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1 Introduction

HaMLet is an implementation of Standard ML (SML’97), as defined in The Definition
of Standard ML[MTHM97] – simply referred to as theDefinition in the following text.
HaMLet mainly is an interactive interpreter but also provides several alternative ways of
operation. Moreover, HaMLet can perform different phases of execution – like parsing,
type checking, and evaluation – selectively. In particular, it is possible to execute programs
in an untyped manner, thus exploring the space where “programs can go wrong”.

This special version of HaMLet is devoted toSuccessor ML[SML05], an envisioned evo-
lutionary, conservative successor to Standard ML. It incorporates a number of preliminary
proposals made for Successor ML and represents a personal vision of where SML could
go. Currently, it concentrates on the following features:

• Extensible records.

• More expressive pattern matching.

• Views.

• Higher-order modules and nested signatures.

• Local and first-class modules.

• Miscellaneous fixes to known issues with SML and its specification.

See Appendix B for a detailed description of all changes relative to Standard ML.

1.1 Goals

The primary purpose of HaMLet is not to provide yet another SML system. Its goal is to
provide a faithful model implementation and a test bed for experimentation with the SML
language semantics as specified in the Definition. It also might serve educational purposes.
The main feature of HaMLet therefore is the design of its source code: it follows the for-
malisation of the Definition as closely as possible, only deviating where it is unavoidable.
The idea has been to try to translate the Definition into an “executable specification”. Much
care has been taken to resemble names, operations, and rule structure used in the Defini-
tion and theCommentary[MT91]. Moreover, the source code contains references to the
corresponding sections in the Definition wherever available.

On the other hand, HaMLet tries hard to get even the obscure details of the Definition right.
There are some “features” of SML that are artefacts of its formal specification and are not
straight-forward to implement. See the conclusion in Section 9 for an overview.

Some time ago, a loose for evolving SML has been started. For political reasons, the subject
of this effort has been nicknamedSuccessor ML(sML) [SML05]. This special version of
HaMLet is a testbed for potential changes and extensions considered for Successor ML
and incorporates a number of simple proposals. Appendix B gives a complete list of these
proposals and their specification.

Efficiency was not a goal. Execution speed of HaMLet is not competitive in any way, since
it naively implements the interpretative evaluation rulesfrom the Definition. Comfort was
no priority either. The error messages given by HaMLet are usually taciturn as we tried to
avoid complicating the implementation.

HaMLet has of course been written entirely in SML’97 and is able to bootstrap itself (see
2.7).

5



1.2 Bugs in the Definition

The Definition is a complex formal piece of work, and so it is unavoidable that it contains
several mistakes, ambiguities, and omissions. Many of these are inherited from the previous
language version SML’90 [MTH90] and have been documented accurately by Kahrs [K93,
K96]. Those, which still seem to be present or are new to SML’97, are listed in appendix
A.

Most of the problems have been fixed in this version as part of the proposals for Successor
ML, see especially Appendices B.1 and B.2. The general approach we take for resolving
remaining ambiguities and fixing bugs is doing it in the ‘mostnatural’ way. Mostly, this is
obvious, sometimes it is not. The appendix discusses the solutions we chose.

1.3 Related Work

HaMLet owes much of its existence to the first version of the MLKit [BRTT93]. While the
original Kit shared a similar motivation and a lot of inspiration came from that work, more
recent versions moved the Kit into another direction. We hope that HaMLet is suitable to
fill the resulting gap.

We also believe that HaMLet is considerably simpler and closer to the Definition. More-
over, unlike the ML Kit, it also implements the dynamic semantics of SML directly. On
the other hand, HaMLet is probably less suited to serve as a library for real world projects,
since no part of it has been tuned for efficiency in any way.

1.4 Copyright

Copyright of the HaMLet sources 1999-2007 by Andreas Rossberg.

The HaMLet source package includes portions of the SML/NJ library, which is copyright
1989-1998 by Lucent Technologies.

SeeLICENSE.txt files for detailed copyright notices, licenses and disclaimers.

HaMLet is free, and we would be happy if others experiment with it. Feel free to modify
the sources in whatever way you want.

Please post any questions, bug reports, critiques, and other comments to

rossberg@ps.uni-sb.de

2 Usage

2.1 Download

HaMLet is available from the following web page:

http://www.ps.uni-sb.de/hamlet/

The distribution contains a tar ball of the SML sources and this documentation.
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2.2 Systems Supported

HaMLet can be readily built with the following SML systems:

• SML of New Jersey (110 or higher) [NJ07]

• Poly/ML (5.0 or higher) [M07]

• Moscow ML (2.0 or higher) [RRS00]

• Alice ML (1.4 or higher) [AT06]

• MLton (20010706 or higher) [CFJW05]

• ML Kit (4.3.0 or higher)1 [K06]

• SML# (0.20 or higher)2 [ST07]

You can produce an executable HaMLet standalone with all systems. The first four also
allow you to use HaMLet from within their interactive toplevel. This gives access to a
slightly richer interface (see Section 2.6).

Other SML systems have not been tested, but should of course work fine provided they
support the full language and a reasonable subset of the Standard Basis Library [GR04].

2.3 Libraries and Tools Used

HaMLet makes use of the Standard ML Basis Library [GR04]3. In addition it uses two
functors from the SML/NJ library [NJ98], namelyBinarySetFn andBinaryMapFn ,
to implement finite sets and maps.

To generate lexer and parser, ML-Lex [AMT94] and ML-Yacc [TA00] have been used. The
distribution contains all generated files, though, so you only have to install those tools if
you plan to modify the grammar.

The SML/NJ library as well as ML-Lex and ML-Yacc are freely available as part of the
SML of New Jersey distribution. However, the HaMLet distribution contains all necessary
files from the SML/NJ library and the ML-Yacc runtime library. They can be found in the
smlnj-lib subdirectory, respectively.4

2.4 Installation

To build a stand-alone HaMLet program, go to the HaMLet source directory and invoke
one of the following commands:5

make with-smlnj
make with-mlton

1Unfortunately, the ML Kit seems to hang itself compiling theparser module of the current version of HaMLet-
S.

2Hamlet on SML# currently works with some glitches only, e.g.the interactive prompt does appear out of
sync.

3Despite some incompatible changes between the two, HaMLet sources work with the latest specification of
the Basis [GR04] as well as the previously available version[GR96].

4The sources of the SML/NJ library are copyrightedc©1989-1998 by Lucent Technologies. See
http://cm.bell-labs.com/cm/cs/what/smlnj/license.ht ml for copyright notice, license and
disclaimer.

5Under DOS-based systems, Cygwin is required.
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make with-poly
make with-mosml
make with-alice
make with-mlkit
make with-smlsharp

depending on what SML system you want to compile with. This will produce an executable
namedhamlet in the same directory, which can be used as described in Section 2.5.6

The abovemake targets use the fastest method to build HaMLet from scratch.Most SML
systems allow for incremental compilation that, after changes, only rebuilds those parts of
the system that are affected. To perform an incremental built, use the following commands,
respectively:7

make with-smlnj+
make with-alice+
make with-mosml+
make with-mlkit+

For other SML systems that are not directly supported, the makefile offers a way to build a
single file containing all of the HaMLet modules:

make hamlet-monolith.sml

In principle, the resulting file should compile on all SML systems. In practice however,
some might require additional tweaks to work around omissions or bugs in the provided
implementation of the Standard Basis Library [GR04].8

After HaMLet has been built, you should be able to execute it as described in 2.5. Under
Unixes, you have the option of installing HaMLet first:

make INSTALLDIR=mypath install

The default formypath is /usr/local/hamlet . You should include your path in the
PATHenvironment variable, of course.

2.5 Using the HaMLet Stand-Alone

After building HaMLet successfully with one of the SML systems, you should be able to
start a HaMLet session by simply executing the command

hamlet [- mode] [ file ...]

Themodeoption you can provide, controls how HaMLet processes its input. It is one of

6Due to a bug in Moscow ML, which does not parse SML’swhere type syntax correctly, you first have
to run “make mosmlize ” to patch the sources appropriately. Unfortunately, Hamlet will no longer be able to
bootstrap from the patched sources, due to the language change described in Appendix B.7. By running “make
unmosmlize ” you can convert the sources back to their original form.

7Currently, this only matters for Moscow ML and Alice ML, which employ batch compilers. The other systems
either always build incrementally (SML/NJ, ML Kit), or do not support separate compilation at all (MLton,
Poly/ML).

8Of the systems supported, SML/NJ, Moscow ML and the ML Kit required such work-arounds, which appear
as wrapper files for Standard Basis modules in thefix directory of the HaMLet source.
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• -p : parsing mode (only parse input)

• -l : elaboration mode (parse and elaborate input)

• -v : evaluation mode (parse and evaluate input)

• -x : execution mode (parse, elaborate, and evaluate input)

Execution mode is the default behaviour. Parsing mode will output the abstract syntax
tree of the program in an intuitive S-expression format thatshould be suitable for further
processing by external tools. Elaboration mode only type-checks the program, without
running it.

Evaluation mode does not perform static analysis, so it can actually generate runtime type
errors. They will be properly handled and result in corresponding error messages. Evalua-
tion mode also has an unavoidable minor glitch with regard tooverloaded constants: since
no type information is available in evaluation mode, all constants will be assigned the de-
fault type. This can cause different results for some calculations. To see this, consider the
following example:

0w1 div (0w2 * 0w128) and
0w1 div (0w2 * 0w128) : Word8.word

Although both variants only differ in an added type annotation, the latter will have a com-
pletely different result – namely cause a division by zero and thus aDiv exception (see
also appendix A.11). You can still force calculation to be performed in 8 bit words by
performing explicit conversions:

val word8 = Word8.fromLarge;
word8 0w1 div (word8 0w2 * word8 0w128);

Note thatLargeWord.word = word in HaMLet.

If no file argument has been given you will enter an interactive session in the requested
mode, just like in other SML systems. Input may spread multiple lines and is terminated
by either an empty line, or a line whose last character is a semicolon. Aborting the session
via Ctrl-D will exit HaMLet (end of file, Ctrl-Z on DOS-based systems).

Otherwise, all files are processed in order of appearance. HaMLet interprets the Definition
very strictly and thus requires every source file to be terminated by a semicolon. A file
name may be prefixed by@in which case it is taken to be an indirection file containing a
white space separated list of other file names and expands to that list. Expansion is done
recursively, i.e. the file may contain@-prefixed indirections on its own.

HaMLet currently provides a considerable part, but not yet the complete obligatory subset
of the Standard Basis Library [GR04]. In particular, support for OS functionality still is
weak. Most basic types and corresponding operations are fully implemented, though.

There are several things to note about HaMLet’s output:

• Types and signatures are always fully expanded, in order to closely resemble the
underlying semantic objects.

• Similarly, structure values are shown in full expansion.

• Signatures are annotated with the set of type names bound (asa comment).

• Similarly, the type name set of an inferred static basis is printed, though only elabo-
ration mode.
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2.6 Using HaMLet from within an SML System

You can also use HaMLet from within the interactive toplevelof a given SML system.
This allows you to access the various modules described in the following sections of this
document directly and experiment with them.

In most interactive SML systems – particularly HaMLet itself, see 2.7 – you should be able
to load the HaMLet modules by evaluating

use "hamlet.sml";

As this requires recompiling everything, there are more comfortable ways for some partic-
ular systems:

• Under SML of New Jersey, it suffices to start SML/NJ in the HaMLet directory and
evaluate

CM.make();

However, under newer versions of SML/NJ (110.20 and later),you need to invoke
the function as follows:

CM.make "sources.cm";

• Under Moscow ML, first go to the HaMLet directory and invoke

make interactive-mosml

Then start Moscow ML and type

load "Sml";

Loading HaMLet into an SML session will create (besides others) a structure namedSml,
providing the following signature:

signature SML =
sig

val parseString : string -> unit
val elabString : string -> unit
val evalString : string -> unit
val execString : string -> unit

val parseFile : string -> unit
val elabFile : string -> unit
val evalFile : string -> unit
val execFile : string -> unit

val parseFiles : string list -> unit
val elabFiles : string list -> unit
val evalFiles : string list -> unit
val execFiles : string list -> unit

val parseSession : unit -> unit
val elabSession : unit -> unit
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val evalSession : unit -> unit
val execSession : unit -> unit

end

The functions here come in four obvious groups:

• xString processes a program contained in the string given.

• xFile processes a program contained in a file whose name is given.

• xFiles processes a whole set of files in an incremental manner.

• xSession starts an interactive session, that can be exited by pressing Ctrl-D (end
of file, Ctrl-Z on DOS-based systems).

Each call processes the program in the initial basis. For incremental processing, functions
from thexFiles or xSession group have to be used.

In each group there are four functions providing selective phases of execution:

• parse X just parses a program.

• elab X parses and elaborates a program.

• eval X parses and evaluates a program.

• exec X parses, elaborates, and evaluates a program.

These functions correspond to the different execution modes of the stand-alone HaMLet
(see Section 2.5). They all print the resulting environments on stdOut , or a suitable
error message onstdErr if processing does not succeed (parse functions just printOKon
success). During processing of a file list or an interactive session, errors cause the current
input to be skipped, but not abortion of the session.

2.7 Bootstrapping

Since HaMLet has been written purely in strict SML’97, it is able to bootstrap itself. The
file hamlet.sml provided in the source directory allows bootstrapping an interactive
HaMLet session by starting the HaMLet stand-alone via

hamlet hamlet.sml wrap-hamlet.sml

Alternatively, the file can beuse ’d from within a HaMLet session. It will load all necessary
modules enabling interactive use as described in 2.6.

Beware that loading the full Basis Library in the bootstrapped version will require a huge
amount of virtual memory. If you are brave and havelots of memory and patience you
can even try a second bootstrapping iteration from within a session on the bootstrapped
HaMLet. Then, HaMLet not only type-checks itself but does also execute the type checker
and evaluator itself. You should expect at least two orders of magnitude slowdown for each
bootstrapping iteration, due to the naive interpretative evaluation9 (see Section 6).

9For example, on a 2 GHz processor with 512 MB memory the seconditeration may take about 4 hours.
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2.8 Limitations

In its current version, HaMLet is not completely accurate with respect to some aspects
of the SML language. The following list gives an overview of the issues remaining with
Successor ML:

• Exhaustiveness of Patterns: checking of patterns is not fully accurate in the presence
of overloaded special constants. Sometimes a match is flagged as non-exhaustive,
although it is in the limited range of its actual type.

• Library: HaMLet does provide a significant portion of the Standard Basis Library,
but it is not complete.

3 Overview of the Implementation

The implementation of HaMLet follows the Definition, ammended by the changes given in
Appendix B, as closely as possible. The idea was to come as close as possible to the ideal
of an executable version of the Definition. Where the sourcesdeviate, they usually do so
for one of the following reasons:

• the non-deterministic nature of some of the rules (e.g. guessing the right types in the
static semantics of the core),

• the informal style of some parts (e.g. the restrictions in [4.11])

• bugs or omissions in the Definition (see appendix A)

We will explain non-trivial deviations from the Definition where appropriate.

The remainder of this document does not try to explain details of the Definition – the
Commentary [MT91] is much better suited for this purpose, despite being based on the
SML’90 Definition [MTH90]. Neither is this document a tutorial to type inference. The
explanations given here merely describe the relation between the HaMLet source code and
the formalism of the Definition. The text assumes that you have both at hand side by
side. We use section numbers in brackets as above to refer to individual sections of the
Definition. Unbracketed section numbers are cross references within this document.

Note that most explanations given here a kept rather terse and cover only general ideas
without going into too much detail. The intention is that thesource code speaks for itself
for most part.

3.1 Structure of the Definition

The Definition specifies four main aspects of the SML language:

1. Syntax

2. Static semantics

3. Dynamic semantics

4. Program Execution
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Syntax is the most conventional part of a language definition. The process of recognizing
and checking program syntax is usually referred to asparsing. The static semantics is
mainly concerned with the typing rules. The process of checking validity of a program
with respect to the static semantics is calledelaborationby the Definition. The dynamic
semantics specifies how the actualevaluationof program phrases has to be performed.
The last aspect essentially describes how the interactive toplevel of an SML system should
work, i.e. how parsing, elaboration, and evaluation are connected. The complete processing
of a program, performing all three aforementioned phases, is known asexecution.

The four aspects are covered in separate chapters of the Definition. Further destructuring
is done by distinguishing between core language and module language. This factorisation
of the language specification is described in more detail in the preface and the first chapter
of the Definition.

3.2 Modularisation

HaMLet resembles the structure of the Definition quite directly. For most chapters of
the Definition there is a corresponding module implementingthat aspect of the language,
namely these are:

Chapter 2 and 3 Lexer , Parser , SyntacticRestrictions
Chapter 4 ElabCore
Chapter 5 ElabModule
Chapter 6 EvalCore
Chapter 7 EvalModule
Chapter 8 Program
Appendix A DerivedForms
Appendix B Parser
Appendix C InitialStaticBasis
Appendix D InitialDynamicBasis
Appendix E OverloadingClass (roughly)

Most other modules implement objects and operations definedat the beginning of each of
the different chapters, which are used by the main modules. The source of every module
cross-references the specific subsections of the Definitionrelevant for the types, operations,
or rule implementations contained in it.

Altogether, it should be quite simple to map particular HaMLet modules to parts or en-
tities of the Definition and vice versa. To make the mapping asobvious as possible, we
followed quite strict naming conventions (see 3.5). Each ofthe following sections of this
document will cover implementation of one of the language aspects mentioned in 3.1. At
the beginning of each of those sections we will list all modules relevant to that part of the
implementation.

As a rule, each source file contains exactly one signature, structure, or functor. The only
exceptions are the filesIds X, GrammarsX, each containing a collection of simple functor
applications, and the files containing the modulesAddr , ExName, Lab , Stamp , TyName,
TyVar , which also provide implementations of sets and maps of the corresponding objects.

We tried to keep things simple, so the architecture of HaMLetis quite flat: it does not make
heavy use of functors. Functors only appear where the need togenerate several instances
of an abstract type (e.g.IdFn ) or parameterised types arises. Enthusiasts of the closed
functor style may feel free to dislike this approach;-) .
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3.3 Mapping Syntactic and Semantic Objects

The sets representing the different phrase classes of the SML syntax are defined inductively
through the BNF grammars in the Definition. These sets are mapped to appropriate SML
datatypes in obvious ways, using fields of typeoption for optional phrases.

All sets defining semantic objects in the Definition have beenmapped to SML types as
directly as possible:

primitive objects (without structure) abstract types
products (A × B) tuple types (A * B)
disjoint unions (A ∪ B) datatypes (A of A | B of B )
k-ary products (∪k≥0A

k) list types (A list )
finite sets (Fin(A)) instances of theFinSet functor

finite maps (A
fin
→ B) instances of theFinMap functor

In some places, we had to relax these conventions somewhat and turn some additional types
into datatypes to cope with mutual recursion between definitions. For example, environ-
ments are always rendered as datatypes.

Except for the primitive simple objects, no type definitionsare abstract. To allow the most
direct implementation of rules operating on semantic objects, type definitions representing
structured sets are always kept transparent. Be warned: regarding this aspect, the HaMLet
sources should not serve as an example for good modularisation practice...

3.4 Mapping Inference Rules

Usually, each group of inference rules in the Definition is implemented by one function.
For rules of the form

A ⊢ phrase ⇒ A′

the corresponding function has type

A * phrase -> A’

Each individual rule corresponds to one function clause. More specifically, an inference
rule of the form:

A1 ⊢ phrase1 ⇒ A′
1 · · · An ⊢ phrasen ⇒ A′

n side condition
A ⊢ phrase ⇒ A′

(k)

maps to a function clause of the form:

elabPhraseClass args (A, phrase) =
( * [Rule k] * )
let

val A1’ = elabPhraseClass1(A1, phrase1)
( * ... * )
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val An’ = elabPhraseClassN(An, phraseN)
in

if side condition then
A’

else
error("message")

end

Here,args denotes possible additional arguments that we sometimes need to pass around.
There are exceptions to this scheme for rules that are not purely structural, e.g. rules 34
and 35 of the static semantics [4.10] are represented by one case only. Moreover, we deal
slightly differently with the state and exception conventions in the dynamic semantics (see
6.3).

If one of a rule’s premise is not met, an appropriate message is usually generated and an
exception is raised through theError module.

3.5 Naming Conventions

Structures and functors are named after the main type they define, the objects they generate,
or the aspects of the Definition they implement (with one exception: the structure contain-
ing type Int is namedInter to avoid conflicts with the structureInt of the Standard
Basis Library). The corresponding signatures are named accordingly.

Several structures come in groups, representing the separation of core and module language
(and even the program layer). Orthogonal grouping happens for aspects similar in the
static and dynamic semantics. The structure names reflect those connections in an obvious
way, by including the words-Core- , -Module- , or -Program- , and-Static- or
-Dynamic- .

Types representing sets defined in the Definition are always named after that set even if
this conflicts with the usual SML conventions with respect tocapitalisation. Functions
are also named after the corresponding operation if it is defined in the Definition or the
Commentary [MT91]. Variables are named as in the Definition,with Greek letters spelled
out. Moreover, type definitions usually include a comment indicating how variables of that
type will be named.

On all other occasions obvious names have been chosen, following conventions established
by the Standard Basis Library [GR04] or the SML/NJ library [NJ98] where possible.

3.6 Side Effects

SML is not purely functional, and neither is the HaMLet implementation. It uses state
whenever that is the most natural thing to do, or if it considerably simplifies code. At the
following places state comes into play:

• inside the lexer, to handle nested comments,

• inside the parser, to maintain the infix environment,

• to generate time stamps, e.g. for type and exception names,

• in the representation of type terms, to allow destructive unification,

• during elaboration, to collect unresolved overloaded and flexible types,
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• during evaluation, to maintain the program’s state,

• to realise inter-module recursion on one occasion (see Section 5.11).

And of course, the code generated by Lex and Yacc uses state internally.

Other side effects are the output of error and warning messages in the Error structure.

3.7 Module-level Mutual Recursion

The addition of various module extensions (see Appendices B.23–B.26) introduces be-
tween the implementation of the core and the module language. Since SML does not sup-
port recursive modules, we either have to merge many conceptually separate concepts into
a single module, or work around it. We chose the latter, usingwhat can best be considered
a hack:

• To break up inter-module type recursion, we abuse the exception type. In one struc-
ture, a the proper type is replaced byexn , while the other structure defines the actual
type and an appropriate exception constructor wrapping it.

• On the value level inter-module recursion is always betweenfunctions. We use ref-
erences to tie the recursive knot. One structure defines a reference as a placeholder
for the actual function, and all calls are performed throughthe reference. The corre-
sponding structure defining the proper function assigns this reference.

4 Abstract Syntax and Parsing

4.1 Files

The following modules are related to parsing and representation of the abstract syntax tree:

Source representation of source regions

IdFn generic identifier representation
LongIdFn
IdsCore instantiated identifier classes
IdsModule
TyVar type variable representation
Lab label representation
SCon special constants

GrammarCoreFn abstract syntax tree definition
GrammarModuleFn
GrammarProgramFn
Grammars AST instantiations

Lexer lexical analysis (via ML-Lex)
LineAwareLexer wrapper computing line/column information
Parser syntactical analysis (via ML-Yacc)
Infix infix parser
Parse parser plugging
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DerivedFormsCore derived forms transformation
DerivedFormsModule
DerivedFormsProgram

IdStatus identifier status
BindingObjectsCore objects for binding analysis
BindingObjectsModule
GenericEnvFn generic environment operations
BindingEnv operations on binding environment
BindingContext operations on binding context
BindingBasis operations on binding basis

ScopeTyVars scoping analysis for type variables

SyntacticRestrictionsCore verifying syntactic restrictions
SyntacticRestrictionsModule
SyntacticRestrictionsProgram

PPGrammar auxiliary functions for printing ASTs
PPCore printing of core AST
PPModule printing of module AST
PPProgram printing of program AST

4.2 Abstract Syntax Tree

The abstract syntax tree (AST) is split into three layers, corresponding to the SML core and
module language and the thin program toplevel, respectively (modulesGrammarXFn).
It represents the bare grammar, without derived forms. One notable exception has been
made for structure sharing constraints, which are includedsince they cannot be handled
as a purely syntactic derived form (see A.8). Infix stuff has been removed from the core
grammar, as it does not appear in the semantic rules of the Definition [2.6]. However, we
have to keep occurrences of theop keyword in order to do infix resolution (see 4.5).

Each node carries a generic info field, and the grammar modules are functorised to allow
different instantiations of this field. However, they are currently only instantiated once,
with the info field carrying position information mapping each node to a region of the
source text and an optional file name (fileGrammars).

Each identifier class is represented by its own abstract type. Most of them – exceptTyVar
andLab which require special operations – are generated from theIdFn andLongIdFn
functors.

Special constants are represented as strings containing the essential part of their lexical
appearance – their actual values cannot be calculated before overloading resolution.

4.3 Parsing and Lexing

Parser and lexer have been generated using ML-Yacc [TA00] and ML-Lex [AMT94] which
are part of the SML/NJ distribution [NJ07]. The parser builds an abstract syntax tree using
the grammar types described in Section 4.2.
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Most parts of the parser and lexer specifications (filesParser.grm andLexer.lex ) are
straightforward. In particular, we use a rather dumb and direct way to recognize keywords
in the lexer. We have to take some care to handle all those overlapping lexical classes
correctly, which requires the introduction of some additional token classes (see comments
in Lexer.lex ). Nested comments are treated through a side-effecting counter for nesting
depth.

A substantial number of grammar transformations is unavoidable to deal with LALR con-
flicts in the original SML grammar (see 4.4 and comments inParser.grm ). Some hack-
ing is necessary to do infix resolution directly during parsing (see 4.5).

Semantic actions of the parser apply the appropriate constructors of the grammar types or
a transformation function provided by the modules handlingderived forms (see 4.6).

4.4 Grammar Ambiguities and Parsing Problems

The SML grammar – even with the changes given in Appendix B.1 –contains several other
ambiguities on the declaration level (see A.1, A.2 and A.7).We resolve them in the ‘most
natural’ ways. In particular, semicolons are simply parsedas declarations or specifications,
not as separators (cf. A.1), and several auxiliary phrase classes have been introduced to
implement these disambiguations. Further grammar transformations are needed to cope
with datatype declaration vs. datatype replication.

4.5 Infix Resolution

Since ML-Yacc does not support attributes, and we did not want to introduce a separate
infix resolution pass, the parser maintains an infix environmentJ which is initialised and
updated via side effects in the semantic actions of several pseudo productions. Applications
– infix or not – are first parsed as lists of atomic symbols and then transformed by the
moduleInfix which is invoked at the appropriate places in the semantic actions. The
infix parser in that module is essentially a simple hand-coded LR Parser.

The parser is parameterised over its initial infix environment. After successful parsing it
returns the modified infix environment along with the AST.

4.6 Derived Forms

To translate derived forms, three modules corresponding tothe three grammar layers pro-
vide transformation functions that rewrite the grammatical forms to their equivalent forms,
as specified in Appendix A of the Definition (modulesDerivedForms X). These func-
tions are named similar to the constructors in the AST types so that the parser itself does
not have to distinguish between constructors of bare syntaxforms and pseudo constructors
for derived forms.

The Definition describes thefvalbind derived form in a very inaccurate way. The change
described in Appendix B.1 makes it a bit more precise by introducing several additional
phrase classes (see A.9). Most of the parsing happens in theInfix module in this case,
though.

Note that the structure sharing syntax is not a proper derived form since it requires context
information about the involved structures (see A.8). It therefore has been moved to the bare
grammar.
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4.7 Syntactic Restrictions

The BNF grammar given in the Definition actually specifies a superset of all legal programs,
which is further restricted by a set of syntactic constraints [Section 2.9, 3.5]. The parser
accepts this precise superset, and the syntactic restrictions are verified in a separate pass.

Unfortunately, not all of the restrictions given in the Definition are purely syntactic (see
A.1). In general, it requires full binding analysis to inferidentifier status and type variable
scoping.

Checking of syntactic restrictions has hence been implemented as a separate inference pass
over the whole program. The pass closely mirrors the static semantics. It computes respec-
tive binding environments that record the identifier statusof value identifiers. For modules,
it has to include structures, functors and signatures as well, because the effect ofopen
relies on the environments they produce. Likewise, type environments are needed to reflect
the effect of datatype replication. In essence, binding environments are isomorphic to in-
terfaces in the dynamic semantics [Section 7.2]. As an extension, a binding basis includes
signatures and functors. For the latter, we only need to maintain the result environment.
Last, a binding context includes a set of bound type variables.

5 Elaboration

5.1 Files

The following modules represent objects of the static semantics and implement elaboration:

StaticObjectsCore definition of semantic objects
StaticObjectsModule
TyVar type variables
TyName type names

Type operations on types
TypeFcn operations on type functions
TypeScheme operations on type schemes
OverloadingClass overloading classes

GenericEnvFn generic environment operations
StaticEnv environment instantiation
Sig operations on signatures
FunSig operations on functor signatures
StaticBasis operations on basis

ElabCore implementation of elaboration rules
ElabModule
Clos expansiveness check and closure
CheckPattern pattern redundancy and exhaustiveness checking
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5.2 Types and Unification

Types are represented according to the mapping explained in3.3 (moduleType ). However,
since type inference has to do unification (see 5.6), which weprefer to do destructively for
simplicity, each type node actually is wrapped into a reference. A simple graph algorithm is
required to retain sharing when cloning types. All other type operations besides unification
have functional semantics.

In order to avoid confusion (cf. A.12) our type representation distinguishes undetermined
types (introduced during type inference, see 5.6) from explicit type variables. This requires
an additional kind of node in our type representation. Moreover, we have another kind of
undetermined type node to deal with overloaded types (see 5.8). Finally, we need a third
additional node that replaces undetermined types once theybecome determined, in order
to retain sharing.

All operations on types have been implemented in a very straightforward way. To keep
the sources simple and faithful to the Definition we chose notto use any optimisations like
variable levels or similar techniques often used in real compilers.

5.3 Type Names

Type names (moduleTyName) are generated by a global stamp generator (moduleStamp ).
As described in the Definition, they carry attributes for arity and equality.

To simplify the task of checking exhaustiveness of patternstype names have been equipped
with an additional attribute denoting thespanof the type, i.e. the number of constructors
(see 5.12). For pretty printing purposes, we also remember the original type constructor of
each type name.

5.4 Environment Representation

In order to share as much code as possible between the rather similar environments of the
static and the dynamic semantics, as well as the interfaces Int in the dynamic semantics
of modules, we introduce a functorGenericEnvFn that defines the representation and
implements the common operations on environments.

Unfortunately, there exists a mutual recursion between environments and their range sets,
in the static semantics (via TyStr) as well as in the dynamic semantics (via Val and FcnClo-
sure). This precludes passing the environment range types as functor arguments. Instead,
we make all environment types polymorphic over the corresponding range types. The in-
stantiating modules (StaticEnv , DynamicEnv , andInter ) tie the knot appropriately.

5.5 Elaboration Rules

Elaboration implements the inference rules of sections [4.10] and [5.7] (modulesElabCore
andElabModule ). It also checks the further restrictions in [4.11].

The inference rules have been mapped to SML functions as described in 3.4. We only
need simple kinds of additional arguments: a flag indicatingwhether we are currently
elaborating a toplevel declaration (in order to implement restriction 3 in [4.11] properly), a
list of unresolved types (for overloading resolution and flexible records, see 5.8), and a list
of fn matches (to defer checking of exhaustiveness until after overloading resolution, see
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5.12 and 5.8). For modules, we pass down the equality attribute of type descriptions (see
5.10).

Note that most of the side conditions on type names could be ignored since they are mostly
ensured by construction using stamps. We included them anyway, to be consistent and to
have an additional sanity check. At some places these checksare not accurate, though,
since the types examined can still contain type inference holes which may be filled with
type names later. To be faithful, we hence employ time stampson type names and type
holes, such that violations of prior side conditions can be discovered during type inference,
as we explain in the next section.

5.6 Type Inference

The inference rules for core elaboration are non-deterministic. For example, when enter-
ing a new identifier representing a pattern variable into theenvironment, rule 34 [4.10]
essentially guesses its correct type. A deterministic implementation of type inference is
the standard algorithm W by Damas/Milner [DM82]. Informally, when it has to guess a
type non-deterministically it introduces a fresh type variable as a placeholder. We pre-
fer to speak of undetermined types instead, since type variables already exist in a slightly
different sense in the semantics of SML (cf. A.12).

Wherever an inference rule imposes an equality constraint on two types because the same
meta-variable appears in different premises, the algorithm tries to unify the two types de-
rived. After a value declaration has been checked, one can safely turn remaining unde-
termined types into type variables and universally quantify the inferred type over them, if
they do not appear in the context. SML’s value restriction does restrict this closure to non-
expansive declarations, however [4.7, 4.8]. Note that (explicit) type variables can only be
unified with themselves.

We use an imperative variant of the algorithm where unification happens destructively
[C87], so that we do not have to deal with substitutions, and the form of the elabora-
tion functions is kept more in line with the inference rules in the Definition (module
ElabCore ).

Undetermined types are identified by stamps. They carry two additional attributes: an
equality constraint, telling whether the type has to admit equality, and a time stamp, which
records the relative order in which undetermined types and type names have been intro-
duced. During unification with undetermined types we have totake care to properly enforce
and propagate these attributes.

When instantiating type variables to undetermined types [4.10, rule 2], the undetermined
type inherits the equality attribute from the variable. An undetermined equality type in-
duces equality on any type it is unified with. In particular, if an undetermined equality
type is unified with an undetermined non-equality type, equality is induced on the latter
(functionType.unify ).

Likewise, when a type is unified with an undetermined type, the latter’s time stamp is
propagated to all subterms of the former. That is, nested undetermined types inherit the
time stamp if their own is not older already. Type names must always be older than the time
stamp – unification fails, when a type name is encountered that is newer. This mechanism is
used to prevent unification with types which contain type names that have been introduced
after the undetermined type. For example, the snippet

let
val r = ref NONE
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datatype t = C
in

r := SOME C
end

must not type-check – the type ofr may not mentiont (otherwise the freshness side condi-
tion on names for datatypes [4.10, rule 17] would be violated). However, type inference can
only find out about this violation at the point of the assignment expression. By comparing
the time stamp of the undetermined type introduced when elaborating the declaration ofr ,
and the stamp of the type namet , our unification algorithm will discover the violation.

More importantly, the mechanism is sufficient to preclude unification of undetermined
types withlocal type names, as in the following example:

val r = ref NONE
functor F(type t; val x : t) =
struct

val _ = r := SOME C
end

Obviously, allowing this example would be unsound.

Similarly, the time stamp mechanism is used to prevent invalid unification of monomorphic
undetermined types remaining due to the value restriction,with type variables, see Section
5.7.

To cope with type inference for records, we have to representpartially determined rows.
The yet undetermined part of a row is represented by a specialkind of type variable, a
row variable. This variable has to carry the same attributes as an undetermined type, i.e. an
equality flag and a time stamp, both of which have to be properly propagated on unification.
See also Section 5.8.

5.7 Type Schemes

Type schemes represent polymorphic types, i.e. a type prefixed by a list of quantified type
variables. The only non-trivial operation on type schemes is generalisation [4.5].

We implement the generalisation test via unification: in order to test for∀α(k).τ ≻ τ ′, we
instantiateα(k) with undetermined typesτ (k) and test whetherτ [τ (k)/α(k)] can be unified
with τ ′.

To test generalisation between type schemes,∀α(k).τ ≻ ∀α(k′).τ ′, we first skolemise the
variablesα(k′) on the right-hand side by substituting them with fresh type namest(k

′).
Then we proceed by testing for∀α(k).τ ≻ τ ′[t(k

′)/α(k′)] as described before.

Note thatτ may contain undetermined types, stemming from expansive declarations. These
have to be kept monomorphic, but naive unification might identify them with one of the
skolem typest(k

′) (or a type containing one) – and hence effectively turn them into poly-
morphic types! For example, when checking the signature ascription in the following ex-
ample,

signature S = sig val f : ’a -> ’a option end
structure X : S =
struct

val r = ref NONE
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fun f x = !r before r := SOME x
end

the type inferred for the functionf contains an undetermined type, the content type ofr .
It must be monomorphic, hence the type off does not generalise the polymorphic type
specified in the signature.10 Comparison of the time stamps of the undetermined type and
the newer type name generated during skolemisation of’a makes unification between the
two properly fail with our algorithm.

5.8 Overloading and Flexible Records

Overloading is the least formal part of the Definition (see A.11). It is just described in an
appendix, as special case treatment for a handful of given operators and constants. We try
to generalise the mechanism indicated in the Definition in order to have something a bit
less ad hoc that smoothly integrates with type inference.

To represent type schemes of overloaded identifiers we allowtype variables to be con-
strained with overloading classes in a type scheme, i.e. type variables can carry an over-
loading class as an additional optional attribute. When instantiated, such variables are
substituted by overloaded type nodes, constrained by the same overloading class (construc-
tor Type.Overloaded ). When we unify an overloaded type with another, determined
type we have to check whether that other type is a type name contained in the given over-
loading class. If yes, overloading has been resolved, if no there is a type error (function
Type.unify ).

When unifying two overloaded types, we have to calculate theintersection of the two over-
loading classes. So far, everything is pretty obvious. The shaky part is how to propagate
the default types associated with the classes when we perform intersection.

We formalise an overloading class as a pair of its type name set and the type name being
the designated default:

(T, t) ∈ OverloadingClass= TyNameSet× TyName

Now when we have to intersect two overloading classes(T1, t1) and(T2, t2), there may be
several cases. LetT = T1 ∩ T2:

1. T = ∅. In this case, the constraints on the types are inconsistentand the program in
question is ill-typed.

2. T 6= ∅ andt1 = t2 ∈ T . The overloading has (possibly) been narrowed down and
the default types are consistent.

3. T 6= ∅ andt1 6= t2 and|{t1, t2}∩T | = 1. The overloading has been narrowed down.
The default types differ but only one of them still applies.

4. T 6= ∅ and|{t1, t2} ∩ T | 6= 1. The overloading could be narrowed down, but there
is no unambiguous default type.

Case (3) is a bit subtle. It occurs when checking the following declaration:

fun f(x,y) = (x + y)/y

10Several SML implementations currently get this wrong, opening a soundness hole in their type checkers.
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Both, + and/ are overloaded and default to different types, but in this combination only
real remains as a valid default so that the type off should default toreal × real →
real.11

There are two ways to deal with case (4): either rule it out by enforcing suitable well-
formedness requirements on the overloading classes in the initial basis, or handle it by gen-
eralising overloading classes to containsetsof default values (an error would be flagged if
defaulting actually had to be applied for a non-singular set). We settled for the former alter-
native as it seems to be more in spirit with the Definition and it turns out that the overloading
classes specified in the Definition satisfy the required well-formedness constraints.12

Consequently, we demand the following properties for all pairs of overloading classes
(T, t), (T ′, t′) appearing in a basis:

1. t ∈ T

2. Eq(T ) = ∅ ∨ t admits equality

3. T ∩ T ′ = ∅ ∨ |{t, t′} ∩ T ∩ T ′| = 1

where Eq(T ) = {t ∈ T | t admits equality}.

The reason for (1) is obvious. (2) guarantees that we do not loose the default by inducing
equality. (3) ensures a unique default whenever we have to unify two overloaded types. (2)
and (3) also allow the resulting set to become empty which represents a type error.

Defaulting is implemented by collecting a list of all unresolved types – this includes flexible
records – during elaboration of value declarations (additional argumetnutaus ). Before
closing an environment, we iterate over this list to defaultremaining overloaded types or
discover unresolved flexible records. This implies that thecontext determining an over-
loaded type or flexible record type is the smallest enclosingcore-level declaration of the
corresponding overloaded identifier, special constant, orflexible record, respectively (cf.
A.3 and A.11).

Special constants have to be annotated with corresponding type names by overloading res-
olution, in order to get the correct dynamic semantics (see 6.3) and enable proper checking
of match exhaustiveness (see 5.12). For this purpose, the list of unresolved types can carry
optional associated special constants. During defaultingwe annotate each constant, and do
range checking of the constant’s value with respect to the resolved type at the same time.

5.9 Recursive Bindings and Datatype Declarations

Value bindings withrec and datatype declarations are recursive. The inference rules (15,
17 and 19 after the change from Appendix B.4) use the same environmentVE or TE on
the left hand side of the turnstile that is to be inferred on its right hand side.

To implement this we build a tentative environment in a first iteration that is not complete
but already contains enough information to perform the actual inference in the second it-
eration. For recursive value bindings we insert undetermined types as placeholders for the
actual types (and unify later), for datatype bindings we leave the constructor environments
empty.

11Some SML implementations do not handle this case properly.
12A previous version of HaMLet used the latter alternative. Itallows more liberal overloading but may lead to

typing errors due to ambiguous overloading, despite the default mechanism. Moreover, in full generality it raises
additional issues regarding monotonicity of overloading resolution when extending the library.
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Datatype declarations bring an additional complication because of the side condition that
requiresTE to maximise equality. This is being dealt with by first assuming equality for all
type names introduced and later adjusting all invalid equality attributes in a fixpoint itera-
tion until all type structures respect equality (functionStaticEnv.maximiseEquality ).

5.10 Module Elaboration

Like for the core language, the inference rules for modules are non-deterministic. In partic-
ular, several rules have to guess type names that have to be consistent with side conditions
enforced further down the inference tree. However, most of these side conditions just en-
sure that type names are unique, i.e. fresh type names are chosen where new types are
introduced. Since we create type names through a stamp mechanism, most of these side
conditions are trivially met. The remaining cases are dealtwith by performing suitable
renaming of bound type names with fresh ones, as the Definition already suggests in the
corresponding comments (moduleElabModule ).

The other remaining bits of non-determinism are guessing the right equality attribute for
type descriptions, which is dealt with by simply passing therequired attribute down as an
additional assumption (functionElabModule.elabTypDesc ), and for datatype speci-
fications, which require the same fixpoint iteration as datatype declarations in the core (see
5.9).

5.11 Signature Matching

Signature matching is the most complex operation in the SML semantics. As the Definition
describes, it is a combination of realisation and enrichment.

To match a moduleE′ against a signatureΣ = (T, E) we first calculate an appropriate
realisationϕ by traversingE: for all flexible type specifications inE (i.e. those whose type
functions are equal to type names bound inT ) we look up the corresponding type inE′ and
extendϕ accordingly. Then we apply the resulting realisation toE which gives us the po-
tentialE−. For this we just have to check whether it is enriched byE′ which can be done by
another simple traversal ofE− (functionsSig.match andStaticEnv.enriches ).

The realisation calculated during matching is also used to propagate type information to the
result environment of functor applications (rule 54, moduleElabModule ). A functor sig-
nature has form(T1)(E1, (T

′
1)E

′
1). To obtain a suitable functor instantiation(E′′, (T ′)E′)

for rule 54 we simply match the environmentE of the argument structure to the signature
(T1)E1 which givesE′′ and a realisationϕ. We can applyϕ to the functor’s result signa-
ture(T ′

1)E
′
1 to get – after renaming allt ∈ T ′

1 to fresh namest′ ∈ T ′ – the actual(T ′)E′

appearing in the rule.

So far, the description applies to modules as defined in the Definition. The change in
appendix B.23 generalises matching to higher-order modules. That means that modules
M may appear instead of environmentsE in the above cases. Computing a realisation for
matching is not complicated, though, since functors cannotbind any type names, so thatT
remains empty for functor signatures and only the caseM = E has to be considered, as
before.
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5.12 Checking Patterns

Section [4.11], items 2 and 3 require checking exhaustiveness and irredundancy of patterns.
The algorithm for performing this check is based on [S96] (module CheckPattern ).
The basic idea of the algorithm is to performstatic matching, i.e. to traverse the decision
tree corresponding to a match and propagate information about the value to be matched
from the context of the current subtree. The knowledge available on a particular subterm is
described by thedescription type. Moreover, acontext specifies the path from the
root to the current subtree.

The algorithm is loosely based on [S96], where more details can be found. To enable this
algorithm, type names carry an additional attribute denoting their span, i.e. the number
of constructors the type possesses (see 5.3). We extend the ideas in the paper to cover
records (behave as non-positional tuples), exception constructors (have infinite span), and
constants (treated like constructors with appropriate, possibly infinite span). Note that we
have to defer checking of patterns until overloading resolution for contained constants has
been performed – otherwise we will not know their span.

A context description is not simply a list of constructor applications to term descriptions
as in the paper, but separates constructor application fromrecord aggregation and uses a
nested definition. Instead of lists of negative constructors (and constants) we use sets for
descriptions. Record descriptions are maps from labels to descriptions.

During traversal we construct two sets that remembers the region of every match we en-
countered, and every match we reached. In the end we can discover redundant matches by
taking the difference of the sets. Non-exhaustiveness is detected by remembering whether
we reached a failure leaf in the decision tree.

In the case of exception constructors, equality can only be checked on a syntactic level.
Since there may be aliasing this is merely an approximation (see A.3).

There is a problem with the semantics of sharing andwhere constraints, which allow
inconsistent datatypes to be equalised (see A.3). In this case, no meaningful analysis is
possible, resulting warnings may not make sense. There is nothing we can do but ignore
this problem.

6 Evaluation

6.1 Files

Objects of the dynamic semantics and evaluation rules are implemented by the following
modules:

DynamicObjectsCore definition of semantic objects
DynamicObjectsModule
Addr addresses
ExName exception names
BasVal basic values
SVal special values

Val operations on values
State operations on state

GenericEnvFn generic environment operations
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DynamicEnv operations on environments
Inter operations on interfaces
DynamicBasis operations on basis

EvalCore implementation of evaluation rules
EvalModule

6.2 Value Representation

Values are represented as defined in Section 6.3 of the Definition (moduleVal ). Special
values are simply represented by the corresponding SML types (moduleSVal ). Currently,
only the default types andWord8.word are implemented, which represents the minimum
requirement of the Standard Basis.

Basic values are simply represented by strings (moduleBasVal ). However, the only basic
value defined in the Definition is the polymorphic equality=, everything else is left to the
library. Consequently, the implementation of the APPLY function only handles=. For
all other basic values it dispatches to theLibrary module, which provides an extended,
library-specific version of the APPLY function (see Section8).

The special value FAIL, which denotes pattern match failure, is not represented directly but
has rather been defined as an exception (see 6.3).

6.3 Evaluation Rules

The rules of the dynamic semantics have been translated to SML following similar conven-
tions as for the static semantics (see 3.4). However, to avoid painfully expanding out all
occurrences of the state and exception conventions, we dealwith state and exceptions in an
imperative way. State is not passed around as a functional value but rather as a reference
to the actual state map (moduleState ) that gets updated on assignments. This avoids
threading the state back with the result values. Exception packages (modulePack ) are not
passed back either, but are rather transferred by raising aPack exception. Similarly, FAIL
has been implemented as an exception.

So state is implemented by state and exceptions by exceptions – not really surprising. Con-
sequently, rules of the form

s, A ⊢ phrase ⇒ A′/p, s′

become functions of type

State ref * A * phrase -> A’

which may raise aPack exception – likewise for rules including FAIL results. We omit
passing in the state where it is not needed. This way the code follows the form of rules
using the state and exception conventions as close as possible (modulesEvalCore and
EvalModule ).

Failure with respect to a rule’s premise corresponds to a runtime type error. This may
actually occur in evaluation mode and is flagged accordingly.
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Evaluation of special constant behaves differently in execution and elaboration mode. In
the former, constants will have been annotated with a propertype name by overloading res-
olution (see 5.8). In evaluation mode this annotation is missing and the functionvalSCon
will assume the default type of the corresponding overloading class, respectively. This
implies that the semantics may change (see 2.5).

7 Toplevel

7.1 Files

The remaining modules implement program execution and interactive toplevel:

Basis the combined basis
Program implementation of rules for programs

InitialInfixEnv initial environments
InitialStaticEnv
InitialStaticBasis
InitialDynamicEnv
InitialDynamicBasis

PrettyPrint pretty printing engine
PPMisc auxiliary pretty printing functions
PPType pretty printing of types
PPVal ... values
PPStaticEnv ... static environment
PPStaticBasis ... static basis
PPDynamicEnv ... dynamic environment
PPDynamicBasis ... dynamic basis
PPBasis ... combined basis

Use theuse queue
Sml main HaMLet interface
Main wrapper for stand-alone version

7.2 Program Execution

The moduleProgram implements the rules in Chapter 8 of the Definition. It follows the
same conventions as used for the evaluation rules (see 3.4 and 6.3).

In addition to the ‘proper’ implementation of the rules as given in the Definition (func-
tion execProgram ) the module also features two straightforward variations that suppress
evaluation and elaboration, respectively (elabProgram andevalProgram ).

Note that a failing elaboration as appearing in rule 187 corresponds to anError exception.
However, in evaluation mode, anError exception will originate from a runtime type error.

The remaining task after execution is pretty printing the results. We use an extended version
of a generic pretty printer proposed by Wadler [W98] which features more sophisticated
grouping viaboxes(modulesPrettyPrint andPPxxx).
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7.3 Plugging

TheSml module sets up the standard library (see Section 8), does allnecessary I/O inter-
action and invokes the parser and the appropriate function in moduleProgram , passing
the necessary environments.

After processing the input itself the functions in theSml module process all files that have
been entered into theuse queue during evaluation (see 8.5). That may add additional
entries to the queue.

The Main module is only needed for the stand-alone version of HaMLet.It parses the
command line and either starts an appropriate session or reads in the given files.

8 Library

8.1 Files

The library only consists of a hook module and the library implementation files written in
the target language:

Library primitive part of the library
Use use queue
basis/ the actual library modules

8.2 Language/Library Interaction

The Definition contains several hooks where it explicitly delegates fleshing out stuff to the
library:

• the set BasVal of basic values and the APPLY function [6.4]

• the initial static basisB0 and infix status [Appendix C]

• the initial dynamic basisB0 [Appendix D]

• the basic overloading classes Int, Real, Word, String, Char[E.1]

Realistically, it also would have to allow extending the sets SVal [6.2] and Val [6.3], and
enable the APPLY function to modify the program state (cf. A.5). HaMLet currently only
extends SVal, while other library types are mapped to what isthere already (see 8.4).

We encapsulate all library extensions into one single module Library that defines the
parts of these objects that are left open by the Definition. However, we split up implemen-
tation of the library into two layers:

• theprimitive layer that contains everything that cannot be defined withinthe target
language,

• thesurfacelayer which defines the actual library.
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By target languagewe mean the language to be implemented. Many library entities are
definable within the target language itself, e.g. the standard ! function. There are basically
three reasons that can force us to make an entity primitive:

• its behaviour cannot be implemented out of nowhere (e.g. I/Ooperations),

• it is dependent on system properties (e.g. numeric limits),or

• it possesses a special type (e.g. overloaded identifiers).

TheLibrary module defines everything that has to be primitive (see 8.3),while the rest
is implemented within the target language in the modules inside thebasis directory (see
8.6). These modules have to make assumptions about what is defined by theLibrary
module, so that both actually should be seen in conjunction.

8.3 Primitives

Primitive operations are implemented by means of the APPLY function. Most of them just
fall back to the corresponding operations of the host system.13 We only have to unpack
and repack the value representation and remap possible exceptions. Overloaded primitives
have to perform a trivial type dispatch.

Despite implementing a large number of primitives, the static and dynamic basis exported
does only contain a few things:

• thevector type,

• all overloaded functions,

• the exceptions used by primitives,

• the functionuse .

Everything else can be obtained from these in the target language. Primitive exceptions not
available on the toplevel are wrapped into their residuent structures.

To enable the target language to bind the basic values definedby the library, we piggy-back
theuse function. Its dynamic semantics is overloaded and in the static basis exported by
theLibrary module it is given typeα → β. Applying it to a record of type{b : string}
will return the basic value denoted by the stringb – of course, the library source code should
annotate the result type properly to be type-safe. Primitive constants of typeτ are available
as functionsunit → τ .

Theuse function has been chosen for this purpose since its existence cannot be encapsu-
lated in the library anyway – the interpreter has to know about it (see 8.5). Once all neces-
sary basic values have been bound, the library source code should hide the additional, un-
safe functionality ofuse by rebinding it with its properly restricted typestring → unit.

8.4 Primitive Library Types

The dynamic semantics of the Definition do not really allow the addition of arbitrary library
types – in general this would require extending the set Val [6.3]. Moreover, the APPLY
function might require access to the state (see A.5).

13Unfortunately, most SML implementations lack a lot of the obligatory functionality of the Standard Basis
Library. To stay portable among systems we currently restrict ourselves to the common subset.
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But we can at least encode vectors by abusing the record representation. Arrays can then
be implemented on top of vectors and references within the target language. However, this
has to make their implementation type transparent in order to get the special equality for
arrays.

I/O stream types can only be implemented magically as indices into a stateful table that is
not captured by the program state defined in [6.3].

8.5 Theuse Function

The ‘real’ behaviour ofuse is implemented by putting all argument strings for which it has
been called into a queue managed by moduleUse. TheSml module looks at this queue
after processing its main input (see 7.3).

The argument strings are interpreted as file paths, relativepaths being resolved with respect
to the current working directory before putting them into the queue. The function reading
source code from a file (Sml.fromFile ) always sets the working directory to the base
path of the corresponding file before processing it. This way, use automatically interprets
its argument relative to the location of the current file.

8.6 Library Implementation

The surface library is loaded on startup. The functionSml.loadLib just silently executes
the file basis/all.sml . This file is the hook for reading the rest of the library, it
contains a bunch of calls touse that execute all library modules in a suitable order. Note
that the library files always have to beexecuted, even if HaMLet is just running in parsing
or elaboration mode – otherwise the containeduse applications would not take effect.

The library modules themselves mostly contain straightforward implementations of the
structures specified in the Standard Basis Manual [GR04]. Like the implementation of the
language, the library implementation is mostly an executable specification with no care
for efficiency. All operations not directly implementable and thus represented as primitive
basic values are bound via the secret functionality of theuse function (see 8.3).

9 Conclusion

HaMLet has been implemented with the idea of transforming the formalism of the Defini-
tion into SML source code as directly as possible. Not everything can be translated 1-to-1,
though, because of the non-deterministic nature of some aspects of the rules and due to the
set of additional informal rules that describe parts of the language.

Still, much care has been taken to get even the obscure details of these parts of the semantics
right. For example, HaMLet goes to some length to treat the following correctly:

• checking syntactic restrictions separately,

• derived forms (e.g.withtype , definitional type specifications),

• distinction of type variables from undetermined types,

• overloading resolution,

• flexible records,

• dynamic semantics.
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Some more issues present in SML’97 have been removed by the changes described in
Appendix B.
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A Mistakes and Ambiguities in the Definition

This appendix lists all bugs, ambiguities and ‘grey areas’ in the Definition that are known
to the author. Many of them were already present in the previous SML’90 version of the
Definition [MTH90] (besides quite a lot that have been corrected in the revision) and are
covered by Kahrs [K93, K96] in detail. Bugs new to SML’97 or not covered by Kahrs are
marked with * and (*), respectively.

Where appropriate we give a short explanation and rationaleof how we fixed or resolved it
in HaMLet.

A.1 Issues in Chapter 2 (Syntax of the Core)

Section 2.4 (Identifiers):

• The treatment of= as an identifier is extremely ad-hoc. The wording suggests that
there are in fact two variants of the identifier class VId, oneincluding and the other
excluding= . The former is used in expressions, the latter everywhere else.

Section 2.5 (Lexical analysis):

• In [2.2] the Definition includes only space, tab, newline, and formfeed into the set
of obligatory formatting characters that are allowed in source code. However, some
major platforms require use of the carriage return character in text files. In order to
achieve portability of sources across platforms it should be included as well.

Fixed by change described in Appendix B.1.

Section 2.6 (Infixed Operators):

• The Definition says that “the only required use ofop is in prefixing a non-infixed
occurrence of an identifier which has infix status”. This is rather vague, since it is
not clear whether occurrences in constructor and exceptionbindings count as non-
infixed [K93].

Fixed by change described in Appendix B.1.

Section 2.8 (Grammar), Figure 4 (Expressions, Matches, Declarations and Bindings):

• (*) The syntax rules fordec are highly ambiguous. The productions for empty dec-
larations and sequencing allow the derivation of arbitrarysequences of empty decla-
rations for any input.

HaMLet does not allow empty declarations as part of sequences without a separating
semicolon. On the other hand, every single semicolon is parsed as a sequence of two
empty declarations. This makes parsing of empty declarations unambiguous.

• Another ambiguity is that a sequence of the formdec1 dec2 dec3 can be reduced in
two ways todec: either viadec12 dec3 or viadec1 dec23 [K93]. See also A.2.

We choose left associative sequencing, i.e. the former parse.

Section 2.9 (Syntactic Restrictions):
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• * The restriction thatvalbinds may not bind the same identifier twice (2nd bullet) is
not a syntactic restriction as it depends on the identifier status of thevids in the pat-
terns of avalbind . Identifier status can be derived by inference rules only. Similarly,
the restriction on type variable shadowing (last bullet) isdependent on context and
computation of unguarded type variables [Section 4.6].

We implement checks for syntactic restrictions as a separate inference pass over the
complete program that closely mirrors the static semantics. Ideally, all syntactic
restrictions rather should have been defined as appropriateside conditions in the
rules of the staticanddynamic semantics by the Definition.

• * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of atypbind or datbind of the
form tyvarseq tycon = · · · must occur intyvarseq .”

This restriction is analogous to the one given fortyvars in type specifications [3.5,
item 4]. Without it the type system would be unsound.14

Fixed by change described in Appendix B.2.

A.2 Issues in Chapter 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure and Signature Expressions):

• The syntax rules forstrdec contain the same ambiguities with respect to sequencing
and empty declarations as those fordec (see A.1).

Consequently, we use equivalent disambiguation rules.

• Moreover, there are two different ways to reduce a sequencedec1 dec2 of core dec-
larations into astrdec: via strdec1 strdec2 and viadec [K93]. Both parses are not
equivalent since they provide different contexts for overloading resolution [Appendix
E]. For example, appearing on structure level, the two declarations

fun f x = x + x
val a = f 1.0

may be valid if parsed asdec, but do not type check if parsed asstrdec1 strdec2

because overloading of+ gets defaulted toint .

Fixed by change described in Appendix B.1.

• Similarly, it is possible to parse a structure-levellocal declaration containing only
core declarations in two ways: as adec or as astrdec [K93]. This produces the same
semantic ambiguity.

Fixed by change described in Appendix B.1.

Section 3.4 (Grammar for Modules), Figure 7 (Specifications):

• Similar as fordec andstrdec, there exist ambiguities in parsing empty and sequenced
specs.

We resolve them consistently.

14Interestingly enough, in the SML’90 Definition the restriction was present, but the corresponding one for
specifications was missing [MT91, K93].
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• The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing type t = u

This snippet can be parsed in at least three ways, with the sharing constraint taking
scope over either both, or only one, or neither type specification. Since only the first
alternative can be elaborated successfully, the validity of the program depends on
how ambiguity is resolved.

Fixed by change described in Appendix B.1.

Section 3.4 (Grammar for Modules), Figure 8 (Functors and Top-level Declarations):

• * Finally, another ambiguity exists for reducing a sequencestrdec1 strdec2 to a
topdec: it can be done either by first reducing tostrdec, or to strdec1 topdec2. The
latter is more restrictive with respect to free type variables (but see A.12 with regard
to this).

Fixed by change described in Appendix B.1.

Altogether, ignoring the infinite number of derivations involving empty declarations, the
grammar in the Definition allows three ambiguous ways to reduce a sequence of twodecs
to a topdec, as shown by the following diagram. All imply different semantics. The cor-
responding diagram for a sequence of three declarations would merely fit on a page. A
further ambiguity arises at the program level (see A.7).

dec1 dec2

dec strdec1 strdec2

strdec strdec1 topdec2

topdec

All parsing ambiguities (except for ones involving empty declarations, which are harmless)
are fixed by the changes described in Appendix B.1.

A.3 Issues in Chapter 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

• * The definition of non-expansiveness is purely syntactic and does only consider
the right hand side of a binding. However, an exception may result from matching
against a non-exhaustive pattern on the left hand side. It israther inconsistent to dis-
allow raise expressions in non-expansive bindings but allow implicit exceptions
in the disguise of pattern match failure. More seriously, the possibility of exceptions
stemming from polymorphic bindings is incompatible with type passing implemen-
tations.

Fixed by change described in Appendix B.3.
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Section 4.9 (Type Structures and Type Environments):

• The definition of the Abs operator demands introduction of “new distinct” type
names. However, type names can only be new relative to a context. To be precise,
Abs would thus need an additional argumentC [K96].

Avoided by the change makingabstype a derived form, as described in Appendix
B.5.

• Values inabstype declarations that are potentially polymorphic but requireequal-
ity types have no principal type [K96]. For example, in the declaration

abstype t = T with
fun eq(x,y) = x = y

end

the principal type ofeq insidethe scope ofabstype clearly is ’’a * ’’a ->
bool . However, outside the scope this type is not principal because ’’a cannot
be instantiated byt . Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforces the presence of principal
typings in the revised Definition), this semantics is very hard to implement faithfully,
since type inference would have to deal with unresolved typeschemes and to cascad-
ingly defer decisions about instantiation and generalisation until the correct choice is
determined.

Avoided by the change makingabstype a derived form, as described in Appendix
B.5. Abstract types no longer hide equality.

• A related problem is the fact that the rules forabstype may infer type structures
that do not respect equality [K96]:

abstype t = T with
datatype u = U of t

end

Outside the scope of thisabstype declaration typeu will still be an equality type.
Values of typet can thus be compared through the backdoor:

fun eqT(x,y) = U x = U y

Avoided by the change makingabstype a derived form, as described in Appendix
B.5. Abstract types no longer hide equality.

Section 4.10 (Inference Rules):

• * The comment to rule 26 states that a declaration like

datatype t = T
val rec T = fn x => x

is legal sinceC + VE overwrites identifier status. However, this comment omits an
important point: in the corresponding rule 126 of the dynamic semantics recursion is
handled differently so that the identifier status isnot overwritten. Consequently, the
second declaration will raise aBind exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dynamic semantics, but fortunately
it does not violate soundness in this case. Most implementations do not implement
the ‘correct’ dynamic semantics, though.

Removed by the change described in Appendix B.4.

36



• * There is an unmatched left parenthesis in the consequent ofrule 28.

Fixed by change described in Appendix B.2.

Section 4.11 (Further Restrictions):

• (*) Under item 1 the Definition states that “the program context” must determine
the exact type of flexible records, but it does not specify anybounds on the size
of this context. Unlimited context is clearly infeasible since it is incompatible with
let polymorphism: at the point of generalisation the structureof a type must be
determined precisely enough to know what we have to quantifyover.15

Fixed by change described in Appendix B.2.

Note that some SML systems implement a slightly more restrictive variant, in which
the following program does not type-check:

fun f(r as {... }) =
[let fun g() = r in r end, r : {a:int }]

while a minor variation of it does:

fun f(r as {... }) =
[r : {a:int }, let fun g() = r in r end]

The reason is that they simply check for existence of unresolved record types in value
environments to be closed, without taking into account thatthese types might stem
from the context (in which case we know that we cannot quantify over the unknown
bits anyway). As the above example shows, such an implementation compromises
the compositionality of type inference. The Definition should rule it out somehow.
A similar clarification is probably in order for overloadingresolution (see A.11).

• Under item 2 the Definition demands that a compiler must give warnings whenever
a pattern is redundant or a match is non-exhaustive. However, this requirement is
inconsistent for two reasons:

1. * There is no requirement for consistency of datatype constructors in sharing
specifications or type realisations. For example,

datatype t = A | B
datatype u = C
sharing type t = u

is a legal specification. Likewise,

sig datatype t = A | B end where type t = bool

is valid. Actually, this may be considered a serious bug on its own, although
the Definition argues that inconsistent signatures are “notvery significant in
practice” [Section G.9]. If such an inconsistent signatureis used to specify a
functor argument it allows a mix of constructors to appear inmatches in the
functor’s body, rendering the terms of irredundancy and exhaustiveness com-
pletely meaningless.

There is no simple fix for this. HaMLet makes no attempt to detect this situa-
tion, so generation of warnings is completely arbitrary in this case.

15Alternatively, there are extensions to Hindley/Milner typing that allow quantification over the structure of
records, but polymorphic records are clearly not supportedby the Definition.
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2. (*) It is difficult in general to check equality of exception constructors – they
may or may not be aliased. Inside a functor, constructor equality might depend
on the actual argument structure the functor is applied to. It is possible to check
all this by performing abstract interpretation (such that redundant matches are
detected at functor application), but this is clearly infeasible weighed against
the benefits, in particular in conjunction with separate compilation.

In HaMLet we only flag exception constructors as redundant when they are
denoted by the same syntacticlongvid . We do not try to derive additional
aliasing information.

A.4 Issues in Chapter 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

• * The rules 64 and 78 use the notation{t1 7→ θ1, · · · , tn 7→ θn} to specify realisa-
tions. However, this notation is not defined anywhere in the Definition for infinite
maps like realisations – [4.2] only introduces it for finite maps.

This is just a minor oversight, the intended meaning is obvious.

• * More seriously, both rules lack side conditions to ensure consistent arities for do-
main and range of the constructed realisation. Becauseϕ can hence fail to be well-
formed [5.2], the applicationϕ(E) is not well-defined. The necessary side conditions
are:

t ∈ TyName(k) (64)

ti ∈ TyName(k), i = 1..n (78)

Fixed by change described in Appendix B.2.

• * The presence of functors provides a form of explicit polymorphism which interferes
with principal typing in the core language. Consider the following example [DB07]:

functor F(type t) =
struct val id = (fn x => x) (fn x => x) end

structure A = F(type t = int)
structure B = F(type t = bool)
val a = A.id 3
val b = B.id true

The declaration ofid cannot be polymorphic, due to the value restriction. Neverthe-
less, assigning it typet -> t would make the program valid. However, finding this
type would require the type inference algorithm to skolemize all undetermined types
in a functor body’s result signature over the types appearing in its argument signa-
ture, and then perform a form of higher-order unification. Consequently, almost all
existing implementations reject the program.16

16Interestingly, MLton [CFJW05] accepts the program, thanksto its defunctorization approach. However, it
likewise accepts similar programs that arenot valid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end
structure A = F()
structure B = F()
val a = A.id 3
val b = B.id true
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HaMLet ignores this problem, rejecting the program due to a failure unifying types
int andbool .

• * The side conditions on free type variables in rules 87 and 89do not have the effect
that obviously was intended, see A.12.

HaMLet not only tests for free type variables, but also for undetermined types (see
5.6). This behaviour is not strictly conforming to theformal rules of the Defini-
tion (which define a more liberal regime), but meets the actual intention explicitly
stated in [G.8] and is consistent with HaMLet’s goal to always implement the most
restrictive reading.

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

• The APPLY function has no access to program state. This suggests that library prim-
itives may not be stateful, implying that a lot of interesting primitives could not be
added to the language without extending the Definition itself [K93].

On the other hand, any non-trivial library type (e.g. arraysor I/O streams) requires
extension of the definition of values or state anyway (and equality types – consider
array ). The Definition should probably contain a comment in this regard.

HaMLet implements stateful library types by either mappingthem to references in
the target language (e.g. arrays) or by maintaining the necessary state outside the
semantic objects (see 8.4).

A.6 Issues in Chapter 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

• * In the definition of the operator↓: Env× Int → Env, the triple “(SI ,TE ,VI )”
should read “(SI ,TI ,VI )”.

Fixed by change given in Appendix B.2.

Section 7.3 (Inference Rules):

• * Rule 182 contains a typo: both occurrences ofIB have to be replaced byB.

Fixed by change described in Appendix B.2.

• * The rules for toplevel declarations are wrong: in the conclusions, the result right of
the arrow must beB′〈+B′′〉 instead ofB′〈′〉 in all three rules.

Fixed by change described in Appendix B.2.

A.7 Issues in Chapter 8 (Programs)

• (*) The comment to rule 187 states that a failing elaborationhas no effect. However,
it is not clear what infix status is in scope after a failing elaboration of a program that
contains top-level infix directives.

HaMLet keeps the updated infix status.
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• * There is another syntactic ambiguity for programs. A note in [3.4, Figure 8] re-
stricts the parsing oftopdecs:

“No topdec may contain, as an initial segment, astrdec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel semicolons unambiguous so
that they always terminate a program. As a consequence of theparsing ambiguities
for declaration sequences (see A.2) the rule is not sufficient, however: a sequence
dec1; dec2; of core level declarations with a terminating semicolon canbe first
reduced todec; , then tostrdec; , and finallyprogram . This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with respect to program execution.

Fixed by change described in Appendix B.1.

• (*) The negative premise in rule 187 has unfortunate implications: interpreted strictly
it precludes any conforming implementation from providingany sort of conservative
semantic extension to the language. Any extension that allows declarations to elab-
orate that would be illegal according to the Definition (e.g.consider polymorphic
records) can be observed through this rule and change the behaviour of consecutive
declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that casethe
program will printyes , otherwiseno .

This probably indicates that formalising an interactive toplevel is not worth the trou-
ble.

A.8 Issues in Appendix A (Derived Forms)

Text:

• (*) The paragraph explaining rewriting of thefvalbind form rules out mixtures of
fvalbinds and ordinaryvalbinds. However, the way it is formulated it does not
rule out all combinations. It should rather say that all value bindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

HaMLet assumes this meaning.

Figure 15 (Derived forms of Expressions):

• The Definition is somewhat inaccurate about several of the derived forms of ex-
pressions and patterns. It does not make a proper distinction between atomic and
non-atomic phrases. Some of the equivalent forms are not in the same syntactic class
[MT91, K93].

We assume the necessary parentheses in the equivalent forms.

Figure 17 (Derived forms of Function-value Bindings and Declarations):
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• The syntax offvalbinds as given in the Definition enforces that all type annotations
are syntactically equal, if given. This is unnecessarily restrictive and almost impos-
sible to implement [K93].

Fixed by change described in Appendix B.1.

Figure 19 (Derived forms of Specifications and Signature Expressions):

• * The derived form that allows several definitional type specifications to be connected
via and is defined in a way that makes its scoping rules inconsistent with all other
occurences ofand in the language. In the example

type t = int
signature S =
sig

type t = bool
and u = t

end

typeu will be equal tobool , not int like in equivalent declarations.

Made consistent with the rest of the language by change described in Appendix B.6.

• * The Definition defines the phrase

spec sharing longstrid1 = · · · = longstridn

as a derived form. However, this form technically is not a derived form, since it
cannot be rewritten in a purely syntactic manner – its expansion depends on the
static environment.

HaMLet thus treats this form as part of the bare grammar. Unfortunately, it is sur-
prisingly difficult to formulate a proper inference rule describing the intended static
semantics of structure sharing constraints – probably one of the reasons why it has
been laxly defined as a derived form in the first place. The implementation simply
collects all expanded type equations and calculates a suitable realisation incremen-
tally. At least there is no need for a corresponding rule for the dynamic semantics,
since sharing qualifications are omitted at that point.

• * The derived form for type realisations connected byand is not only completely
redundant and alien to the rest of the language (and is nowhere else followed by
a second reserved word), it also is extremely tedious to parse, since this part of the
grammar is LALR(2) as it stands. It can be turned into LALR(1)only by a bunch
of really heavy transformations. Consequently, almost no SML system seems to be
implementing it correctly. Even worse, several systems implement it in a way that
leads to rejection of programsnotusing the derived form. For example,

signature A = S where type t = u where type v = w

or

signature A = S where type t = u
and B = T

Removed by change described in Appendix B.7.
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• * For complex type declarations thewithtype derived form is important. With the
introduction of equational type specifications in SML’97 itwould have been natural
to introduce an equivalent derived form for signatures. This is an oversight that most
SML systems ‘correct’.

Added by the extension described in Appendix B.22.

A.9 Issues in Appendix B (Full Grammar)

Text:

• (*) The first sentence is not true since there is a derived formfor programs [Appendix
A, Figure 18]. Moreover, it is not obvious why the appendix refrains from also
providing a full version of the module and program grammar. It contains quite a lot
of derived forms as well, and the section title leads the reader to expect it.

First issue fixed by change described in Appendix B.1.

• The Definition gives precedence rules for disambiguating expressions, stating that
“the use of precedence does not increase the class of admissible phrases”. However,
the rules are not sufficient to disambiguate all possible phrases. Moreover, for some
phrases they actually rule outanypossible parse, e.g.

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the above statement is rather incon-
sistent [K93].

Fixed by change described in Appendix B.1.

• There is no comment on how to deal with the most annoying problem in the full
grammar, the infinite look-ahead required to parse combinations of function clauses
andcase expressions, like in:

fun f x = case e1 of z => e2
| f y = e3

According to the grammar this ought to be legal. However, parsing this would ei-
ther require horrendous grammar transformations, backtracking, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SML implementation being
able to parse the above fragment.

Ruled out by change described in Appendix B.1.

Figure 21 (Grammar: Declarations and Bindings):

• The syntax given forfvalbind is incomplete as pointed out by the corresponding
note. This is not really a bug but annoyingly sloppy enough tocause some divergence
among implementations.

Fixed by change described in Appendix B.1.

Figure 22 (Grammar: Patterns):

• While there are additional non-terminalsinfexp andappexp to disambiguate parsing
of infix expressions, there is no such disambiguation for patterns. This implies that a
pattern likex:t ++ y can be parsed if++ is an appropriate infix constructor [K96].
Of course, this would result in heavy grammar conflicts.

Disambiguated by change described in Appendix B.1.
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A.10 Issues in Appendix D (The Initial Dynamic Basis)

• (*) The Definition does specify the minimal initial basis butit does not specify what
the initial state has to contain. Of course, it should at least contain the exception
namesMatch andBind .

Fixed by change described in Appendix B.2.

• The Definition does nowhere demand that the basis a library provides has to be con-
sistent in any way. Nor does it require consistency between initial basis and initial
state.

The HaMLet library is consistent, of course.

A.11 Issues in Appendix E (Overloading)

Overloading is the most hand-waving part of the otherwise pleasantly accurate Definition.
Due to the lack of formalism and specific rules, overloading resolution does not work con-
sistently among SML systems. For example, type-checking ofthe following declaration
does not succeed on all systems:

fun f(x,y) = (x + y)/y

The existence of overloading destroys an important property of the language, namely the
independence of static and dynamic semantics, as is assumedin the main body of the
Definition. For example, the expressions

2 * 100 and 2 * 100 : Int8.int

will have very different dynamic behaviour, although they only differ in an added type
annotation.

The Definition defines the overloading mechanism by enumerating all overloaded entities
the library provides. This is rather unfortunate. It would be desirable if the rules would be a
bit more generic, avoiding hardcoding overloading classesand the set of overloaded library
identifiers on one hand, and allowing libraries to extend it in systematic ways on the other.
More generic rules could also serve as a better guidance for implementing overloading (see
5.8 for a suitable approach).

The canonical way to deal with overloaded constants and value identifiers is to uniform-
ingly assign an extended notion of type scheme that allows quantification to be constrained
by an overloading class. Constraints would have to be verified at instantiation. This is more
or less what has been implemented in HaMLet (see 5.8 for a suitable approach).

There are some more specific issues as well:

• * The Definition forgets to demand that any extension of a basic overloading class is
consistent with respect to equality.

Fixed by change described in Appendix B.2.

Our formalisation includes such a restriction (see 5.8).

• * That the Definition specifies anupperbound on the context a compiler may con-
sider to resolve overloading is quite odd – of course, implementations cannot be
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prohibited to conservatively extend the language by makingmore programs elabo-
rate. On the other hand, much more important would have been to specify alower
bound on what implementationshave tosupport – it is clearly not feasible to force
the programmer to annotate every individual occurence of anoverloaded identifier
or special constant.

Fixed by change described in Appendix B.2.

Figure 27 (Overloaded Identifiers):

• * The types for the comparison operators<, >, <=, and>= must correctly benumtxt×
numtxt→ bool.

Fixed by change described in Appendix B.2.

A.12 Issues in Appendix G (What’s New?)

Section G.8 (Principal Environments):

* At the end of the section the authors explain that the intentof the restrictions on free type
variables at the toplevel (side-conditions in rules 87 and 89 [5.7]) is to avoid reporting free
type variables to the user. However, judging from the rest ofthe paragraph, this reasoning
confuses two notions of type variable: type variables as semantic objects, as appearing in
the formal rules of the Definition, and the yet undetermined types during Hindley/Milner
type inference, which are also represented by type variables. However, both kinds are
variables on completely different levels: the former are part of the formal framework of the
Definition, while the latter are an ‘implementation aspect’that lies outside the scope of the
Definition’s formalism. Let us distinguish both by referring to the former assemantic type
variablesand to the latter asundetermined types(the HaMLet implementation makes the
same distinction, in order to avoid exactly this confusion,see 5.2).

The primary purpose of the aforementioned restrictions obviously is to avoid reportingun-
determined typesto the user. However, they fail to achieve that. In fact, it isimpossible to
enforce such behaviour within the formal framework of the Definition, since it essentially
would require formalising type inference (the current formalism has no notion of undeter-
mined type). Consequently, the comment in Section G.8 aboutthe possibility of relaxing
the restrictions by substituting arbitrary monotypes misses the point as well.

In fact, the formal rules of the Definition actually imply theexact opposite, namely that
an implementation mayneverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reason isexplicitly given in the same
section: “implementations should not reject programs for which successful elaboration is
possible”. Consider the following program:

val r = ref nil;
r := [true];

Rule 2 has to non-deterministically choose some typeτ list for the occurrence ofnil .
The choice ofτ is not determined by the declaration itself: it is not used, nor can it be
generalised, due to the value restriction. However,bool is a perfectly valid choice for
τ , and this choice will allow the entire program to elaborate.So according to the quote
above, an implementation has to make exactly that choice. Now, if both declarations are
entered separately into an interactive toplevel the implementation obviously has to defer
commitment to that choice until it has actually seen the second declaration. Consequently,
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it can do nothing else but reporting an undetermined type forthe first declaration. The only
effect the side conditions in rules 87 and 89 have on this is that the types committed to later
may not contain free semantic type variables – but considering the way such variables are
introduced during type inference (mainly by generalisation), the only possibility for this is
through a toplevel exception declaration containing a typevariable.17

There are two possibilities of dealing with this matter: (1)take the formal rules as they are
and ignore the comment in the appendix, or (2) view the comment as an informal “further
restriction” and fix its actual formulation to match the obvious intent. Since version 1.1.1
of HaMLet, we implement the intended meaning and disallow undetermined types on the
toplevel, although this technically is a violation of the formal rules.

B Language Changes

In this appendix we describe all modifications and extensions to the Definition that are
implemented in this version of HaMLet. Most of them have already been proposed for
Successor ML and are taken from the discussion Wiki [SML05].These can be put in two
groups:

Fixes and simplifications:

• Syntax fixes

• Semantic fixes

• Monomorphic non-exhaustive bindings

• Simplified recursive value bindings

• Abstype as derived form

• Fixed manifest type specifications

• Abolish sequenced type realisations

Extensions:

• Line comments

• Extended literal syntax

• Record punning

• Record extension

• Record update

• Conjunctive patterns

• Disjunctive patterns

• Nested matches

• Pattern guards

• Transformation patterns

17(*) Note that this observation gives rise to the question whether the claim about the existence of principal
environments in Section 4.12 of the SML’90 Definition [MTH90] was valid in the first place. It most likely was
not: a declaration like the one ofr has no principal environment that would be expressible within the formalism
of the Definition, despite allowing different choices of free imperative type variables. The reasoning that this
relaxation was sufficient to regain principality is based onthe same mix-up of semantic type variables and unde-
termined types as above. The relaxation does not solve the problem with expansive declarations, since semantic
type variables are rather unrelated to it – choosing a semantic type variable for an undetermined type is no more
principal than choosing any particular monotype.
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• Optional bars and semicolons

• Optional else branch

• Views

• Do declarations

• Withtype in signatures

• Higher-order functors

• Nested signatures

• Local modules

• First-class modules

Examples demonstrating some of the more involved extensions in detail can be found in
thedoc/examples directory of the distribution.

B.1 Syntax Fixes

The syntax specification in the Definition is somewhat sloppy, leaving a number of ambi-
guities and minor issues. We provide the details to resolve the relevant ones. Mostly, these
just blesses existing practice in SML implementations. SeeAppendix A for a motivation
and detailed discussion of the issues.

Changes to the Definition

Section 2.2 (Special constants):

• In the paragraph defining formatting characters, add carriage return and vertical tab
to the list of non-printable characters included.

Section 2.6 (Infixed operators):

• In the 1st paragraph, extend the sentence starting with “Theonly required use of
op ...” by inserting the following before the semicolon:

[...] in an expression or pattern;

Section 3.4 (Grammar for Modules):

• In Figure 6, add the following note:

Restriction: A declarationdec appearing in a structure declaration may
not be a sequential or local declaration.

• In Figure 7, add the following note:

Restriction: In a sequential specification,spec2 may not contain a sharing
specification.

• In Figure 8, extend the restriction with the following sentence:

Furthermore, thestrdec may not be a sequential declarationstrdec1 〈; 〉 strdec2.

Section 8 (Programs):

46



• Extend the comment on rule 187:

[...], except for possible fixity directives contained in the topdec.

Appendix A (Derived Forms):

• In Figure 17, add respective indices1..m to the ty annotations appearing on both
sides of the definition of the function value binding form.

Appendix B (Full Grammar):

• Extend the first sentence as follows:

[...], together with the derived form of Figure 18 in Appendix A.

• Add the following to the third paragraph:

The same applies to patterns, where the extra classes AppPatand InfPat
are introduced, yielding

AtPat⊂ AppPat⊂ InfPat⊂ Pat

• In the third bullet, replace the paragraph starting with “Note particularly that...” with:

Note that the use of precedence does not prevent a phrase, which is an
instance of a form with higher precedence, having a constitutent which
is an instance of a form with lower precendence, as long as they can be
resolved unambiguously. Thus for example

if . . . then while . . . do . . . else while . . . do . . .

is quite admissible and parses as

if . . . then (while . . . do . . .) else (while . . . do . . .)

However, precedence rules out phrases which cannot be disambiguated
without violating precedence, such as

a andalso if b then c else d orelse e

This change should allow the use of simple precedence rules as provided by Yacc to
disambiguate parsing.

• In Figure 21, replace the production forfvalbind with the following productions:

fvalbind ::= fmatch 〈and fvalbind〉
fmatch ::= fmrule 〈| fmatch〉
fmrule ::= fpat 〈: ty〉 = exp

fpat ::= 〈op〉vid atpat1 · · · atpatn n ≥ 1
( atpat1 vid atpat2) atpat3 · · · atpatn n ≥ 3
atpat1 vid atpat2

Furthermore, add the following note:

Restriction: The expressionsexp1, . . . , expm−1 in a fvalbind may not
terminate in a match.
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• In Figure 22, replace the productions for pat with the following:

apppat ::= atpat

〈op〉longvid atpat constructed value

infpat ::= apppat

infpat1 vid infpat2 constructed value (infix)

pat ::= infpat

pat : ty typed
〈opvid 〈: ty〉 as pat layered

Compatibility

These are merely fixes, they do not change the language beyondresolving ambiguities. The
only exception is the restriction on nesting matches in afvalbind , which is what all SML
systems implement anyway.

B.2 Semantic Fixes

The Definition contains a number of bugs in inference rules and other parts of the formal
semantics. Some of them undermine soundness, some are just plain typos. The changes we
propose merely plug these holes and bless existing practice, they should not have any fur-
ther effect on the defined language. See Appendix A for motivation and detailed discussion
of the issues.

Note: Along with the changes described in the following sections, the only known (non-
pedantic) issue remaining is the lack of a requirement for type sharing to be consistent with
respect to the involved constructor environments, which makes exhaustiveness and irre-
dundancy of patterns an ill-defined concept. No straightforward fix seems to exist within
the Definition’s formal framework, short of introducing a global consistency requirement
similar to SML’90.

Changes to the Definition

Section 2.9 (Syntactic Restrictions):

• Add the following bullet:

Any tyvar occurring on the right side of atypbind ordatbind of the form
“ tyvarseq tycon = . . . ” must occur intyvarseq .

Section 4.10 (Inference Rules):

• Add a closing parenthesis to the conclusion of Rule 28.

Section 4.11 (Further Restrictions):

• In the first bullet, in the first sentence change “the program context” to

[...] the program context consisting of the smallest enclosing declaration
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Section 5.7 (Inference Rules):

• Add the following side condition to rule 64:

t ∈ TyName(k)

• Add the following side condition to rule 78:

ti ∈ TyName(k), i = 1..n

Section 7.2 (Compound Objects):

• In the definition of the operator↓: Env×Int → Env, replace the triple “(SI ,TE ,VI )”
with “(SI ,TI ,VI )”.

Section 7.3 (Inference Rules):

• In rule 182, replace both occurences ofIB with B.

• In the conclusion of rules 184–186, replaceB′〈′〉 with B′〈+B〉.

Appendix D (The Initial Dynamic Basis):

• Add the following paragraph:

Furthermore, the initial state is defined by

s0 = ({}, {Match, Bind})

Appendix E (Overloading):

• In the last paragraph of the introduction, change the last sentence to:

For this purpose, the surrounding text is the smallest enclosing declara-
tion.

Appendix E.1 (Overloaded special constants):

• Before the sentence starting with “Special constants...”,insert the following sentence:

The class Real may not contain type names that admit equality.

Appendix E.2 (Overloaded value identifiers):

• In Figure 27, change the types of<, >, <=, >= to:

numtxt * numtxt -> bool

Compatibility

These are merely fixes, they do not change the language beyondplugging holes.
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B.3 Monomorphic Non-exhaustive Bindings

In order maintain to soundness of polymorphic typing in the presence of effects, polymor-
phism is restricted to non-expansive bindings. Non-expansiveness is a syntactic condition
on expressions that is sufficient to guarantee absence of effects (including exceptions) dur-
ing their evaluation.

However, an exception may still occur if the pattern in the binding is not exhaustive.
That behaviour is somewhat inconsistent, and more importantly, unnecessarily complicates
typed compilation schemes, like used by several SML compilers (see Appendix A.3).

Non-exhaustive patterns are ruled out in polymorphic bindings. That is, pathological pro-
grams like

val x::xs = []

but also

val x::xs = [NONE, NONE]

are no longer valid. Such declarations are rather useless, and can easily be rewritten.

Changes to the Definition

Section 4.8 (Non-expansive Expressions):

• Change the rules for obtainingα(k) to:

α(k) =

{

tyvarsτ \ tyvarsC, if pat exhaustive andexp non-expansive inC;
(), otherwise.

• Add the following sentence:

A pattern isexhaustiveif it matches all values (of the right type, cf. Sec-
tion 4.11).

Compatibility

This is not a conservative change, but very unlikely to breakany practical program. It is
already implemented in SML/NJ and TILT.

B.4 Simplified Recursive Value Bindings

The current syntax for recursive value declarations allowsmany phrases that are either
useless or confusing. For example,

val rec rec rec f = fn x => x
val f = fn x => x and rec g = fn x => f x

Note that in the latter declaration, the right-hand side ofg does not refer to thef of the
same declaration.
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The syntax can be simplified by only allowingrec directly after theval keyword.

Furthermore, the Definition currently allows recursive value declarations to overwrite iden-
tifier status. This is inconsistent with the rules of the dynamic semantics, and hence ar-
guably a bug (see Appendix A.5). It also is counter-intuitive and a nuisance to implement
(no implementation does it ”correctly”). This possibilityis removed. The change is sim-
plified by reversing the order of therec keyword and an eventual type variable sequence
in a value declaration.

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 4, replace the production for value declarations with:

[dec ::=] val 〈rec〉 tyvarseq valbind value declaration

• Remove the second production forvalbind .

Section 2.9 (Syntactic Restrictions):

• In the 4th bullet, replace the start of the sentence with:

For each value bindingpat = exp in a value declaration withrec , [. . . ]

Section 4.10 (Inference Rules):

• Change rule 15 to:

U = tyvars(tyvarseq) 〈tynamesVE ⊆ T of C〉
〈∀vid ∈ DomVE , vid /∈ Dom C or is of C(vid) = v〉
C + U〈+VE 〉 ⊢ valbind ⇒ VE VE ′ = ClosC,valbindVE U ∩ tyvarsVE ′ = ∅

C ⊢ val 〈rec〉 tyvarseq valbind ⇒ VE ′ in Env
(15)

• Remove rule 26. Add the respective comment to the comment on rule 15, but replace
the last two sentences with the following:

The side condition on the value identifiers inC ensures thatC +VE does
not overwrite identifier status in the recursive case. For example, the pro-
gram “datatype t = f; val rec f = fn x => x; ” is not le-
gal.

Section 6.6 (Function Closure):

• In the second paragraph, replace “recursive value bindingsof the formrec valbind ”
with “recursive value declarations of the formval rec valbind ”.

Section 6.7 (Inference Rules):

• Change rule 114 to:

E ⊢ valbind ⇒ VE

E ⊢ val 〈rec〉 tyvarseq valbind ⇒ 〈Rec〉VE in Env
(114)
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• Remove rule 126.

Appendix A (Derived Forms):

• In the third paragraph, replace “val tyvarseq rec valbind ” with “ val rec tyvarseq

valbind ”.

• In Figure 17, the box for declarations, replace the transformed form of function dec-
larations with:

fun tyvarseq fvalbind val rec tyvarseq fvalbind

Appendix B (Full Grammar):

• In Figure 21, replace the production for value declarationswith:

[dec ::=] val 〈rec〉 tyvarseq valbind value declaration

• Remove the second production forvalbind .

Compatibility

The change intentionally rules out some previously legal programs and reverses the order
in which therec keyword and the optional type variable sequence may appear in a value
declaration. However, at least one major SML implementation - namely SML/NJ - always
implemented the revised syntax, so the change is unlikely toaffect existing programs.

No current implementation follows the Definition with respect to overwriting of identifier
status (although they deviate in different ways). Consequently, this part of the change is
even less likely to affect existing programs.

B.5 Abstype as Derived Form

Abstype is a leftover from SML’s pre-module days and is now fully subsumed by structures
and sealing. Besides being redundant, the current specification of abstype is incoherent
with respect to equality (see Appendix A.3), an issue for which no obvious fix exists.

Although abstype is practically unused in modern code, it cannot be removed without
breaking backwards compatibility. Turning it into a derived form avoids this problem,
while still simplifying the bare language and resolving thecoherence issues.

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 4, remove the production forabstype .

Section 4.9 (Type Structures and Type Environments):

• Remove the last paragraph.

Section 4.10 (Inference Rules):
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• Remove Rule 19 and the corresponding comments.

Section 6.7 (Inference Rules):

• Remove Rule 118.

Appendix A (Dervied Forms):

• In Figure 17, add the following rewriting rule before the existing one forabstype :

abstype datbind with dec end local datatype datbind in

type typbind ′ ; dec

end

and extend the note to

(see note in text concerningdatbind ′ andtypbind ′)

• In the bullet list in the text referring to Figure 17, add the following item:

In the abstype form,typbind ′ is obtained fromdatbind by replacing all
right-hand sides by the corresponding left-hand side, i.e.“ tyvarseq tycon

= conbind 〈| datbind〉” becomes “tyvarseq tycon = tyvarseq tycon 〈|
typbind ′〉”

Compatibility

This is a conservative change. The new specification is slightly more permissive than the
original static semantics ofabstype , because the equality attribute of the defined type is
no longer hidden. However, this is precisely what is necessary to fix the aforementioned
coherence issues.

While the change may marginally affect the abstraction properties of code still using ab-
stype, it can be argued that the obsolete nature ofabstype makes this neglectable in
practice.

The change simplifies implementations, because it enables them to isolate their treatment
of abstype in the parser.

B.6 Fixed Manifest Type Specifications

For technical reasons, manifest type specifications are defined as a derived form. However,
the definition of this form results in scoping rules that are at odds with the rest of the
language (see Appendix A.8). The definition of the derived form is changed to eliminate
the singularity.

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 19, replace the first two rules with the following one:
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type tyvarseq1 tycon1 = ty1 include

and . . . sig type tyvarseq1 tycon1

. . . and . . .
and tyvarseqn tyconn = tyn . . .

and tyvarseqn tyconn

end where type tyvarseq1 tycon1 = ty1

where type . . .
. . .
where type tyvarseqn tyconn = tyn

Compatibility

This change breaks programs relying on the current scoping rules. However, since these
rules are rather counter-intuitive, not implemented by allSML implementations (Moscow
ML and Poly/ML deviate), and they make usingand in type specifications pointless any-
way, we expect those programs to be rare. It is trivial to adapt them to the change.

Only few SML implementations actually implement manifest type specifications as a de-
rived form. The change hence should be a simplification for the majority of implementa-
tions, as it removes an annoying singularity in the languagerules.

B.7 Abolish Sequenced Type Realisations

The SML syntax allows several type constraints on a signature to be connected withand ,
as in

S where type t1 = ty1
and type t2 = ty2

This syntax is hard to parse and only few implementations bother to do it correctly, it is
at odds with the rest of the language, and it is useless, because writing anotherwhere
instead ofand has the very same effect (see Appendix A.8). The syntax does not seem to
be widely used either, it is hence abolished.

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 19, remove the box for signature expressions.

Compatibility

The change breaks all programs using the derived form. Adapting affected programs is
trivial.

B.8 Line Comments

Under most circumstances, line comments are more convenient to write and to layout than
block comments. SML lacks line comments.
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The comment marker( * ) introduces a comment that stretches to the end of the line:

fun f x = bla ( * ) my function
fun g x = blo ( * ) my second function

Line comments properly nest into conventional block comments, so the following is one
single comment, even though the inner line comment containsa closing comment bracket:

( *
fun f x = bla ( * ) my function * )

* )

Changes to the Definition

Section 2.3 (Comments):

• Reformulate whole section as follows:

A commentis eitherline commentor ablock comment. A line comment
is any character sequence between the comment delimiter( * ) and the
following end of line. A block comment is any character sequence within
comment brackets( * * ) in which other comments are properly nested.
No space is allowed between the characters that make up a comment
bracket( * ) or ( * or * ) . An unmatched( * should be detected by the
compiler.

Compatibility

This extension breaks SML programs containing block comments that have a closing paren-
thesis) as the first character after the opening bracket. Such comments are expected to be
extremely rare in existing code, and can easily be modified.

B.9 Extended Literal Syntax

SML currently provides no way to group digits in numeric literals, which makes long num-
bers hard to read. Underscores are allowed within literals to group digits and increase
readability. For example,

val pi = 3.141_592_653_596
val billion = 1_000_000_000
val nibbles = 0wx_f300_4588

Moreover, SML lacks a notation for binary literals and hencerequires fallback to hexadec-
imal. A C-style notation with a ”0b” prefix enables writing binary literals:

val ten = 0b1010
val bits = 0wb1101_0010_1111_0010

Note that binary literals particularly benefit from the ability to group digits.

Last, in SML it is a pointless hurdle to remember the order of the different parts in literal
prefixes. The order of the different parts in literal prefixesis made arbitrary, allowing0xw
and0bw as synonyms for0wx and0wb.
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Changes to the Definition

Section 2.2 (Special constants):

• Extend the first sentence as follows:

[. . . ] and the underscore () that neither starts nor ends with an under-
score.

• Extend the second sentence:

[. . . ] and the underscore that does not end with an underscore.

• Add the following sentence to the end of the paragraph:

An integer constant (in binary notation) is an optional negation symbol
followed by a non-empty sequence of binary digits0, 1 and the under-
score that does not end with an underscore.

• Extend the first sentence of the second paragraph as follows:

[. . . ] and the underscore not ending with an underscore.

• In the second sentence, replace “is0wx” with “is 0wx or 0xw”.

• Extend the second sentence as follows:

[. . . ] and the underscore not ending with an underscore.

• After the second sentence, add:

A word constant (in binary notation) is0wb or 0bw followed by a non-
empty sequence of binary digits0,1 and the underscore not ending with
an underscore.

• Modify the next sentence by replacing “and one or more decimal digits” with:

and a sequence of one or more decimal digits and underscores that con-
tains at least one digit

• Add to the the list of examples in the next sentence:

3.141 592 653 3. 678 098 E20

• Add to the list of non-examples:

1 .5 1. E2

Compatibility

This extension is not conservative, as it may change the meaning of programs that contain
literals and wildcards without separating spaces, as in

fun f 3_4 = 0

or, likewise, programs that put a literal next to an identifier xw, b, wb, or bw. However,
such programs are highly unlikely to exist in practice.

The scanning functions from the Basis library should be extended to reflect the change by
supporting underscores in their input.
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B.10 Record Punning

SML allows record patterns of the form{a=a, b=b } to be abbreviated conveniently as
{a, b } – sometimes called “punning”. The same abbreviation is not currently provided
for record expressions. Such an abbreviation can be equallyconvenient, e.g. for construct-
ing records from local variables:

fun circle(x,y,r) =
let

val x = ref x and y = ref y and r = ref r
fun pos() = (!x,!y)
fun radius() = !r
fun move(dx,dy) = (x := !x+dx, y := !y+dy)
fun scale s = (r := !r * s)

in
{pos, radius, move, scale }

end

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 15, add the following box:

Expression Rowsexprow
vid 〈: ty〉 〈, exprow 〉 vid = vid 〈: ty〉 〈, exprow〉

Appendix B (Full Grammar):

• In Figure 20, add the following production:

[exprow ::=] vid 〈: ty〉 〈, exprow〉 label as variable

Compatibility

This is a conservative extension.

B.11 Record Extension

When using records, it is sometimes necessary to construct new records from existing ones,
by adding only a small number of fields. Similarly, it can be convenient to be able to
construct a new record by removing a small number of fields. Currently, SML provides no
convenient way of expressing this.

Row capture Row capture is supported by raising the status of the ellipsis ... in record
patterns to make it analogous to a normal field name. The ellipsis refers to all the other
fields that have not been named explicitly.

Example:

val {d=x, p=y, ...=r } = e
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This value binding takes the result of expressione, which must be some record that has at
least fieldsd andp, and takes it apart. As usual, it binds the values of thed andp fields to
x andy , respectively. But in addition it also binds r to a freshly constructed record value
that consists of all the fields ofe exceptd andp.

Example:

val {d=x, p=y, ...=r } =
{a=1, c=3.0, d=nil, f=[1], p="hello", z=NONE }

bindsx to nil , y to "hello" , andr to {a=1, c=3.0, f=[1], z=NONE }.

Record extension Functional record extension is supported by allowing ellipses in record
expressions. This restores a sense of “perfect symmetry” between record patterns and
record expressions.

Example:

{d=e1, p=e2, ...=e3 }

Heree3 is required to be of record type without fieldsd andp. The result of the above
expression is a record which consists of all the fields that were present in the result ofe3
as well as a fieldd whose type and value are determined bye1 and a fieldp whose type
and value are determined bye2 .

Example:

let val r = {a=1, c=3.0, f=[1], z=NONE }
in {d=nil, p="hello", ...=r }
end

This expression yields

{a=1, c=3.0, d=nil, f=[1], p="hello", z=NONE }

Record type extension Like record values, record types can be constructed by extension.

Example:

type ’a t = {a : ’a, b : bool }
type ’a u = {c : char, d : ’a list, ... : ’a t }

Again, ellipses denote the type that is to be extended. It must be a record type. The result
is a record type which consists of the combined fields. The example yields

type ’a u = {a : ’a, b : bool, c : char, d : ’a list }

Changes to the Definition

Section 2.8 (Grammar):

58



• In Figure 3, change the production for pattern row wildcardsto:

[patrow ::=] ... = pat ellipses

Add the following production for type-expression rows:

[tyrow ::=] ... : ty ellipses

• In Figure 4, add the following production for expression rows:

[exprow ::=] ... = exp ellipses

Section 2.9 (Syntactic Restrictions):

• Remove the first bullet ruling out repeated labels.

Section 4.2 (Compound Objects):

• Add the following definition after the paragraph defining modification of maps:

The restriction of a map f by a set S, writtenf \ S, is defined as

f \ S = {x 7→ f(x); x ∈ Dom f \ S}

Section 4.7 (Non-expansive Expressions):

• Add the following production for non-expansive expressionrows:

[nexprow ::=] ... = nexp

Section 4.10 (Inference Rules):

• Change Rule 6 to:

C ⊢ exp ⇒ τ 〈C ⊢ exprow ⇒ ̺ lab /∈ Dom ̺〉

C ⊢ lab = exp 〈, exprow〉 ⇒ {lab 7→ τ}〈+̺〉
(6)

• Add the following rule:
C ⊢ exp ⇒ ̺ in Type
C ⊢ ... = exp ⇒ ̺

(6a)

• Change Rules 38 and 39 as follows:

C ⊢ pat ⇒ (VE , ̺ in Type)
C ⊢ ... = pat ⇒ (VE , ̺)

(38)

C ⊢ pat ⇒ (VE , τ)
〈C ⊢ patrow ⇒ (VE ′, ̺) DomVE ∩ DomVE ′ = ∅ lab /∈ Dom ̺〉

C ⊢ lab = pat 〈, patrow〉 ⇒ (VE 〈+VE ′〉, {lab 7→ τ}〈+̺〉)
(39)

Remove the comment regarding Rule 39.
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• Change Rule 49 to:

C ⊢ ty ⇒ τ 〈C ⊢ tyrow ⇒ ̺ lab /∈ Dom ̺〉

C ⊢ lab : ty 〈, tyrow〉 ⇒ {lab 7→ τ}〈+̺〉
(49)

Remove the respective comment.

• Add the following rule:
C ⊢ ty ⇒ ̺ in Type
C ⊢ ... : ty ⇒ ̺

(49a)

Section 4.11 (Further Restrictions):

• Change the first item to:

For each occurence of a record expression containing ellipses, i.e. of
the form{lab1=exp1, . . . , labm=expm, ...= exp0} the program con-
text must determine uniquely the domain{lab1, . . . , labn} of its row type,
wherem ≤ n; thus, the context must determine the labels{labm+1, . . . , labn}
of the fields ofexp0. Likewise for record patterns containing ellipses. For
these purposes, explicit type constraints may be needed.

Section 6.7 (Inference Rules):

• Add the following rule:
E ⊢ exp ⇒ r in Val
E ⊢ ... = exp ⇒ r

(95a)

• Change Rule 140 to:

E, r in Val ⊢ pat ⇒ VE/FAIL

E, r ⊢ ... = pat ⇒ VE/FAIL
(140)

• Change Rule 142 to:

E, r(lab) ⊢ pat ⇒ VE 〈E, r \ {lab} ⊢ patrow ⇒ VE ′/FAIL〉

E, r ⊢ lab = pat 〈, patrow〉 ⇒ VE 〈+VE ′/FAIL〉
(142)

Appendix A (Derived Forms):

• In Figure 15, add a box for expression rows:

Expression Rowsexprow
... = exp, exprow let val vid = exp in {exprow , ... = vid} end

(see note in text concerningexprow ; vid new)

• In Figure 16, extend the box for pattern rows as follows:

... ... =

... 〈= pat〉, patrow patrow , ... 〈= pat〉
(see note in text concerningpatrow )

Add a box for type-expression rows:

Type-expression Rowstyrow
... : ty , tyrow tyrow , ... : ty

(see note in text concerningtyrow )

60



• Add the following paragraph:

Note that the derived forms for ellipses in the middle of expression rows,
pattern rows or type-expression rows are only valid if they can be trans-
formed to bare syntax. This implies that the remaining rows may not
again contain ellipses.

Appendix B (Full Grammar):

• In Figure 20, add the following production for expression rows:

[exprow ::=] ... = exp 〈, exprow 〉 ellipses

• In Figure 22, change the production for pattern row wildcards to:

[patrow ::=] ... 〈= pat〉 〈, patrow〉 ellipses

• In Figure 23, add the following production for type-expression rows:

[tyrow ::=] ... : ty 〈, tyrow〉 ellipses

Compatibility

This is a conservative extension. Type inference is not entirely straightforward in the given
form, but the issues are only slightly harder than those already caused by the existing el-
lipsis mechanism (unresolved row variables become shared between different record types
and hence require additional propagation). Type inferenceactually becomes simpler in
the presence of SML#-style record polymorphism, but an efficient implementation of the
dynamic semantics becomes somewhat trickier.

B.12 Record Update

When using records, it is often necessary to construct new records from existing ones, by
changing only a small number of fields. For example, this happens when using records to
express functional objects, or in the use of records to encode default arguments. Currently,
SML provides no convenient way to express this.

Record update is supported with a new derived form{atexp where exprow}. The key-
wordwhere is chosen such that it plays a similar role as it does in the signature language.
The syntax is designed such that it adheres to the principle of least surprise, is economic,
and convenient.

Changes to the Definition

Appendix A (Derived Forms):

• Extend the box for expressions as follows:

{atexp where 〈exprow 〉} let val {〈patrow , 〉 ... = vid} = atexp

in {〈exprow , 〉 ... = vid} end
(see note in text concerningpatrow ; vid new)

• Add the following paragraph after the second of the section:
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In the derived forms for record update,patrow is obtained fromexprow

by replacing all right-hand sides by wildcards. Note thatexprow may not
contain ellipses.

Appendix B (Full Grammar):

• In Figure 20, change the production for record expressions to:

[exp ::=] { 〈atexp where〉 〈exprow〉 } record

Compatibility

This is a conservative extension. Its specification relies on record extension, as defined in
the previous section.

B.13 Conjunctive Patterns

SML provides layered patternsvid as pat to allow naming a value and simultaneously
matching its structure. The name must be put first. However, depending on the situation, it
often is more convenient to put the name last.

Instead of adding a second syntactic form, we propose generalizing layered patterns to
arbitrary conjunctive patternspat1 as pat2, which trivially supports both forms, while
also eliminating grammar problems that exist with the current syntax (it is not LR(1)).

Conjunctive patterns are particularly useful in combination with nested matches (see Ap-
pendix B.15).

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 3, replace the production for layered patterns with:

[pat ::=] pat1 as pat2 conjunctive

Section 4.10 (Inference Rules):

• Replace rule 43 with:

C ⊢ pat1 ⇒ (VE1, τ) C ⊢ pat2 ⇒ (VE2, τ) DomVE1 ∩ DomVE2 = ∅

C ⊢ pat1 as pat2 ⇒ (VE1 + VE2, τ)
(43)

Section 4.11 (Further Restrictions):

• Add the following bullet:

Every pattern of the formpat1 as pat2 must be consistent, i.e., there
must exist at least one value that is matched by both patterns.

Section 6.7 (Inference Rules):
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• Replace rule 149 with:

E, v ⊢ pat1 ⇒ VE1 E, v ⊢ pat2 ⇒ VE2/FAIL

E, v ⊢ pat1 as pat2 ⇒ (VE1 + VE2)/FAIL
(149)

• Add the following rule:

E, v ⊢ pat1 ⇒ FAIL

E, v ⊢ pat1 as pat2 ⇒ FAIL
(149a)

Appendix A (Derived Forms):

• In Figure 16, remove the box for pattern rows.

Appendix B (Full Grammar):

• In Figure 22, replace the production for layered patterns with:

[pat ::=] pat1 as pat2 conjunctive

Compatibility

This is a conservative extension. Pattern matching is not complicated significantly by the
change. It actually simplifies parsing.

B.14 Disjunctive Patterns

Disjunctive patternspat1 | pat2 avoid the need for repeating the same right-hand side
in a match several times, by allowing to fold multiple left-hand side patterns into one.
In certain cases this can significantly reduce code size, as well as the temptation to write
fragile catch-all clauses to get around the code duplication.

Note that the syntax immediately supports writing multiplealternativespat1 | . . . |
patn, as well as ”multiple” matches:

case exp of
A | B | C => 1

| D | E => 2

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 3, add the following production:

[pat ::=] pat1 | pat2 disjunctive

Section 2.9 (Syntactic Restrictions):

• Add the following comment to the 2nd bullet:
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[...] (identifiers appearing in both branches of a disjunctive pattern are
bound only once)

Section 4.10 (Inference Rules):

• Add the following rule for patterns:

C ⊢ pat1 ⇒ (VE , τ) C ⊢ pat2 ⇒ (VE , τ)

C ⊢ pat1 | pat2 ⇒ (VE , τ)
(43a)

Section 4.11 (Further Restrictions):

• In item 2, insert the following sentence after the first one:

Similarly, in a disjunctive pattern of the formpat1 | pat2, the second
pattern must match some value not matched by the first one. Moreover,
either of them must match some value that is not matched by thesur-
rounding pattern or match rule.

The wording regarding irredundancy does require compilersto warn about cases likefn
|3 => () , but notfn 3| => () , although the latter is redundant as well. None of

the compilers currently supporting disjunctive patterns seems to detect the latter, and it is
not obvious how to extend the usual algorithm appropriately.

Section 6.7 (Inference Rules):

• Add the following rules for patterns:

E, v ⊢ pat1 ⇒ VE

E, v ⊢ pat1 | pat2 ⇒ VE
(149b)

E, v ⊢ pat1 ⇒ FAIL E, v ⊢ pat2 ⇒ VE/FAIL

E, v ⊢ pat1 | pat2 ⇒ VE/FAIL
(149c)

Appendix B (Full Grammar):

• In Figure 21, add the following production (as the last one, giving least precedence):

[pat ::=] pat1 | pat2 disjunctive

Compatibility

This is a conservative extension.

B.15 Nested Matches

Patterns may contain nested matching constructs of the form

pat1 with pat2 = exp

Such anested matchis matched by first matchingpat1, then evaluatingexp, and matching
its result againstpat2. Variables bound inpat1 may occur inexp. The pattern fails when
either pattern does not match. The pattern binds the combined set of variables occuring in
pat1 andpat2. For instance, consider:
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case xs of [x,y] with SOME z = f(x,y) => x+y+z | _ => 0

If xs is a two-element list[x,y] such thatf(x,y) returnsSOME z, then the whole
expression evaluates tox+y+z , otherwise to0.

Nested matches are a very general construct. They can be useful in combination with
disjunctive patterns,

case args of x::_ | (nil with x = 0) => ...

or with guards (see Appendix B.16):

fun escape #" \"" = " \\\""
| escape #" \\" = " \\\\"
| escape (c with n=ord c) if (n < 32) = " \\ˆ" ˆ str(chr(n+64))
| escape c = str c

The main importance of nested matches, however, is that theyform the basis to uniformly
define pattern guards (Appendix ext-guards) as well as a simple form of “views” (Appendix
B.17) as syntactic sugar.

In patterns with multiple subpatterns, nested matches to the right may refer to variables
bound by patterns to the left. See Appendix B.17 for examples.

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 3, add the following production for patterns:

[pat ::=] pat1 with pat2 = exp nested match

and the note

Restriction: The patternpat1 in a nested matchpat1 with pat2 = exp

may not itself be a nested match, unless enclosed by parentheses.

• In Figure 4, add the following note:

Restriction:The patternpat in avalbind may not be of the formpat1 with pat2 = exp,
unless enclosed by parentheses.

Section 4.7 (Non-expansive Patterns):

• Add the following paragraph:

A pattern isnon-expansiveif it does not contain a nested match of the
form pat1 with pat2 = exp.

Section 4.8 (Closure):

• Add the following additional side condition to the first casedefining ClosC,valbindVE (vid):

if pat is non-expansive, . . .
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Section 4.10 (Inference Rules):

• In rule 39, change the premise “C ⊢ patrow ⇒ (VE ′, ̺)” to “ C +VE ⊢ patrow ⇒
(VE ′, ̺)”.

• Likewise, in rule 43 (as given in Appendix B.13), change the premise “C ⊢ pat2 ⇒
(VE2, ̺)” to “ C + VE1 ⊢ pat2 ⇒ (VE 2, ̺)”.

• Add the following rule for patterns:

C ⊢ pat1 ⇒ (VE 1, τ) C + VE1 ⊢ pat2 ⇒ (VE2, τ
′)

C + VE1 ⊢ exp ⇒ τ ′ DomVE1 ∩ DomVE2 = ∅

C ⊢ pat1 with pat2 = exp ⇒ (VE1 + VE2, τ)
(43b)

Section 4.11 (Further Restrictions):

• Add the following sentence to the 2nd bullet:

For the purpose of checking exhaustiveness, any contained nested match,
pat1 with pat2 = exp may be assumed to fail, regardless of the form of
exp, except ifpat2 is exhaustive itself. Further note thatexp may contain
side effects and hence change the content of references thathave already
been matched.

Section 6.7 (Inference Rules):

• In rule 142, change the premise “E, r ⊢ patrow ⇒ VE ′/FAIL” to “ E + VE , r ⊢
patrow ⇒ VE ′/FAIL”.

• Likewise, in rule 43 (as given in Appendix B.13), change the premise “E, v ⊢
pat2 ⇒ VE2/FAIL” to “ E + VE 1, v ⊢ pat2 ⇒ VE2/FAIL”.

• Add the following rules for patterns:

E, v ⊢ pat1 ⇒ FAIL
E, v ⊢ pat1 with pat2 = exp ⇒ FAIL

(149d)

E, v ⊢ pat1 ⇒ VE1 E + VE1 ⊢ exp ⇒ v′ E + VE1, v
′ ⊢ pat2 ⇒ VE2/FAIL

E, v ⊢ pat1 with pat2 = exp ⇒ VE1 + VE2/FAIL
(149e)

Appendix B (Full Grammar):

• In Figure 21, add the following note:

Restriction:The patternpat in avalbind may not be of the formpat1 with pat2 = exp,
unless enclosed by parentheses.

• Add the following production for patterns:

[pat ::=] pat1 with pat2 = exp nested match

and the note

Restriction:The patternpat in avalbind may not be of the formpat1 with pat2 = exp,
unless enclosed by parentheses.
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Compatibility

Except for the new reserved word?, this is a mostly conservative extension. Due to po-
tential side effects in guard conditions, it renders pattern matching impure. This has a
particular consequence on patterns of the formref atpat , whose behaviour may depend
on the evaluation of previous nested matches. In particular, the following case expression,

case (i, r) of
( , ref true) => 1

| (2, ) with _ = f() => 2
| ( , ref false) => 3

is not an exhaustive match, sincer may befalse , but could get set totrue during
evaluation off() .

Note that conjunctive patterns “pat1 as pat2” could also be defined as a derived form for

vid with pat1 = vid with pat2 = vid

but that would alter the meaning of exhaustiveness.

B.16 Pattern Guards

Pattern guards avoid code duplication by letting pattern matching fall through if a particular
condition is not met. This is not possible by merely using conditionals on the right-hand
side.

Pattern guards are introduced as a simple derived form for nested matches:

pat if exp

They are also allowed with function-value bindings:

fun min x y if (x < y) = x
| min x y = y

Note that in this case the guard condition needs to be an atomic expression, in order to
avoid syntactic ambiguity.

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 16, add the following boxes for patternspat :

pat if exp pat with true = exp

• In Figure 17, extend the box for Function-value Bindings by adding

〈if atexpi〉

(with i = 1..m) to each equation in the left box, as the last component of theleft-
hand sides, and likewise to each match in the right box, as thelast component before
=>.
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Appendix B (Full Grammar):

• In Figure 21, extend the production forfmrule (as defined in Appendix B.1) as fol-
lows:

fmrule ::= fpat 〈: ty〉 〈if atexp〉 = exp

• Extend the restriction note added by the change from Appendix B.15 by inserting the
following before “unless enclosed by parentheses”:

[. . . ] or pat if exp [. . . ]

• In Figure 22, add the following production for patterns:

[pat ::=] pat if exp guard

and extend the restriction note added by the change from Appendix B.15 by inserting
the following before “unless enclosed by parentheses”:

[. . . ] or pat if exp [. . . ]

Compatibility

This is a conservative extension over nested matches. It is mostly conservative over plain
SML (see Appendix B.15).

B.17 Transformation Patterns

The main importance of nested matches, is that they form the basis to uniformly define a
simple form of “poor man’s views” as syntactic sugar, which we refer to astransformation
patterns:

?exp

?exp pat

The first form provides boolean “views”:

fun skipSpace(?isSpace :: cs) = skipSpace cs
| skipSpace cs = cs

The parameterised form allows actual matching. Consider anADT for queues:

type ’a queue
val empty : ’a queue
val enqueue : ’a * ’a queue -> ’a queue
val dequeue : ’a queue -> (’a * ’a queue) option

With such patterns, queues can be pattern matched as follows:

fun process (?dequeue(x,q)) = (digest x; process q)
| process _ = terminate()
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A transformation may be denoted by an arbitrary expression,giving rise todynamic trans-
formations. Consider a simple set ADT:

type set
val empty : set
val insert : int -> set -> set
val isempty : set -> bool
val has : int -> set -> bool

The following is possible:

fun f n ?isempty = f1 ()
| f n ?(has n) = f2 ()
| f n _ = f3 ()

Or another example, with a parameterised dynamic transformation:

( * ) val split : char -> string -> (string * string) option

fun manExp(?(split #"E")(m,e)) = (m,e)
| manExp s = (s,"1")

As a minor subtelety, in patterns with multiple subpatterns, nested matches and transforma-
tion patterns to the right may refer to variables bound by patterns to the left. For example,

(x, ?(equals x))
x as ?(notOccurs x)(T(x1,x2))

In particular, this allows the functionf above to be expressed more without a separate
case expression.

Note that, in addition to transformation patterns, HaMLet-S also features proper views
(Appendix B.20). While it is probably undesirable to have both features in a finalised
language, simultaneous support in an experimental system like ours allows evaluating the
merits of each approach.

Changes to the Definition

Section 2.1 (Reserved Words):

• Add ? to the list of reserved words.

Section 2.9 (Syntactic Restrictions):

• Add NONEandSOMEto the list of value identifiers that may not be re-bound.

Appendix A (Derived Forms):

• In Figure 16, add the following boxes for patternspat :

?atexp vid with true = atexp vid (vid new)
?atexp atpat vid with SOME atpat = atexp vid (vid new)
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Appendix B (Full Grammar):

• In Figure 22, add the following production for atomic patterns:

[atpat ::=] ? atexp transformation

• Add the following production for application patterns (as introduced by the changes
described in Appendix B.1):

[apppat ::=] ? atexp atpat constructed transformation

Appendix C (The Initial Static Basis):

• Add option to the definition ofT0.

• In Figure 24, add the following entry:

option 7→ ( option, {NONE 7→ (∀ ′a . ′a option, c),
SOME 7→ (∀ ′a . ′a → ′a option, c)})

• In Figure 25, add the following entries to the left column:

NONE 7→ (∀ ′a . ′a option, c)

SOME 7→ (∀ ′a . ′a → ′a option, c)

Appendix D (The Initial Dynamic Basis):

• Add “NONE 7→ (NONE, c)” and “SOME 7→ (SOME, c)” to the definition ofVE0.

• In Figure 26, add the following entry:

option 7→ {NONE 7→ (NONE, c), SOME 7→ (SOME, c)}

Compatibility

Except for the new reserved word?, this is a mostly conservative extension (see Appendix
B.15).

B.18 Optional Bars and Semicolons

SML syntax separates match clauses with a bar| . The usual coding convention is to lay
out matches such that the bar comes before each clause. However, the first clause is an
unpleasant special case:

case exp0 of
pat1 => exp1

| pat2 => exp2
| pat3 => exp3

Taking aesthethic considerations aside, the assymmetry between the cases is a nuisance for
editing, because clauses cannot be reordered by a simple cut& paste operation.

An additional bar is allowed to optionally appear before thefirst clause, such that the above
can be written as:
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case exp0 of
| pat1 => exp1
| pat2 => exp2
| pat3 => exp3

For consistency, the same extension is made for function value bindings, and for datatype
declarations. For instance,

datatype ’a exp =
| Const of ’a
| Var of string
| Lambda of string * ’a exp
| App of ’a exp * ’a exp

In a similar vein, optional terminating semicolons are allowed for expression sequences.
For example, in a let expression:

fun myfunc2(x, y) =
let

val z = x + y
in

f x;
g y;
h z;

end

The same applies to parenthesised expressions and sequences.

Changes to the Definition

Section 2.8 (Grammar):

• In Figure 4, change the productions for exception handling and functions to, respec-
tively:

[exp ::=] exp handle 〈| 〉 match handle exception
fn 〈| 〉 match function

• Change the production for datatype bindings to:

datbind ::= tyvarseq tycon = 〈| 〉 conbind 〈and datbind〉

Section 3.4 (Grammar for Modules):

• In Figure 7, change the productions for datatype descriptions to:

datdesc ::= tyvarseq tycon = 〈| 〉 condesc 〈and datdesc〉

Section 4.10 (Inference Rules):

• Adapt the syntax in the conclusion of rules 10, 12 and 28 appropriately.
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Section 5.7 (Inference Rules):

• Adapt the syntax in the conclusion of rule 81 appropriately.

Section 6.7 (Inference Rules):

• Adapt the syntax in the conclusion of rules 104–106, 108 and 128 appropriately.

Section 7.3 (Inference Rules):

• Adapt the syntax in the conclusion of rule 178 appropriately.

Appendix A (Derived Forms):

• In Figure 15, change the rule for case expressions to

case exp of 〈| 〉 match ( fn 〈| 〉 match )( exp)

• Change the left-hand side of the rule for sequential expressions to:

( exp1 ; · · · ; expn ; exp 〈; 〉)

• Add a box as follows:

( exp ; ) ( exp )

• Change the left-hand side of the rule for let expressions to:

let dec in

exp1 ; · · · ; expn 〈; 〉 end

• In Figure 17, change the first line in the definition of function clauses to:

[. . . ]
〈| 〉 〈op〉vid atpat11 · · · atpat1n 〈: ty1〉 = exp1 〈| 〉 ( atpat11, . . . , atpat1n) => exp1 〈: ty1〉
[. . . ] [. . . ]

• In Figure 21, change the production for datatype bindings to:

datbind ::= tyvarseq tycon = 〈| 〉 conbind 〈and datbind〉

Appendix B (Full Grammar):

• In Figure 20, change the productions for sequences and let expressions to:

[atexp ::=] ( exp1 ; · · · ; expn 〈; 〉) sequence,n ≥ 1
let dec in exp1 ; · · · ; expn 〈; 〉 end local declaration,n ≥ 1

• Remove the production for parenthesised expressions.

• Change the productions for exception handling, functions,and case expressions to,
respectively:

[exp ::=] exp handle 〈| 〉 match handle exception
fn 〈| 〉 match function
case exp of 〈| 〉 match case analysis

• In Figure 21, change the production for datatype bindings to:

datbind ::= tyvarseq tycon = 〈| 〉 conbind 〈and datbind〉

• In Figure 21, change the production forfvalbind (as defined in Appendix B.1) to:

[fvalbind ::=] 〈| 〉 fmatch 〈and fvalbind 〉
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Compatibility

This is a conservative extension.

B.19 Optional else Branch

With imperative code it is often convenient to be allowed to omit the else branch of a
conditional:

if exp1 then exp2

This is a simple derived form. The type ofexp2 has to beunit if the else branch is
omitted. As usual, danglingelse phrases associate to the innermostif .

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 15, add a second rule for conditionals:

if exp1 then exp2 if exp1 then exp2 else ()

Appendix B (Full Grammar):

• Append the following bullet:

Likewise, a conditionalif exp1then . . . extends as far right as possible;
thus, optionalelse branches group with the innermost conditional.

• In Figure 20, change the productions for conditionals to:

[exp ::=] if exp1 then exp2 〈else exp3〉 conditional

Compatibility

This is a conservative extension.

B.20 Views

One of the most wanted features for SML (and other functionallanguages) areviews. Views
enable the definition of abstract constructors for arbitrary types that can be used in patterns
as if they were ordinary datatype constructors.

A view primarily defines a set of constructors and two functions for converting between
these and the actual type the view is defined for. For example,consider a simple view
allowing (positive) integers to be viewed as inductive numbers:

viewtype peano = int as Zero | Succ of int
with

fun from Zero = 0
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| from (Succ n) = n+1
fun to 0 = Zero

| to n if (n>0) = Succ(n-1)
| to n = raise Domain

end

This defines a view for typeint . The type constructorpeano provides a name for this
view. Views may be defined for arbitrary types, and there may be arbitrarily many views
for a given type.

Given the viewtype definition above, we can construct integers using the constructors it
introduces:

val n = Succ(Succ(Succ Zero)) ( * ) binds n to 3
val n = Succ 2 ( * ) likewise

The functionfrom given with the view declaration defines how a view constructor is con-
verted to the underlying type, and is applied implicitly forevery occurrence of a view
constructor in an expression.

The inverse functionto defines how a value of the underlying type is interpreted in terms
of the view constructors. It is applied implicitly whenevera value of the underlying type is
matched against a pattern using one of the view’s constructors:

fun fac Zero = 1
| fac(Succ n) = Succ n * fac n

This defines a factorial function on integers. Whenfac is applied to an integeri, the
functionto is implicitly applied toi first and its result is matched against the constructors
appearing in the definition offac .

The body of a view declaration may contain arbitrary (auxiliary) declarations, but must
feature the two functionsfrom andto with the appropriate types. None of the declarations
is visible outside the view declaration.

Views must be usedconsistently, that is, a match may not use different views, or a view and
concrete constants of the underlying type,for the same positionin a pattern. For instance,
the following is illegal:

fun fac (0 | 1) = 1
| fac (Succ n) = Succ n * fac n

Thanks to this restriction, the compiler is still able to check exhaustiveness and irredun-
dancy of patterns, even in the presence of views.

Views are particularly interesting in conjunction with abstract types. For that purpose, it is
possible to specify views in signatures:

signature COMPLEX =
sig

type complex
viewtype cart = complex as Cart of real * real
viewtype pole = complex as Pole of real * real

end
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A view specification can either be matched by a correspondingview declaration, or by an
appropriate datatype definition:

structure Complex :> COMPLEX =
struct

datatype cart = Cart of real * real
type complex = cart
viewtype pole = complex as Pole of real * real
with

open Math
fun to(Cart(x,y)) = Pole(sqrt(x * x + y * y), atan2(x,y))
fun from(Pole(r,t)) = Cart(r * cos(t), r * sin(t))

end
end

The implementation of a viewtype is kept abstract, and both of the above views can be used
uniformly where appropriate:

open Complex
fun add(Cart(x1,y1), Cart(x2,y2)) = Cart(x1+x2, y1+y2)
fun mul(Pole(r1,t1), Pole(r2,t2)) = Pole(r1 * r2, t1+t2)

Instead of opening the structure, a view can also be pulled into scope (and thus enable
unqualified use of its constructors) by a viewtype replication declaration, analogous to
SML’s datatype replication:

viewtype cart = viewtype Complex.cart

Apart from viewtype replication, the name of a view acts as a synonym for the underlying
representation type – except inside the view definition itself, where it used to denote the
(otherwise anonymous) datatype representing the view.

More extensive examples can be found indoc/examples/views.sml .

The design of views was inspired mainly by the papers of Wadler [W87] and Okasaki
[O98]. The main differences are the following:

• Views are named, to enable proper interplay with the module system, particularly
view replication.

• Unlike Okasaki’s proposal, views are bidirectional, that is, they can be used to sym-
metrically constructanddeconstruct values.

• Unlike both proposals, views may not be mixed, thus still enabling standard pattern
checks.

• Unlike both proposals, view definitions are not recursive. In particular, the view
constructors cannot be used as a view within its own definition.

• Unlike Okasaki’s proposal, the formal definition below doesnot support memoiza-
tion. This could probably be added by means of informal comments.
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Changes to the Definition

Section 2.1 (Reserved Words):

• Add viewtype to the list of reserved words.

Section 2.8 (Grammar):

• In Figure 4, add the following production for declarations:

[dec ::=] viewtype tyvarseq tycon = ty as 〈| 〉 conbind viewtype
with dec end

Section 2.9 (Syntactic Restrictions):

• Extend the second bullet with:

[. . . ] or theconbind of a viewtype declaration.

• Extend the bullet added by the changes described in AppendixB.2 as follows:

[. . . ]; similarly, in a declaration of the form “viewtype tyvarseq tycon

= ty as conbind with dec end ”, any tyvar occuring inty or conbind

must occur intyvarseq .

Section 3.4 (Grammar for Modules):

• In Figure 7, add the following production for specifications:

[spec ::=] viewtype tyvarseq tycon = ty as 〈| 〉 condesc viewtype

Section 3.5 (Syntactic Restrictions):

• Extend the second bullet with:

[. . . ] or thecondesc of a viewtype spcification.

• Replace the latter half of the fourth bullet with:

[. . . ]; similarly, in a specification of the form “viewtype tyvarseq tycon

= ty as condesc” or a signature expression of the form “sigexp where
type tyvarseq longtycon = ty”, any tyvar occuring inty or condesc

must occur intyvarseq .

Section 4.2 (Compound Objects):

• In Figure 10, Change the definition of value environments to:

VE ∈ ValEnv= VId
fin
−→ TypeScheme× ValStatus

vs ∈ ValStatus= IdStatus∪ TyName

• In the last paragraph of the text, replace “an identifier status” with “a value status”
and all occurrences ofis with vs .
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• In the last sentence, replace “or anexception constructor” with “an exception con-
structoror aview constructor” and replace “v , c or e” with “ v , c , e or a type name
t”.

Section 4.7 (Non-expansive Expressions):

• In theRestriction, replace “is of C(longvid) ∈ {c, e}” with “ vs of C(longvid) 6=
v”.

Section 4.8 (Closure):

• Replace all occurrences ofis with vs .

Section 4.9 (Type Structures and Type Environments):

• Extend the first sentence with:

[. . . ], or there is a type namet such that for all(σ, vs) ∈ RanVE , vs = t.

Section 4.10 (Inference Rules):

• In rule 2, 15 (as modified by change described in Appendix B.4), 34 and 35, replace
occurrences ofis with vs .

• Add the following rule for declarations:

t /∈ T of C arityt = k t does not admit equality
tyvarseq = α(k) C ⊢ ty ⇒ τ C, α(k)t ⊢ conbind ⇒ VE

C ⊕ (ClosVE , {tycon 7→ (t, ClosVE )}) ⊢ dec ⇒ E

σ of E(from) ≻ ∀α(k).α(k)t → τ σ of E(to) ≻ ∀α(k).τ → α(k)t

VE ′ = {vid 7→ (σ{Λα(k).τ/t}, t) ; (ClosVE )(vid) = (σ, c)}
TE = {tycon 7→ (Λα(k).τ,VE ′)}

C ⊢ viewtype tyvarseq tycon = ty as conbind with dec end ⇒ (VE ′,TE ) in Env
(17a)

and add a comment:

(17a) Unlike a datatype, a viewtype is not recursive.Comment:

Section 4.11 (Further Restrictions):

• Add a fourth point:

4. The compiler must issue an error if a match or a pattern in a value binding
makes inconsistent use of view constructors, such that there might exist a value
that, in a single matching operation, has to be matched against view construc-
tors of different view types, or against a view constructor and a pattern that is
not a view. For example, ifC andD are view constructors of different views
for type int , then the patterns “C | D” or “ 2 as C” are invalid, likewise
the match “( ,C) => . . .| ( ,D) => . . . ”. This restriction ensures that the
checks described in the previous points are always possible.

Section 5.5 (Enrichment):

77



• In the third point definingE1 ≻ E2, replace all occurrences ofis with vs and replace
the line defining enrichment on identifier status with:

vs1 = vs2 or vs2 = v or vs1 = c andvs2 = t

• Replace the second point defining(θ1,VE1) ≻ (θ2,VE2) with:

2. EitherVE2 = {}, or VE1 = VE2, or VE1 = {vid 7→ (σ, c) ; VE2(vid) =
(σ, vs)}

Section 5.7 (Inference Rules):

• In rule 2, 34 and 35, replace all occurrences ofis with vs .

• Add the following rule for specifications:

t /∈ T of B arityt = k t does not admit equality
tyvarseq = α(k) C of B ⊢ ty ⇒ τ C of B, α(k)t ⊢ condesc ⇒ VE

VE ′ = {vid 7→ (σ{Λα(k).τ/t}, t) ; (ClosVE )(vid ) = (σ, c)}
TE = {tycon 7→ (Λα(k).τ,VE ′)}

B ⊢ viewtype tyvarseq tycon = ty as condesc ⇒ (VE ′,TE) in Env
(71a)

Section 6.1 (Reduced Syntax):

• In the first bullet, remove “constructor and”.

• Replace the second bullet with:

All equations “= ty” are omitted fromviewtype declarations.

Section 6.3 (Compound Objects):

• In Figure 13, change the definition of value environments to:

VE ∈ ValEnv= VId
fin
−→ Val × ValStatus

vs ∈ ValStatus= IdStatus∪ (Val × VId)

Section 6.7 (Inference Rules):

• In rule 91, replaceis with vs .

• Add the following rule for declarations:

⊢ conbind ⇒ VE E + (VE , {tycon 7→ VE}) ⊢ dec ⇒ E′

v of E′(from), v of E′(to) ⊢ conbind ⇒ VE ′ TE = {tycon 7→ VE ′}

E ⊢ viewtype tyvarseq tycon as conbind with dec end ⇒ (VE ′,TE ) in Env
(116a)

• In rule 129, add “〈of ty〉” to the phrase in the conclusion, and replace existing single
brackets “〈. . . 〉” with double brackets “〈〈. . . 〉〉”.
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• Add the following rules for constructor bindings:

{from 7→ (vfrom, v), vid
′ 7→ (vid , v)} in Env⊢ from vid ′ ⇒ v vid ′ 6= from

〈vfrom, vto ⊢ conbind ⇒ VE 〉

vfrom, vto ⊢ vid 〈| conbind〉 ⇒ {vid 7→ (v, (vto, vid))}〈+VE 〉 in Env
(129a)

v = (vid ′′ => from ( vid ′ vid ′′) , E, {}) in Val
from 6= vid ′ 6= vid ′′ 6= from E = {from 7→ (vfrom, v), vid

′ 7→ (vid , v)} in Env
〈vfrom, vto ⊢ conbind ⇒ VE 〉

vfrom, vto ⊢ vid of ty 〈| conbind〉 ⇒ {vid 7→ (v, (vto, vid))}〈+VE 〉 in Env
(129b)

and add a comment:

(129a),(129b) In these and the rules 137a, 137b and 147a, 147b the choice ofvid ′ andvid ′′ is
arbitrary, up to the side conditions stated in the rules.Comment:

• In rule 135, replaceis with vs .

• Add the following rules for atomic patterns:

E(longvid ) = (v′, (vto, vid)) vid ′ 6= to

{to 7→ (vto, v), vid
′ 7→ (v, v)} in Env⊢ to vid ′ ⇒ vid

E, v ⊢ longvid ⇒ {}
(137a)

E(longvid) = (v′, (vto, vid)) vid ′ 6= to

{to 7→ (vto, v), vid
′ 7→ (v, v)} in Env⊢ to vid ′ ⇒ v′′ v′′ 6= vid

E, v ⊢ longvid ⇒ FAIL
(137b)

• Add the following rules for patterns:

E(longvid ) = (v′, (vto, vid)) vid ′ 6= to

{to 7→ (vto, v), vid
′ 7→ (v, v)} in Env⊢ to vid ′ ⇒ (vid , v′′)

E, v′′ ⊢ atpat ⇒ VE/FAIL

E, v ⊢ longvid atpat ⇒ VE/FAIL
(147a)

E(longvid ) = (v′, (vto, vid)) vid ′ 6= to

{to 7→ (vto, v), vid
′ 7→ (v, v)} in Env⊢ to vid ′ ⇒ v′′ v′′ /∈ {vid} × Val

E, v ⊢ longvid atpat ⇒ FAIL
(147b)

Section 7.1 (Reduced Syntax):

• In the first bullet, remove “constructor and”.

Section 7.2 (Compound Objects):

• In Figure 14, change the definition of value interfaces to:

VI ∈ ValInt = VId
fin
−→ ValIntStatus

vis ∈ ValIntStatus= IdStatus∪ {f}
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• Change the definition of Inter: ValEnv→ ValInt to:

Inter(VE ) = {vid 7→ is ; VE (vid) = (v, is)}

+ {vid 7→ f ; VE (vid) = (v, (v′, vid ′′))}

and extend the following sentence with:

[. . . ] and abstracting view constructors withf .

• Change the definition of↓: ValEnv× ValInt → ValEnv to:

VE ↓ ValInt = {vid 7→ (v, is) ; VE (vid) = (v, vs) andVE (vid) = is}

+ {vid 7→ (v, vs) ; VE (vid) = (v, vs) andVE (vid) = f}

• In the parenthesised sentence following, replace “identifier status” with “value sta-
tus” and add:

[. . . ], except in the case of view constructors.

Section 7.3 (Inference Rules):

• Add the following rule for specifications:

⊢ condesc ⇒ VI VI ′ = {vid 7→ f ; VI (vid) = c} TI = {tycon 7→ VI ′}

IB ⊢ viewtype tyvarseq tycon as condesc ⇒ (VI ′,TI ) in Int
(169a)

• In rule 179, add “〈of ty〉” to the phrase in the conclusion, and replace existing single
brackets “〈. . . 〉” with double brackets “〈〈. . . 〉〉”.

Appendix A (Derived Forms):

• In Figure 17, extend the box for declarations as follows:

viewtype tycon = viewtype longtycon datatype tycon = datatype longtycon

• In Figure 19, extend the box for specifications as follows:

viewtype tycon = viewtype longtycon datatype tycon = datatype longtycon

Appendix B (Full Grammar):

• In Figure 21, add the following productions for declarations:

[dec ::=] viewtype tyvarseq tycon = ty as 〈| 〉 conbind viewtype
with dec end

viewtype tycon = viewtype longtycon viewtype replication

Compatibility

Apart from the additional keywordviewtype , this is a conservative extension.
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B.21 Do Declarations

A very frequent idiom in SML are declarations of the form

val _ = exp

which are used to evaluate an expression for its side effects. This idiom is somewhat
verbose and ugly.

On the toplevel, expressions can be evaluated by simply writing them in place of a decla-
ration (which abbreviates a declaration ofit ). However, this form is not available in local
scope, and moreover does require putting a semicolon beforeand after the expression,
which is somewhat counterintuitive. This form only is useful in a REPL.

A new derived form simply abbreviates “val () = ” with the keyworddo .

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 17, add the following to the Declarations box:

do exp val () = exp

Appendix B (Full Grammar):

• In Figure 21, add the following production for declarations:

[dec ::=] do exp evaluation

Compatibility

This is a conservative extension.

B.22 Withtype in Signatures

The absence of thewithtype derived form in signatures clearly is an oversight in the
definition. The derived form is as useful in signatures as it is in declarations.

Changes to the Definition

Appendix A (Derived Forms):

• In Figure 19, add the following to the Specifications box:

datatype datdesc withtype typbind datatype datdesc ′ ; type typbind

and extend the note as follows

(see the note in text concerningdatdesc ′, typdesc, andlongtycon1, . . . , longtycon ′
m)

• Append the following paragraph to the text:
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In the form involvingwithtype , the identifiers bound bydatdesc and
by typbind must be distinct. The transformed descriptiondatdesc ′ is ob-
tained fromdatdesc by expanding out all the definitions made bytypbind ,
analogous todatbind above. The phrase “type typbind ” can be reinter-
preted as a type specification that is subject to further transformation.

Compatibility

This is a conservative extension, which is already supported by most implementations.

B.23 Higher-order Functors

To support higher-order modules, structure expressions are generalised to include functor
expressions, analogous to function expressions in the core:

fct strid : sigexp => strexp

Likewise, signature expressions may denote dependent functor signatures:

fct strid : sigexp1 -> sigexp2

As a derived form, non-dependent functor signatures (wherestrid does not occur insigexp2)
may be abbreviated as follows:

sigexp1 -> sigexp2

SML’s functor declarations are degraded to a mere derived forms, analogous to function
declarations withfun in the core language. They support curried functors:

functor strid ( strid1 : sigexp1) . . . ( stridn : sigexpn) 〈: sigexp〉
= strexp

For uniformity, and to avoid subtle syntax, the identifier classes for structures and functors
are merged. As another derived form, SML/NJ compatible syntax is provided for functor
descriptions in signatures:

functor strid ( strid1 : sigexp1) . . . ( stridn : sigexpn) : sigexp

Functor application syntax is generalised to

strexp1 strexp2

as in the core. Parentheses are allowed anywhere in structure and signature expressions.
The derived form allowing a parenthesised declarationstrdec as a functor argument is
maintained and generalised by enabling

( strdec )

to abbreviate a structure in all contexts. For symmetry,
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( spec )

can be used to abbreviate a signature. Particularly, it can abbreviate a functor argument:

fct ( spec) => strexp

fct ( spec) -> sigexp

which is also allowed in the functor declaration and specification derived forms, generalis-
ing the similar derived form known from SML.

The semantics of higher-order functors is kept simple. All functors are fully generative.
The only change to semantic objects of the Definition is in thecodomain of stucture envi-
ronments StrEnv, which may now contain functors.

More extensive examples can be found indoc/examples/higher-order-functors.sml .

Changes to the Definition

Section 3.1 (Reserved Words):

• Add fct to the list of additional reserved words for modules.

Section 3.2 (Identifiers):

• Replace the first sentence with:

The only additional identifier class for Modules is SigId (signature iden-
tifiers).

• Replace the start of the second sentence with “Signature identifiers . . . ”.

Section 3.4 (Grammar for Modules):

• In Figure 5, remove FunDec and FunBind from the list of phraseclasses.

• In Figure 6, replace thestrexp production “funid ( strexp ) ” for functor application
with:

[strexp ::=] strexp1 strexp2 functor application (L)

and add the following productions:

[strexp ::=] fct strid : sigexp => strexp functor
( strexp )

• In Figure 6, add the followingsigexp productions:

[sigexp ::=] fct strid : sigexp1 -> sigexp2 functor
( sigexp )

• In Figure 8, remove the productions forfundec andfunbind , and the functor declara-
tion production fortopdec. Change the caption of the figure to “Grammar: Top-level
Declarations”.

Section 3.5 (Syntactic Restrictions):
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• In the first bullet, change “strbind , sigbind , or funbind ” to “ strbind or sigbind ”.

Section 4.2 (Compound Objects):

• In Figure 10, change the definition of StrEnv as follows:

SE ∈ StrEnv= StrId
fin
−→ Mod

M ∈ Mod = Env∪ FunSig

Note: a more consistent treatment would include renamingSE ∈ StrEnv toME ∈
ModEnv, but we refrain form that here, in order to keep the number of changes as
small as possible.

• To the paragraph referring to Figure 10, add the following sentence:

The object class FunSig of functor signatures is defined in Section 5.1.

Section 4.10 (Inference Rules):

• In the last paragraph of the introduction, remove componentF from the equation
decomposingB, and replace “other componentsF andG” with “other component
G”.

Section 5.1 (Semantic Objects):

• In Figure 11, change definitions as follows:

Σ or (T )M ∈ Sig = TyNameSet× Mod

Φ or (T )(M, (T ′)M ′) ∈ FunSig= TyNameSet× Mod× Sig

Section 5.3 (Signature Instantiation):

• Replace all occurrences ofE with M .

Section 5.4 (Functor Signature Instantiation):

• Replace all pairs of the form “(E, (T ′)E′)” with respective forms “(M, (T ′)M ′).

Section 5.5 (Enrichment):

• Append the following to item 1:

[. . . ], whereM1 ≻ M2 either meansM1 = E1 andM2 = E2 such that
E1 enrichesE2, or M1 = Φ1 andM2 = Φ2 such thatΦ1 ≻ Φ2, as
defined in Section 5.6.

Section 5.6 (Signature Matching):

• Replace all occurrences of “an environment” with “a module”andE with M .

• Append the following paragraphs:18

18The defined notion of matching on functor signatures is relatively simplistic. In particular, it make transparent
functor signature ascription behave as opaque ascription.For example, the module expression

(fct () => (type t = int)) : (fct () -> (type t))

will have signature(fct () -> (type t)) , not (fct () -> (type t = int)) as one might ex-
pect. A consistent treatment of transparency is complex in the framework of the Definition and probably not
worth the trouble [MT94]. It could be added later as a conservative extension.
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A signatureΣ1 = (T1)M1 matchesa signatureΣ2 = (T2)M2, written
Σ1 ≻ Σ2, if there exists a realisationϕ such thatΣ2 ≥ ϕ(M2) ≺ M1 and
T1 ∩ tynamesΣ2 = ∅.

A functor signatureΦ1 = (T1)(M1, Σ1) matchesa functor signature
Φ2 = (T2)(M2, Σ2), writtenΦ1 ≻ Φ2, if there exists a realisationϕ such
that(T1)M1 ≥ ϕ(M1) ≺ M2 andϕ(Σ1) ≻ Σ2 andT1∩tynamesΦ2 = ∅.

Section 5.7 (Inference Rules):

• In the 2nd paragraph of the introduction, remove componentF from the equation
decomposingB, and remove “tynamesF∪” from the set inequation.

• Change the box giving the form of inference rules for structure expressions to:

B ⊢ strexp ⇒ M

and replace all occurences ofE with M in rules 51–53, andE2 with M in rule 55.

• Change rule 54 to:

B ⊢ strexp1 ⇒ Φ B ⊢ strexp2 ⇒ M
Φ ≥ (M ′′, (T ′)M ′), M ≻ M ′′

(tynamesM ∪ T of B) ∩ T ′ = ∅

B ⊢ strexp1 strexp2 ⇒ M ′
(54)

• In the comment for rule 54, replace all occurences ofE with M , and replace “B(funid)”
with “Φ”.

• Add the following two rules for structure expressions:

B ⊢ sigexp ⇒ (T )M B ⊕ {strid 7→ M} ⊢ strexp ⇒ M ′

T ∩ (T of B) = ∅ T ′ = tynamesM ′ \ ((T of B) ∪ T )

B ⊢ fct strid : sigexp => strexp ⇒ (T )(M, (T ′)M ′)
(55a)

B ⊢ strexp ⇒ M

B ⊢ ( strexp ) ⇒ M
(55b)

• Change the box giving the form of inference rules for unquantified signature expres-
sions to:

B ⊢ sigexp ⇒ M

and replace all occurences ofE with M in rules 61, 63 and 65.

• Add the following two rules for signature expressions:

B ⊢ sigexp1 ⇒ (T )M B ⊕ {strid 7→ M} ⊢ sigexp2 ⇒ (T ′)M ′

B ⊢ fct strid : sigexp1 -> sigexp2 ⇒ (T )(M, (T ′)M ′)
(64a)

B ⊢ sigexp ⇒ M

B ⊢ ( sigexp ) ⇒ M
(64b)

• In rule 84, replace all occurences ofE with M .

• Remove rules 85 and 86.

• Remove rule 89, and change the comment to refer only to rules (87)–(88).
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Section 6.3 (Compound Objects):

• In Figure 13, change the definition of structure environments StrEnv as follows:

SE ∈ StrEnv= StrId
fin
−→ Mod

M ∈ Mod = Env∪ FunctorClosure

• Add the following paragraph:

The object class FunctorClosure represents functors and isdefined in Sec-
tion 7.2.

Section 7.2 (Compound Objects):

• In Figure 14, change the definition of FunctorClosure and Basis as follows:

(strid : I, strexp : IC , B) ∈ FunctorClosure= (StrId× Int) × (StrExp× IntConstraint) × Basis

IC ∈ IntConstraint= Int ∪ {ǫ}

(G, E) ∈ Basis= SigEnv× Env

• Remove the definition for functor environments FunEnv.

• ChangeSI in the definition of the function Inter as follows:

SI = {strid 7→ Inter M ; SE (strid) = M}

and add the following text:

where InterM in turn is defined as follows:

Inter M =

{

Inter E, if M = E;
{} in Inter, if M = (strid : I ′, strexp : IC , B).

• Simplify the definition of the function Inter on a basisB to:

Inter(G, E) = (G, Inter E)

• Change the definition of↓: StrEnv× StrInt→ StrEnv to:

SE ↓ SI = {strid 7→ M ↓ I ; SE (strid) = M andSI (strid) = I}

• After the definition↓ on environments, add the following text:

Here, the definition of↓: Mod× Int → Mod is as follows:

M ↓ I =

{

E ↓ I, if M = E;
(strid : I ′, strexp : I, B), if M = (strid : I ′, strexp : IC , B).

It is extended to interface constraints:

M ↓ IC =

{

M ↓ I, if IC = I;
M, if IC = ǫ.

Interface constraints express optional interface modifications applied to a
functor body via higher-order ascription.
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Section 7.3 (Inference Rules):

• Change the box giving the form of inference rules for structure expressions to:

B ⊢ strexp ⇒ M/p

and replace all occurences ofE andE′ with M in rules 151–153 and 155.

• Change rule 154 to:

B ⊢ strexp1 ⇒ (strid : I, strexp′ : IC , B′) B ⊢ strexp2 ⇒ M
B′ + {strid 7→ M ↓ I} ⊢ strexp′ ⇒ M ′

B ⊢ strexp1 strexp2 ⇒ M ′ ↓ IC
(154)

• Add the following two rules for structure expressions:

Inter B ⊢ sigexp ⇒ I

B ⊢ fct strid : sigexp => strexp ⇒ (strid : I, strexp : ǫ, B)
(155a)

B ⊢ strexp ⇒ M

B ⊢ ( strexp ) ⇒ M
(155b)

• Add the following two rules for signature expressions:

IB ⊢ sigexp1 ⇒ I1 IB + {strid 7→ I1} ⊢ sigexp2 ⇒ I2

IB ⊢ fct strid : sigexp1 -> sigexp2 ⇒ I2
(163a)

IB ⊢ sigexp ⇒ I

IB ⊢ ( sigexp ) ⇒ I
(163b)

• Remove rules 182, 183 and 186.

Appendix A (Derived Forms):

• In Figure 18, replace the box for structure expressions withthe following:

Structure Expressionsstrexp
( strdec ) struct strdec end

fct ( spec ) => strexp fct strid : sig spec end =>
let open strid in strexp end

(strid new)

• In Figure 18, replace the box for functor bindings with the following:

Functor Bindings funbind

strid ( funarg1) · · · ( funargn) strid = fct funarg ′
1 => · · · fct funarg ′

n =>
〈: 〈>〉 sigexp〉 = strexp 〈and funbind〉 strexp 〈: 〈>〉 sigexp〉 〈and funbind〉

(n ≥ 1; see note in text concerningfunarg1, . . . , funarg
′
n)

• In Figure 18, add a box for structure declarations as follows:

Structure Declarationsstrdec

functor funbind structure funbind

• In Figure 19, add box for functor descriptions as follows:
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Functor Descriptions fundesc

strid ( funarg1) · · · ( funargn) strid : fct funarg ′
1 -> · · · fct funarg ′

n ->
: sigexp sigexp

(n ≥ 1; see note in text concerningfunarg1, . . . , funarg ′
n)

• In Figure 19, extend the box for specifications as follows:

functor fundesc structure fundesc

• In Figure 19, extend the box for signature expressions as follows:

( spec ) sig spec end

fct ( spec ) -> sigexp fct strid : sig spec end -> sigexp′

sigexp1 -> sigexp2 fct strid : sigexp1 -> sigexp2

and add the following note to the box:

(see note in text concerningsigexp′; strid new)

• Add the following paragraph to the text:

In the signature expression form for functors with a specificationspec as
argument, the transformed signature expressionssigexp′ is obtained from
sigexp by replacing any identifierid that is bound inspec with strid . id ,
except where hidden by a local binding.

• Add the following paragraph to the text:

In the derived forms for functor bindings and functor descriptions, the
phrasefunarg is defined by the following grammar:

funarg ::= strid : sigexp

spec

In the former case, the correspondingfunarg ′ is the same phrase. In the
latter case it is the phase “( spec) ”, such that the meaning is given in terms
of the derived form for structure and signature expressions, respectively.

Appendix B (Full Grammar):

• In the 3rd paragraph, extend the first sentence with “and of Modules”.

• After the 3rd paragraph, add a paragraph as follows:

There are also three classes of structure expressions as follows:

AtStrExp⊂ AppStrExp⊂ StrExp

Finally, there are two classes of signature expressions:

AtSigExp⊂ SigExp

• In the next paragraph, replace “Figures 20, 21, 22 and 23” with “Figures 20 to 23d”.

88



• Add the following figure, “Figure 23a: Structure expressions”:

atstrexp ::= struct strdec end basic
( strdec ) basic (short)
longstrid structure identifier
let strdec in strexp end local declaration
( strexp )

appstrexp ::= atstrexp

appstrexp atstrexp functor application

strexp ::= appstrexp

strexp : sigexp transparent constraint
strexp :> sigexp opaque constraint
fct strid : sigexp => strexp functor
fct ( spec ) => strexp functor (short)

• Add the following figure, “Figure 23b: Signature expressions”:

atsigexp ::= sig spec end basic
( spec ) basic (short)
sigid signature identifier
( sigexp )

sigexp ::= atsigexp

sigexp where type type realisation
tyvarseq longtycon = ty

fct strid : atsigexp -> sigexp functor
fct ( spec ) -> sigexp functor (short)
atsigexp -> sigexp non-dependent functor
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• Add the following figure, “Figure 23c: Specifications and descriptions”:

spec ::= val valdesc value
type typdesc type
type syndesc type
eqtype typdesc eqtype
datatype datdesc 〈withtype typbind〉 datatype
datatype tycon = datatype longtycon replication
viewtype tyvarseq tycon = ty as 〈| 〉 condesc viewtype
viewtype tycon = viewtype longtycon viewtype replication
exception exdesc exception
structure strdesc structure
functor fundesc functor
include sigexp include
include sigid1 · · · sigidn multiple include

empty
spec1 〈; 〉 spec2 sequential
spec sharing type type sharing

longtycon1 = · · · = longtyconn (n ≥ 2)
spec sharing structure sharing

longstrid1 = · · · = longstridn (n ≥ 2)

valdesc ::= vid : ty 〈and valdesc〉
typdesc ::= tyvarseq tycon 〈and typdesc〉
syndesc ::= tyvarseq tycon = ty 〈and syndesc〉
datdesc ::= tyvarseq tycon = 〈| 〉 condesc 〈and datdesc〉
condesc ::= vid 〈of ty〉 〈| condesc〉
exdesc ::= vid 〈of ty〉 〈and exdesc〉
strdesc ::= strid : sigexp 〈and strdesc〉
fundesc ::= strid ( funarg1 ) · · · ( funargn ) (n ≥ 1)

: sigexp 〈and fundesc〉
funarg ::= strid : sigexp

spec

• Add the following figure, “Figure 23d: Structure-level and top-level declarations”:

strdec ::= dec declaration
structure strbind structure
functor funbind functor
local strdec1 in strdec2 end local

empty
strdec1 〈; 〉 strdec2 sequential

strbind ::= strid 〈: 〈>〉 sigexp〉 = strexp 〈and strbind〉
funbind ::= strid ( funarg1 ) · · · ( funargn ) (n ≥ 1)

〈: 〈>〉 sigexp〉 = strexp 〈and funbind〉

sigdec ::= signature sigbind

sigbind ::= sigid = sigexp 〈and sigbind〉

topdec ::= strdec 〈topdec〉 structure-level declaration
sigdec 〈topdec〉 signature declaration

Appendix C (The Initial Static Basis):
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• In the text, replace “B0 = T0, F0, G0, E0 whereF0 = {}, G0 = {} and” with
“B0 = T0, G0, E0 whereG0 = {} and”.

Appendix D (The Initial Dynamic Basis):

• In the text, replace “B0 = F0, G0, E0 whereF0 = {}, G0 = {} and . . . ” with
“B0 = G0, E0 whereG0 = {} and . . . ”.

Compatibility

This extension is not conservative because it merges identifier classes for structures and
functors. The new reserved wordfct may also break some existing programs. Otherwise,
it is a generalisation of the existing syntax and semantics for modules. Syntactically, it
subsumes the higher-order modules of SML/NJ.

B.24 Nested Signatures

In order to make the name spacing mechanism realised by structures applicable to signa-
tures, signatures are allowed as structure members. This implies the presence of qualified
signature identifiers, and the addition of signature specifications in signatures:

signature S = sigexp

A signature definition matches a signature specification if and only if they denote equivalent
signatures. Note that – unlike for types – there are no opaquesignature specifications,
because that would make the type system undecidable in combination with higher-order
functors [L97].

Changes to the Definition

The changes described here are relative to the changes for higher-order functors given in
Appendix B.23.

Section 3.2 (Identifiers):

• Extend the first sentence with

[. . . ] and the accompanyinglongSigId (long signature identifiers).

Section 3.4 (Grammar for Modules):

• In Figure 5, remove SigDec form the list of phrase classes, and add the following:

SigDesc signature descriptions

• In Figure 6, add the following production for structure-level declarationsstrdec:

[strdec ::=] signature sigbind signature

• Replace thesigexp production for signature identifiers to:

[sigexp ::=] longsigid signature identifier

91



• Remove the production for signature declarationssigdec.

• In Figure 7, add the following production for specifications:

[spec ::=] signature sigdesc signature

• Add the following production for the new class of signature descriptions:

sigdesc ::= sigid = sigexp 〈and sigdesc〉

• In Figure 8, remove the production for signature declarations fromtopdec and sim-
plify the remaining production for structure declarationsto:

topdec ::= strdec

• Remove the second part of the restriction note that was addedby the change from
Appendix B.1.

Section 3.5 (Syntactic Restrictions):

• In the second item, replace “orstrdesc” with “, strdesc or sigdesc”.

Section 4.2 (Compound Objects):

• In Figure 10, change the definition of environments as follows:

E or (G,SE ,TE ,VE ) ∈ Env= SigEnv× StrEnv× TyEnv× ValEnv

• In the paragraph referring to Figure 10, modify the sentenceadded by the change
described in Appendix B.23 to

The object classes FunSig of functor signatures and SigEnv of signature
environments belong to Modules and are defined in Section 5.1.

Section 4.3 (Projection, Injection and Modification):

• In the paragraph on Modification, replace “E+({}, {},VE)” with “ E+({}, {}, {},VE)”.

Section 4.10 (Inference Rules):

• In the last paragraph of the introduction, remove the partial sentence after the semi-
colon, which starts with “one reason [. . . ]”.

Section 5.1 (Semantic Objects):

• In Figure 11, simplify the definition of Basis to:

B or (T, E) ∈ Basis= TyNameSet× Env

Section 5.5 (Enrichment):

• In the second paragraph, replace “E1 = (SE1,TE1,VE1)” with “ E1 = (G1,SE1,TE1,VE1)”;
likewise forE2.
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• Add the following item to the enumeration:

4. Dom G1 ⊇ Dom G2, andG1(sigid) ≻≺ G2(sigid ) for all sigid ∈ Dom G2,

whereΣ1 ≻≺ Σ2 denotes mutual signature matching as defined in Section 5.6.

Section 5.5 (Signature Matching):

• Extend the second paragraph (as added by the change described in Appendix B.23)
with the following sentence:

We writeΣ1
≻≺ Σ2 to mean mutual matchingΣ1 ≻ Σ2 andΣ1 ≺ Σ2.

Section 5.7 (Inference Rules):

• In the 2nd paragraph of the introduction, remove componentG from the equation
decomposingB, and remove “tynamesG∪” from the set inequation.

• Add the following rule for structure declarations:

B ⊢ sigbind ⇒ G

B ⊢ signature sigbind ⇒ G in Env
(57a)

• Change rule 63 as follows:

B(longsigid ) = (T )M T ∩ (T of B) = ∅

B ⊢ longsigid ⇒ M
(63)

• Remove rule 66.

• Add the following rule for specifications:

B ⊢ sigdesc ⇒ G

B ⊢ signature sigdesc ⇒ G in Env
(74a)

• Add a section for signature description rules of the form

B ⊢ sigdesc ⇒ G

and the following rule:

B ⊢ sigexp ⇒ Σ 〈B ⊢ sigdesc ⇒ G〉

B ⊢ sigid = sigexp 〈and sigdesc〉 ⇒ {sigid 7→ Σ}〈+G〉
(84a)

• Simplify rule 87 as follows:

B ⊢ strdec ⇒ E tyvarsE = ∅

B ⊢ strdec ⇒ (tynamesE, E) in Basis
(87)

• Remove rule 88, and change the comment to refer only to rule 87.

Section 6.3 (Compound Objects):

• In Figure 13, change the definition of environments as follows:

(G,SE ,TE ,VE) or E ∈ Env= SigEnv× StrEnv× TyEnv× ValEnv
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• Change the paragraph added by the change described in Appendix B.23 to

The object classes FunctorClosure and SigEnv describe functors and sig-
nature environments, respectively, and are defined in Section 7.2.

Section 7.2 (Compound Objects):

• In Figure 14, change the definition of interfaces and basis asfollows:

I or (G,SI ,TI ,VI ) ∈ Int = SigEnv× StrInt× TyInt × ValInt

B or E ∈ Basis= Env

• Remove the definition of IntBasis.

• In the text, add after the first sentence:

A basisB is isomophic to an environmentE, but we write explicit injec-
tions “E in Basis” and projections “E of B”.

Note: The main motivation here is to keep the number of changes small, as there are
many references to the notion of “dynamic basis”.

• Adapt the definition of the function Inter: Env→ Int as follows:

Inter(G,SE ,TE ,VE ) = (G,SI ,TI ,VI )

• Remove the paragraph on interface basis and the extended definition of Inter on a
basis.

The object classes FunctorClosure and SigEnv describe functors and sig-
nature environments, respectively, and are defined in Section 7.2.

• Adapt the definition of the cut down operator↓ on environments as follows:

(G,SE ,TE ,VE ) ↓ (G′,SI ,TI ,VI ) = (G,SE ↓ SI ,TE ↓ TI ,VE ↓ VI )

and add the following sentence directly after it:

The static semantics ensures thatG andG′ are equivalent signature envi-
ronments.

Section 7.3 (Inference Rules):

• Add the following rule for structure declarations:

Inter B ⊢ sigbind ⇒ G

B ⊢ signature sigbind ⇒ G in Env
(157a)

• In rules 162–175 and 181, except for the ones mentioned in thefollowing, replace
all occurrences ofIB with I, likewise in the respective boxes giving their form; in
those rules already containing occurences ofI (162, 165, 173, 181), replace these
occurences withI ′.

• Change rule 163 as follows:

I(longsigid ) = I ′

I ⊢ longsigid ⇒ I ′
(163)
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• Remove rule 164.

• Add the following rule for specifications:

I ⊢ sigdesc ⇒ G

I ⊢ signature sigdesc ⇒ G in Inter
(172a)

• Add a section for signature description rules of the form

I ⊢ sigdesc ⇒ G

and the following rule:

I ⊢ sigexp ⇒ I ′ 〈I ⊢ sigdesc ⇒ G〉

I ⊢ sigid = sigexp 〈and sigdesc〉 ⇒ {sigid 7→ I ′}〈+G〉
(181a)

• Simplify rule 184 as follows:

B ⊢ strdec ⇒ E

B ⊢ strdec ⇒ E in Basis
(184)

• Remove rule 185.

Appendix A (Derived Forms):

• In Figure 19, in the box for specificationsspec, replace the entry forinclude with:

include longsigid1 · · · longsigidn include longsigid 1 ; · · · ; include longsigidn

Appendix B (Full Grammar):

• In Figure 23b (as defined in Appendix B.23), replace thesigexp production for sig-
nature identifiers to:

[sigexp ::=] longsigid signature identifier

• In Figure 23c (as defined in Appendix B.23), add the followingproduction for spec-
ifications:

[spec ::=] signature sigdesc signature

and replace the one for multiple include with:

[spec ::=] include longsigid 1 · · · longsigidn multiple include

• Add the following production for signature descriptions:

sigdesc ::= sigid = sigexp 〈and sigdesc〉

• In Figure 23d (as defined in Appendix B.23), add the followingproduction for structure-
level declarationsstrdec:

[strdec ::=] signature sigbind signature

• Remove the production for signature declarationssigdec.
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• Simplify the definition oftopdec to:

topdec ::= strdec

Appendix C (The Initial Static Basis):

• In the text, replace the definition ofB0 with “B0 = T0, E0” and drop “G0 = {}
and”.

• Replace “E0 = (SE0,TE 0,VE0), whereSE0 = {}” with “ E0 = (G0,SE0,TE0,VE0),
whereG0 = {} andSE0 = {}”.

Appendix D (The Initial Dynamic Basis):

• Replace the second sentence with

The initial dynamic basis isB0 = E0 = (G0,SE0,TE 0,VE0), where
G0 = {}, SE0 = {}, TE 0 is shown in Figure 26 and

Compatibility

This is a conservative extension.

B.25 Local Modules

Structure, functor and signature declarations are allowedin local scope:

fun sortWithoutDups compare =
let

structure Set = MkSet(type t = string
val compare = compare)

in
Set.toList o foldr Set.insert Set.empty

end

Furthermore, as a derived form, open declarations may contain arbitrary module expres-
sions:

fun sortWithoutDups compare =
let

open MkSet(type t = string; val compare = compare)
in

toList o foldr insert empty
end

Changes to the Definition

The changes described here are relative to the changes for higher-order functors and nested
signatures given in Appendices B.23 and B.24.

Section 2.8 (Grammar):
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• Extend the first paragraph with the following sentence:

In Figure 4, the variablestrdec appearing in Figure 4 ranges over the set
StrDec of structure-level declarations, which is defined inSection 3.4.

• In Figure 4, add the following production for declarationsdec:

[dec ::=] strdec module declaration

Section 3.3 (Infixed operators):

• In the first paragraph, replace “structure-level declaration strdec” with “declaration
dec”.

• In the list of phrases, replace “strdec” with “ dec” and remove the phrase concerning
local .

Section 3.4 (Grammar for Modules):

• In Figure 6, replace all occurrences “strdec” in the productions for structure expres-
sionsstrexp with “dec”.

• Remove the productions for core, local, empty and sequential structure-level dec-
larations and the respective restriction note that was added as part of the changes
described in Appendix B.1.

• In Figure 8, replace occurrences “strdec” in the productions for top-level declarations
topdec and the respective restriction note with “dec”.

Section 4.10 (Inference Rules):

• Add the following rule for declarations:

C ⊢ strdec ⇒ E

C ⊢ strdec ⇒ E
(20a)

and an accompanying comment:

(20a) The premise of this rule is a sentence of the static semantics for Modules, see
Section 5.7.

Section 5.1 (Semantic Objects):

• In the third paragraph, add the following after the first sentence:

Inversely, we defineC in Basis to be the basis(T of C, E of C).

Section 5.7 (Inference Rules):

• Change the box giving the form of inference rules for structure expressions to:

C ⊢ strexp ⇒ M

and replace all occurences ofB with C in rules 50–55, except for the premises re-
garding a signature expressionsigexp in rules 52, 53 and 55a, where it is replaced
by “C in Basis”.
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• In rules 50 and 55, replacestrdec with dec.

• Change the box giving the form of inference rules for structure declarations to:

C ⊢ strdec ⇒ E

and replace all occurences ofB with C in rules 57 and 57a, except for the premise
of rule 57a, where it is replaced by “C in Basis”.

• Remove rules 56 and 58–60.

• Change the box giving the form of inference rules for structure bindings to:

C ⊢ strbind ⇒ SE

and replace all occurences ofB with C in rule 61.

• In rule 87, replacestrdec with dec, and theB in the premise with “C of B”.

Section 6.7 (Inference Rules):

• Add the following rule for declarations:

E in Basis⊢ strdec ⇒ E′

E ⊢ strdec ⇒ E′
(119a)

and an accompanying comment:

(119a) The premise of this rule is a sentence of the dynamic semantics for Modules,
see Section 7.3. The definition of dynamic basis Basis appears in Section 7.2.

Section 7.3 (Inference Rules):

• In rules 150 and 155, replacestrdec with dec, andB in the premises with “E of B”.

• Remove rules 156 and 158–160.

• In rule 184, replacestrdec with dec, and theB in the premise with “E of B”.

Appendix A (Derived Forms):

• In Figure 17, add the following to the box for declarations:

open strexp local structure strid = strexp in open strid end

and extend the note with

[. . . ] andstrexp; strid new

• Add the following bullet to the list of notes regarding Figure 17:

In the form involvingopen , the structure expressionstrexp may not be a
functor application of the formlongstrid0 longstrid1 · · · longstridn.

• In Figure 18, replace occurrences of “strdec” in the box for structure expressions
strexp with “dec”.

Appendix B (Full Grammar):
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• In Figure 20, add the following productions for declarationsdec:

[dec ::=] strdec module declaration
open strexp open declaration

• In Figure 23a (as defined by Appendices B.23 and B.24), replace all occurrences of
“strdec” with “ dec”.

• In Figure 23d (as defined by Appendices B.23 and B.24), removethe productions for
core, local, empty and sequential structure-level declarations.

• Replace “strdec” in the productions for top-level declarationstopdec with “dec”.

Compatibility

This is a conservative extension. The syntactic restriction on generalisedopen declara-
tions prevents overlap with the existing form, although deprecation of multiple open might
arguably be a preferable solution.

B.26 First-class Modules

Modules can be wrapped up as first-class values, by giving a module expression and an
appropriate signature:

val p = pack Int : INTEGER

The type of such a value is

val p : pack INTEGER

To unwrap a package, another signature constraint is necessary, e.g.:

fun four x =
let

structure I = unpack x : INTEGER
in

I.toString(I.fromString "4")
end

More extensive examples can be found indoc/examples/first-class-modules.sml .

Changes to the Definition

The changes described here are relative to the changes for higher-order and local modules
given in Appendices B.23–B.25.

Section 2.1 (Reserved Words):

• Add pack to the list of reserved words.

Section 2.3 (Grammar):
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• Extend the first paragraph further with the following sentence:

Moreover, the variablelongsigid occurring in Figures 3 and 4 ranges over
the class of long signature identifiers, defined in Section 3.2.

• In Figure 3, add the following production for types:

[ty ::=] pack longsigid first-class module

• In Figure 4, add the following production for expressions:

[exp ::=] pack longstrid : longsigid pack module

Section 3.1 (Reserved Words):

• Add unpack to the list of reserved words used in Modules.

Section 3.4 (Grammar for Modules):

• In Figure 6, add the following production for structure expressions:

[strexp ::=] unpack atexp : sigexp unpack module

Section 4.2 (Compound Objects):

• In Figure 10, extend the definition of Type with “∪PackType” and add the following:

[Σ] ∈ PackType= Sig

• In the paragraph referring to Figure 10, modify the sentenceadded by the changes
described in Appendix B.23 and B.24 to

The object classes Sig, FunSig and SigEnv belong to Modules and are
defined in Section 5.1.

Section 4.4 (Types and Type functions):

• Add the following bullet to the list of forms that admit equality:

• [Σ], whereΣ ∈ Sig.

Section 4.10 (Inference Rules):

• Add the following rule for expressions:

C in Basis⊢ longstrid : longsigid ⇒ M C(longsigid ) = Σ

C ⊢ pack longstrid : longsigid ⇒ [Σ]
(9a)

and an accompanying note:

(9a) The premise of this rule is a sentence of the static semantics for Modules, see
Section 5.7. It ensures thatC(longstrid) matchesΣ.

• Add the following rule for types:

C(longsigid ) = Σ

C ⊢ pack longsigid ⇒ [Σ]
(47a)

100



Section 5.7 (Inference Rules):

• Add the following rule for structure expressions:

C ⊢ atexp ⇒ [Σ] C in Basis⊢ sigexp ⇒ (T )M

Σ ≻≺ (T )M T ∩ (T of C) = ∅

C ⊢ unpack atexp : sigexp ⇒ M
(53a)

Section 6.3 (Compound Objects):

• In Figure 13, extend the definition of Val with “∪Mod”.

Section 6.7 (Inference Rules):

• Add the following rule for expressions:

E in Basis⊢ longstrid : longsigid ⇒ M

E ⊢ pack longstrid : longsigid ⇒ M
(103a)

and an accompanying note:

(103a) The premise of this rule is a sentence of the dynamic semantics for Modules,
see Section 7.3.

Section 7.3 (Inference Rules):

• Add the following rule for structure expressions:

E of B ⊢ atexp ⇒ M

B ⊢ unpack atexp : sigexp ⇒ M
(153a)

and note:

(153a) Because there is no subtyping on package types, the static semantics ensures
thatM is already cut down to the signature denoted bysigexp.

Appendix A (Derived Forms):

• In Figure 15, add the following to the box for expressions:

pack atstrexp : atsigexp let structure strid = atstrexp

signature sigid = atsigexp

in pack strid : sigid end

(strid , sigid new)

Appendix B (Full Grammar):

• In Figure 20, add the following production for expressions:

[exp ::=] pack atstrexp : atsigexp pack module

• In Figure 23, add the following production for types:

[ty ::=] pack longsigid first-class module

• In Figure 23a (as defined by Appendices B.23 and B.24), add thefollowing produc-
tion for structure expressions:

[strexp ::=] unpack atexp : sigexp unpack module
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Compatibility

Except for the new reserved wordspack andunpack this is a conservative extension.

C Syntax Summary

The following gives a summary of the full grammar as defined byall the changes given in
Appendix B. A bullet• marks phrases that are new, a parenthesised bullet(•) phrases that
have been extended relative to SML’97.

C.1 Core Language

atexp ::= scon special constant
〈op〉longvid value identifier
{ 〈atexp where〉 〈exprow 〉 } record(•)
# lab record selector
( ) 0-tuple
( exp1 , · · · , expn ) n-tuple,n ≥ 2
[ exp1 , · · · , expn ] list, n ≥ 0
( exp1 ; · · · ; expn 〈; 〉 ) sequence,n ≥ 1 (•)
let dec in exp1 ; · · · ; expn 〈; 〉 end local declaration,n ≥ 1 (•)

exprow ::= ... = exp 〈, exprow〉 ellipses•
lab = exp 〈, exprow〉 expression row
vid 〈: ty〉 〈, exprow〉 label as variable•

appexp ::= atexp

appexp atexp application

infexp ::= appexp

infexp1 vid infexp2 infix application

exp ::= infexp

exp : ty type constraint (L)
pack atstrexp : atsigexp pack module•
exp1 andalso exp2 conjunction
exp1 orelse exp2 disjunction
exp handle 〈| 〉 match handle exception(•)
raise exp raise exception
if exp1 then exp2 〈else exp3〉 conditional(•)
while exp1 do exp2 iteration
case exp of 〈| 〉 match case analysis(•)
fn 〈| 〉 match function(•)
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atpat ::= wildcard
scon special constant
〈op〉longvid value identifier
? atexp transformation•
{ 〈patrow 〉 } record
( ) 0-tuple
( pat1 , · · · , patn ) n-tuple,n ≥ 2
[ pat1 , · · · , patn ] list, n ≥ 0
( pat )

patrow ::= ... 〈= pat〉 〈, patrow〉 ellipses(•)
lab = pat 〈, patrow〉 pattern row
vid 〈: ty〉 〈as pat〉 〈, patrow〉 label as variable

apppat ::= atpat

〈op〉longvid atpat constructed value
? atexp atpat constructed transformation•

infpat ::= apppat

infpat1 vid infpat2 constructed value (infix)

pat ::= infpat

pat : ty typed
pat1 as pat2 conjunctive(•)
pat1 | pat2 disjunctive•
pat1 with pat2 = exp nested match•
pat if exp guard•

match ::= mrule 〈| match〉
mrule ::= pat => exp match rule

fmatch ::= fmrule 〈| fmatch〉
fmrule ::= fpat 〈: ty〉 〈if atexp〉 = exp match clause(•)
fpat ::= 〈op〉vid atpat1 · · · atpatn n ≥ 1

( atpat1 vid atpat2) atpat3 · · · atpatn n ≥ 3
atpat1 vid atpat2

ty ::= tyvar type variable
{ 〈tyrow 〉 } record
tyseq longtycon type construction
ty1 * · · · * tyn n-tuple,n ≥ 2
ty1 -> ty2 function type (R)
pack longsigid first-class module•
( ty )

tyrow ::= ... : ty 〈, tyrow 〉 ellipses•
lab : ty 〈, tyrow〉 type row
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dec ::= do exp evaluation•
val 〈rec〉 tyvarseq valbind value(•)
fun tyvarseq funbind function
type typbind type
datatype datbind 〈withtype typbind〉 datatype
datatype tycon = datatype longtycon replication
viewtype tyvarseq tycon = ty as 〈| 〉 conbind viewtype•

with dec end

viewtype tycon = viewtype longtycon viewtype replication•
abstype datbind 〈withtype typbind〉 abstract type

with dec end

exception exbind exception
strdec module declaration•
open strexp open•
open longstrid1 · · · longstridn multiple open
local dec1 in dec2 end local

empty
dec1 〈; 〉 dec2 sequential
infix 〈d〉 vid1 · · · vidn infix left directive,n ≥ 1
infixr 〈d〉 vid1 · · · vidn infix right directive,n ≥ 1
nonfix vid1 · · · vidn nonfix directive,n ≥ 1

valbind ::= pat = exp 〈and valbind〉
fvalbind ::= 〈| 〉 fmatch 〈and fvalbind 〉 (•)
typdesc ::= tyvarseq tycon = ty 〈and typbind〉
datbind ::= tyvarseq tycon = 〈| 〉 conbind 〈and datbind〉 (•)
conbind ::= 〈op〉vid 〈of ty〉 〈| conbind〉
exbind ::= 〈op〉vid 〈of ty〉 〈and exbind〉

〈op〉vid = 〈op〉longvid 〈and exbind〉

C.2 Module Language

atstrexp ::= struct dec end basic
( dec ) basic (short)•
longstrid structure identifier
let dec in strexp end local declaration
( strexp ) •

appstrexp ::= atstrexp

appstrexp atstrexp functor application(•)

strexp ::= appstrexp

strexp : sigexp transparent constraint
strexp :> sigexp opaque constraint
unpack atexp : sigexp unpack module•
fct strid : sigexp => strexp functor•
fct ( spec ) => strexp functor (short)•
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atsigexp ::= sig spec end basic
( spec ) basic (short)•
longsigid signature identifier(•)
( sigexp ) •

sigexp ::= atsigexp

sigexp where type type realisation
tyvarseq longtycon = ty

fct strid : atsigexp -> sigexp functor•
fct ( spec ) -> sigexp functor (short)•
atsigexp -> sigexp non-dependent functor•

spec ::= val valdesc value
type typdesc type
type syndesc type
eqtype typdesc eqtype
datatype datdesc 〈withtype typbind〉 datatype(•)
datatype tycon = datatype longtycon replication
viewtype tyvarseq tycon = ty as 〈| 〉 condesc viewtype•
viewtype tycon = viewtype longtycon viewtype replication•
exception exdesc exception
structure strdesc structure
functor fundesc functor•
signature sigdesc signature•
include sigexp include
include longsigid1 · · · longsigidn multiple include(•)

empty
spec1 〈; 〉 spec2 sequential
spec sharing type type sharing

longtycon1 = · · · = longtyconn (n ≥ 2)
spec sharing structure sharing

longstrid1 = · · · = longstridn (n ≥ 2)

valdesc ::= vid : ty 〈and valdesc〉
typdesc ::= tyvarseq tycon 〈and typdesc〉
syndesc ::= tyvarseq tycon = ty 〈and syndesc〉
datdesc ::= tyvarseq tycon = 〈| 〉 condesc 〈and datdesc〉 (•)
condesc ::= vid 〈of ty〉 〈| condesc〉
exdesc ::= vid 〈of ty〉 〈and exdesc〉
strdesc ::= strid : sigexp 〈and strdesc〉
fundesc ::= strid ( funarg1 ) · · · ( funargn ) (n ≥ 1) •

: sigexp 〈and fundesc〉
funarg ::= strid : sigexp

spec

sigdesc ::= sigid = sigexp 〈and sigdesc〉 •
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strdec ::= structure strbind structure
functor funbind functor(•)
signature sigbind signature(•)

strbind ::= strid 〈: 〈>〉 sigexp〉 = strexp 〈and strbind〉
funbind ::= strid ( funarg1 ) · · · ( funargn ) (n ≥ 1) (•)

〈: 〈>〉 sigexp〉 = strexp 〈and funbind〉

sigbind ::= sigid = sigexp 〈and sigbind〉

topdec ::= dec (•)

program ::= topdec ; 〈program〉
exp ; 〈program〉
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D History

Version 1.0 (2001/10/04)

Public release. No history for prior versions.

Version 1.0.1 (2001/10/11)

Basis:

• Fixed ASCII and Unicode escapes inChar.scan andChar.scanC (and thus in
Char.fromString , Char.fromCString , String.fromString ).

• Fixed octal escapes inChar.toCString (and thusString.toCString ).

• Fixed possible NaN’s inReal.scan for mantissa 0 and large exponents.

Documentation:

• Added issue of obligatory formatting characters to Appendix.

• Some minor additions/clarifications in Appendix.

Test cases:

• Added test caseredundant .

• Removed accidental carriage returns fromasterisk , semicolon andtypespec .

• Small additions tosemicolon andvalrec .

Version 1.1 (2002/07/26)

Basis:

• Adapted signatures to latest version of the Basis specification [GR04].

• Implemented new library functions and adapted functions with changed semantics.

• Implemented all signatures and structures dealing with array and vector slices.

• Implemented newText structure, along with missingCharVector andCharArray
structures.

• Implemented missingByte structure.

• RemovedSML90structure and signature.

• Use opaque signature constraints where the specification uses them (with some nec-
essary exceptions).

• Implemented missingBool.scan andBool.fromString .

• Implemented missingReal.posInf andReal.negInf .

• Handle exceptions fromChar.chr correctly.

• Fixed generation of\ˆX -escapes inChar.toString .

• Fixed treatment of gap escapes inChar.scan .
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Test cases:

• Added test casereplication .

• Updated conformance table.

Version 1.1.1 (2004/04/17)

Interpreter:

• Disallow undetermined types (a.k.a. “free type variables”) on toplevel.

• Implement accurate scope checking for type names.

• Fixed soundness bug w.r.t. undetermined types in type scheme generalisation test.

• Reject out-of-range real constants.

• Accept multiple line input.

• Output file name and line/columns with error messages.

• Improved pretty printing.

Basis:

• Sync’ed with updates to the specification [GR04]: overloaded ∼ on words, added
Word.fromLarge ,Word.toLarge , Word.toLargeX ; removedSubstring.all ;
changedTextIO.inputLine ; changedByte.unpackString andByte.unpackStringVec .

• FixedString.isSubstring , String.fields , andVector.foldri .

Test cases:

• Added test casesabstype2 , dec-strdec , flexrecord2 , tyname , undetermined2 ,
undetermined3 .

• Split conformance table into different classes of deviation and updated it.

Version 1.1.2 (2005/01/14)

Interpreter:

• Fix parsing of sequential and sharing specifications.

• Add arity checks missing in rules 64 and 78 of the Definition.

• Implement type name equality attribute asbool .

Basis:

• FixedStringCvt.padLeft andStringCvt.padRight .

Documentation:

• Add parsing ambiguity for sharing specifications to issue list.

• Add missing side conditions in rules 64 and 78 to issue list.
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• Added version history to appendix.

Test cases:

• Added test casespoly-exception , tyvar-shadowing , andwhere2 and ex-
tendedid andvalrec .

• Updated conformance table.

Version 1.2 (2005/02/04)

Interpreter:

• Refactored code: semantic objects are now collected in one structure for each part of
the semantics; type variable scoping and closure computation (expansiveness check)
are separated from elaboration module.

• Made checking of syntactic restrictions a separate inference pass.

• Added missing check for bound variables in signature realisation.

• Fixed precedence of environments foropen declarations.

• Fixed implementation of Abs operator forabstype .

• Print type name setT of inferred basis in elaboration mode.

• Fixed parenthesisation in pretty printing type applications.

Basis:

• More correct path resolution foruse function.

• AddedcheckFloat to REALsignature so that bootstrapping actually works again.

• FixedArraySlice.copy for overlapping ranges.

• FixedArraySlice.foldr andArraySlice.foldri .

• FixedChar.isSpace .

• Fixed octal escapes inChar.fromCString .

• Updated treatment of trailing gap escapes inChar.scan .

• Updated scanning of hex prefix inWord.scan .

• Fixed traversal order inVector.map .

Documentation:

• Added typo in rule 28 to issue list.

Test files:

• Addedgeneralise .

• Extendedpoly-exception .
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Version 1.2.1 (2005/07/27)

Interpreter:

• Fixed bug in implementation of rule 35.

• Fixed bug in check for redundant match rules.

Basis:

• FixedSubstring.splitr .

• Fixed border cases inOS.Path.toString , OS.Path.joinBaseExt ,OS.Path.mkAbsolute ,
andOS.Path.mkRelative .

Version 1.2.2 (2005/12/09)

Interpreter:

• Simplified implementation of pattern checker.

Test files:

• Addedfun-infix .

Version 1.2.3 (2006/07/18)

Interpreter:

• Fixed check for duplicate variables in records and layered patterns.

• Added missing check for undetermined types in functor declarations.

• Overhaul of line/column computation and management of source file names.

Documentation:

• Added principal typing problem with functors to issue list.

Test files:

• Addedfun-partial , functor-poly andfunctor-poly2 .

• Updated conformance table.

Version 1.2.4 (2006/08/14)

Documentation:

• Clarified license.

110



Version 1.3.0 (2007/03/22)

Interpreter:

• Output abstract syntax tree in parsing mode.

• Output type and signature environments in evaluation mode.

• Fixed computation of tynames on a static basis.

• Reorganised directory structure.

• Some clean-ups.

Documentation:

• Updated a few out-of-sync sections.

• Added typo in definition of↓ operator (Section 7.2) to issues list.

Test files:

• Extendedsharing andwhere .

• Updated conformance table.

Platforms:

• Support for Poly/ML, Alice ML, and the ML Kit.

• Support for incremental batch compilation with Moscow ML and Alice ML.

• Target to build a generic monolithic source file.

Version 1.2.2/S1 (2005/12/12)

Interpreter:

• Implemented RFC: Syntax fixes.

• Implemented RFC: Semantic fixes.

• Implemented RFC: Line comments.

• Implemented RFC: Extended literal syntax.

• Implemented RFC: Record punning.

• Implemented RFC: Record extension.

• Implemented RFC: Record update.

• Implemented RFC: Disjunctive patterns.

• Implemented RFC: Conjunctive patterns.

• Implemented RFC: Match guards.

• Implemented RFC: Optional bar in matches.

• Implemented RFC: Simplified recursive bindings.

• Implemented RFC: Strengthened value restriction.

• Implemented RFC: Degraded abstype.

• Implemented RFC: Proper scoping for transparent type specifications.

• Implemented RFC: Withtype specifications.

• Implemented RFC: Remove ”and” in type realisations.
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Version 1.2.2/S2 (2006/01/02)

Interpreter:

• Implemented RFC: Do declarations.

• Extended RFC: Record extension to support record type extension and freely placed
ellipses.

• Fixed bug in record type field lookup.

Version 1.2.3/S2 (2006/07/18)

Merged changes from 1.2.3.

Version 1.2.4/S2 (2006/08/14)

Documentation:

• Clarified license.

Version 1.2.4/S3 (2006/09/10)

Interpreter:

• Modified RFC: Line comments to use( * ) as delimiter.

• Extended RFC: Optional bar in matches to support datatype declarations and speci-
fications.

Version 1.3.0/S4 (2007/03/22)

Merged changes from 1.3.0, plus:

Interpreter:

• Implemented RFC: Views.

• Implemented RFC: Nested matches.

• Implemented RFC: Transformation patterns.

• Generalised RFC: Match guards to Pattern guards.

• Implemented RFC: Higher-order functors.

• Implemented RFC: Nested signatures.

• Implemented RFC: Local modules.

• Implemented RFC: First-class modules.

• Extended RFC: Optional bars to cover semicolons as well.

Documentation:

• Added Appendix B documenting all extensions.
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Version 1.3.1 (2008/04/28)

Platforms:

• Preliminary support for SML#.

• Avoid name clash with library of SML/NJ 110.67.

• Avoid shell-specific code inMakefile .

Version 1.3.1/S5 (2008/04/28)

Merged changes from 1.3.1, plus:

Interpreter:

• Implemented RFC: Optionalelse branch.

• Fixed and simplified definition of signature matching for RFC: Higher-order func-
tors.
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