluhio obvious fix exists.

Although abstype is practically unused in modern code, tithca be removed without
breaking backwards compatibility. Turning it into a dedvierm avoids this problem,
while still simplifying the bare language and resolving tdaoderence issues.

Changes to the Definition
Section 2.8 (Grammar):
e In Figure 4, remove the production fabstype .
Section 4.9 (Type Structures and Type Environments):
e Remove the last paragraph.

Section 4.10 (Inference Rules):
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e Remove Rule 19 and the corresponding comments.
Section 6.7 (Inference Rules):

e Remove Rule 118.
Appendix A (Dervied Forms):

e In Figure 17, add the following rewriting rule before thestitig one forabstype :

abstype datbind with dec end local datatype datbind in
type typbind’ ; dec
end

and extend the note to
(see note in text concernintytbind’ andtypbind’)
¢ Inthe bullet list in the text referring to Figure 17, add tledwing item:

In the abstype formiypbind’ is obtained fromdatbind by replacing all
right-hand sides by the corresponding left-hand side iyg@arseq tycon
= conbind (| datbind)” becomes tyvarseq tycon = tyvarseq tycon (|
typbind’)”

Compatibility

This is a conservative change. The new specification istbfigmore permissive than the
original static semantics @bstype , because the equality attribute of the defined type is
no longer hidden. However, this is precisely what is negggsafix the aforementioned
coherence issues.

While the change may marginally affect the abstraction ertigs of code still using ab-
stype, it can be argued that the obsolete naturabstype makes this neglectable in
practice.

The change simplifies implementations, because it enalisdgs to isolate their treatment
of abstype in the parser.

B.6 Fixed Manifest Type Specifications

For technical reasons, manifest type specifications areatkéis a derived form. However,
the definition of this form results in scoping rules that atredds with the rest of the

language (see Appendix A.8). The definition of the derivedhfés changed to eliminate

the singularity.

Changes to the Definition
Appendix A (Derived Forms):

¢ In Figure 19, replace the first two rules with the followingeon
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type tyvarseq, tycon, = ty; | include
and ... sig type tyvarseq, tycon,
.. and ...
and tyvarseq,, tycon,, = ty,, e
and tyvarseq,, tycon,,
end where type tyvarseq, tycon; = ty,
where type ...

where type tyvarseq,, tycon, = ty,

Compatibility

This change breaks programs relying on the current scopileg.r However, since these
rules are rather counter-intuitive, not implemented bySML implementations (Moscow
ML and Poly/ML deviate), and they make usiagd in type specifications pointless any-
way, we expect those programs to be rare. It is trivial to atlegm to the change.

Only few SML implementations actually implement manifegid specifications as a de-
rived form. The change hence should be a simplification ferrttajority of implementa-
tions, as it removes an annoying singularity in the languagges.

B.7 Abolish Sequenced Type Realisations

The SML syntax allows several type constraints on a sigedtube connected witand ,
asin

S where type t1
and type t2

tyl
ty2

This syntax is hard to parse and only few implementationkhdyato do it correctly, it is
at odds with the rest of the language, and it is useless, beoatiting anothewhere
instead ofand has the very same effect (see Appendix A.8). The syntax doeseem to
be widely used either, it is hence abolished.

Changes to the Definition

Appendix A (Derived Forms):

e In Figure 19, remove the box for signature expressions.

Compatibility

The change breaks all programs using the derived form. Audgpiffected programs is
trivial.

B.8 Line Comments

Under most circumstances, line comments are more convdnigmite and to layout than
block comments. SML lacks line comments.
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The comment markdr+) introduces a comment that stretches to the end of the line:

fun f x = bla ( *) my function
fun g x = blo (  *) my second function

Line comments properly nest into conventional block comisieso the following is one
single comment, even though the inner line comment contaglgsing comment bracket:

(*
fun f x = bla ( *) my function *)

*)
Changes to the Definition

Section 2.3 (Comments):

o Reformulate whole section as follows:

A comments eitherline commenbr ablock commentA line comment

is any character sequence between the comment deli(riferand the
following end of line. A block comment is any character satpeewithin
comment bracketé* * ) in which other comments are properly nested.
No space is allowed between the characters that make up a @otmm
bracket(*) or (* or=). An unmatched * should be detected by the
compiler.

Compatibility

This extension breaks SML programs containing block contetbat have a closing paren-
thesis) as the first character after the opening bracket. Such cotsraemexpected to be
extremely rare in existing code, and can easily be modified.

B.9 Extended Literal Syntax

SML currently provides no way to group digits in numericiébs, which makes long num-
bers hard to read. Underscores are allowed within litealgroup digits and increase
readability. For example,

val pi = 3.141_592 653 596
val billion = 1_000_000_000
val nibbles = Owx_f300_4588

Moreover, SML lacks a notation for binary literals and heremguires fallback to hexadec-
imal. A C-style notation with a "0Ob” prefix enables writingrairy literals:

val ten = 0b1010
val bits = Owb1101_0010 1111 0010

Note that binary literals particularly benefit from the dito group digits.

Last, in SML it is a pointless hurdle to remember the ordehefdifferent parts in literal
prefixes. The order of the different parts in literal prefilemade arbitrary, allowin@xw
andObw as synonyms fo@wx andOwb.
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Changes to the Definition
Section 2.2 (Special constants):

e Extend the first sentence as follows:

[...] and the underscore)(that neither starts nor ends with an under-
score.

e Extend the second sentence:
[...] and the underscore that does not end with an underscore
¢ Add the following sentence to the end of the paragraph:

An integer constant (in binary notation) is an optional rngasymbol
followed by a non-empty sequence of binary digltsl and the under-
score that does not end with an underscore.

e Extend the first sentence of the second paragraph as follows:
[...] and the underscore not ending with an underscore.
¢ Inthe second sentence, replace0vgx” with “is Owx or Oxw”.
e Extend the second sentence as follows:
[...] and the underscore not ending with an underscore.
e After the second sentence, add:

A word constant (in binary notation) Bwb or Obw followed by a non-
empty sequence of binary digils1 and the underscore not ending with
an underscore.

e Modify the next sentence by replacing “and one or more delaitigits” with:

and a sequence of one or more decimal digits and undersétratesan-
tains at least one digit

e Add to the the list of examples in the next sentence:
3.141 592 653 3. _.678_098__E20
e Add to the list of non-examples:

1.5 1. E2

Compatibility

This extension is not conservative, as it may change the imgamf programs that contain
literals and wildcards without separating spaces, as in

fun 34 =0

or, likewise, programs that put a literal next to an identife, b, wb, or bw. However,
such programs are highly unlikely to exist in practice.

The scanning functions from the Basis library should bereke to reflect the change by
supporting underscores in their input.
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B.10 Record Punning

SML allows record patterns of the forfma=a, b=b } to be abbreviated conveniently as
{a, b } —sometimes called “punning”. The same abbreviation is natently provided
for record expressions. Such an abbreviation can be equ@ilyenient, e.g. for construct-
ing records from local variables:

fun circle(x,y,r) =

let
val x = ref x and y = ref y and r = ref r
fun pos() = (Ix,ly)
fun radius() = Ir
fun move(dx,dy) = (x := Ix+dx, y = ly+dy)
fun scale s = (r = Ir *S)

in
{pos, radius, move, scale }

end

Changes to the Definition
Appendix A (Derived Forms):

e In Figure 15, add the following box:

Expression Rowsezprow
| vid (: ty) ( esprow) | wvid =vid ( ty) (, exprow) ]

Appendix B (Full Grammar):
e In Figure 20, add the following production:
[ezprow ::=] vid (: ty) {, exprow) label as variable
Compatibility

This is a conservative extension.

B.11 Record Extension

When using records, it is sometimes necessary to conseuctectords from existing ones,
by adding only a small number of fields. Similarly, it can bewenient to be able to
construct a new record by removing a small number of fieldsredaly, SML provides no
convenient way of expressing this.

Row capture Row capture is supported by raising the status of the edlipsi in record
patterns to make it analogous to a normal field name. Thesalligfers to all the other
fields that have not been named explicitly.

Example:

val  {d=x, p=y, ..=r P =e
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This value binding takes the result of expresstomvhich must be some record that has at
least fieldsd andp, and takes it apart. As usual, it binds the values ofttlaadp fields to

x andy, respectively. But in addition it also binds r to a freshiynstructed record value
that consists of all the fields ef exceptd andp.

Example:

val  {d=x, p=y, ..=r } o=
{a=1, ¢=3.0, d=nil, f=[1], p="hello", z=NONE }

bindsx tonil ,yto"hello" ,andr to{a=1, ¢=3.0, f=[1], z=NONE 1.

Record extension Functional record extension is supported by allowing e#igin record
expressions. This restores a sense of “perfect symmetnylides record patterns and
record expressions.

Example:
{d=el, p=e2, ...=e3 }

Heree3 is required to be of record type without fieldsandp. The result of the above
expression is a record which consists of all the fields thatvpeesent in the result &3
as well as a fieldl whose type and value are determinededyand a fieldp whose type
and value are determined bg.

Example:
let val r = {a=1, c¢=3.0, f=[1], z=NONE }
in {d=nil, p="hello", ...=r }
end

This expression yields

{a=1, ¢=3.0, d=nil, f=[1], p="hello", z=NONE }

Record type extension Like record values, record types can be constructed by sixten

Example:
type 'a t = {a : 'a, b : bool }
type 'au = {c:char,d:’alst .. :'at }

Again, ellipses denote the type that is to be extended. It g record type. The result
is a record type which consists of the combined fields. Thengkayields

type 'au = {a:’a b : bool, c: char, d: 'a list }

Changes to the Definition

Section 2.8 (Grammar):
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¢ In Figure 3, change the production for pattern row wildcaods
[patrow ::=] .= pat ellipses
Add the following production for type-expression rows:

[tyrow ::=] oty ellipses

¢ In Figure 4, add the following production for expression sow

[ezprow ::=] .= exp ellipses
Section 2.9 (Syntactic Restrictions):
e Remove the first bullet ruling out repeated labels.

Section 4.2 (Compound Objects):

¢ Add the following definition after the paragraph defining rfizdtion of maps:

The restriction of a map f by a set S, writt¢n, ., is defined as

f\S={x f(z);z € Domf\ 5}
Section 4.7 (Non-expansive Expressions):

¢ Add the following production for non-expansive expresgions:

[nezprow ::=] .= nexp
Section 4.10 (Inference Rules):

e Change Rule 6 to:

Chemp=rT1 (C F exprow = o lab ¢ Dom p)

C'tlab = exp (, exprow) = {lab — 7}(+0)

e Add the following rule:
Ct+ exp = oinType
Ck..= exp=yp

e Change Rules 38 and 39 as follows:

CF pat = (VE, pin Type)
Ct..= pat= (VE, o)

CF pat = (VE,T)
(C F patrow = (VE', o) Dom VE N Dom VE' = ()

(6)

(6a)

(38)

lab ¢ Dom p)

C & lab = pat {, patrow) = (VE{(+VE"), {lab — 7}{+0))

Remove the comment regarding Rule 39.
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e Change Rule 49 to:
Chty=r1 (C'F tyrow = o lab ¢ Dom o)

4
CFElab: ty(, tyrow) = {lab+— 7}{+0) (49)
Remove the respective comment.
e Add the following rule: .
CF ty = pinType (49a)

Ck..:. ty=op
Section 4.11 (Further Restrictions):

e Change the first item to:

For each occurence of a record expression containing efljpse. of

the form{labi=exp,, ..., labpm=exp,,, ...= exp,} the program con-
text must determine uniquely the domaiiab, . . ., lab,, } of its row type,
wherem < n; thus, the context must determine the laléi®.,, 11, . . ., lab,, }

of the fields ofexp,,. Likewise for record patterns containing ellipses. For
these purposes, explicit type constraints may be needed.

Section 6.7 (Inference Rules):

e Add the following rule:
E+ exp = rinVal

Er..= ep=r (952)
e Change Rule 140 to:
E,rinValt pat = VE/FAIL (140)
E,;r+..= pat = VE/FAIL
e Change Rule 142 to:
E,r(lab) - pat = VE (E,r\ {lab} + patrow = VE'/FAIL) (142)

E,r lab = pat {, patrow) = VE(+VE'/FAIL)
Appendix A (Derived Forms):

e In Figure 15, add a box for expression rows:

Expression Rowsezprow
| ... = exp, exprow | let val vid = exp in {exprow, ... = vid} end |
(see note in text concerningprow; vid New)

e In Figure 16, extend the box for pattern rows as follows:

(= pat), patrow | patrow, ... (= pat)
(see note in text concerningtrow)

Add a box for type-expression rows:

Type-expression Rowgyrow
| ty, tyrow | tyrow, ... : ty |
(see note in text concerningrow)
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e Add the following paragraph:

Note that the derived forms for ellipses in the middle of egsion rows,
pattern rows or type-expression rows are only valid if thag be trans-
formed to bare syntax. This implies that the remaining roves mot
again contain ellipses.

Appendix B (Full Grammar):

e In Figure 20, add the following production for expressiowso

[ezprow ::=] .= exp{, exprow) ellipses

e In Figure 22, change the production for pattern row wildsaod

[patrow ::=] . (= pat) (, patrow) ellipses

¢ In Figure 23, add the following production for type-expieagows:

[tyrow ::=] vl ty (, tyrow) ellipses

Compatibility

This is a conservative extension. Type inference is not@wgtstraightforward in the given

form, but the issues are only slightly harder than thoseadiyecaused by the existing el-
lipsis mechanism (unresolved row variables become shareeblen different record types
and hence require additional propagation). Type inferexataally becomes simpler in
the presence of SML#-style record polymorphism, but anieffiamplementation of the

dynamic semantics becomes somewhat trickier.

B.12 Record Update

When using records, it is often necessary to construct neards from existing ones, by
changing only a small number of fields. For example, this bappvhen using records to
express functional objects, or in the use of records to emdetault arguments. Currently,
SML provides no convenient way to express this.

Record update is supported with a new derived fdirtexp where exprow}. The key-
wordwhere is chosen such that it plays a similar role as it does in theadige language.
The syntax is designed such that it adheres to the princfdast surprise, is economic,
and convenient.

Changes to the Definition
Appendix A (Derived Forms):

e Extend the box for expressions as follows:

{atexp where (exprow)} | let val {(patrow, ) ...= wid} = atexp
in {{exprow, ) ...= wid} end
(see note in text concerningtrow; vid New)

¢ Add the following paragraph after the second of the section:
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In the derived forms for record updatetrow is obtained fromezprow
by replacing all right-hand sides by wildcards. Note thatrow may not
contain ellipses.

Appendix B (Full Grammar):

e In Figure 20, change the production for record expressions t

[exp ::=] { (atexp where) {exprow) } record

Compatibility

This is a conservative extension. Its specification reliesezord extension, as defined in
the previous section.

B.13 Conjunctive Patterns

SML provides layered patterngd as pat to allow naming a value and simultaneously
matching its structure. The name must be put first. Howewgredding on the situation, it
often is more convenient to put the name last.

Instead of adding a second syntactic form, we propose giziegalayered patterns to
arbitrary conjunctive patterngat, as pat,, which trivially supports both forms, while
also eliminating grammar problems that exist with the aursyntax (it is not LR(1)).

Conjunctive patterns are particularly useful in combioativith nested matches (see Ap-
pendix B.15).

Changes to the Definition
Section 2.8 (Grammar):

e In Figure 3, replace the production for layered patternbwit
[pat =] pat, as paty conjunctive
Section 4.10 (Inference Rules):

e Replace rule 43 with:

Ct paty = (VE1,7) Ct paty = (VE2,T) Dom VE; N Dom VE; =)
C'\ pat, as pat, = (VE, + VEa,T)

(43)
Section 4.11 (Further Restrictions):

e Add the following bullet:

Every pattern of the fornpat, as pat, must be consistent, i.e., there
must exist at least one value that is matched by both patterns

Section 6.7 (Inference Rules):
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e Replace rule 149 with:

E, vk paty = VE, E vt pat, = VEo/FAIL
E, vt pat, as paty = (VE; + VE;3)/FAIL

(149)

e Add the following rule:

E. vt pat; = FAIL
E, vt pat, as pat, = FAIL

(149a)

Appendix A (Derived Forms):
e In Figure 16, remove the box for pattern rows.
Appendix B (Full Grammar):

e In Figure 22, replace the production for layered patterrb:wi

[pat ::=] pat, as paty conjunctive

Compatibility

This is a conservative extension. Pattern matching is notplicated significantly by the
change. It actually simplifies parsing.

B.14 Disjunctive Patterns
Disjunctive patterngat, | pat, avoid the need for repeating the same right-hand side
in a match several times, by allowing to fold multiple leftfd side patterns into one.

In certain cases this can significantly reduce code size efisaw the temptation to write
fragile catch-all clauses to get around the code duplinatio

Note that the syntax immediately supports writing multipleernativespat; | ... |
pat,,, as well as "multiple” matches:

case exp of

A|B|C=1
|D | E => 2

Changes to the Definition
Section 2.8 (Grammar):

e In Figure 3, add the following production:

[pat ::=] paty | pat, disjunctive
Section 2.9 (Syntactic Restrictions):

¢ Add the following comment to the 2nd bullet:
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[...] (identifiers appearing in both branches of a disjuretattern are
bound only once)

Section 4.10 (Inference Rules):

e Add the following rule for patterns:

Ct paty = (VE, 1) Ct paty = (VE, 1)
Ct paty| paty = (VE,T)

(43a)

Section 4.11 (Further Restrictions):

e Initem 2, insert the following sentence after the first one:

Similarly, in a disjunctive pattern of the forput, | pat,, the second
pattern must match some value not matched by the first oneedxer,
either of them must match some value that is not matched bguhe
rounding pattern or match rule.

The wording regarding irredundancy does require compitersarn about cases likia

13 => () ,butnotfn 3] _ => () , although the latter is redundant as well. None of
the compilers currently supporting disjunctive patterasrss to detect the latter, and it is
not obvious how to extend the usual algorithm appropriately

Section 6.7 (Inference Rules):

e Add the following rules for patterns:

E, vk pat, = VE
E, vt paty| paty = VE

(149b)

E, vt pat; = FAIL E vt paty = VE/FAIL
E,vt paty| paty, = VE/FAIL

(149c¢)

Appendix B (Full Grammar):
e In Figure 21, add the following production (as the last oréng least precedence):
[pat =] paty | pat, disjunctive
Compatibility

This is a conservative extension.

B.15 Nested Matches

Patterns may contain nested matching constructs of the form
paty with paty = exp

Such anested matcks matched by first matchingt, , then evaluatingzp, and matching
its result againspat,. Variables bound imat, may occur inexp. The pattern fails when
either pattern does not match. The pattern binds the comisieteof variables occuring in
pat, andpat,. For instance, consider:

64



case xs of [x,y] with SOME z = f(x,y) => x+y+z | _ => 0

If xs is a two-element lisfx,y] such thatf(x,y)  returnsSOME z then the whole
expression evaluates xay+z , otherwise td.

Nested matches are a very general construct. They can bel isefombination with
disjunctive patterns,

case args of x:i_ | (nil with x = 0) => ...

or with guards (see Appendix B.16):

fun escape #' \" =" \\\"™
| escape #' \\" = " \\\\"
| escape (c with n=ord c) if (n < 32) =" W\~ str(chr(n+64))

| escape ¢ = str ¢

The main importance of nested matches, however, is thatftheythe basis to uniformly
define pattern guards (Appendix ext-guards) as well as dsifopn of “views” (Appendix
B.17) as syntactic sugatr.

In patterns with multiple subpatterns, nested matcheseaitht may refer to variables
bound by patterns to the left. See Appendix B.17 for examples

Changes to the Definition

Section 2.8 (Grammar):

e In Figure 3, add the following production for patterns:
[pat ::=] pat, with pat, = exp nested match
and the note

Restriction: The patternpat, in a nested matchat, with pat, = exp
may not itself be a nested match, unless enclosed by pasasthe

¢ In Figure 4, add the following note:

Restriction:The pattermpat in avalbind may not be of the format, with pat, = exp,
unless enclosed by parentheses.

Section 4.7 (Non-expansive Patterns):

e Add the following paragraph:

A pattern isnon-expansivéf it does not contain a nested match of the
form pat, with pat, = exp.

Section 4.8 (Closure):
¢ Add the following additional side condition to the first calgdining Clog: yapina VE (vid):

if pat is non-expansive, ...
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Section 4.10 (Inference Rules):

e Inrule 39, change the premis€“+- patrow = (VE', 0)"to “C + VE F patrow =
(VE', 0)".

e Likewise, in rule 43 (as given in Appendix B.13), change thenpise ‘C + pat, =
(VEq,0)"t0"“C + VE1 F paty = (VE3, 0)".

e Add the following rule for patterns:

Ct paty = (VE, 1) C + VE1 F paty = (VEo,7')
C+ VEiF exp=1 DomVE; NnDomVEy =0

43b
C + pat, with paty = exp = (VE, + VE3,7) (430)

Section 4.11 (Further Restrictions):

e Add the following sentence to the 2nd bullet:

For the purpose of checking exhaustiveness, any contagsddmatch,
pat, with pat, = exp may be assumed to fail, regardless of the form of
exp, exceptifpat, is exhaustive itself. Further note thatp may contain
side effects and hence change the content of referencdsabatlready
been matched.

Section 6.7 (Inference Rules):
e Inrule 142, change the premis&;r - patrow = VE'/FAIL"t0 “ E + VE,r I

patrow = VE'/FAIL".

e Likewise, in rule 43 (as given in Appendix B.13), change thenpise ‘FE,v F
paty, = VE5/FAIL"t0“ E + VE1,v b paty = VEo/FAIL”.

e Add the following rules for patterns:

E,vF pat; = FAIL
E, vt pat, with pat, = exp = FAIL

(149d)

E,vt pat, = VE, E+VE Femp=v  E+ VE,v F paty = VE3/FAIL

E, vt paty with pat, = exp = VE; + VEo/FAIL
(149¢)

Appendix B (Full Grammar):

e In Figure 21, add the following note:

Restriction:The patterrpat in avalbind may not be of the formpat, with pat, = exp,
unless enclosed by parentheses.

¢ Add the following production for patterns:
[pat ::=] pat, with paty, = exp nested match
and the note

Restriction:The patterrpat in avalbind may not be of the formpat, with pat, = exp,
unless enclosed by parentheses.
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Compatibility

Except for the new reserved wofy this is a mostly conservative extension. Due to po-
tential side effects in guard conditions, it renders patt@atching impure. This has a
particular consequence on patterns of the foefn atpat, whose behaviour may depend
on the evaluation of previous nested matches. In particihiarfollowing case expression,

case (i, r) of
(-, ref true) => 1
| 2, ) with _ =1() => 2
| ( -, ref false) => 3

is not an exhaustive match, sincemay befalse , but could get set torue during
evaluation off()

Note that conjunctive patterngdt, as pat,” could also be defined as a derived form for
vtd with pat; = vid with paty = vid

but that would alter the meaning of exhaustiveness.

B.16 Pattern Guards
Pattern guards avoid code duplication by letting pattertthiag fall through if a particular

condition is not met. This is not possible by merely usingditonals on the right-hand
side.

Pattern guards are introduced as a simple derived form &iedenatches:
pat if exp
They are also allowed with function-value bindings:

fun min x y if (x <vy) = X
| min x vy =y

Note that in this case the guard condition needs to be an aterpression, in order to
avoid syntactic ambiguity.

Changes to the Definition
Appendix A (Derived Forms):

e In Figure 16, add the following boxes for pattems:

| pat if exp | pat with true = exp |

e In Figure 17, extend the box for Function-value Bindings Hgliag
(if atexp;)

(with 4 = 1..m) to each equation in the left box, as the last component ofetfte
hand sides, and likewise to each match in the right box, alsgteomponent before
=>,
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Appendix B (Full Grammar):

e In Figure 21, extend the production fénrule (as defined in Appendix B.1) as fol-
lows:

fmrule = fpat (: ty) (if atexp) = exp

e Extend the restriction note added by the change from AppeB\di5 by inserting the
following before “unless enclosed by parentheses”:

[...]0rpat if exp[...]
e In Figure 22, add the following production for patterns:
[pat ::=] pat if exp guard

and extend the restriction note added by the change frommgip®.15 by inserting
the following before “unless enclosed by parentheses”:

[...]orpat if exp|...]

Compatibility

This is a conservative extension over nested matches. loglynconservative over plain
SML (see Appendix B.15).

B.17 Transformation Patterns
The main importance of nested matches, is that they formdlesto uniformly define a
simple form of “poor man’s views” as syntactic sugar, whiok refer to asransformation

patterns

?exp
?exp pat

The first form provides boolean “views”:

fun skipSpace(?isSpace :: cs) = skipSpace cs
| skipSpace cs = cs

The parameterised form allows actual matching. Considé2h for queues:
type 'a queue
val empty : 'a queue

val enqueue : 'a * 'a gueue -> ’a queue
val dequeue : 'a queue -> (‘a * 'a queue) option

With such patterns, queues can be pattern matched as follows

fun process (?dequeue(x,q)) = (digest x; process Q)
| process _ = terminate()
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A transformation may be denoted by an arbitrary expresgiomg rise todynamic trans-
formations Consider a simple set ADT:

type set

val empty : set

val insert : int -> set -> set
val isempty : set -> bool
val has : int -> set -> bool

The following is possible:
fun f n ?isempty

| f n ?(has n)
| fn_ =13

f1 ()
2.0

Or another example, with a parameterised dynamic transfoom
(*) val split : char -> string -> (string * string) option

fun manExp(?(split #'E")(m,e)) = (m,e)
| manExp s = (s,"1")

As a minor subtelety, in patterns with multiple subpattenested matches and transforma-
tion patterns to the right may refer to variables bound byepas to the left. For example,

(x, ?(equals x))
x as ?(notOccurs x)(T(x1,x2))

In particular, this allows the functioh above to be expressed more without a separate
case expression.

Note that, in addition to transformation patterns, HaMBe&lso features proper views
(Appendix B.20). While it is probably undesirable to haverbéeatures in a finalised
language, simultaneous support in an experimental syskenolirs allows evaluating the
merits of each approach.

Changes to the Definition
Section 2.1 (Reserved Words):
e Add ? to the list of reserved words.
Section 2.9 (Syntactic Restrictions):
¢ Add NONEandSOMEHo the list of value identifiers that may not be re-bound.
Appendix A (Derived Forms):

e In Figure 16, add the following boxes for pattems:

?atexp vid with true = atexp vid (vid new)
?atexp atpat vid with SOME atpat = atexp vid | (vid new)
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Appendix B (Full Grammar):

e In Figure 22, add the following production for atomic pati&r

[atpat =] ? atexp transformation

¢ Add the following production for application patterns (agroduced by the changes
described in Appendix B.1):

[apppat :=] ? atexp atpat constructed transformation
Appendix C (The Initial Static Basis):

e Addoption to the definition off}.
¢ In Figure 24, add the following entry:

option — (option, {NONE+— (V'a.’aoption,c),
SOME +— (V'a.’a — 'a option,c)})

e In Figure 25, add the following entries to the left column:

NONE +— (V'a.’aoption,c)
SOME +— (V'a.’a — 'aoption,c)

Appendix D (The Initial Dynamic Basis):

e Add “NONE — (NONE, c)” and “SOME — (SOME, c)” to the definition of VE,.
e In Figure 26, add the following entry:

option +— {NONE~— (NONE,c), SOME — (SOME,c)}

Compatibility

Except for the new reserved woPd this is a mostly conservative extension (see Appendix
B.15).

B.18 Optional Bars and Semicolons

SML syntax separates match clauses with albafhe usual coding convention is to lay
out matches such that the bar comes before each clause. Elpwe first clause is an
unpleasant special case:

case exp0 of

patl => expl
| pat2 => exp2
| pat3 => exp3

Taking aesthethic considerations aside, the assymmetingeba the cases is a nuisance for
editing, because clauses cannot be reordered by a simpfepaste operation.

An additional bar is allowed to optionally appear beforefttet clause, such that the above
can be written as:
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case exp0 of

| patl => expl
| pat2 => exp2
| pat3 => exp3

For consistency, the same extension is made for functiarevaihdings, and for datatype
declarations. For instance,

datatype 'a exp =
| Const of 'a
| Var of string
| Lambda of string * 'a exp
| App of 'a exp * 'a exp

In a similar vein, optional terminating semicolons are \akd for expression sequences.
For example, in a let expression:

fun myfunc2(x, y) =
let
val z = x +y
in
f x;

gy
h z;
end

The same applies to parenthesised expressions and seguence

Changes to the Definition
Section 2.8 (Grammar):

e In Figure 4, change the productions for exception handlirdyfanctions to, respec-
tively:

[exp ::=] exp handle (| ) match handle exception
fn (| ) match function

e Change the production for datatype bindings to:

datbind = tyvarseq tycon = (| ) conbind (and datbind)
Section 3.4 (Grammar for Modules):

e In Figure 7, change the productions for datatype descriptio:

datdesc n= tyvarseq tycon = (| ) condesc (and datdesc)
Section 4.10 (Inference Rules):

e Adapt the syntax in the conclusion of rules 10, 12 and 28 gpyately.
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Section 5.7 (Inference Rules):
e Adapt the syntax in the conclusion of rule 81 appropriately.
Section 6.7 (Inference Rules):
e Adapt the syntax in the conclusion of rules 104—106, 108 &&labpropriately.
Section 7.3 (Inference Rules):
e Adapt the syntax in the conclusion of rule 178 appropriately
Appendix A (Derived Forms):

e In Figure 15, change the rule for case expressions to

| case exp of (| ) match | (£n (] ) match)( exp) |

Change the left-hand side of the rule for sequential expresso:

| Ceapy; -~ exp,; exp () |
Add a box as follows:

[Ceaps) [ Ceap) |
Change the left-hand side of the rule for let expressions to:

let dec in
expy; -+ ; exp, (;)end

¢ In Figure 17, change the first line in the definition of funatauses to:

]
(I') {op)uvid atpatyy - - atpaty, (2 ty;) = expy (I') Catpatyy, ..., atpaty,) => expy (0 tyy)

[..] [ -]

In Figure 21, change the production for datatype bindings to
datbind BES tyvarseq tycon = (| ) conbind (and datbind)

Appendix B (Full Grammar):

¢ In Figure 20, change the productions for sequences andpetgsions to:

[atexp ::=] (expy; -+ exp, (;)) sequencep > 1
let dec in exp; ; ---; exp, ;) end local declarationp > 1

Remove the production for parenthesised expressions.

Change the productions for exception handling, functiang, case expressions to,
respectively:

[exp ::=] exp handle (| ) match handle exception
fn (| ) match function
case exp of (| ) match case analysis

In Figure 21, change the production for datatype bindings to
datbind n= tyvarseq tycon = (| ) conbind (and datbind)

In Figure 21, change the production fulbind (as defined in Appendix B.1) to:
[fvalbind ::=] (| y fmatch (and fvalbind)
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Compatibility

This is a conservative extension.

B.19 Optionalelse Branch

With imperative code it is often convenient to be allowed toitathe else branch of a
conditional:

if exp; then exp,

This is a simple derived form. The type efp, has to beunit if the else branch is
omitted. As usual, danglinglse phrases associate to the innernibst

Changes to the Definition
Appendix A (Derived Forms):

e In Figure 15, add a second rule for conditionals:

| if exp, then exp, | if exp, then exp, else () |

Appendix B (Full Grammar):

e Append the following bullet:

Likewise, a conditionalf exp,then ...extends as far right as possible;
thus, optionaklse branches group with the innermost conditional.

¢ In Figure 20, change the productions for conditionals to:

[exp ::=] if exp, then exp, (else erps) conditional

Compatibility

This is a conservative extension.

B.20 Views

One of the most wanted features for SML (and other functilamagjuages) aregiews Views
enable the definition of abstract constructors for arbjttgpes that can be used in patterns
as if they were ordinary datatype constructors.

A view primarily defines a set of constructors and two funasidor converting between
these and the actual type the view is defined for. For exaneplesider a simple view
allowing (positive) integers to be viewed as inductive nensb

viewtype peano = int as Zero | Succ of int
with

fun from Zero =0
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| from (Succ n) = n+l
fun to O = Zero
| to n if (n>0) = Succ(n-1)
| to n = raise Domain
end

This defines a view for typat . The type constructgseano provides a name for this
view. Views may be defined for arbitrary types, and there magtbitrarily many views
for a given type.

Given the viewtype definition above, we can construct integesing the constructors it
introduces:

val n = Succ(Succ(Succ Zero)) ( *) binds n to 3
val n = Succ 2 ( *) likewise

The functionfrom given with the view declaration defines how a view construistegon-
verted to the underlying type, and is applied implicitly fvery occurrence of a view
constructor in an expression.

The inverse functiomo defines how a value of the underlying type is interpretediimse
of the view constructors. It is applied implicitly whenewevalue of the underlying type is
matched against a pattern using one of the view’s constraicto

fun fac Zero =1
| fac(Succ n) = Succ n * fac n

This defines a factorial function on integers. WHan is applied to an integet, the
functionto is implicitly applied toi first and its result is matched against the constructors
appearing in the definition déac .

The body of a view declaration may contain arbitrary (aaxyl) declarations, but must
feature the two functionsom andto with the appropriate types. None of the declarations
is visible outside the view declaration.

Views must be usedonsistentlythat is, a match may not use different views, or a view and
concrete constants of the underlying tyfo,the same positiom a pattern. For instance,
the following is illegal:

fun fac (0 | 1) =1
| fac (Succ n) = Succ n * fac n

Thanks to this restriction, the compiler is still able to ckexhaustiveness and irredun-
dancy of patterns, even in the presence of views.

Views are particularly interesting in conjunction with #&iast types. For that purpose, it is
possible to specify views in signatures:

signature COMPLEX =

sig
type complex
viewtype cart = complex as Cart of real * real
viewtype pole = complex as Pole of real * real
end
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A view specification can either be matched by a corresporndiwg declaration, or by an
appropriate datatype definition:

structure Complex :> COMPLEX =
struct

datatype cart = Cart of real * real
type complex = cart

viewtype pole = complex as Pole of real * real
with
open Math
fun to(Cart(x,y)) = Pole(sqgrt(x *X + y*y), atan2(x.,y))
fun from(Pole(r,t)) = Cart(r *cos(t), r  =*sin(t))
end
end

The implementation of a viewtype is kept abstract, and bbtheabove views can be used
uniformly where appropriate:

open Complex
fun add(Cart(x1,yl), Cart(x2,y2)) = Cart(x1+x2, yl+y2)
fun mul(Pole(r1,t1), Pole(r2,t2)) = Pole(rl *r2, t1+t2)

Instead of opening the structure, a view can also be pulledsoope (and thus enable

unqualified use of its constructors) by a viewtype replaratileclaration, analogous to
SML’s datatype replication:

viewtype cart = viewtype Complex.cart

Apart from viewtype replication, the name of a view acts agreoaym for the underlying
representation type — except inside the view definitiorfitsehere it used to denote the
(otherwise anonymous) datatype representing the view.

More extensive examples can be foundiot/examples/views.sml

The design of views was inspired mainly by the papers of Wa\é87] and Okasaki
[098]. The main differences are the following:

e Views are named, to enable proper interplay with the modyséesn, particularly
view replication.

¢ Unlike Okasaki’'s proposal, views are bidirectional, trgtthey can be used to sym-
metrically construcanddeconstruct values.

e Unlike both proposals, views may not be mixed, thus stilltding standard pattern
checks.

e Unlike both proposals, view definitions are not recursive.particular, the view
constructors cannot be used as a view within its own defmitio

e Unlike Okasaki’s proposal, the formal definition below doed support memoiza-
tion. This could probably be added by means of informal comtse
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Changes to the Definition
Section 2.1 (Reserved Words):

e Addviewtype to the list of reserved words.
Section 2.8 (Grammar):

e In Figure 4, add the following production for declarations:
[dec ::=] viewtype tyvarseq tycon = ty as (| ) conbind viewtype
with dec end

Section 2.9 (Syntactic Restrictions):

e Extend the second bullet with:
[...] or the conbind of aviewtype declaration.
e Extend the bullet added by the changes described in Appé&hdias follows:

[...]; similarly, in a declaration of the formviewtype  tyvarseq tycon
=ty as conbind with dec end”, any tyvar occuring inty or conbind
must occur intyvarseq.

Section 3.4 (Grammar for Modules):

e In Figure 7, add the following production for specifications

[spec ::=] viewtype tyvarseq tycon =ty as (| ) condesc viewtype
Section 3.5 (Syntactic Restrictions):

e Extend the second bullet with:
[...] or the condesc of aviewtype spcification.
¢ Replace the latter half of the fourth bullet with:

[...]; similarly, in a specification of the form/Aewtype  tyvarseq tycon
=ty as condesc” or a signature expression of the formigexp where
type tyvarseq longtycon = ty”, any tyvar occuring inty or condesc
must occur intyvarseq.

Section 4.2 (Compound Objects):

¢ In Figure 10, Change the definition of value environments to:

fin

VE € ValEnv= VIld — TypeScheme ValStatus
vs € ValStatus= |dStatusJ TyName

¢ In the last paragraph of the text, replace “an identifierustatvith “a value status
and all occurrences af with vs.
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¢ In the last sentence, replace “or exception constructémwith “an exception con-
structoror aview constructotand replace V7, ¢ ore” with “v, c, e or a type name
t".

Section 4.7 (Non-expansive Expressions):

¢ In the Restriction replace s of C'(longvid) € {c,e}"” with “ vs of C(longvid) #

V.
Section 4.8 (Closure):
e Replace all occurrences of with vs.
Section 4.9 (Type Structures and Type Environments):

e Extend the first sentence with:

[...], or there is a type namiesuch that for allo, vs) € RanVE, vs = t.
Section 4.10 (Inference Rules):

e Inrule 2, 15 (as modified by change described in Appendix,BB4)and 35, replace
occurrences ofs with vs.

e Add the following rule for declarations:

t¢ TofC arityt =k t does not admit equality
tyvarseq = o'¥) ChHty=r C, o™t conbind = VE
C & (ClosVE, {tycon — (t,ClosVE)}) F dec = FE
o of E(from) = Va® oWt — 7 5 of E(to) = Va®) .71 — ot
VE' = {vid — ({Aa® 7 /t},t) ; (ClosVE)(vid) = (o, c)}
TE = {tycon — (Aa®) .1, VE')}
C | viewtype tyvarseq tycon = ty as conbind with dec end = (VE', TE) in Env
(17a)

and add a comment:

(17a) Unlike a datatype, a viewtype is not recursi@emment:
Section 4.11 (Further Restrictions):

e Add a fourth point:

4. The compiler must issue an error if a match or a pattern ialaevbinding
makes inconsistent use of view constructors, such thag theght exist a value
that, in a single matching operation, has to be matched sipaiw construc-
tors of different view types, or against a view constructad a pattern that is
not a view. For example, i€ andD are view constructors of different views
for typeint , then the patternsC | D" or “2 as C” are invalid, likewise
the match(_,C) => ...| ( D) => ...". This restriction ensures that the
checks described in the previous points are always possible

Section 5.5 (Enrichment):
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¢ Inthe third point defining®; > FEs, replace all occurrences of with vs and replace
the line defining enrichment on identifier status with:

v$S1 = vSy OF wsg=vVv Or ws;=candvsy==¢%
e Replace the second point definitfy, VE;) > (02, VE2) with:

2. EitherVEy, = {}, or VE1 = VE;, or VE; = {vid — (0,¢) ; VEa(vid) =
(0,vs)}

Section 5.7 (Inference Rules):

e Inrule 2, 34 and 35, replace all occurrencesgsolvith vs.

e Add the following rule for specifications:

t¢ TofB arityt = k t does not admit equality
tyvarseq = oF) CofBFty=r CofB,a®t - condesc = VE
VE' = {vid — (o{Aa® .7 /t},t) ; (ClosVE)(vid) = (o,c)}
TE = {tycon — (Aa® .7, VE')}
B & viewtype tyvarseq tycon = ty as condesc = (VE', TE) in Env
(71a)

Section 6.1 (Reduced Syntax):

e |n the first bullet, remove “constructor and”.
e Replace the second bullet with:

All equations = ty” are omitted fromviewtype declarations.
Section 6.3 (Compound Objects):

¢ In Figure 13, change the definition of value environments to:

VE € ValEnv=VId ™ val x ValStatus
vs € ValStatus= IdStatusJ (Val x VId)

Section 6.7 (Inference Rules):

e Inrule 91, replaces with vs.

e Add the following rule for declarations:

F conbind = VE E + (VE,{tycon — VE})F dec = FE'
v of E'(from), v of E'(to) - conbind = VE' TE = {tycon — VE'}

E F viewtype tyvarseq tycon as conbind with dec end = (VE', TE) in Env
(116a)

e Inrule 129, add {of t¢y)” to the phrase in the conclusion, and replace existing sing|
brackets {. .. )" with double brackets{{...))".
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¢ Add the following rules for constructor bindings:

7 . . 7 - g/
from, ) ’
{from — (V¢rom, V), vid" — (vid,v)} in Envk from vid' = v vid' # from
(Vtrom, Uto F conbind = VE)

Vgrom; Vto I Vid (| conbind) = {vid — (v, (Vto, vid))}(+ VE) in Env
(129a)

v = (vid" => from (vid' vid") , E,{}) in Val
from # vid' # vid"” # from E = {from > (Vsron, V), vid' + (vid,v)} in Env
(Vtrom, Uto F conbind = VE)

Vrom, Veo = vid of ty (| conbind) = {vid — (v, (vo, vid))}{+ VE) in Env
(129b)

and add a comment:

(129a),(129b) Inthese and the rules 137a, 137b and 147k thd thoice obid’ andvid” is
arbitrary, up to the side conditions stated in the ru@@smment:

e Inrule 135, replacés with vs.
¢ Add the following rules for atomic patterns:
E(longvid) = (v, (vgo, vid)) vid' # to

{to — (Vto, V), vid" — (v,v)}in EnvE to vid" = vid

137
E, vt longvid = {} (137a)

E(longvid) = (v', (vto, vid)) vid’ # to
{to — (4o, V), vid" — (v,v)} In EnvE to vid" = v” v # vid
FE v longunid = FAIL

(137b)

e Add the following rules for patterns:

E(longvid) = (V', (vgo, vid)) vid’ # to
{to — (Vto, V), vid" — (v,v)}in Envl to vid" = (vid,v")
Ev" & atpat = VE/FAIL
E, vt longvid atpat = VE /FAIL

(147a)

E(longvid) = (v', (vto, vid)) vid’ # to
{to — (4o, V), vid" — (v,v)}in EnvE to vid" = v” v ¢ {vid} x Val
E v longvid atpat = FAIL

(147b)
Section 7.1 (Reduced Syntax):
e In the first bullet, remove “constructor and”.
Section 7.2 (Compound Objects):
¢ In Figure 14, change the definition of value interfaces to:

fin

VI € Valint =VId — VallntStatus
vis € VallntStatus= IdStatusJ {£}
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e Change the definition of IntervValEnv — Valint to:

Inte VE) = {vid — is; VE(vid) = (v,is)}
+ {vid — £ ; VE(vid) = (v, (v',vid"))}

and extend the following sentence with:
[...] and abstracting view constructors with
e Change the definition of: ValEnv x Valint — ValEnv to:
VE [ Valint = {vid — (v,is); VE(vid) = (v, vs) and VE(vid) = is}
+ {vid — (v,vs) ; VE(vid) = (v,vs) and VE(vid) = £}

¢ In the parenthesised sentence following, replace “identdfiatus” with “value sta-
tus” and add:

[...], exceptin the case of view constructors.
Section 7.3 (Inference Rules):

e Add the following rule for specifications:

F condesc = VI VI' = {vid — £ ; VI(vid) = c} TI = {tycon — VI'}
IB F viewtype tyvarseq tycon as condesc = (VI', TI)in Int

(169a)

e Inrule 179, add {of t¢y)” to the phrase in the conclusion, and replace existing sing|
brackets {. .. )" with double brackets{{...))".

Appendix A (Derived Forms):

¢ In Figure 17, extend the box for declarations as follows:

| viewtype tycon = viewtype longtycon | datatype tycon = datatype longtycon |

¢ In Figure 19, extend the box for specifications as follows:

| viewtype tycon = viewtype longtycon | datatype tycon = datatype longtycon |

Appendix B (Full Grammar):

e In Figure 21, add the following productions for declaration

[dec =] viewtype tyvarseq tycon = ty as (| ) conbind viewtype
with dec end
viewtype tycon = viewtype longtycon viewtype replication
Compatibility

Apart from the additional keywordiewtype , this is a conservative extension.
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B.21 Do Declarations
A very frequent idiom in SML are declarations of the form
val _ = exp

which are used to evaluate an expression for its side effetlss idiom is somewhat
verbose and ugly.

On the toplevel, expressions can be evaluated by simplyngrihem in place of a decla-
ration (which abbreviates a declarationiof). However, this form is not available in local
scope, and moreover does require putting a semicolon befuteafter the expression,
which is somewhat counterintuitive. This form only is udéfua REPL.

A new derived form simply abbreviatesdl () = " with the keyworddo.

Changes to the Definition
Appendix A (Derived Forms):

e In Figure 17, add the following to the Declarations box:

| do exp | val ()= exp |

Appendix B (Full Grammar):

e In Figure 21, add the following production for declarations

[dec ::=] do exp evaluation

Compatibility

This is a conservative extension.

B.22 Withtype in Signatures

The absence of theithtype  derived form in signatures clearly is an oversight in the
definition. The derived form is as useful in signatures asiitideclarations.

Changes to the Definition
Appendix A (Derived Forms):

e In Figure 19, add the following to the Specifications box:

| datatype datdesc withtype typbind | datatype datdesc’ ; type typbind |

and extend the note as follows
(see the note in text concernidgtdesc’, typdesc, andlongtycon, . . ., longtycon.,)

¢ Append the following paragraph to the text:
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In the form involvingwithtype , the identifiers bound byatdesc and

by typbind must be distinct. The transformed descriptitwidesc’ is ob-

tained fromdatdesc by expanding out all the definitions madetyybind,

analogous talatbind above. The phrasaype typbind” can be reinter-
preted as a type specification that is subject to furthesfoamation.

Compatibility

This is a conservative extension, which is already suppdayemost implementations.

B.23 Higher-order Functors

To support higher-order modules, structure expressiangeameralised to include functor
expressions, analogous to function expressions in the core

fct  strid : sigexp => strexp
Likewise, signature expressions may denote dependertofusignatures:
fct  strid : sigexp, -> sigexp,

As a derived form, non-dependent functor signatures (witeié does not occur iRigezp,)
may be abbreviated as follows:

sigexp, ->  Sigexrps

SML’s functor declarations are degraded to a mere derivad$panalogous to function
declarations witliun in the core language. They support curried functors:

functor  strid (stridy : sigexpy) ... (strid, : sigexzp,) (. sigezp)
= strexp

For uniformity, and to avoid subtle syntax, the identifiexsdes for structures and functors
are merged. As another derived form, SML/NJ compatiblessyig provided for functor
descriptions in signatures:

functor  strid (strid, : sigexpy) ... (strid, : sigexp,) : sigexp
Functor application syntax is generalised to
strexp; strexp,

as in the core. Parentheses are allowed anywhere in steuatar signature expressions.
The derived form allowing a parenthesised declaratibdec as a functor argument is
maintained and generalised by enabling

( strdec )

to abbreviate a structure in all contexts. For symmetry,
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( spec )
can be used to abbreviate a signature. Particularly, it bareaiate a functor argument:

fct ( spec) => strexp
fct ( spec) ->  sigexp

which is also allowed in the functor declaration and spegiitn derived forms, generalis-
ing the similar derived form known from SML.

The semantics of higher-order functors is kept simple. Afidtors are fully generative.
The only change to semantic objects of the Definition is indb@omain of stucture envi-
ronments StrEnv, which may now contain functors.

More extensive examples can be foundat/examples/higher-order-functors.sml

Changes to the Definition

Section 3.1 (Reserved Words):
e Addfct to the list of additional reserved words for modules.
Section 3.2 (Identifiers):

e Replace the first sentence with:

The only additional identifier class for Modules is Sigldgfsature iden-
tifiers).

e Replace the start of the second sentence with “Signatungifiges . ..".
Section 3.4 (Grammar for Modules):

¢ In Figure 5, remove FunDec and FunBind from the list of phidasses.

e InFigure 6, replace therexp production ‘funid ( strexp) " for functor application
with:
[strexp =] strexp, strexpy functor application (L)

and add the following productions:

[strexp =] fct strid ;. sigexp => strexp functor
( strezp)

e In Figure 6, add the followingigezp productions:

[sigexp ::=] fct strid : sigexp, -> sigexp, functor
( sigexp)

e InFigure 8, remove the productions findec andfunbind, and the functor declara-
tion production fortopdec. Change the caption of the figure to “Grammar: Top-level
Declarations”.

Section 3.5 (Syntactic Restrictions):
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e Inthe first bullet, changestrbind, sigbind, or funbind” to “ strbind or sigbind”.
Section 4.2 (Compound Objects):

e In Figure 10, change the definition of StrEnv as follows:
SE € StrEnv= Strid ™ Mod
M € Mod= EnvU FunSig

Note: a more consistent treatment would include renan§ifige StrEnv to ME €
ModEnv, but we refrain form that here, in order to keep the bernof changes as
small as possible.

e To the paragraph referring to Figure 10, add the followingeece:
The object class FunSig of functor signatures is defined ati@e5.1.
Section 4.10 (Inference Rules):
¢ In the last paragraph of the introduction, remove compoiefriom the equation
decomposing3, and replace “other componenfisandG” with “other component
G".
Section 5.1 (Semantic Objects):

e In Figure 11, change definitions as follows:

Yor(T)M € Sig= TyNameSe Mod
®or (T)(M,(T")M') € FunSig= TyNameSet Mod x Sig

Section 5.3 (Signature Instantiation):

e Replace all occurrences éf with M.
Section 5.4 (Functor Signature Instantiation):

e Replace all pairs of the form(E, (T") E’)” with respective forms (M, (T")M’).
Section 5.5 (Enrichment):

e Append the following to item 1:

[...], whereM; > M, either meand/; = E; andM, = E, such that
E enrichesEs,, or M; = ®; and M = ®5 such thatd; = P,, as
defined in Section 5.6.

Section 5.6 (Signature Matching):

e Replace all occurrences of “an environment” with “a modwatl £/ with M .

e Append the following paragrapH§:

18The defined notion of matching on functor signatures isialt simplistic. In particular, it make transparent
functor signature ascription behave as opaque ascrigéonexample, the module expression
(fct () => (type t = int)) : (fct () -> (type 1))
will have signaturgfct () -> (type t)) , hot (fct () -> (type t = int)) as one might ex-
pect. A consistent treatment of transparency is complexénftamework of the Definition and probably not
worth the trouble [MT94]. It could be added later as a coresare extension.
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A signatureX; = (77)M; matchesa signatureXy = (7)Ms, written
%1 > Yo, if there exists a realisatiop such thaty, > ¢(M>) < M; and
T Ntynames, = ().

A functor signature®; = (73)(M;, %) matchesa functor signature
Oy = (To)(Ma, Xs), written®; >~ ®o, if there exists a realisatiop such
that(T1)M; > ¢(M;) < My andp(31) = Y2 andT} Ntynamesb, = .

Section 5.7 (Inference Rules):

e In the 2nd paragraph of the introduction, remove compoitefiom the equation
decomposing3, and remove “tynameBU” from the set inequation.

e Change the box giving the form of inference rules for streegxpressions to:

B F strexp = M

and replace all occurences Bfwith M in rules 51-53, and’> with M in rule 55.

e Change rule 54 to:

B F strexzp; = @ B - strexpy, = M
o> (M (TM'), M= M"
(tynamesM UT of B)NT' =0

B |- strexp, strexpy, = M’

(54)

¢ Inthe commentfor rule 54, replace all occurenceE @fith M, and replace B(funid)”
with “ ®”.

¢ Add the following two rules for structure expressions:

Bt sigexp = (T)M B & {strid — M} & strezp = M’
TN(TofBy=0  T' =tynamesM’\ ((T'of B)UT)
B fct strid : sigexp => strexp = (T)(M, (T")M")

(55a)

B F strexp = M
B ( strexp) = M

(55b)

e Change the box giving the form of inference rules for ungjfi@dtsignature expres-
sions to:

‘Bl—sigexp:M‘

and replace all occurences Bfwith M in rules 61, 63 and 65.
e Add the following two rules for signature expressions:

Bt sigexp, = (T)M B & {strid — M} b sigexp, = (T") M’

64a
B fct strid © sigexp, -> sigexp, = (T)(M, (T")M') (642)

B+ sigexp = M
Bt ( sigezp) = M

(64b)

e Inrule 84, replace all occurences Bfwith M.
e Remove rules 85 and 86.

e Remove rule 89, and change the comment to refer only to r8i8s-(88).
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Section 6.3 (Compound Objects):

e In Figure 13, change the definition of structure environra&ttEnv as follows:

fin

SE ¢ StrEnv= Strld — Mod
M € Mod = EnvU FunctorClosure
e Add the following paragraph:

The object class FunctorClosure represents functors atelireed in Sec-
tion 7.2.

Section 7.2 (Compound Objects):

¢ In Figure 14, change the definition of FunctorClosure andBasfollows:

(strid : I, strexp : IC,B) € FunctorClosure= (Strld x Int) x (StrExpx IntConstraint x Basis
IC € IntConstraint= IntU {e}
(G,E) € Basis= SigEnvx Env
e Remove the definition for functor environments Fungnv.
e ChangeS! in the definition of the function Inter as follows:
Sl = {strid — Inter M ; SE(strid) = M}
and add the following text:

where InterM in turn is defined as follows:

Inter M — Inter E, if M =FE;
o {}inInter, if M = (strid : I, strexp : IC, B).
e Simplify the definition of the function Inter on a badisto:

Inter(G,E) = (G,InterE)

e Change the definition gf: StrEnvx Strint — StrEnv to:

SE|SI = {strid— M | I; SE(strid) = M andSI(strid) = I}

o After the definition] on environments, add the following text:
Here, the definition of : Mod x Int — Mod is as follows:

s - [ELL if M = E:
o (strid : I, strexp : I, B), if M = (strid : I', strexp : IC, B).

It is extended to interface constraints:

[ M|I, fIC=T,
MLIC = {M, if IC = e.

Interface constraints express optional interface modifina applied to a
functor body via higher-order ascription.
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Section 7.3 (Inference Rules):

e Change the box giving the form of inference rules for streegxpressions to:

‘BF stre:rpéM/p‘

and replace all occurences Bfand E’ with M in rules 151-153 and 155.

Change rule 154 to:

Bt strexzp, = (strid : I, strexp’ : IC, B’) B+ strexp, = M
B' + {strid — M | I} \ strexp’ = M’
B |- strexp, strexpy = M’ | IC

(154)

Add the following two rules for structure expressions:

Inter B - sigexp = 1
B fct strid : sigexp => strexp = (strid : I, strexp : €, B)

(155a)

B strexp = M
Bt ( strezp) = M

(155b)

Add the following two rules for signature expressions:

IB F sigezp, = I; IB + {strid — I, } F sigexp, = Iy
IB \- fct strid : sigexp, -> sigexp, = Io

(163a)

IB F sigexp = 1
1B+ ( sigezp) =1

(163b)

Remove rules 182, 183 and 186.
Appendix A (Derived Forms):

e In Figure 18, replace the box for structure expressions thigtfollowing:

Structure Expressionsstrezp
( strdec) struct strdec end
fct ( spec)=> strexp | fct strid: sig spec end =>
let open strid in strezp end

(strid new)
¢ In Figure 18, replace the box for functor bindings with thidwing:

Functor Bindings funbind

strid ( funargy) --- ( funarg,) strid = fct funargy => --- fct funarg, =>
(: (>) sigexp) = strexp (and funbind) strexp (: (>) sigexp) (and funbind)

(n > 1; see note in text concernirfgnarg,, . . . , funarg.,)
e In Figure 18, add a box for structure declarations as follows

Structure Declarations strdec
| functor funbind | structure funbind |

e In Figure 19, add box for functor descriptions as follows:
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Functor Descriptions fundesc

strid ( funarg,) --- (funarg,) | strid . fct funarg] -> --- fct funarg), ->
. sigexp sigexp
(n > 1; see note in text concernirfgnarg, . . ., funarg’,)

e In Figure 19, extend the box for specifications as follows:

| functor fundesc | structure fundesc |

¢ In Figure 19, extend the box for signature expressions #mAfs!

( spec) sig spec end
fct ( spec)-> sigexp fct strid : sig spec end -> sigexp’
sigexp, => SLgeTpo fct strid : sigexp; -> sigerp,

and add the following note to the box:
(see note in text concerninggezp’; strid Nnew)
e Add the following paragraph to the text:
In the signature expression form for functors with a speafifin spec as
argument, the transformed signature expressiansyp’ is obtained from
sigexp by replacing any identifieid that is bound inspec with strid. id,
except where hidden by a local binding.

e Add the following paragraph to the text:

In the derived forms for functor bindings and functor degsiioins, the
phrasefunarg is defined by the following grammar:

funarg = strid . sigexp
spec

In the former case, the correspondifig.arg’ is the same phrase. In the

latter case itis the phasé $pec) ", such that the meaning is given in terms
of the derived form for structure and signature expressi@spectively.

Appendix B (Full Grammar):

¢ Inthe 3rd paragraph, extend the first sentence with “and aliN&s”.
o After the 3rd paragraph, add a paragraph as follows:
There are also three classes of structure expressiond@sdol
AtStrExp C AppStrExpC StrExp
Finally, there are two classes of signature expressions:
AtSigExp C SigExp

¢ In the next paragraph, replace “Figures 20, 21, 22 and 237 YFigures 20 to 23d".
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struct strdec end

( strdec)

longstrid

let strdec in strezp end
( strezp)

atstrexp
appstrexp atstrexp

appstrexp
strexp : sigexp
strexp > sigexp

fct strid © sigexp => strexp

fct ( spec) => strexp

¢ Add the following figure, “Figure 23a: Structure expressibn

basic

basic (short)
structure identifier
local declaration

functor application

transparent constraint
opaque constraint
functor

functor (short)

e Add the following figure, “Figure 23b: Signature expressibn

atsigexp = sig spec end basic
( spec) basic (short)
sigid signature identifier
( sigexp)

sigexp = atsigexp

sigexp where type type realisation
tyvarseq longtycon = ty

fct strid : atsigexp -> sigexp functor

fct ( spec)-> sigexp functor (short)

atsigexp -> sigerp non-dependent functor
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e Add the following figure, “Figure 23c: Specifications and dgstions”:

spec

valdesc
typdesc
syndesc
datdesc
condesc
exdesc

strdesc

fundesc

funarg

val valdesc
type typdesc
type syndesc
eqtype typdesc

datatype datdesc (withtype typbind)
datatype tycon = datatype longtycon

value

type

type
eqtype
datatype
replication

viewtype tyvarseq tycon = ty as (| ) condesc viewtype

viewtype tycon = viewtype longtycon

exception exdesc
structure strdesc
functor fundesc
include sigezp

include sigid; --- sigid,,

specy (;) specy
spec sharing type

longtycon, = --- = longtycon,,

spec sharing

longstrid, = --- = longstrid,,

vid : ty (and valdesc)
tyvarseq tycon (and typdesc)
tyvarseq tycon = ty (and syndesc)
tyvarseq tycon = (| ) condesc {and datdesc)
vid (of ty) (| condesc)
vid (of ty) (and exdesc)
strid : sigexp (and strdesc)
strid ( funargy ) --- ( funarg,,)
. sigexp (and fundesc)

strid : sigexp
spec

viewtype replication
exception
structure

functor

include

multiple include
empty
sequential

type sharing
(n>2)
structure sharing
(n>2)

¢ Add the following figure, “Figure 23d: Structure-level arxgptlevel declarations”:

strdec

strbind
funbind
sigdec

sigbind

topdec

dec
structure strbind
functor funbind

local strdec; in strdecsy end

strdecy (; ) strdecy

strid (: (>) sigexp) = strexp (and strbind)

strid ( funargy ) --- ( funarg, )
(: (>) sigexp) = strexp (and funbind)

signature sighind

sigid = sigexp (and sigbind)

strdec (topdec)
sigdec (topdec)

Appendix C (The Initial Static Basis):
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declaration
structure
functor
local
empty
sequential

(n>1)

structure-level declaration
signature declaration



e In the text, replace By = Ty, Fy, Go, Ey whereFy = {}, Go = {} and” with
“Bg =Ty, Go, Ey whereGy = {} and”.

Appendix D (The Initial Dynamic Basis):

e In the text, replace By = Fy, Go, Eo WhereFy = {}, Gy = {} and ...” with
“Boy = Gy, Eg whereGy = {}and...".

Compatibility

This extension is not conservative because it merges faentiasses for structures and
functors. The new reserved waiict may also break some existing programs. Otherwise,
it is a generalisation of the existing syntax and semanticsrfodules. Syntactically, it
subsumes the higher-order modules of SML/NJ.

B.24 Nested Signatures

In order to make the hame spacing mechanism realised bytstescapplicable to signa-
tures, signatures are allowed as structure members. Thigebsrthe presence of qualified
signature identifiers, and the addition of signature spetifins in signatures:

signature S = sigexp
A signature definition matches a signature specificationdfenly if they denote equivalent
signatures. Note that — unlike for types — there are no opa@mature specifications,

because that would make the type system undecidable in catidr with higher-order
functors [L97].

Changes to the Definition

The changes described here are relative to the changeggfoerhdrder functors given in
Appendix B.23.

Section 3.2 (Identifiers):

e Extend the first sentence with

[...] and the accompanyingngSigld (long signature identifiers).
Section 3.4 (Grammar for Modules):

¢ In Figure 5, remove SigDec form the list of phrase classes aald the following:
SigDesc  signature descriptions
e In Figure 6, add the following production for structuredédeclarationstrdec:

[strdec ::=] signature sigbind signature

e Replace theigexp production for signature identifiers to:

[sigexp ::=] longsigid signature identifier
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Remove the production for signature declaratieidec.

e In Figure 7, add the following production for specifications

[spec ::=] signature sigdesc signature

Add the following production for the new class of signatuesdriptions:

sigdesc = sigid = sigexp (and sigdesc)

In Figure 8, remove the production for signature declarstivomtopdec and sim-
plify the remaining production for structure declaratioos

topdec = strdec

Remove the second part of the restriction note that was ablgéide change from
Appendix B.1.

Section 3.5 (Syntactic Restrictions):
e Inthe second item, replace “etrdesc” with “, strdesc or sigdesc”.
Section 4.2 (Compound Objects):

¢ In Figure 10, change the definition of environments as fatlow

Eor(G,SE,TE, VE) € Env= SigEnvx StrEnvx TyEnv x ValEnv

¢ In the paragraph referring to Figure 10, modify the senteadided by the change
described in Appendix B.23 to

The object classes FunSig of functor signatures and SigEsigpature
environments belong to Modules and are defined in Sectian 5.1

Section 4.3 (Projection, Injection and Modification):
¢ Inthe paragraph on Modification, replacg+({}, {}, VE)"with“ E+({},{}, {}, VE)".
Section 4.10 (Inference Rules):

¢ Inthe last paragraph of the introduction, remove the pas&atence after the semi-
colon, which starts with “one reason [...]".

Section 5.1 (Semantic Objects):

e In Figure 11, simplify the definition of Basis to:

Bor(T,E) € Basis=TyNameSet Env

Section 5.5 (Enrichment):

¢ Inthe second paragraph, replada“= (SE., TE1, VE,)"with* By = (G1, SE1, TE1, VE1)";

likewise for E.
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e Add the following item to the enumeration:
4. Dom G 2 Dom Go, andGq (sigid) = Ga(sigid) for all sigid € Dom Ga,
whereY; = ¥, denotes mutual signature matching as defined in Section 5.6.

Section 5.5 (Signature Matching):

e Extend the second paragraph (as added by the change ddsaridgpendix B.23)
with the following sentence:

We writeX; = Yo to mean mutual matching; = Yo andX; < Xs.
Section 5.7 (Inference Rules):

¢ In the 2nd paragraph of the introduction, remove comporgefrom the equation
decomposing3, and remove “tynameS§U” from the set inequation.
e Add the following rule for structure declarations:

B F sigbind = G

B - signature sighind = G in Env (572)
e Change rule 63 as follows:
B(longsigid) = (T)M . TN(TofB)=0 (63)
B F longsigid = M
e Remove rule 66.
e Add the following rule for specifications:
B+ signftz;;gj;iicez :(i G in Env (742)
e Add a section for signature description rules of the form
‘B F sigdesc = G‘
and the following rule:
B F sigexp =3 A (BF sigdeéé = G) (84a)
Bt sigid = sigexp (and sigdesc) = {sigid — Z}H+G)
e Simplify rule 87 as follows:
B\ strdec = E tyvarsE = () 87)

B |- strdec = (tynames, E) in Basis
e Remove rule 88, and change the comment to refer only to rule 87
Section 6.3 (Compound Objects):
¢ In Figure 13, change the definition of environments as fatlow

(G,SE,TE,VE)orE € Env= SigEnvx StrEnvx TyEnv x ValEnv
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e Change the paragraph added by the change described in Apie8d to

The object classes FunctorClosure and SigEnv describédisnand sig-
nature environments, respectively, and are defined in @e¢tR.

Section 7.2 (Compound Objects):

¢ In Figure 14, change the definition of interfaces and basfelemsvs:
Tor(G,SI,TI, VI) € Int=SigEnvx Strintx Tylnt x Vallnt
BorE € Basis=Env
¢ Remove the definition of IntBasis.
e In the text, add after the first sentence:

A basisB is isomophic to an environmetit, but we write explicit injec-
tions “E in Basis” and projectionsFE of B”.

Note: The main motivation here is to keep the number of cheisgsll, as there are
many references to the notion of “dynamic basis”.

e Adapt the definition of the function InterfEnv — Int as follows:
Inten(G, SE, TE, VE) = (G, 8I, TI, VI)
e Remove the paragraph on interface basis and the extendedtidefof Inter on a
basis.

The object classes FunctorClosure and SigEnv describédisnand sig-
nature environments, respectively, and are defined in @e¢tR.

o Adapt the definition of the cut down operatpon environments as follows:
(G,SE, TE, VE) | (G',SI, TI, VI) = (G,SE | SI, TE | TI, VE | VI)
and add the following sentence directly after it:
The static semantics ensures thaandG’ are equivalent signature envi-
ronments.

Section 7.3 (Inference Rules):

¢ Add the following rule for structure declarations:

Inter B F sigbind = G

- 157a
B |- signature sigbind = G in Env ( )

e Inrules 162-175 and 181, except for the ones mentioned ifotlmaving, replace
all occurrences of B with I, likewise in the respective boxes giving their form; in
those rules already containing occurenceg ¢£62, 165, 173, 181), replace these
occurences with’.

e Change rule 163 as follows:

I(longsigid) = I’
I+ longsigid = I’

(163)
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Remove rule 164.

Add the following rule for specifications:

I F sigdesc = G

I+~ signature sigdesc = G in Inter (1722)

e Add a section for signature description rules of the form

‘I F sigdesc = G‘
and the following rule:
. 'Il— sigexp =T . (I sigdeis’c':> G) (181a)
I+ sigid = sigexp (and sigdesc) = {sigid — I'}{+G)
e Simplify rule 184 as follows:

B F strdec = E (184)

B | strdec = FE in Basis

Remove rule 185.

Appendix A (Derived Forms):

e In Figure 19, in the box for specificationgec, replace the entry fdnclude  with:

| include longsigid, --- longsigid,, | include longsigid, ; --- ; include longsigid,,

Appendix B (Full Grammar):

e In Figure 23b (as defined in Appendix B.23), replace ¢hyexp production for sig-
nature identifiers to:

[sigexp =] longsigid signature identifier

¢ In Figure 23c (as defined in Appendix B.23), add the followimgduction for spec-
ifications:
[spec ::=] signature sigdesc signature

and replace the one for multiple include with:

spec = include longsigid, --- longsigid multiple include
1 n

¢ Add the following production for signature descriptions:

sigdesc = sigid = sigexp (and sigdesc)

e InFigure 23d (as defined in Appendix B.23), add the followpngduction for structure-
level declarationstrdec:

[strdec ::=] signature sigbind signature

e Remove the production for signature declaratisigec.
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¢ Simplify the definition oftopdec to:

topdec = strdec
Appendix C (The Initial Static Basis):

e In the text, replace the definition d¥, with “By = Ty, Ey” and drop ‘Gy = {}
and”.

° Replace Fy = (SE(), TE,, VE()), WhereSE() = {}”Wlth “Fo = (GQ, SE(), TE), VE()),
whereGy = {} andSE, = {}".

Appendix D (The Initial Dynamic Basis):

e Replace the second sentence with

The initial dynamic basis iy = Ey = (Go, SEo, TE, VEy), where
Go ={}, SEo = {}, TE, is shown in Figure 26 and

Compatibility

This is a conservative extension.

B.25 Local Modules

Structure, functor and signature declarations are alldwéatal scope:

fun sortWithoutDups compare =

let
structure Set = MkSet(type t = string
val compare = compare)
in
Set.toList o foldr Set.insert Set.empty
end

Furthermore, as a derived form, open declarations may oathitrary module expres-
sions:

fun sortWithoutDups compare =

let

open MkSet(type t = string; val compare = compare)
in

toList o foldr insert empty
end

Changes to the Definition

The changes described here are relative to the changegfmrhorder functors and nested
signatures given in Appendices B.23 and B.24.

Section 2.8 (Grammar):
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e Extend the first paragraph with the following sentence:

In Figure 4, the variabletrdec appearing in Figure 4 ranges over the set
StrDec of structure-level declarations, which is define8éation 3.4.

e In Figure 4, add the following production for declaratiafs:

[dec ::=] strdec module declaration

Section 3.3 (Infixed operators):
¢ In the first paragraph, replace “structure-level declaratirdec” with “declaration
dec”.

¢ Inthe list of phrases, replacettdec” with “ dec” and remove the phrase concerning
local

Section 3.4 (Grammar for Modules):
e In Figure 6, replace all occurrencegf'dec” in the productions for structure expres-

sionsstrezp with “ dec”.

e Remove the productions for core, local, empty and sequesttizcture-level dec-
larations and the respective restriction note that was gddepart of the changes

described in Appendix B.1.

¢ InFigure 8, replace occurrencestdec” in the productions for top-level declarations

topdec and the respective restriction note witthet.”.
Section 4.10 (Inference Rules):

e Add the following rule for declarations:

Ct strdec = F
CF strdec = F (202)

and an accompanying comment:

(20a) The premise of this rule is a sentence of the static séesgor Modules, see
Section 5.7.

Section 5.1 (Semantic Objects):

¢ In the third paragraph, add the following after the first seie:
Inversely, we defin€' in Basis to be the basig” of C, E of C).

Section 5.7 (Inference Rules):

e Change the box giving the form of inference rules for streegxpressions to:

‘C’ F strexp = M

and replace all occurences Bfwith C' in rules 50-55, except for the premises re-
garding a signature expressieigezp in rules 52, 53 and 55a, where it is replaced

by “C in Basis”.
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e Inrules 50 and 55, replacerdec with dec.

e Change the box giving the form of inference rules for streetieclarations to:

|C’Fst7’dec¢E|

and replace all occurences Bfwith C in rules 57 and 57a, except for the premise

of rule 57a, where it is replaced b¢*in Basis”.
e Remove rules 56 and 58-60.

e Change the box giving the form of inference rules for streeshindings to:

| C + strbind = SE |

and replace all occurences Bfwith C'in rule 61.

e Inrule 87, replacetrdec with dec, and theB in the premise with € of B”.
Section 6.7 (Inference Rules):

e Add the following rule for declarations:

E in Basist strdec = E’

119
E | strdec = E' ( 3)

and an accompanying comment:

(119a) The premise of this rule is a sentence of the dynamiastcs for Modules,
see Section 7.3. The definition of dynamic basis Basis appe&ection 7.2.

Section 7.3 (Inference Rules):

e Inrules 150 and 155, replasérdec with dec, andB in the premises with E of B”.
¢ Remove rules 156 and 158-160.

e Inrule 184, replacetrdec with dec, and theB in the premise with £ of B”.
Appendix A (Derived Forms):

¢ In Figure 17, add the following to the box for declarations:

| open strexp | local structure strid = strexp in open strid end |

and extend the note with
[...] andstrezp; strid new
e Add the following bullet to the list of notes regarding Figut7:

In the form involvingopen , the structure expressiaitrezp may not be a
functor application of the fornongstrid, longstrid, --- longstrid,,.

e In Figure 18, replace occurrences afdec” in the box for structure expressions
strexp with “ dec”.

Appendix B (Full Grammar):
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In Figure 20, add the following productions for declarati@dac:

[dec =] strdec module declaration
open strexp open declaration

In Figure 23a (as defined by Appendices B.23 and B.24), re@doccurrences of
“strdec” with * dec”.

In Figure 23d (as defined by Appendices B.23 and B.24), rerttm/productions for
core, local, empty and sequential structure-level detitara.

Replace $trdec” in the productions for top-level declaratiotgpdec with “ dec”.

Compatibility
This is a conservative extension. The syntactic restrictio generalisedpen declara-

tions prevents overlap with the existing form, althoughreéeption of multiple open might
arguably be a preferable solution.

B.26 First-class Modules

Modules can be wrapped up as first-class values, by giving @ula@xpression and an
appropriate signature:

val p = pack Int : INTEGER
The type of such a value is
val p : pack INTEGER

To unwrap a package, another signature constraint is regessg.:

fun four x =
let
structure | = unpack x : INTEGER
in
[.toString(l.fromString "4")
end

More extensive examples can be foundat/examples/first-class-modules.sml

Changes to the Definition

The changes described here are relative to the changegfarhorder and local modules
given in Appendices B.23-B.25.

Section 2.1 (Reserved Words):
e Addpack to the list of reserved words.

Section 2.3 (Grammar):
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e Extend the first paragraph further with the following set=n

Moreover, the variablé&ngsigid occurring in Figures 3 and 4 ranges over
the class of long signature identifiers, defined in Secti@n 3.

e In Figure 3, add the following production for types:

[ty =] pack longsigid first-class module

e In Figure 4, add the following production for expressions:

[exp ::=] pack longstrid : longsigid pack module
Section 3.1 (Reserved Words):
e Addunpack to the list of reserved words used in Modules.
Section 3.4 (Grammar for Modules):

e In Figure 6, add the following production for structure eaggions:
[strexp ::=] unpack atexp : sigexp unpack module
Section 4.2 (Compound Objects):
¢ In Figure 10, extend the definition of Type withPackType” and add the following:
[¥] € PackType= Sig

¢ In the paragraph referring to Figure 10, modify the sentextned by the changes
described in Appendix B.23 and B.24 to

The object classes Sig, FunSig and SigEnv belong to Moduldsage
defined in Section 5.1.

Section 4.4 (Types and Type functions):

e Add the following bullet to the list of forms that admit eqitgd

e [3], whereX € Sig.
Section 4.10 (Inference Rules):

¢ Add the following rule for expressions:

C'in Basist longstrid . longsigid = M C(longsigid) =%
C'+ pack longstrid : longsigid = [¥]

(9a)

and an accompanying note:

(9a) The premise of this rule is a sentence of the static seesdor Modules, see
Section 5.7. It ensures théYlongstrid) matches:.

e Add the following rule for types:

C(longsigid) = X
C' I pack longsigid = [¥]

(47a)
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Section 5.7 (Inference Rules):

¢ Add the following rule for structure expressions:

C'+ atexp = [X] C'in Basist sigexp = (T)M
Yz ()M TnTofC)=0

C t- unpack atexp : sigexp = M (532)
Section 6.3 (Compound Objects):
e In Figure 13, extend the definition of Val withu"Mod".
Section 6.7 (Inference Rules):
¢ Add the following rule for expressions:
E in Basist longstrid : longsigid = M (103a)

E |- pack longstrid . longsitgid = M
and an accompanying note:
(103a) The premise of this rule is a sentence of the dynami@astcs for Modules,
see Section 7.3.

Section 7.3 (Inference Rules):

¢ Add the following rule for structure expressions:

E of B+ atexp = M
B F unpack atezxp . sigexp = M

(153a)

and note:

(153a) Because there is no subtyping on package types,dtie stmantics ensures
that M is already cut down to the signature denotedityyzp.

Appendix A (Derived Forms):

e In Figure 15, add the following to the box for expressions:

pack atstrezp . atsigezp let structure strid = atstrerp
signature sigid = atsigexp |(strid, sigid new)
in pack strid : sigid end

Appendix B (Full Grammar):
e In Figure 20, add the following production for expressions:
[exp ::=] pack atstrexp : atsigerp pack module
e In Figure 23, add the following production for types:
[ty =] pack longsigid first-class module

¢ In Figure 23a (as defined by Appendices B.23 and B.24), adfbtloeving produc-
tion for structure expressions:

[strexp ::=] unpack atexp : sigexp unpack module
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Compatibility

Except for the new reserved worgdack andunpack this is a conservative extension.

C Syntax Summary

The following gives a summary of the full grammar as definedlbthe changes given in
Appendix B. A bullete marks phrases that are new, a parenthesised lfu)i@hrases that
have been extended relative to SML'97.

C.1 Core Language

atexp n= scon special constant
(op)longvid value identifier
{ (atexp where) {exprow) } record(e)
# lab record selector
() 0-tuple
(expy, -+, exp,) n-tuple,n > 2
[ exzpy, -+, exp,] list, n >0
(expy; - exp, (;)) sequencenp > 1 (o)
let dec in exp; ; ---; exp, ;) end local declarationy > 1 (e)
exprow = ..= exp{(, exprow) ellipsese
lab = exp {, exprow) expression row
vid (: ty) {, exprow) label as variable
appexp = atexp
appezp aterp application
infexp = appexp
infexp, vid infexp, infix application
exp n= infexp
exp: ty type constraint (L)
pack atstrexp : atsigexp pack module
exp, andalso exp, conjunction
exp, orelse exp, disjunction
exp handle (| ) match handle exceptiolle)
raise exp raise exception
if exp, then ezp, (else exps) conditional(e)
while exp; do exp, iteration
case exp of (| ) match case analysiée)
fn (| ) match function(e)
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atpat

patrow

apppat

infpat

pat

match
mrule

fmatch
fmrule

foat

scon
(op)longvid
? atexp

{ {patrow) }
()

( paty,
[ paty,
( pat)

T patn)
T patn]

v {=pat) {, patrow)
lab = pat {, patrow)

vid (: ty) (as pat) {, patrow)

atpat
(op)longuid atpat
? atexp atpat

apppat
infpaty vid infpat,

infpat

pat @ ty

pat, as patq

paty | pat,

pat, with paty = exp
pat if exp

mrule (| match)
pat => exp

fmrule (| fmatch)

fpat {: ty) (if atexp) = exp
(op)vid atpaty --- atpat,,

( atpat, vid atpaty) atpats ---

atpat, vid atpats

atpat,,

wildcard

special constant
value identifier
transformatiors
record

0-tuple
n-tuple,n > 2
list, n >0

ellipses(e)
pattern row
label as variable

constructed value
constructed transformation

constructed value (infix)

typed
conjunctive(e)
disjunctivee
nested matcla
guarde

match rule

match clausée)
n>1
n>3

ty = tyvar type variable
{ (tyrow) } record
tyseq longtycon type construction
ty, * --- * ty, n-tuple,n > 2
ty, -=> tys function type (R)
pack longsigid first-class module
(ty)

tyrow == ... ty{, tyrow) ellipsese
lab: ty (, tyrow) typerow
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dec =

valbind =
fvalbind
typdesc
datbind

conbind =

exbind

C.z2

atstrexp

appstrexp =

strexp

do exp

val (rec) tyvarseq valbind
fun tyvarseq funbind
type typbind

datatype datbind (withtype typbind)
datatype tycon = datatype longtycon
viewtype tyvarseq tycon = ty as (| ) conbind

with dec end

viewtype tycon = viewtype longtycon
abstype datbind (withtype typbind)

with dec end
exception exbind
strdec
open strexp
open longstrid, --- longstrid,,
local decy in decs end

decy (; ) decy

infix (d) vidy - -- vid,
infixr (d) vidy --- vid,
nonfix vidy --- vid,

pat = exp (and valbind)
(| y fmatch (and fvalbind)
tyvarseq tycon = ty (and typbind)

tyvarseq tycon = (| ) conbind (and datbind)

(op)vid (of ty) (| conbind)
(op)vid (of ty) (and exbind)
(op)vid = {op)longvid (and exbind)

Module Language

= struct dec end
( dec)
longstrid
let dec in strexp end
( strexp)

atstrexp
appstrexp atstrexp

= appstrexp
strexp : sigexp
strexp > sigexp
unpack atexp : sigezp

fct strid © sigexp => strexp

fct ( spec) => strexp
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evaluatione
value(e)
function
type
datatype
replication
viewtypee

viewtype replicatiors
abstract type

exception

module declaratiom
opene

multiple open

local

empty

sequential

infix left directive,n > 1
infix right directive,n > 1
nonfix directiven > 1

()
()

basic

basic (shortp
structure identifier
local declaration

[

functor applicatior{e)

transparent constraint
opague constraint
unpack module
functore

functor (short)e



atsigexp = sig spec end basic

( spec) basic (shortp
longsigid signature identifiefe)
( sigexp) .

sigexp = atsigexp
sigexp where type type realisation

tyvarseq longtycon = ty
fct strid : atsigexp -> sigexp functore

fct ( spec) ->  sigexp functor (short)e
atsigexp -> sigexp non-dependent functer
spec == val valdesc value
type typdesc type
type syndesc type
eqtype typdesc eqtype
datatype datdesc {(withtype typbind) datatypeg(e)
datatype tycon = datatype longtycon replication
viewtype tyvarseq tycon = ty as (| ) condesc viewtypee
viewtype tycon = viewtype longtycon viewtype replicatiors
exception exdesc exception
structure strdesc structure
functor fundesc functore
signature sigdesc signatures
include sigexp include
include longsigid, --- longsigid,, multiple include(e)
empty
specy (; ) specy sequential
spec sharing type type sharing
longtycon, = --- = longtycon,, (n>2)
spec sharing structure sharing
longstrid, = - -+ = longstrid,, (n>2)
valdesc = wid: ty (and valdesc)
typdesc = tyvarseq tycon (and typdesc)
syndesc = tyvarseq tycon = ty (and syndesc)

datdesc = tyvarseq tycon = (| ) condesc (and datdesc) (o)

condesc = wvid (of ty) (| condesc)
exdesc = wvid (of ty) (and exdesc)
strdesc = strid : sigexp (and strdesc)
fundesc = strid ( funargy ) --- ( funarg,,) n>1)e
. sigexp (and fundesc)
funarg = strid . sigexp
spec
sigdesc = sigid = sigezp (and sigdesc) .
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strdec

strbind
funbind
sigbind
topdec

program

structure strbind

functor funbind

signature sighind

strid (: (>) sigexp) = strexp (and strbind)
strid ( funargy ) --- ( funarg,, )
(: (>) sigexp) = strexp (and funbind)

sigid = sigexp (and sigbind)

dec

topdec ; (program)

exp; (program)
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D History

Version 1.0 (2001/10/04)

Public release. No history for prior versions.

Version 1.0.1 (2001/10/11)

Basis:

e Fixed ASCII and Unicode escapes@nar.scan andChar.scanC (and thusin
Char.fromString , Char.fromCString , String.fromString ).

e Fixed octal escapes @har.toCString (and thusString.toCString ).
e Fixed possible NaN's ifReal.scan  for mantissa 0 and large exponents.

Documentation:

e Added issue of obligatory formatting characters to Apprndi
e Some minor additions/clarifications in Appendix.

Test cases:

e Added test caseedundant
e Removed accidental carriage returns frasterisk , semicolon andtypespec
e Small additions tsemicolon andvalrec

Version 1.1 (2002/07/26)
Basis:

e Adapted signatures to latest version of the Basis spedditfER04].
e Implemented new library functions and adapted functionik wihanged semantics.
e Implemented all signatures and structures dealing withyeaind vector slices.

e Implemented newext structure, along with missingharVector andCharArray
structures.

e Implemented missin@yte structure.
¢ RemovedSML90structure and signature.

e Use opaque signature constraints where the specificatesitbem (with some nec-
essary exceptions).

e Implemented missingool.scan andBool.fromString
¢ Implemented missinReal.posinf ~ andReal.negInf
e Handle exceptions fro@har.chr  correctly.

e Fixed generation of"X -escapes iiChar.toString

e Fixed treatment of gap escape<ihar.scan
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Test cases:

e Added test caseeplication
e Updated conformance table.

Version 1.1.1 (2004/04/17)
Interpreter:

¢ Disallow undetermined types (a.k.a. “free type variablesi'toplevel.

e Implement accurate scope checking for type names.

e Fixed soundness bug w.r.t. undetermined types in type selgemeralisation test.
¢ Reject out-of-range real constants.

e Accept multiple line input.

e Output file name and line/columns with error messages.

e Improved pretty printing.

Basis:

e Sync’ed with updates to the specification [GR04]: overlahdeon words, added
Word.fromLarge ,Word.toLarge ,Word.toLargeX ;removedSubstring.all ;

changedextlO.inputLine ; changedyte.unpackString andByte.unpackStringVec
e FixedString.isSubstring , String.fields , andVector.foldri
Test cases:

e Addedtest caseabstype2 ,dec-strdec ,flexrecord2 ,tyname ,undetermined2 ,
undetermined3

e Split conformance table into different classes of deviatod updated it.

Version 1.1.2 (2005/01/14)
Interpreter:

e Fix parsing of sequential and sharing specifications.
e Add arity checks missing in rules 64 and 78 of the Definition.
¢ Implement type name equality attributetasol .

Basis:
e FixedStringCvt.padLeft andStringCvt.padRight
Documentation:

e Add parsing ambiguity for sharing specifications to issat li
¢ Add missing side conditions in rules 64 and 78 to issue list.
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¢ Added version history to appendix.
Test cases:

e Added test casgmly-exception ,tyvar-shadowing  , andwhere2 and ex-
tendedd andvalrec

e Updated conformance table.

Version 1.2 (2005/02/04)

Interpreter:

o Refactored code: semantic objects are now collected intonetsre for each part of
the semantics; type variable scoping and closure computégkpansiveness check)
are separated from elaboration module.

e Made checking of syntactic restrictions a separate infar@ass.
e Added missing check for bound variables in signature retdia.
¢ Fixed precedence of environments égren declarations.

e Fixed implementation of Abs operator fabstype .

e Print type name séf of inferred basis in elaboration mode.

e Fixed parenthesisation in pretty printing type applicasio
Basis:

e More correct path resolution farse function.

e AddedcheckFloat toREALsignature so that bootstrapping actually works again.
e FixedArraySlice.copy for overlapping ranges.

e FixedArraySlice.foldr andArraySlice.foldri

e FixedChar.isSpace

e Fixed octal escapes Bhar.fromCString

e Updated treatment of trailing gap escape€har.scan

e Updated scanning of hex prefix Word.scan .

e Fixed traversal order iWector.map
Documentation:

e Added typoin rule 28 to issue list.
Test files:

e Addedgeneralise

o Extendecdpoly-exception
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Version 1.2.1 (2005/07/27)

Interpreter:

e Fixed bug in implementation of rule 35.

e Fixed bug in check for redundant match rules.
Basis:
e FixedSubstring.splitr

e Fixed border cases i@S.Path.toString ,OS.Path.joinBaseExt
andOS.Path.mkRelative

Version 1.2.2 (2005/12/09)

Interpreter:
e Simplified implementation of pattern checker.
Test files:

e Addedfun-infix

Version 1.2.3 (2006/07/18)

Interpreter:

e Fixed check for duplicate variables in records and layesgtems.

¢ Added missing check for undetermined types in functor dadlans.

,0S.Path.mkAbsolute

e Overhaul of line/column computation and management ofcsofile names.

Documentation:
e Added principal typing problem with functors to issue list.
Test files:

e Addedfun-partial , functor-poly andfunctor-poly2

e Updated conformance table.

Version 1.2.4 (2006/08/14)

Documentation:

e Clarified license.
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Version 1.3.0 (2007/03/22)

Interpreter:

Output abstract syntax tree in parsing mode.
Output type and signature environments in evaluation mode.

Fixed computation of tynames on a static basis.

Reorganised directory structure.
e Some clean-ups.

Documentation:

e Updated a few out-of-sync sections.
e Added typo in definition of, operator (Section 7.2) to issues list.

Test files:

e Extendedsharing andwhere .
e Updated conformance table.

Platforms:

e Support for Poly/ML, Alice ML, and the ML Kit.
e Support for incremental batch compilation with Moscow Mldaklice ML.
e Target to build a generic monolithic source file.

Version 1.2.2/S1 (2005/12/12)

Interpreter:

Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:
Implemented RFC:

Implemented RFC

Syntax fixes.

Semantic fixes.

Line comments.

Extended literal syntax.
Record punning.

Record extension.

Record update.

Disjunctive patterns.
Conjunctive patterns.

Match guards.

Optional bar in matches.
Simplified recursive bindings.
Strengthened value restriction.
Degraded abstype.

Proper scoping for transparent type Bpaions.

: Withtype specifications.
Implemented RFC:

Remove "and” in type realisations.
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Version 1.2.2/S2 (2006/01/02)
Interpreter:

e Implemented RFC: Do declarations.

e Extended RFC: Record extension to support record type sixteand freely placed
ellipses.

e Fixed bug in record type field lookup.
Version 1.2.3/S2 (2006/07/18)

Merged changes from 1.2.3.

Version 1.2.4/S2 (2006/08/14)
Documentation:

e Clarified license.

Version 1.2.4/S3 (2006/09/10)
Interpreter:

¢ Modified RFC: Line comments to uge ) as delimiter.

e Extended RFC: Optional bar in matches to support datatypkdgions and speci-
fications.

Version 1.3.0/S4 (2007/03/22)

Merged changes from 1.3.0, plus:

Interpreter:

e Implemented RFC: Views.

e Implemented RFC: Nested matches.

e Implemented RFC: Transformation patterns.

e Generalised RFC: Match guards to Pattern guards.

e Implemented RFC: Higher-order functors.

e Implemented RFC: Nested signatures.

¢ Implemented RFC: Local modules.

e Implemented RFC: First-class modules.

e Extended RFC: Optional bars to cover semicolons as well.

Documentation:

e Added Appendix B documenting all extensions.
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Version 1.3.1 (2008/04/28)

Platforms:

e Preliminary support for SML#.
¢ Avoid name clash with library of SML/NJ 110.67.
o Avoid shell-specific code iMakefile

Version 1.3.1/S5 (2008/04/28)

Merged changes from 1.3.1, plus:

Interpreter:
e Implemented RFC: Optionalse branch.

e Fixed and simplified definition of signature matching for RFigher-order func-
tors.
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